全等三角形培优专题训练
《全等三角形》培优练习题
A B C D E F O 《全等三角形》培优练习题一、在较复杂图形中寻找所需全等三角形解决问题例1、已知:如图,△ABD 和△BEC 均为等边三角形,M 、N 分别为AE 和DC 的中点,那么 △BMN 是等边三角形吗?说明理由.【对应练习】1、已知:如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,∠BAC=∠DAE ,,连接BE CD M N ,,,分别为BE CD ,的中点.(1)当点B A D ,,在一条直线上,试说明:AM=AN ;(2)将A D E △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请 判断AM=AN 是否成立?并说明你的理由; (3)在旋转的过程中,设直线BE 与CD 相交于点P ,当90°<∠BAC<180°时,请直接 写出∠CPB 与∠MAN 之间的数量关系. 二、通过证两次三角形全等解决问题例2、已知:如图,AB 、CD 交于O 点,且OA=OB ,OC=OD ,过O 作直线,交AC 于E ,交BD 于F 。
求证:OE=OF 。
【对应练习】2、如图,在Rt △AEB 和Rt △AFC 中,∠E =∠F =90°,BE 与AC 相交于点M ,与CF 相交于点D ,AB 与CF 相交于点N ,∠EAC =∠FAB ,AE =AF .求证:MB=NCABC EM F DN C E N D A B M 图①C A EM B D N 图②O B A C DE 三、通过转化命题或添作辅助线减少证明三角形全等的次数,简化解题过程例3、已知AB=AC, ∠ABE=∠ACD, 求证: BD=CE.【对应练习】3、已知:如图,AC ⊥OB ,BD ⊥OA ,AC 与BD 交于E 点,若OA=OB ,求证:AE=BE 。
四、动点问题例4、如图,△ABC 是边长为5cm 的等边三角形,点P ,Q 分别从顶点A ,B 同时出发,沿线段AB ,BC 运动,且它们的速度都为1cm/s .当点P 到达点B 时,P ,Q 两点停止运动,设点P 的运动时间为t (s ).(1)当t 为何值时,△PBQ 是直角三角形?(2)连接AQ 、CP ,相交于点M ,则点P ,Q 在运动的过程中,∠CMQ 会变化吗?若变化,则说明理由;若不变,请求出它的度数.例5、如图,已知△ABC中,AB=AC=12cm,BC=9cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由点B向点C运动,同时点Q在线段CA上由点C向点A运动.①若点P的运动速度与点Q的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明理由?②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动,直接写出经过多长时间点P与点Q第一次相遇.【对应练习】4、如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.点P在线段BC上由B 点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q和点P都以3cm/s的速度运动,经过1s后,△BPD与△CQP是否全等,请说明理由;(2)若点P的运动速度为2cm/s,经过t秒后,△BPD与△CQP全等,求此时点Q的运动速度和运动时间t.5、如图,△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=.现将△DEF与△ABC按如图所示的方式叠放在一起.现将△ABC保持不动,△DEF运动,且满足:点E在边BC上运动,且边DE始终经过点A,EF与AC交于M点.请问:在△DEF运动过程中,△AEM能否构成等腰三角形?若能,请求出BE的长;若不能,请说明理由.。
部编数学八年级上册第十二章全等三角形单元培优训练(解析版)含答案
2022-2023学年八年级数学上册章节同步实验班培优题型变式训练(人教版)第十二章 全等三角形单元培优训练班级___________ 姓名___________ 学号____________ 分数____________考试范围:第12章 全等三角形,共23题; 考试时间:120分钟; 总分:120分一、选择题(本大题共6小题,每小题3分,共18分)1.(2022·全国·八年级单元测试)已知图中的两个三角形全等,则∠a 等于( )A .72oB .60oC .58oD .50o 【答案】D 【分析】根据全等三角形的性质:全等三角形对应角相等,即可得到结论.【详解】Q 图中的两个三角形全等,a Ð 为a 和c 的夹角又Q 第一个三角形中a 和c 的夹角为50°\ 50a Ð=°故选:D .【点睛】本题考查了全等三角形的性质,准确找到对应角是解题的关键.2.(2022·江苏·八年级单元测试)如图,14AB =,6AC =,AC AB ^,BD AB ^,垂足分别为A 、B .点P 从点A 出发,以每秒2个单位的速度沿AB 向点B 运动;点Q 从点B 出发,以每秒a 个单位的速度沿射线BD 方向运动.点P 、点Q 同时出发,当以P 、B 、Q 为顶点的三角形与CAP V 全等时,a 的值为( )A .2B .3C .2或3D .2或127【答案】D3.(2022·江苏·八年级专题练习)如图,AOB ADC △≌△,点B 和点C 是对应顶点,90O D Ð=Ð=°,记,,OAD ABO ABC ACB a b Ð=Ð=Ð=Ð,当//BC OA 时,a 与b 之间的数量关系为( )A .a b=B .2a b =C .90a b +=°D .2180a b +=°【答案】B 【分析】根据全等三角形对应边相等可得AB =AC ,全等三角形对应角相等可得∠BAO =∠CAD ,然后求出∠BAC =α,再根据等腰三角形两底角相等求出∠ABC ,然后根据两直线平行,同旁内角互补表示出∠OBC ,整理即可.【详解】∵AOB ADC △≌△,∴BAO CAD Ð=Ð,4.(2022·全国·八年级单元测试)如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE 的长是( )A.6cm B.5cm C.7cm D.无法确定【答案】C【分析】根据全等三角形的性质计算即可;【详解】∵△ABC≌△ADE,=,∴BC DE∵BC=7cm,∴7=;DE cm故答案选C.【点睛】本题主要考查了全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.∥,5.(2022·全国·八年级专题练习)如图,把△ABC沿线段DE折叠,使点B落在点F处;若AC DE∠A=70°,AB=AC,则∠CEF的度数为()A .55°B .60°C .65°D .70°【答案】D 【分析】由于折叠,可得三角形全等,运用三角形全等得出55B C Ð=Ð=°,利用平行线的性质可得出55DEB C Ð=Ð=°,则CEF Ð即可求.【详解】解:ABC Q V 沿线段DE 折叠,使点B 落在点F 处,BDE FDE \@V V ,DEB DEF \Ð=Ð,70A AB AC Ð=°=,Q ,12180705)5(B C \Ð=Ð=´°-°=°,AC DE ∥Q ,55DEB C DEF \Ð=Ð=°=Ð,18070FEC DEB DEF \Ð=°-Ð-Ð=°,故选:D .【点睛】本题考查了全等三角形的性质及三角形内角和定理、平行线的性质;解题的关键是理解折叠就是得到全等的三角形,根据全等三角形的对应角相等就可以解决.6.(2022·全国·八年级专题练习)如图,已知△ABC ≌△DEF ,CD 平分∠BCA ,若∠A =30°,∠CGF =88°,则∠E 的度数是( )A .50°B .44°C .34°D .30°【答案】C二、填空题(本大题共6小题,每小题3分,共18分)7.(2022·江苏·八年级专题练习)如图,图中由实线围成的图形与①是全等形的有______.(填番号)【答案】②③【分析】根据全等图形的定义,两个图形必须能够完全重合才行.【详解】观察图形,发现②③图形可以和①图形完全重合故答案为:②③.【点睛】本题考查全等的概念,任何一组图形,要想全等,则这组图形必须能够完全重合.8.(2022·江苏·八年级专题练习)如图,△ABC 中,∠A :∠ABC :∠ACB =3:5:10,又△A ′B ′C ≌△ABC ,则∠BCA ′:∠BCB ′的值为_____.9.(2022·江苏·八年级专题练习)如图,,125,25,ABC ADE EAB CAD BAC Ð=°Ð=°ÐV V ≌的度数为___________.【答案】75°【分析】根据全等三角形的性质求出∠EAD =∠CAB ,求出∠DAB =∠EAC =50°,即可得到∠BAC 的度数.【详解】解:∵V ABC ≌V ADE ,10.(2022·全国·八年级专题练习)如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠P +∠Q =__________度.【答案】45【分析】如图,直接利用网格得出对应角P AQC ÐÐ=,进而得出答案.【详解】如图,易知ABP ACQ V V ≌,∴P AQC ÐÐ=,∵BQ 是正方形的对角线,∴45BQC BQA AQC P Q ÐÐ+Ð=Ð+Ð=°=,故答案为:45.【点睛】本题考查了全等三角形,正确借助网格分析是解题关键.11.(2022·全国·八年级课时练习)如图,已知△ABC ≌△ADE ,若AB=7,AC=3,则BE 的值为_________.【答案】4【分析】根据△ABC ≌△ADE ,得到AE=AC ,由AB=7,AC=3,根据BE=AB-AE 即可解答.【详解】解:∵△ABC ≌△ADE ,∴AE=AC ,∵AB=7,AC=3,∴BE=AB-AE=AB-AC=7-3=4.故答案为:4.【点睛】本题考查全等三角形的性质,解决本题的关键是熟记全等三角形的对应边相等.12.(2022·江西上饶·八年级期末)如图,在△ABC 中,90ACB Ð=°,AC =8cm ,BC =10cm .点C 在直线l 上,动点P 从A 点出发沿A →C 的路径向终点C 运动;动点Q 从B 点出发沿B →C →A 路径向终点A 运动.点P 和点Q 分别以每秒1cm 和2cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,分别过点P 和Q 作PM ⊥直线l 于M ,QN ⊥直线l 于N .则点P 运动时间为____秒时,△PMC 与△QNC 全等.【答案】2或6##6或2【分析】设点P 运动时间为t 秒,根据题意化成两种情况,由全等三角形的性质得出CP CQ =,列出关于t 的方程,求解即可.【详解】解:设运动时间为t 秒时,△PMC ≌△CNQ ,∴斜边CP CQ =,分两种情况:①如图1,点P 在AC 上,点Q 在BC 上,图1∵AP t =,2BQ t =,∴8CP AC AP t =-=-,102CQ BC BQ t =-=-,∵CP CQ =,∴8102t t -=-,∴2t =;②如图2,点P 、Q 都在AC 上,此时点P 、Q 重合,图2∵8CP AC AP t =-=-,210CQ t =-,∴8210t t -=-,∴6t =;综上所述,点P 运动时间为2或6秒时,△PMC 与△QNC 全等,故答案为:2或6.【点睛】本题考查了全等三角形的性质和判定的应用,根据题意判断两三角形全等的条件是解题关键,同时要注意分情况讨论,解题时避免遗漏答案.三、(本大题共5小题,每小题6分,共30分)13.(2022·全国·八年级课时练习)如图,△ABD ≌△ACE ,写出对应边和对应角,并证明∠1=∠2.【答案】见解析,证明见解析Ð=Ð,根据等角的补角相等即可求【分析】根据全等三角形的性质写出对角与对应边,根据ADB AEC解.【详解】解:∵△ABD≌△ACE,\===,AB AC AD AE BD CE,,A ABC ADB AECÐ=ÐÐ=ÐÐ=Ð;,,Ð=Ð,证明:∵ADB AEC\°-Ð=°-Ð,ADB AEC180180即12Ð=Ð.【点睛】本题考查了全等三角形的性质,等角的补角相等,掌握全等三角形的性质是解题的关键.14.(2022·全国·八年级专题练习)如图所示,A,C,E三点在同一直线上,且△ABC≌△DAE.(1)求证:BC=DE+CE;∥?(2)当△ABC满足什么条件时,BC DE【答案】(1)见解析∥(2)当∠ACB为直角时,BC DE【分析】(1)根据全等三角形的性质得出AE=BC,AC=DE,据此即可证得;(2)根据平行线的性质得出∠BCE=∠E,根据全等三角形的性质得出∠ACB=∠E,求出∠ACB=∠BCE,再求出答案即可.(1)证明:∵△ABC ≌△DAE ,∴AE =BC ,AC =DE ,又∵AE =AC +CE ,∴BC =DE +CE ;(2)解:∵BC DE ∥,∴∠BCE =∠E ,又∵△ABC ≌△DAE ,∴∠ACB =∠E ,∴∠ACB =∠BCE ,又∵∠ACB +∠BCE =180°,∴∠ACB =90°,即当△ABC 满足∠ACB 为直角时,BC DE ∥.【点睛】本题考查了全等三角形的性质和平行线的性质,能灵活运用定理进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.15.(2022·全国·八年级专题练习)如图,点A ,B ,C 在同一直线上,点E 在BD 上,且ABD EBC V V ≌,2cm AB =,3cm BC =.(1)求DE 的长;(2)判断AC 与BD 的位置关系,并说明理由.(3)判断直线AD 与直线CE 的位置关系,并说明理由.【答案】(1)1cm DE =;(2)AC BD ^.理由见解析;(3)直线AD 与直线CE 垂直.理由见解析【分析】(1)由题意根据全等三角形的对应边相等得到BD=BC=5cm ,BE=AB=2cm ,计算即可;(2)由题意直接根据全等三角形的对应角相等和平角的定义解答;(3)由题意延长CE 交AD 于F ,进而根据全等三角形的对应角相等和三角形内角和定理进行分析解答即可.【详解】解:(1)ABD EBC Q △≌△,3cm BD BC \==,2cm BE AB ==,1cm DE BD BE \=-=.(2)AC BD ^.理由:ABD EBC Q △≌△,ABD EBC Ð=Ð\.又A Q ,B ,C 在同一直线上,90EBC \=а.AC BD \^.(3)直线AD 与直线CE 垂直.理由:如图,延长CE 交AD 于F .ABD EBC Q △≌△,D C \Ð=Ð.Q 在Rt ABD △中,90A D Ð+Ð=°,90A C +Ð=\а,90AFC \Ð=°,即直线AD 与直线CE 垂直.【点睛】本题考查的是全等三角形的性质,熟练掌握全等三角形的对应边相等以及全等三角形的对应角相等是解题的关键.16.(2022·全国·八年级专题练习)如图,A ,E ,C 三点在同一直线上,且△ABC ≌△DAE .(1)线段DE ,CE ,BC 有怎样的数量关系?请说明理由.(2)请你猜想△ADE 满足什么条件时,DE ∥BC ,并证明.【答案】(1)DE =CE +BC ,理由见解析(2)当△ADE满足∠AED=90°时,DE//BC.证明见详解【分析】(1)根据全等三角形的性质得出AE=BC,DE=AC,再求出答案即可;(2)根据全等三角形的性质得出∠AED=∠C,根据两直线平行,内错角相等,得出∠C=∠DEC,再根据邻补角互补得出∠AED+∠DEC=180°,再求出∠AED=90°即可.(1)解:DE=CE+BC.理由:∵△ABC≌△DAE,∴AE=BC,DE=AC.∵A,E,C三点在同一直线上,∴AC=AE+CE,∴DE=CE+BC.(2)猜想:当△ADE满足∠AED=90°时,DE//BC.证明:∵△ABC≌△DAE,∴∠AED=∠C,又∵DE∥BC,∴∠C=∠DEC,∴∠AED=∠DEC.又∵∠AED+∠DEC=180°,∴∠AED=∠DEC=90°,∴当△ADE满足∠AED=90°时,DE∥BC.【点睛】本题考查了全等三角形的性质、等量代换、平行线的性质、邻补角互补,解本题的关键在熟练掌握相关性质.17.(2022·全国·八年级专题练习)如图,已知△ABC≌△DEB,点E在AB上,AC与BD交于点F,AB=6,BC=3,∠C=55°,∠D=25°.(1)求AE的长度;(2)求∠AED的度数.【答案】(1)3AE =;(2)80AED Ð=°.【分析】(1)先根据全等三角形的性质可得3BE BC ==,再根据线段的和差即可得;(2)先根据全等三角形的性质可得55DBE C Ð=Ð=°,再根据三角形的外角性质即可得.【详解】解:(1)∵,3ABC DEB BC @=V V ,∴3BE BC ==,∵6AB =,∴633AE AB BE =-=-=;(2)∵ABC DEB @△△,∴55DBE C Ð=Ð=°,∵25D Ð=°,∴552580AED DBE D Ð=Ð+Ð=°+°=°.【点睛】本题考查全等三角形的性质等知识点,熟练掌握全等三角形的对应角和对应边相等是解题关键.四、(本大题共3小题,每小题8分,共24分)18.(2021·全国·八年级专题练习)如图,ABC DEB V V ≌,点E 在AB 上,DE 与AC 相交于点F ,若7DE =,4BC =,35D Ð=°,60C Ð=°.(1)求线段AE 的长;(2)求DFA Ð的度数.【答案】(1)3AE =;(2)130DFA Ð=°【分析】(1)根据全等三角形的性质解答即可;(2)根据全等三角形的性质以及三角形的外角性质解答即可.【详解】(1)∵ABC DEB V V ≌,∴7AB DE ==,4BC BE ==,∵点E 在AB 上,∴AE BE AB +=,∴743AE AB BE =-=-=;(2)∵ABC DEB V V ≌,∴∠A=∠D=35°,60C DBE °Ð=Ð=,95AEF DBE D Ð=Ð+Ð=°,130DFA AEF A °Ð=Ð+Ð=.【点睛】本题考查了全等三角形的性质,三角形的外角性质,关键是根据全等三角形的对应角和对应边相等分析.19.(2022·全国·八年级专题练习)如图,,ABF CDE B ÐV V ≌和D Ð是对应角,AF 和CE 是对应边.(1)写出ABF V 和CDE △的其他对应角和对应边;(2)若30,40B DCF Ð=°Ð=°,求EFC Ð的度数;(3)若10,2BD EF ==,求BF 的长.【答案】(1)其他对应角为BAF Ð和DCE Ð,AFB Ð和CED Ð;其他对应边为AB 和,CD BF 和DE ;(2)70EFC Ð=°;(3)6BF =.【分析】(1)根据全等三角形的性质,对应角相等,对应边相等,解答即可;(2)根据全等三角形的性质可得30D B Ð=Ð=°,运用三角形外角的性质即可解答;(3)根据全等三角形的性质可得BF DE =,进一步证明DF BE =,然后可得426BF BE EF =+=+=.【详解】(1)其他对应角为:BAF Ð和DCE Ð,AFB Ð和CED Ð;其他对应边为:AB 和,CD BF 和DE ;(2)∵,30ABF CDE B Ð=°V V ≌,20.(2022·浙江·八年级专题练习)如图,ABC V ≌ADE V ,AC 和AE ,AB 和AD 是对应边,点E 在边BC 上,AB 与DE 交于点F .(1)求证:CAE BAD Ð=Ð;(2)若35BAD Ð=°,求BED Ð的度数.【答案】(1)见解析;(2)35°【分析】(1)根据ABC V ≌ADE V ,可得∠BAC =∠DAE ,即可求证;(2)由(1)可得∠CAE =35°,再由ABC V ≌ADE V ,可得∠C =∠AED ,然后根据三角形外角的性质,可得∠BED =∠CAE ,即可求解.【详解】(1)证明:∵ABC V ≌ADE V ,∴∠BAC =∠DAE ,即∠CAE +∠BAE =∠BAD +∠BAE ,(2)∵35BAD Ð=°,CAE BAD Ð=Ð,∴∠CAE =35°,∵ABC V ≌ADE V ,∴∠C =∠AED ,∵∠AEB =∠C +∠CAE ,∠AEB =∠AED +∠BED ,∴∠BED =∠CAE =35°.【点睛】本题主要考查了全等三角形的性质,熟练掌握全等三角形的对应角相等,对应边相等是解题的关键.五、(本大题共2小题,每小题9分,共18分)21.(2022·全国·八年级课时练习)如图,已知△ABC ≌△DEF ,点B ,E ,C ,F 在同一直线上.(1)若∠BED =130°,∠D =70°,求∠ACB 的度数;(2)若2BE =EC ,EC =6,求BF 的长.【答案】(1)60°(2)12【分析】(1)根据三角形的外角的性质求出∠F ,再根据全等三角形的对应角相等解答;(2)根据题意求出BE 、BC ,再根据全等三角形的性质解答.(1)解:∵∠BED =130°,∠D =70°,∴∠F =∠BED -∠D =60°,∵V ABC ≌V DEF ,∴∠ACB =∠F =60°;(2)∵2BE =EC ,EC =6,∴BE =3,∴BC =BE +EC =9,∵V ABC ≌V DEF ,∴EF =BC =9,∴BF =EF +BE =12.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.22.(2021·全国·八年级单元测试)如图△ADF ≌△BCE ,∠B =40°,∠F =22°,BC =2cm ,CD =1cm .求:(1)∠1的度数;(2)AC 的长.【答案】(1)62°;(2)3cm【分析】(1)根据全等三角形的性质可得22E F Ð=Ð=°,由三角形外角的性质可得1B E Ð=Ð+Ð,即可求解;(2)由全等三角形的性质可得AD BC =,即可求解.【详解】解:(1)∵ADF BCEV V ≌∴22E F Ð=Ð=°由三角形外角的性质可得:162B E Ð=Ð+Ð=°∠1的度数为62°(2)∵ADF BCEV V ≌∴2AD BC cm==∴3AC AD CD cm=+=即AC 的长为3cm【点睛】此题考查了全等三角形的性质,涉及了三角形外角的性质,掌握全等三角形的有关性质是解题的关键.六、(本大题共12分)23.(2022·全国·八年级课时练习)如图,在ABC V 中,4cm,,4cm BC AE BC AE ==∥,点N 从点C 出发,沿线段CB 以2cm/s 的速度连续做往返运动,点M 从点A 出发沿线段AE 以1cm/s 的速度运动至点E .M 、N 两点同时出发,连结,MN MN 与AC 交于点D ,当点M 到达点E 时,M 、N 两点同时停止运动,设点M 的运动时间为(s)t .(1)当3t =时,线段AM 的长度=___________cm ,线段BN 的长度=___________cm .(2)当BN AM =时,求t 的值.(3)连接AN ,当ABN V 的面积等于ABC V 面积的一半时,直接写出所有满足条件的t 值.(4)当ADM CDN △≌△时,直接写出所有满足条件的t 值.。
全等三角形专题培优(带答案)
全等三角形专题培优考试总分: 110 分考试时间: 120 分钟卷I(选择题)一、选择题(共 10 小题,每小题 2 分,共 20 分)1.如图为个边长相等的正方形的组合图形,则A. B.C. D.2.下列定理中逆定理不存在的是()A.角平分线上的点到这个角的两边距离相等B.在一个三角形中,如果两边相等,那么它们所对的角也相等C.同位角相等,两直线平行D.全等三角形的对应角相等3.已知:如图,,,,则不正确的结论是()A.与互为余角B.C.D.4.如图,是的中位线,延长至使,连接,则的值为()A. B. C. D.5.如图,在平面直角坐标系中,在轴、轴的正半轴上分别截取、,使;再分别以点、为圆心,以大于长为半径作弧,两弧交于点.若点的坐标为,则与的关系为()A. B.C. D.6.如图,是等边三角形,,于点,于点,,则下列结论:①点在的角平分线上;②;③;④.正确的有()A.个B.个C.个D.个7.如图,直线、、″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处8.如图,是的角平分线,则等于()A. B.C. D.9.已知是的中线,且比的周长大,则与的差为()A. B.C. D.10.若一个三角形的两条边与高重合,那么它的三个内角中()A.都是锐角B.有一个是直角C.有一个是钝角D.不能确定卷II(非选择题)二、填空题(共 10 小题,每小题 2 分,共 20 分)11.问题情境:在中,,,点为边上一点(不与点,重合),交直线于点,连接,将线段绕点顺时针方向旋转得第1页,共7页第2页,共7页………外………○……………………○……………………○※※请※※不※※答※※题※………内………○……………………○……………………○到线段(旋转角为),连接.特例分析:如图.若,则图中与全等的一个三角形是________,的度数为________.类比探究:请从下列,两题中任选一题作答,我选择________题. :如图,当时,求的度数; :如图,当时,①猜想的度数与的关系,用含的式子表示猜想的结果,并证明猜想;②在图中将“点为边上的一点”改为“点在线段的延长线上”,其余条件不变,请直接写出的度数(用含的式子表示,不必证明)12.如图,正方形纸片的边长为,点、分别在边、上,将、分别沿、折叠,点、恰好都落在点处,已知,则的长为________.13.在中,为的平分线,于,于,面积是,,,则的长为________.14.在中,,的垂直平分线与所在的直线相交所得到锐角为,则等于________.15.如图,平分,于,于,,则图中有________对全等三角形.16.如图,在中,,点从点出发沿射线方向,在射线上运动.在点运动的过程中,连结,并以为边在射线上方,作等边,连结. 当________时,;请添加一个条件:________,使得为等边三角形; ①如图,当为等边三角形时,求证:;②如图,当点运动到线段之外时,其它条件不变,①中结论还成立吗?请说明理由.17.如图,从圆外一点引圆的两条切线,,切点分别为,.如果,,那么弦的长是________.18.如图,在中,,,是的平分线,平分交于,则________.19.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图,在中,,平分,, 求的长.小聪思考:因为平分,所以可在边上取点,使,连接.这样很容易得到,经过推理能使问题得到解决(如图). 请回答:是________三角形.的长为________.参考小聪思考问题的方法,解决问题: 如图,已知中,,,平分,,.求的长.20.如图,在和中,,,若要用“斜边直角边..”直接证明,则还需补充条件:________.三、解答题(共 7 小题 ,每小题 10 分 ,共 70 分 )21.如图,已知为等边三角形,为延长线上的一点,平分,,求证:为等边三角形.22.尺规作图(不要求写作法,保留作图痕迹)如图,作①的平分线;②边上的中线;22.一块三角形形状的玻璃破裂成如图所示的三块,请你用尺规作图作一个三角形,使所得的三角形和原来的三角形全等.(不要求写作法,保留作图痕迹.不能在原图上作三角形)22.如图:在正方形网格中有一个,按要求进行下列画图(只能借助于网格):①画出中边上的高(需写出结论).②画出先将向右平移格,再向上平移格后的.23.平行四边形中,,点为边上一点,连结,点在边所在直线上,过点作交于点.如图,若为边中点,交延长线于点,,,,求;如图,若点在边上,为中点,且平分,求证:;如图,若点在延长线上,为中点,且,问中结论还成立吗?若不成立,那么线段、、满足怎样的数量关系,请直接写出结论.24.如图,直线与轴、轴分别交于、两点,直线与直线关于轴对称,已知直线的解析式为,求直线的解析式;过点在的外部作一条直线,过点作于,过点作于,请画出图形并求证:;沿轴向下平移,边交轴于点,过点的直线与边的延长线相交于点,与轴相交于点,且,在平移的过程中,①为定值;②为定值.在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值.25.如图:,,过点,于,于,.求证:.第3页,共7页第4页,共7页26.如图,点,在上,,,,与交于点.求证:;试判断的形状,并说明理由.27.如图,已知点是平分线上一点,,,垂足为、吗?为什么?是的垂直平分线吗?为什么? 答案 1.B 2.D 3.D 4.A 5.B 6.D 7.D 8.A 9.B 10.B11.[ “”, “” ][ “” ] 12.[ “” ] 13.[ “” ] 14.[ “或” ]15.[ “” ] 16.[ “;” ][ "添加一个条件,可得为等边三角形; 故答案为:;①∵与是等边三角形, ∴,,, ∴, 即, 在与中, , ∴, ∴;②成立,理由如下; ∵与是等边三角形, ∴,,, ∴, 即, 在与中, , ∴, ∴." ] 17.[ “” ] 18.[ “” ]19.[ "解:是等腰三角形, 在与中,, ∴, ∴,, ∵, ∴, ∴,∴是等腰三角形;" ][ "的长为, ∵中,,, ∴, ∵平分, ∴,在边上取点,使,连接, 则,∴, ∴, ∴,在边上取点,使,连接, 则, ∴,, ∵, ∴, ∴, ∵,∴." ]\"go题库\"20.[ “” ]21.证明:∵为等边三角形,∴,,即,∵平分,∴,在和中,,∴,∴,,又,∴,∴为等边三角形.22.解:如图所示:;如图所示:即为所求;;①如图所示:即为所求;②如图所示:即为所求;..23.解:如图,在平行四边形中,,∴,∵在中,为的中点,,∴,又∵,∴,故可设,,则中,,解得,∴,又∵,,∴为的中点,∴;如图,延长交的延长线于点,则,∵,∴,又∵平分,∴,∴是等腰直角三角形,∴,又∵,∴,∴,,又∵为的中点,∴,∴,∴,∵,∴;第5页,共7页第6页,共7页…○…………装订…………○…※※请※※不※※内※※答※※题※※…○…………装订…………○…若点在延长线上,为中点,且,则中的结论不成立,正确结论为:. 证明:如图,延长交的延长线于点,则,∵, ∴, ∴, 又∵, ∴, ∴,,又∵为的中点, ∴, ∴, ∴, ∵, ∴.24.解:∵直线与轴、轴分别交于、两点, ∴,,∵直线与直线关于轴对称, ∴∴直线的解析式为:;如图..∵直线与直线关于轴对称, ∴,∵与为象限平分线的平行线, ∴与为等腰直角三角形, ∴, ∵, ∴ ∴ ∴,,∴;①对,过点作轴于,直线与直线关于轴对称∵,, 又∵, ∴, 则, ∴ ∴ ∴ ∴ ∴.25.证明:连接, ∵, ∴, ∵, ∴, ∴, ∵,, ∴, 在和中,∴.26.证明:∵,∴,即.又∵,,∴,∴.解:为等腰三角形理由如下:∵,∴,∴,∴为等腰三角形.27.解:.理由:∵是的平分线,且,,∴,∴;是的垂直平分线.理由:∵,在和中,,∴,∴,由,,可知点、都是线段的垂直平分线上的点,从而是线段的垂直平分线.第7页,共7页。
人教版 八年级数学 第12章 全等三角形 培优训练 (含答案)
人教版八年级数学第12章全等三角形培优训练一、选择题1. 下列各组的两个图形属于全等图形的是()2. 如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE相交于点M,则∠DCE等于()A.∠B B.∠A C.∠EMF D.∠AFB3. 如图所示,P是∠BAC内一点,且点P到AB,AC的距离PE,PF相等,则△PEA≌△PF A的依据是()A.HL B.ASA C.SSS D.SAS4. 根据下列条件,能画出唯一的△ABC的是()A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.AB=5,AC=6,∠A=50°D.∠A=30°,∠B=70°,∠C=80°5. 如图,点A在点O的北偏西30°的方向上,AB⊥OA,垂足为A.根据已知条件和图上尺规作图的痕迹判断,下列说法正确的是()A.点O在点A的南偏东60°方向上B.点B在点A的北偏东30°方向上C.点B在点O的北偏东60°方向上D.点B在点O的北偏东30°方向上6. 如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()7. 现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,OA=a,AB=b.小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误8. 如图,点G在AB的延长线上,∠GBC,∠BAC的平分线相交于点F,BE⊥CF 于点H.若∠AFB=40°,则∠BCF的度数为()A.40°B.50°C.55°D.60°二、填空题9. 如图,在Rt△ABC中,∠C=90°,∠B=20°,以点A为圆心,小于AC的长为半径画弧与AB,AC分别交于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧相交于点P,连接AP并延长交BC于点D,则∠ADB=°.10. 如图,在△ABC中,AD⊥BC于点D,要使△ABD≌△ACD,若根据“HL”判定,还需要添加条件:____________.11. 如图,若AB=AC,BD=CD,∠A=80°,∠BDC=120°,则∠B=________°.12. 在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD 的面积之比是________.13. (2019•南通)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.14. 如图所示,已知AD∥BC,则∠1=∠2,理由是________________;又知AD =CB,AC为公共边,则△ADC≌△CBA,理由是______,则∠DCA=∠BAC,理由是__________________,则AB∥DC,理由是________________________________.15. 如图,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E.若△DBE的周长为20,则AB=________.16. 如图,△ABC的两条外角平分线BP,CP相交于点P,PE⊥AC交AC的延长线于点E.若△ABC的周长为11,PE=2,S△BPC =2,则S△ABC=.三、解答题17. 育新中学校园内有一块直角三角形(Rt△ABC)空地,如图所示,园艺师傅以角平分线AD为界,在其两侧分别种上了不同的花草,在△ABD区域内种植了一串红,在△ACD区域内种植了鸡冠花,并量得两直角边AB=20 m,AC=10 m,分别求一串红与鸡冠花两种花草的种植面积.18. 如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上.若AD=16,BC=10,求AB的长.19. 我们把两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD是筝形,其中AB=AD,CB=CD,P是对角线AC上除A,C外的任意一点.求证:∠ABP =∠ADP.20. 如图,已知AP∥BC,∠P AB的平分线与∠CBA的平分线相交于点E,过点E 的直线分别交AP,BC于点D,C.求证:AD+BC=AB.21. (1)如图①,在△ABC中,∠BAC=90°,AB=CA,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为D,E.求证:DE=BD+CE.(2)如图②,将(1)中的条件改为:在△ABC中,AB=CA,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角,则结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由.人教版八年级数学第12章全等三角形培优训练-答案一、选择题1. 【答案】A2. 【答案】A[解析] ∵△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,∴∠DCE=∠B.故选A.3. 【答案】A4. 【答案】C[解析] 对于选项A来说,AB+BC<AC,不能画出△ABC;对于选项B来说,可画出△ABC为锐角三角形或者钝角三角形;对于选项C来说,已知两边及其夹角,△ABC是唯一的;对于选项D来说,△ABC的形状可确定,但大小不确定.5. 【答案】D[解析] 如图,由题意知∠AOD=30°,∠COD=90°,∴∠AOC=120°.由作图可知,OB平分∠AOC,∴∠AOB=∠AOC=60°.∴∠DOB=30°.∴点B在点O的北偏东30°方向上.6. 【答案】C[解析] 选项A中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项B中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项C中,如图①,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE.∴∠FEC=∠BDE.这两个角所对的边是BE和CF,而已知条件给的是BD=CF=3,故不能判定两个小三角形全等.选项D中,如图②,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE.∴∠FEC=∠BDE.又∵BD=CE=2,∠B=∠C,∴△BDE≌△CEF.故能判定两个小三角形全等.7. 【答案】A[解析] AB=b,AB是斜边,小惠作的斜边长是b符合条件,而小雷作的是一条直角边长是b.故小惠的作法正确,小雷的作法错误.8. 【答案】B[解析] 如图,过点F分别作FZ⊥AE于点Z,FY⊥CB于点Y,FW⊥AB于点W.∵AF平分∠BAC,FZ⊥AE,FW⊥AB,∴FZ=FW.同理FW=FY.∴FZ=FY.又∵FZ⊥AE,FY⊥CB,∴∠FCZ=∠FCY.由∠AFB=40°,易得∠ACB=80°.∴∠ZCY=100°.∴∠BCF=50°.二、填空题9. 【答案】125[解析] 由题意可得AD平分∠CAB.∵∠C=90°,∠B=20°,∴∠CAB=70°.∴∠CAD=∠BAD=35°.∴∠ADB=180°-20°-35°=125°.10. 【答案】AB =AC11. 【答案】20[解析] 如图,过点D 作射线AF.在△BAD 和△CAD 中,⎩⎨⎧AB =AC ,AD =AD ,BD =CD ,∴△BAD ≌△CAD(SSS). ∴∠BAD =∠CAD ,∠B =∠C.∵∠BDF =∠B +∠BAD ,∠CDF =∠C +∠CAD , ∴∠BDF +∠CDF =∠B +∠BAD +∠C +∠CAD , 即∠BDC =∠B +∠C +∠BAC. ∵∠BAC =80°,∠BDC =120°, ∴∠B =∠C =20°.12. 【答案】4∶3【解析】如解图,过D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,∵AD 是∠BAC 的平分线,∴DE =DF(角平分线上的点到角两边的距离相等),设DE=DF=h,则S△ABDS△ACD =12AB·h12AC·h=43.13. 【答案】70【解析】∵∠ABC=90°,AB=AC,∴∠CBF=180°–∠ABC=90°,∠ACB=45°,在Rt△ABE和Rt△CBF中,AB CBAE CF=⎧⎨=⎩,∴Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案为:70.14. 【答案】两直线平行,内错角相等SAS全等三角形的对应角相等内错角相等,两直线平行15. 【答案】20[解析] 由角平分线的性质可得CD=DE.易证Rt△ACD≌Rt△AED,则AC=AE,DE+DB=CD+DB=BC=AC=AE,故DE+DB+EB =AE+EB=AB.16. 【答案】7[解析] 过点P作PF⊥BC于点F,PG⊥AB于点G ,连接AP.∵△ABC的两条外角平分线BP,CP相交于点P,∴PF=PG=PE=2.∵S△BPC=2,∴BC·2=2,解得BC=2.∵△ABC的周长为11,∴AC+AB=11-2=9.∴S △ABC =S △ACP +S △ABP -S △BPC =AC ·PE+AB ·PG-S △BPC =×9×2-2=7.三、解答题17. 【答案】解:如图,过点D 作DE ⊥AB 于点E ,DF ⊥AC 于点F. ∵AD 是∠BAC 的平分线,∴DE =DF. ∵AB =20 m ,AC =10 m ,∴S △ABC =12×20×10=12×20·DE +12×10·DF ,解得DE =203(m).∴△ACD 的面积=12×10×203=1003(m 2),△ABD 的面积=12×20×203=2003(m 2).故一串红的种植面积为2003 m 2,鸡冠花的种植面积为1003 m 2.18. 【答案】解:∵△ACF ≌△DBE ,∴AC=DB.∴AC-BC=DB-BC ,即AB=CD.∵AD=16,BC=10,∴AB=CD=(AD-BC )=3.19. 【答案】证明:在△ABC 和△ADC 中,⎩⎨⎧AB =AD ,AC =AC ,CB =CD , ∴△ABC ≌△ADC.∴∠BAP =∠DAP.在△BAP 和△DAP 中,⎩⎨⎧AB =AD ,∠BAP =∠DAP ,AP =AP , ∴△BAP ≌△DAP.∴∠ABP =∠ADP.20. 【答案】证明:如图,在AB 上截取AF =AD ,连接EF.∵AE 平分∠PAB ,∴∠DAE =∠FAE.在△DAE 和△FAE 中,⎩⎨⎧AD =AF ,∠DAE =∠FAE ,AE =AE ,∴△DAE ≌△FAE(SAS).∴∠AFE =∠ADE.∵AD ∥BC ,∴∠ADE +∠C =180°.又∵∠AFE +∠EFB =180°,∴∠EFB =∠C.∵BE 平分∠ABC ,∴∠EBF =∠EBC.在△BEF 和△BEC 中,⎩⎨⎧∠EFB =∠C ,∠EBF =∠EBC ,BE =BE ,∴△BEF ≌△BEC(AAS).∴BF =BC.∴AD +BC =AF +BF =AB.21. 【答案】解:(1)证明:∵BD ⊥直线m ,CE ⊥直线m , ∴∠BDA =∠AEC =90°.∴∠BAD +∠ABD =90°.∵∠BAC =90°,∴∠BAD +∠CAE =90°. ∴∠CAE =∠ABD.在△ADB 和△CEA 中,⎩⎨⎧∠ABD =∠CAE ,∠BDA =∠AEC ,AB =CA ,∴△ADB ≌△CEA(AAS).∴BD =AE ,AD =CE.∴DE =AE +AD =BD +CE.(2)成立.证明:∵∠BDA =∠BAC =α,∴∠DBA +∠BAD =∠BAD +∠EAC =180°-α. ∴∠DBA =∠EAC.在△ADB 和△CEA 中,⎩⎨⎧∠DBA =∠EAC ,∠BDA =∠AEC ,AB =CA ,∴△ADB ≌△CEA(AAS).∴BD =AE ,AD =CE.∴DE =AE +AD =BD +CE.。
黑龙江牡丹江市八年级数学上册第十二章《全等三角形》经典测试(培优专题)
一、选择题1.如图,OM 、ON 、OP 分别是AOB ∠,BOC ∠,AOC ∠的角平分线,则下列选项成立的( )A .AOP MON ∠>∠B .AOP MON ∠=∠C .AOP MON ∠<∠D .以上情况都有可能2.如图O 是ABC 内的一点,且O 到三边AB 、BC 、CA 的距离==OF OD OE .若70A ∠=︒,则BOC ∠( ).A .125°B .135°C .105°D .100° 3.如图,在ABC 中,AB AC =,点D ,E 在BC 上,连接AD ,AE ,若只添加一个条件使DAB EAC ∠=∠,则添加的条件不能为( )A .BD CE =B .AD AE =C .BE CD = D .DA DE = 4.如图,已知ABC DCB ∠=∠,添加一个条件使ABC DCB △△≌,下列添加的条件不能使ABC DCB △△≌的是( )A .A D ∠=∠B .AB DC = C .AC DB =D .ACB DBC ∠=∠ 5.如图,在△ABC 中,AB=5,AC=3,AD 是BC 边上的中线,AD 的取值范围是( )A .1<AD <6B .1<AD <4C .2<AD <8 D .2<AD <4 6.如图,AP 平分∠BAF ,PD ⊥AB 于点D ,PE ⊥AF 于点E ,则△APD 与△APE 全等的理由是( )A .SSSB .SASC .SSAD .AAS7.下列判断正确的个数是( )①三角形的三条高都在三角形的内部,并且相交于一点;②两边及一角对应相等的两个三角形全等;③两角及一边对应相等的两个三角形全等;④到三角形的三边所在的直线距离相等的点有三个;⑤两边及第三边上的高对应相等的两个三角形全等.A .4B .3C .2D .18.已知如图,AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,下面结论错误的是( )A .BD +ED =BCB .DE 平分∠ADBC .AD 平分∠EDC D .ED +AC >AD 9.如图,在Rt △ABC 中,∠ACB =90°,BC =5cm ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC ,连接CF ,使CF =AB ,若EF =12cm ,则下列结论不正确的是( )A .∠F =∠BCFB .AE =7cmC .EF 平分ABD .AB ⊥CF 10.下列命题的逆命题是假命题的是( )A .直角三角形两锐角互余B .全等三角形对应角相等C .两直线平行,同位角相等D .角平分线上的点到角两边的距离相等 11.如图,已知△ABC 的周长是20,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于,且OD=2,△ABC 的面积是( )A .20B .24C .32D .4012.如图,在ABC 和△FED 中,AD FC =,AB FE =,下列条件中不能证明F ABC ED ≌△△的是( )A .BC ED =B .A F ∠=∠C .B E ∠=∠D .//AB EF 13.如图,AD 平分∠BAC ,AB=AC ,连接BD ,CD 并延长,分别交AC ,AB 于点F ,E ,则图中全等三角形共有( ) A .2对B .3对C .4对D .5对 14.如图,在OAB 和OCD 中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM ,下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠,其中正确的为( )A .①②③B .①②④C .②③④D .①②③④ 15.如图,在△ABC 中,点E 和F 分别是AC ,BC 上一点,EF ∥AB ,∠BCA 的平分线交AB 于点D ,∠MAC 是△ABC 的外角,若∠MAC =α,∠EFC =β,∠ADC =γ,则α、β、γ三者间的数量关系是( )A .β=α+γB .β=2γ﹣αC .β=α+2γD .β=2α﹣2γ二、填空题16.如图,△ABC 中,∠ACB =90°,点D 在边AC 上,DE ⊥AB 于点E ,DC =DE ,∠A =32°,则∠BDC 的度数为________.17.如图所示的是一张直角ABC 纸片(90C ∠=︒),其中30BAC ∠=︒,如果用两张完全相同的这种纸片恰好能拼成如图2所示的ABD △,若2BC =,则ABD △的周长为______.18.如图,把等腰直角三角板放平面直角坐标系内,已知直角顶点C 的坐标为()0,3,另一个顶点B 的坐标为()8,8,则点A 的坐标为____________19.如图,AOP BOP ∠=∠,PD OA ⊥,C 是OB 上的动点,连接PC ,若4PD =,则PC 的最小值为_________.20.如图所示,在ABC 中,D 是BC 的中点,点A 、F 、D 、E 在同一直线上.请添加一个条件,使BDE CDF ≌(不再添其他线段,不再标注或使用其他字母),并给出证明.你添加的条件是______21.如图,AB 与CD 相交于点O ,OC =OD .若要得到△AOC ≌△BOD ,则应添加的条件是__________.(写出一种情况即可)22.已知点A 、E 、F 、C 在同一条直线l 上,点B 、D 在直线l 的异侧,若AB=CD ,AE=CF ,BF=DE ,则AB 与CD 的位置关系是_______.23.如图,四边形ABDC 中,对角线AD 平分BAC ∠,136ACD ∠=︒,44BCD ∠=︒,则ADB ∠的度数为_____24.如图,在ABC 中,AB CB =,90ABC ∠=︒,AD BD ⊥于点D ,CE BD ⊥于点E ,若7CE =,5AD =,则DE 的长是______.25.ABC 中,4AB =,6AC =, 则第三边BC 边上的中线m 的取值范围是______. 26.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.三、解答题27.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =80°,试求: (1)∠EDC 的度数.(2)若∠BCD =n °,试求∠BED 的度数.(用含n 的式子表示)(3)类比探究:已知AB ∥CD ,BE 、DE 分别是∠ABC 、∠ADC 的n 等分线,ABE ∠=1ABC n ∠,1CDE ADC n∠=∠,∠BAD =α,∠BCD =β,请猜想∠BED = .28.如图,已知∠AOC 是直角,∠BOC =46°,OE 平分∠BOC ,OD 平分∠AOB . (1)试求∠DOE 的度数;(2)当∠BOC =α(0°≤α≤90°),请问∠DOE 的大小是否变化?并说明理由.29.在平面直角坐标系中,点A 坐标(5,0)-,点B 坐标(0,5),点 C 为x 轴正半轴上一动点,过点A 作AD BC ⊥交y 轴于点E .(1)如图①,若点C 的坐标为(3,0),求点E 的坐标;(2)如图②,若点C 在x 轴正半轴上运动,且5OC <,其它条件不变,连接DO ,求证:DO 平分ADC ∠;(3)若点C 在x 轴正半轴上运动,当OC CD AD +=时,则OBC ∠的度数为________. 30.如图,AB CB ⊥,DC CB ⊥,点E 、F 在BC 上,BE CF =,再添加一个什么条件后可推出AF DE =,写出添加的条件并完成证明.。
全等三角形培优专题训练
全等三角形培优专题训练第一篇:全等三角形培优专题训练做最适合你的数学培训八年级数学培优专题训练(二)探索三角形全等的条件1、一张长方形纸片沿对角线剪开,得到两张三角形纸片,再将这两张纸片摆成如下图形式,使点B、F、C、DCA在同一条直线上.EAEP MN⑴求证:AB⊥ED;⑵若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明2、如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BE⊥AD交AC的延长线于F,E为垂足,则结论:①AD=BF;②CF =CD;③AC+CD=AB;④BE=CF;⑤BF=2BE.其中正确的是()3、如图,点C在线段AB上,DA ⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=51°,求∠DFC的度数.DFFBDBFCDBEDCAEACBF__________________________________________________________ ______________________________________________________周老师·数学培优做最适合你的数学培训4、如图,四边形ABCD中,AB∥CD,AD∥BC,O为对角线AC 的中点,过点O作一条直线分别与AB、CD交于点M、N,点E、F 在直线M、N上,且OE=OF.⑴图中共有几对全等三角形,请把它们都写下来;⑵求证:∠MAE=∠NCFAEBMONCDF5、在△ABC中,高所在直线AD和BE交于H点,且BH=AC,则∠ABC=_____________.6、下列三个判断:⑴有两边及其中一边上的高对应相等的两个三角形全等;⑵有两边及第三边上的高对应相等的两个三角形全等;⑶一边及其它两边上的高对应相等的两个三角形全等.上述判断是否正确?若正确,说明理由;若不正确,请举出反例._________________________________________________________________ _______________________________________________周老师·数学培优做最适合你的数学培训八年级数学培优专题训练(三)全等三角形的应用全等三角形常用来转移线段和角,用它来证明:①线段和角的等量关系②线段和角的和差倍分关系③直线与直线的平行或垂直等位置关系1、如图,已知BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.试判断AP 与AQ的关系,并证明.2、如图,AD是△ABC的高,E为AC上一点,BE交AD于点F,且BF=AC,FD=CD,求证:BE⊥AC FAADQPEBCE3、(2012〃阜新中考)如图,在△ABC中,AB=AC,AD=AE,∠BAC=∠D AC=90°.⑴当点D在AC上时,如图①,线段BD,CE有怎样的数量和位置关系?证明你猜想的结论.⑵将图①中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图②,线段BD、CE 有怎样的数量关系和位置关系?问明理由.BEABDCDC①AEDBC②__________________________________________ ____________________________________________________________________ __周老师·数学培优做最适合你的数学培训4、在△ABC中,AB=AC,点D是直线 BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.⑴如图①,当点D在线段BC上时,若∠BAC=90°,则∠BCE=_______度.⑵设∠BAC=α,∠BCE=βa、如图②,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.b、当点D在直线BC上移动时,α,β之间有怎样的数量关系?请直接写出你的结论.BDAEBDC①AEC②______________________________________________ __________________________________________________________________ 周老师·数学培优做最适合你的数学培训八年级数学培优专题训练(四)辅助线作法之连接法在几何证明中,常通过添加辅助线来构造全等三角形.常见的添加辅助线方法有:连接法、截长补短法、倍长中线法、翻折法、旋转法以及利用特殊条件构造全等三角形等等.1、如图,△ABC的两条高BD,CE相交于点P,且PD=PE.证明∶AC=AB2、已知AB=DE,BC=EF,∠B=∠E,AF=CD 求证:AC∥DF3、如图,AB交CD于点O,AD、CB的延长线相交于点E,且OA=OC,EA=EC.∠A=∠C吗?点O在∠AEC的平分线上吗?EBCDOABCDAFEAEBDPC_____________________________________ ____________________________________________________________________ _______周老师·数学培优做最适合你的数学培训八年级数学培优专题训练(五)辅助线作法之倍长中线法在题目条件中含有中线的问题,我们常用的辅助线就是将中线延长一倍,其目的是为了得一对全等三角形,将分散的条件集中到一个三角形中去.1、△ABC中,AB=5,AC=3,求中线AD的取值范围.2、如图,在△ABC中,AD是∠BAC的平分线,又是BC上的中线求证:AB=AC3、(2014〃襄阳初三模拟)在△ABC中,D是边BC上的一点,且CD=AB,∠BAD=∠BDA,AE是△ABD的中线.求证∶AC=2AE BEDCABDCAABDC____________________________________________ ____________________________________________________________________做最适合你的数学培训AFE4、(竞赛014)△ABC中,D为BC的中点,DE⊥DF交AB,AC于点E,F.求证:BE+CF>EF6、(竞赛015)例:已知AD是△ABC的中线,BE交AC于点E,交AD于点F,且AE=EF.求证:AC=BFBDCAEFDBC___________________________________________________ _____________________________________________________________ 周老师·数学培优做最适合你的数学培训八年级数学培优专题训练(六)辅助线作法之截长补短法截长法:在第三条线段上截下一段使其等于两条线段中的一条,再证明剩余部分与另一条相等.补短法:把两条线段中的一条补到另一条线段上去,证明所得新线段与第三条线段相等.1、已知A C∥BD,EA,EB分别平分∠CAB和∠DBA,点E在CD上.求证:AB=AC+BD2、在四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE =½(AB+AD).求证∶∠B+∠D=180°3、如图,已知△ABC中,∠A=90°,AB=AC,D为AC的中点,AE⊥BD于E,延长AE交BC于F.求证:∠ADB=∠CDF________________________________________________________________ ________________________________________________BFCAECDABADEBCED周老师·数学培优做最适合你的数学培训4、如图,∠C=90°,AC=BC,AD是∠BAC的角平分线.求证∶AC+CD=AB12、如图,已知AB=CD=AE=BC+DE=2,∠ABC=∠AED=90°,求五边形ABCDE的面积.CBABDCDAE____________________________________________________ ____________________________________________________________做最适合你的数学培训八年级数学培优专题训练(七)辅助线作法之利用特殊条件构造全等三角形2、(2012〃“华罗庚杯”)如图,在△ABC中,AC=½AB,AD平分∠BAC,且AD=BD 求证:CD⊥ACACBD__________________________________________________________ ______________________________________________________周老师·数学培优做最适合你的数学培训八年级数学培优专题训练(八)全等三角形在动态几何中的运用1、(竞赛〃014〃3)如图,△ABC的边BC在直线l上,AC⊥BC,且AC=BC.△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.⑴在图①中,请你通过观察、测量、猜想并写出AB与AP所满足的数量关系和位置关系;⑵将△EFP沿直线l向左平移到图②的位置时,EP 交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;⑶将△EFP沿直线l向左平移到图③的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为⑵中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.A(E)EAEAQllBC(F)PFPBClBFCP Q__________________________________________________________________ ______________________________________________周老师·数学培优做最适合你的数学培训八年级数学培优专题训练(九)探究角平分线一、知识清单角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线).由定义可知,三角形的角平分线是一条线段.角平分线性质:1、角平分线上的点,到这个角的两边的距离相等.2、角平分线分得的两个角相等,都等于该角的一半.3、三角形的三条角平分线交于一点,且到各边的距离相等,这个点称为内心.二、方法点拨证明角平分线有两种方法:一是运用定义证明两个角相等;二是运用角平分线的判定方法.三、规律清单①遇到角平分线,可从角平分线上的某一点向角的两边作垂线段(图1).②遇到角平分线,常可利用翻折法或截长补短法解题(图2).③有两条角平分线(内角或外角)交于一点,则连接该点与三角形第三个顶点的线段会平分一个内角或外角(图3).④有垂直于角平分线的线段,则延长这条线段以利用三线合一解题(图4).⑤遇到角内的一点到角的两边有垂线段时,就连接这点与角的顶点,看能否平分已知角(图5).⑥遇到有多条角平分线时,可尝试用整体的思想解题(图6).⑦有翻折条件时,除注意全等的结论,还应关注折线就是角平分线、是对称轴(如图7).⑧角平分线、平行线、等腰三角形三个条件中出现任意两个,常可直接得到另一个(如图8).AAACBDAFAEGDBDBC图2B图1CD图3DCBC_____________________________________________________________ ___________________________________________________周老师·数学培优做最适合你的数学培训AACFEBDC图4BFEDECF图5ADBA1D2B3A1APFC'D'DAD2CB图6EF∠1+∠2+∠3=90°∠1+∠2=90°-½∠BCBEC图7B图8CD四、真题训练1、(2011〃鄂州〃竞赛〃018 〃重庆中考)如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP相交于点P,若∠BPC=40°,则∠CAP=_____________.BCDAP2、(竞赛〃019)如图,∠B=∠C =90°,M是BC的中点,DM平分∠ADC.求证:AM平分∠DAB DCMAB_______________________________________________________ _________________________________________________________ 周老师·数学培优做最适合你的数学培训3、(竞赛〃019)如图,在△ABC中,∠BAC=90°,AB=AC,BE平分∠ABC,CE⊥BE.AED1求证:CE= BD 2BCA4、如图,在△ABC中,AD平分∠BAC,BD=CD 求证:∠B=∠C5、如图,在Rt△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,交BC于D,DE⊥AB于E,若AB=10cm,则△DBE的周长是多少?ABDCAECDB6、(2011,恩施中考)AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为多少?BEFGDC_______________________________________________________ _________________________________________________________ 周老师·数学培优做最适合你的数学培训7、如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.求证:BE=CF8、在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠BAF=180°⑴求证:DE=DF ⑵如果把最后一个条件改为AE>AF,且∠AED +∠AFD=180°,那么结论还成立吗?9、如图,已知AB=AC,BE⊥AC于E,CF⊥AB于F,BE与CF 交于点D 求证:点D在∠BAC的平分线上.10、如图,在四边形ABCD 中,对角线AC平分∠BAD,AB>AD,下列结论正确的是()A.AB-AD >CB-CD B.AB-AD=CB-CD C.AB-AD<CB-CD D.AB-CD与CB-CD的大小关系不确定BCAAEBGCFDAFEBDCBFDAECD______________________________ ____________________________________________________________________ ______________周老师·数学培优做最适合你的数学培训11、(竞赛014)如图,已知△ABC中,∠B=60°,∠BAC,∠BCA的平分线AD,CE相交于点O.求证:DC+AE=AC12、(竞赛〃019)如图,已知△ABC,P为内角平分线AD、BE、CF的交点,过点P作PG⊥BC于G点。
人教版八年级数学上册《全等三角形》培优专题训练(含答案)
《全等三角形》培优专题训练1 全等三角形的概念两个能够完全重合的三角形叫做全等三角形.把两个全等三角形重合在一起,重合的角叫做对应角,重合的边叫做对应边.全等三角形的对应角相等,对应边相等. 经典例题如图所示,ABC DEF ∆≅∆,30A ∠=︒,50B ∠=︒,2BF =.求DFE ∠的度数与EC 的长.解题策略在ABC ∆中,+180A B ACB ∠∠+∠=︒ (三角形内角和为180°).因为30A ∠=︒,50B ∠=︒(已知),所以1803050100ACB ∠=︒-︒-︒=︒ 因为ABC DEF ∆≅∆ (已知),所以ACB DFE ∠=∠(全等三角形对应角相等) BC EF =(全等三角形对应边相等), 因此100DFE ∠=︒,所以2EC EF FC BC FC BF =-=-== 画龙点睛1. 在解答与全等三角形有关的问题时,要充分利用全等三角形的定义所得到的对应边相等、对应角相等的结论.2. 在本题中求EC 的长时,不能直接求,可将之转化为两条线段的差,这也是将来求线段长的一种常用的转化方法.举一反三1. 如图,若ABC ADE ∆≅∆,则这对全等三角形的对应边是 ;对应角是 .2. 如图,若ABD ACD ∆≅∆,试说明AD 与BC 的位置关系.3. 如图所示,斜折一页书的一角,使点A 落在同一页书内'A 处,DE 为折痕,作DF平分'A DB ∠,试猜想FDE ∠等于多少度,并说明理由.融会贯通4. 如图,ABE ∆和ACD ∆是ABC ∆分别沿着AB 、AC 边翻折180°形成的,若θ∠的度数50°,则BAC ∠的度数是 .2 三角形全等的判定判断两个三角形全等,并非需要证明两个三角形的三条边以及三个角均对应相等,而只需满足全等三角形的判定定理就可以了. 经典例题已知:如图,AO 平分EAD ∠和EOD ∠,求证:(1)AOE AOD ∆≅∆;(2) BOE COD ∆≅∆.解题策略证明:(1)因为AO 平分EAD ∠和EOD ∠,所以OAD OAE ∠=∠,AOE AOD ∠=∠,又因为AO AO =,所以AOE AOD ∆≅∆ ( ASA).(2)由AOE AOD ∆≅∆,得OE OD =,且AEO ADO ∠=∠.又180BEO AEO ∠=︒-∠,180CDO ADO ∠=︒-∠,所以B E O C D O ∠=∠.在AOE ∆和AOD ∆中,因为B E O C D O ∠=∠,OE OD =,BOE COD ∠=∠,所以B O E C O D ∆≅∆(ASA). 画龙点睛1. 判定两个三角形全等,往往需要三个条件,根据题目已知的条件可以得到两个条件(要注意公共角及公共边),这时.设法证明所缺的条件也成立就是证题的关键了. 2. 要证明两条线段或者两个角相等,常用的方法是证明它们是一对全等三角形的对应边或者对应角.举一反三1. 如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆≅∆的是( ).(A) CB CD = (B)BAC DAC ∠=∠ (C)BCA DCA ∠=∠ (D)90B D ∠=∠=︒2. 如图所示,点D 、C 在BF 上,//AB EF ,A E ∠=∠,BC DF =.求证AB EF =.3. 如图,AB 交CD 于点O ,AD 、CB 的延长线相交于点E ,且OA OC =,EA EC =,你能证明A C ∠=∠吗?点O 在AEC ∠的平分线上吗?融会贯通4. 如图所示,已知BD 、CE 分别是ABC ∆的边AC 和AB 上的高,点P 在BD 的延长线上,BP AC =,点Q 在CE 上,CQ AB =.求证:(1)AP AQ =;(2)AP AQ ⊥.3 全等三角形的应用全等三角形的判定和性质被广泛地应用于几何证明题中。
全等三角形经典题型汇集(培优专练)
;
(2)如图 2,当点 E,F 分别在 CB,DC 的延长线上,CF=2 时,求△CEF 的周长;
拓展提升:
如图 3,在 Rt△ABC 中,∠ACB=90°,CA=CB,过点 B 作 BD⊥BC,连接 AD,在 BC 的延长线上取一 点 E,使∠EDA=30°,连接 AE,当 BD=2,∠EAD=45°时,请直接写出线段 CE 的长度.
7.阅读下面材料:
小炎遇到这样一个问题:如图 1,点 E、F 分别在正方形 ABCD 的边 BC,CD 上,∠EAF=45°,连结 EF,则 EF=BE+DF, 试说明理由.
小炎是这样思考的:要想解决这个问题,首先应想办法将 这些分散的线段相对集中.她先后尝试了翻折、旋转、平 移的方法,最后发现线段 AB,AD 是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着 点 A 逆时针旋转 90°得到△ADG,再利用全等的知识解决了这个问题(如图 2).
2.阅读下面材料:
数学课上,老师给出了如下问题:如图,AD 为△ABC 中线,点 E 在 AC 上,BE 交 AD 于点 F,AE=EF.求 证:AC=BF. 经过讨论,同学们得到以下两种思路:
思路一如图①,添加辅助线后依据 SAS 可证得△ADC≌△GDB,再利用 AE =EF 可以进一步证得∠G=∠FAE=∠AFE=∠BFG,从而证明结论.
3.如图,分别以 ABC 的边向外作正方形 ABFG 和 ACDE,连接 EG,若 O 为 EG 的中点,
求证:(1) AO 1 BC ;(2) AO BC . 2
4.如图所示,已知 ⶠࢼ 中, 平分 ⶠ ࢼ, 、 分别在 ⶠ 、 上.
ࢼ,
ࢼ.求证: ∥ ⶠ.
5.如图所示, ⶠ ࢼ
全等三角形培优(含答案)
三角形培优练习题1已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC4已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C AD BCB ACD F2 1 E5已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE6 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
7已知:AB=CD ,∠A=∠D ,求证:∠B=∠C8.P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB C D B A B C D A9已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC10.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .11如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B12如图:AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。
P D A C B FA E D CB P E DC BA D CB A求证:AM 是△ABC 的中线。
13已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F 。
求证:BE =CD .14在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ∆≌CEB ∆;②BE AD DE +=;(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.15如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。
八年级数学《全等三角形》能力培优
八年级数学《全等三角形》能力培优一•解答题(共8小题)1 •如图所示,一个四边形纸片ABCD / B=Z D=90°,把纸片按如图所示折叠, 使点B 落在AD边上的B'点,AE是折痕.(1)试判断B'与DC的位置关系;(2)如果/ C=130,求/ AEB的度数.2•已知:点A (4, 0),点B是y轴正半轴上一点,如图1,以AB为直角边作等腰直角三角形ABC.(1)当点B坐标为(0, 1)时,求点C的坐标;(2)如图2,以OB为直角边作等腰直角△ OBD,点D在第一象限,连接CD交y轴于点E.在点B运动的过程中,BE的长是否发生变化?若不变,求出BE的长;若变化,请说明理由.3. 如图,在△ ABC中,/ ACB=90, AC=BC E为AC边的一点,F为AB边上- 点,连接CF,交BE于点D且/ ACF W CBE CG平分/ ACB交BD于点G,(1)求证:CF=BG(2)延长CG交AB于H,连接AG,过点C作CP// AG交BE的延长线于点P, 求证:PB=CF+CF;4. 如图(1), AB=CD AD=BC O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么/ 1与/2有什么关系?请说明理由;若过O点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的Z 1与/2的关系成立吗?请说明理由.5•如图,把△ ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设/ AED的度数为x, / ADE的度数为y,那么/ 1,/ 2的度数分别是多少? (用含有x或y的代数式表示)(3)Z A与/ 1 + Z 2之间有一种数量关系始终保持不变,请找出这个规律.6. 在△ ABC中,AD是厶ABC的角平分线.(1)如图1,过C作CE// AD交BA延长线于点E,若F为CE的中点,连接AF,求证:AF丄AD;(2)如图2, M为BC的中点,过M作MN // AD交AC于点N,若AB=4, AC=7 求NC的长.7. 如图,在Rt A ABC中,/ ABC=90, CD平分/ ACB交AB于点D, 点E,BF// DE交CD于点F.8 .已知:△ ABC内部一点O到两边AB AC所在直线的距离相等,且DE X AC 于OB= OC八年级数学《全等三角形》能力培优参考答案与试题解析一•解答题(共8小题)1 •如图所示,一个四边形纸片ABCD / B=Z D=90°,把纸片按如图所示折叠, 使点B 落在AD边上的B'点,AE是折痕.(1)试判断B'与DC的位置关系;S' D(2)如果/ C=130,求/ AEB的度数.B【分析】(1)由于AB'是AB的折叠后形成的,所以/ AB Ea=B=Z D=90 , A B Z E// DC;(2)利用平行线的性质和全等三角形求解.【解答】解:(1)由于AB'是AB的折叠后形成的,/ AB E=B=/ D=90,A B' E DC;(2)v折叠,•••△ABE^A AB,A/ AEB =AEB 即/ AEB= / BEB,2••• B' E DC,A/ BEB =C=130,A/ AEB=- / BEB =65°【点评】本题考查了三角形全等的判定及性质;把纸片按如图所示折叠,使点B 落在AD边上的B点,则△ ABE^A AB,利用全等三角形的性质和平行线的性质及判定求解.2. 已知:点A (4, 0),点B是y轴正半轴上一点,如图1,以AB 为直角边作等腰直角三角形ABC.(1)当点B坐标为(0, 1)时,求点C的坐标;(2)如图2,以0B为直角边作等腰直角△ OBD,点D在第一象限,连接CD交y轴于点E在点B运动的过程中,BE的长是否发生变化?若不变,求出BE的长;若变化,请说明理由.【分析】(1)过C作CM丄y轴于M,通过判定△ BCM MA AB( AAS),得出CM=BO=1, BM=AO=4,进而得到OM=3,据此可得C (- 13);(2)过C 作CM丄y 轴于M,根据△ BCM^A ABO,可得CM=BO, BM=OA=4, 再判定△ DBE^A CME (AAS,可得BE=EM,进而得到BE=-BM=2.【解答】解:(1)如图1,过C作CM丄y轴于M.•••CM 丄y 轴,•••/ BMC=Z AOB=90 ,•••/ ABC+Z BAO=90•Z ABC=90,•••Z CBM+Z ABO=90 ,•••Z CBM=Z BAO,在厶BCM与厶ABO中,'ZBIC=ZACBu ZCBJI=ZBAO,BC-ABL•••△BCM^A ABO (AAS),•CM=BO=1 BM=AO=4,•OM=3 ,• C (- 1 , - 3);(2)在B点运动过程中,BE长保持不变,BE的长为2,理由:如图2,过C作CM丄y轴于M ,由(1)可知:△ BCM^A ABO,••• CM=BO, BM=OA=4.•••△ BDO是等腰直角三角形,••• BO=BD / DBO=90 ,••• CM=BD, / DBE=Z CME=9°,在△DBE与△ CME中,'ZDBE=ZCME* ZDEB=ZCEM,L BD=IC•••△ DBE^A CME (AAS),••• BE=EM••• BE= BM=2.【点评】本题考查了全等三角形的判定以及全等三角形对应边、对应角相等的性质,熟练掌握三角形全等的判定方法,判定△ DBE^A CME是解第(2)题的关键.3. 如图,在厶ABC中,/ ACB=90 , AC=BC E为AC边的一点,F为AB边上点,连接CF,交BE于点D且/ ACF W CBE CG平分/ ACB交BD于点G,(1)求证:CF=BG(2)延长CG交AB于H,连接AG,过点C作CP// AG交BE的延长线于点P, 求证:PB=CF+CF;(3)在(2)问的条件下,当/ GAC=2/ FCH时,若&AEG=3「, BG=6,求AC的长.【分析】(1)根据ASA证明△ BCG^A CAF贝U CF=BG(2)先证明△ ACG^A BCG 得/ CAG=/ CBE再证明/ PCG/ PGC即可得出结论;(3)作厶AEG的高线EM,根据角的大小关系得出/ CAG=30,根据面积求出EM 的长,利用30°角的三角函数值依次求AE、EG BE的长,所以CE=+「,根据线段的和得出AC的长.【解答】证明:(1)如图1,v/ ACB=90, AC=BC•••/ A=45 ,v CG平分/ ACB•••/ ACG/ BCG=45 ,•••/ A=/ BCG在厶BCG^n^ CAF中,'ZA=ZBCG•v QBC ,2 AC F二Z CBE•••△ BCG^A CAF( ASA),••• CF=BG(2)如图2, v PC// AG ,•••/ PCA=/ CAQv AC=BC / ACG=/ BCG CG=CG•••△ ACG^A BCQ•••/ CAGK CBEvZ PCG= PCA+Z ACGK CAG45°/ CBE+45°,/ PGC Z GCBV CBE=Z CB^45°,•••Z PCG=Z PGC••• PC二PGv PB二BGPG BG=CF•PB=C+CP(3)如图3,过E作EM丄AG,交AG于M , V SAE(= -AG?EM=V3,2由(2)得:△ ACG^A BCG•BG=AG=6•-X 6X EM=3「,2EM=「,设Z FCH=x ,则Z GAC=2x ,•Z ACF=Z EBC=Z GAC=2x ,vZ ACH=45 ,•2x+x=45 ,x=15 ,•Z ACF=Z GAC=30 ,在Rt A AEM 中,AE=2EM=2「,AM=T::*W J■:V T>-=3 ,•M是AG的中点,•AE二EG=2「,•BE二BGEG=62V5 ,在Rt A ECB中, Z EBC=30 ,•CE= BE=3F「,•AC二AHEC=2「+3+「=3「+3.【点评】本题考查了全等三角形的性质和判定及等腰直角三角形的性质,证明两线段相等时,一般都是证明两线段所在的三角形全等,因此第一问只需要证明厶BC3A CAF即可;第3问,如何得出30°角和作辅助线,禾用到&AEG=3匚列式是突破口.4•如图(1),AB=CD AD=BC O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么/ 1与/2有什么关系?请说明理由;若过O点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的Z 1与/2的关系成立吗?请说明理由.【分析】(1)证明三角形ACD和CAB全等•根据全等三角形判定中的SSS可得出两三角形全等,那么就能证出AD// BC,也就得出/ 1二/ 2 了.(2)(3)和(1)的证法完全一样.【解答】解:/ 1与/2相等.证明:在厶ADC与厶CBA中,'AD=BC“ CD-AB ,L AC=CA•••△ADC^A CBA (SSS•••/ DAC=/ BCA ••• DA/ BC.•••/ 1=Z 2.②③图形同理可证,△ ADW A CBA得到/ DACN BCA贝U DA// BC, /仁/2.【点评】本题主要考查了全等三角形的判定和平行线的判定,根据全等三角形得出角相等是解题的关键.5. 如图,把△ ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设/ AED的度数为x, / ADE的度数为y,那么/ 1,/ 2的度数分别是多少? (用含有x或y的代数式表示)(3)Z A与/ 1 + Z 2之间有一种数量关系始终保持不变,请找出这个规律.【分析】(1)根据折叠就可写出一对全等三角形,根据折叠,则重合的顶点是对应点,重合的角是对应角;(2)根据全等三角形的对应角相等,以及平角的定义进行表示;(3)根据(2)中的表示方法,可以求得/ 1+Z 2,再找到/ A和x、y之间的关系,就可建立它们之间的联系.【解答】解:(EAD^A EA'D,其中/ EADN EA'D, / AED=/ A'ED, / ADE= / A'D E;(2)Z 1= 180°- 2x,Z 2=180°- 2y;(3)vZ 1 + Z2=360°-2 (x+y) =360°-2 (180°-/ A) =2/ A. 规律为:/ 1+Z 2=2Z A.【点评】在研究折叠问题时,有全等形出现,要充分利用全等的性质.6. 在△ ABC中,AD是厶ABC的角平分线.(1)如图1,过C作CE// AD交BA延长线于点E,若F为CE的中点,连接AF, 求证:AF丄AD;(2)如图2, M为BC的中点,过M作MN // AD交AC于点N,若AB=4, AC=7 求NC 的长.【分析】(1)推出/ 3=Z E,推出AC=AE根据等腰三角形性质得出AF丄CE根据平行线性质推出即可;(2)延长BA与MN延长线于点E,过B作BF/ AC交NM延长线于点F,求出BF=CN AE=AN, BE=BF 设CN=x 贝U BF=x AE=AN=A G CN=7- x , BE=AB F AE=¥7-x.得出方程4+7 - x=x.求出即可.【解答】(1证明::AD ABC的角平分线,•••/ 仁/ 2.••• CE// AD ,•••/ 仁/ E, / 2二/ 3.•••/ E=Z 3.••• AC=AE••• F为EC的中点,••• AF丄EC,••• AD// EC,•••/ AFE=/ FAD=90.••• AF丄AD.(2)解:延长BA与MN延长线于点E,过B作BF/ AC交NM延长线于点F , •••/ 3=/ C, / F=/ 4••• M为BC的中点••• BM=CM.NF二厶在厶BFM和厶CNM中,・Z3二ZCBH=CML•••△BFM^A CNM (AAS ,••• BF=CN••• MN // AD,•••/ 仁/ E,Z 2=Z 4=Z 5.•••/ E=Z 5=Z F.••• AE=AN BE=BF设CN=x 贝U BF=x AE=AN=AC- CN=7- x, BE=ABAE=¥7 —x.••• 4+7 - x=x.解得x=5.5.平行【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质和判定, 线的性质等知识点的综合运用.7. 如图,在Rt A ABC 中,/ ABC=90 , CD 平分/ ACB 交AB 于点D , DE X AC 于点E, BF// DE交CD于点F.【分析】根据角平分线的定义得到/ 仁/2,根据角平分线的性质得到DE=BD / 3=Z 4,由平行线的性质得到3=Z 5,于是得到结论.【解答】证明::CD平分/ ACB•••/ 仁/ 2,T DE 丄AC,/ ABC=90••• DE=BD / 3=/4,••• BF/ DE,•••/ 4=/ 5,•••/ 3=/ 5,• BD=BF【点评】本题考查了角平分线的性质,平行线的性质,等腰三角形的判定和性质, 熟练掌握角平分线的性质是解题的关键.8 .已知:△ ABC内部一点0到两边AB AC所在直线的距离相等,且OB=OC求证:AB=AC【分析】证明Rt A BOF^ Rt A COE根据全等三角形的性质得到/ FBON ECQ 根据等腰三角形的性质得到/ CBO=/ BCO得到/ ABC=/ ACB,根据等腰三角形的判定定理证明结论.【解答】证明:在Rt A BOF和Rt A COE中,fOF=OE(OB=OC••• Rt A BOF^ Rt A COE•••/ FBO=/ ECO••• OB=OC•••/ CBO=/ BCQ•••/ ABC=/ ACB••• AB=AC【点评】本题考查的是角平分线的性质、全等三角形的判定,掌握全等三角形的判定定理、等腰三角形的判定定理是解题的关键.。
全等三角形经典培优题型(含标准答案)
三角形培优练习题1已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC4已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE6如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
已知:AB=CD ,∠A=∠D ,求证:∠B=∠C78.P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-ABCDBA BC DEF 2 1ADBCA B CD ABACDF2 1 E9已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC10.如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .11如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B12如图:AE 、BC 交于点M ,F点在AM 上,BE∥CF ,BE=CF 。
求证:AM 是△ABC 的中线。
13已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F 。
求证:BE =CD .14在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ∆≌CEB ∆;②BE AD DE +=;(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.15如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。
全等三角形经典培优题型(含答案)
全等三角形经典培优题型(含答案)1.已知三角形ABC中,AB=4,AC=2,D是BC的中点,AD是整数,求AD的长度。
解:由题意可得AD=AB-DB,又BD=DC=AC/2=1,故AB=AD+DB=AD+1,代入AB=4得AD=3.2.已知四边形BCDE中,BC=DE,∠B=∠E,∠C=∠D,F是CD的中点,证明∠1=∠2.解:由于BC=DE,且∠B=∠E,所以△BCE≌△EDC,从而∠1=∠BCE=∠EDC=∠2.3.已知四边形ABCD中,∠1=∠2,CD=DE,EF//AB,证明EF=AC。
解:由于EF//AB,所以△EFC∼△ABC,从而EF/AC=FC/BC,而CD=DE,所以FC=CD,代入得EF/AC=CD/BC,又由于∠1=∠2,所以△BCD∼△ECD,从而CD/BC=ED/AC,代入得EF/AC=ED/AC,即EF=AC。
4.已知三角形ABC中,AD平分∠BAC,AC=AB+BD,证明∠B=2∠C。
解:由于AD平分∠BAC,所以∠BAD=∠CAD,从而∠B=∠BAD+∠ABD=∠CAD+∠ACD,又由于AC=AB+BD,所以BD=AC-AB,代入得∠B=∠CAD+∠ACD=∠CAD+∠ABC,又由于∠CAD=∠CAB,所以∠B=∠CAB+∠ABC=2∠C。
5.已知三角形ABC中,AC平分∠BAD,CE⊥AB,∠B+∠D=180°,证明AE=AD+BE。
解:由于AC平分∠BAD,所以∠CAD=∠CAB,从而△ABE∼△DCE,所以AE/AD=BE/CD,又由于∠B+∠D=180°,所以CD=AB,代入得AE/AD=BE/AB,即AE=AD·(BE/AB),又由于CE⊥AB,所以△CEB为直角三角形,从而BE/AB=CE/AC,代入得AE=AD·(CE/AC),又由于AC平分∠BAD,所以△ACD∼△ABC,从而CE/AC=CD/AB,代入得AE=AD·(CD/AB),又由于CD=AB-BD,所以AE=AD·((AB-BD)/AB),即AE=AD+BE·(AB/AD-1),又由于AB>AD,所以AB/AD-1<AB/AD,从而AE<AD+BE·(AB/AD),即AE<AD+BE。
都匀一中八年级数学上册第十二章【全等三角形】测试(专题培优)
一、选择题1.如图O 是ABC 内的一点,且O 到三边AB 、BC 、CA 的距离==OF OD OE .若70A ∠=︒,则BOC ∠( ).A .125°B .135°C .105°D .100°2.下列说法正确的( )个.①0.09的算术平方根是0.03;②1的立方根是±1;③3.1<10<3.2;④两边及一角分别相等的两个三角形全等.A .0B .1C .2D .33.如图,在ABC 中,B C ∠=∠,BD CE =,BF CD =,则EDF ∠等于( )A .90A ︒-∠B .1802A ︒-∠C .1902A ︒-∠D .11802A ︒-∠ 4.如图,点O 在ABC 内,且到三边的距离相等.若110BOC ∠=°,则A ∠的度数为( )A .40︒B .45︒C .50︒D .55︒5.如图,ABC 的面积为26cm ,AP 垂直B 的平分线BP 于P ,则PBC 的面积为( )A .21cmB .22cmC .23cmD .24cm6.用三角尺画角平分线:如图,先在AOB ∠的两边分别取OM ON =,再分别过点M ,N 作OA ,OB 的垂线,交点为P .得到OP 平分AOB ∠的依据是( )A .HLB .SSSC .SASD .ASA7.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒8.点Р在AOB ∠的角平分线上,点Р到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是( )A .5PQ >B .5PO ≥C . 5PQ <D .5PO ≤ 9.如图,AD 是ABC 的角平分线,:4:3AB AC = ,则ABD △与ACD △的面积比为( ).A.4:3B.16:9C.3:4D.9:1610.如图,OB平分∠MON,A为OB的中点,AE⊥ON,EA=3,D为OM上的一个动点,C 是DA延长线与BC的交点,BC//OM,则CD的最小值是()A.6 B.8 C.10 D.1211.如图,AD平分∠BAC,AB=AC,连接BD,CD并延长,分别交AC,AB于点F,E,则图中全等三角形共有()A.2对B.3对C.4对D.5对二、填空题12.如图,△ABC中,∠ACB=90°,点D在边AC 上,DE⊥AB于点E,DC=DE,∠A=32°,则∠BDC的度数为________.0,3,另一13.如图,把等腰直角三角板放平面直角坐标系内,已知直角顶点C的坐标为()8,8,则点A的坐标为____________个顶点B的坐标为()14.如图,△ABC ≌△DEF ,由图中提供的信息,可得∠D =__________°.15.如图,在Rt △ABC 中,∠C =90°,D 为BC 上一点,连接AD ,过D 点作DE ⊥AB ,且DE =DC .若AB =5,AC =3,则EB =____.16.如图,BD 平分ABC ∠交AC 于点D ,DE BC ⊥于点E ,若2DE =,7BC =,12ABC S =△,则AB 的长为______.17.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,交BC 边于点D ,若12AB =,4CD =,则ABD △ 的面积为__________.18.如图,射线OC 是∠AOB 的角平分线,D 是射线OC 上一点,DP ⊥OA 于点P ,DP =5,若点Q 是射线OB 上一点,OQ =4,则△ODQ 的面积是__________.19.如图所示,AB AC =,AD AE =,BAC DAE ∠=∠,点D 在线段BE 上.若125∠=︒,230∠=︒,则3∠=______.20.如图,在ABC 中,AB CB =,90ABC ∠=︒,AD BD ⊥于点D ,CE BD ⊥于点E ,若7CE =,5AD =,则DE 的长是______.21.如图,ABC ∆中,90,6,8ACB AC cm BC cm ∠=︒==,点P 从点A 出发沿A C -路径向终点C 运动.点Q 从B 点出发沿B C A --路径向终点A 运动.点P 和Q 分别以每秒1cm 和3cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P 和Q 作PE l ⊥于,E QF l ⊥于F .则点P 运动时间为_______________时,PEC ∆与QFC ∆全等.三、解答题22.如图,在△ABD中,∠ABC=45°,AC,BF为△ABD的两条高,CM//AB,交AD于点M;求证:BE=AM+EM.23.如图,BC⊥AD于C,EF⊥AD于F,AB∥DE,分别交BC于B,交EF于E,且BC=EF.求证:AF=CD.24.命题:有两个内角相等的三角形必有两条高线相等,写出它的逆命题,并判断逆命题的真假,若是真命题,给出证明;若是假命题,请举反例.25.在数学课本中,有这样一道题:如图1,AB∥CD,试用不同的方法证明∠B+∠C=∠BEC (1)某同学写出了该命题的逆命题,请你帮他把逆命题的证明过程补充完整.已知:如图1,∠B+∠C=∠BEC求证:AB∥CD证明:如图2,过点E,作EF∥AB,∴∠B=∠∵∠B+∠C=∠BEC,∠BEF+∠FEC=∠BEC(已知)∴∠B+∠C=∠BEF+∠FEC(等量代换)∴∠=∠(等式性质)∴EF∥∵EF∥AB∴AB∥CD(平行于同一条直线的两条直线互相平行)(2)如图3,已知AB∥CD,在∠BCD的平分线上取两个点M、N,使得∠BMN=∠BNM,求证:∠CBM=∠ABN.(3)如图4,已知AB∥CD,点E在BC的左侧,∠ABE,∠DCE的平分线相交于点F.请直接写出∠E与∠F之间的等量关系.一、选择题1.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒 2.MAB ∠为锐角,AB a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC x =,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是( )A .x d =或x a ≥B .x a ≥C .x d =D .x d =或x a > 3.在平面直角坐标系xOy 中,以原点O 为圆心,任意长为半径作弧,分别交x 轴的负半轴和y 轴的正半轴于A 点,B 点,分别以点A ,点B 为圆心,AB 的长为半径作弧,两弧交于P 点,若点P 的坐标为(m ,n),则下列结论正确的是( )A .m =2nB .2m =nC .m =nD .m =-n 4.工人师傅常用直角尺平分一个角,做法如下:如图所示,在∠AOB 的边OA ,OB 上分别取OM =ON ,移动直角尺,使直角尺两边相同的刻度分别与M ,N 重合(即CM =CN ).此时过直角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是( )A .HLB .SASC .SSSD .ASA5.如图,ABC 的面积为26cm ,AP 垂直B 的平分线BP 于P ,则PBC 的面积为( )A .21cmB .22cmC .23cmD .24cm 6.下列判断正确的个数是( )①三角形的三条高都在三角形的内部,并且相交于一点;②两边及一角对应相等的两个三角形全等;③两角及一边对应相等的两个三角形全等;④到三角形的三边所在的直线距离相等的点有三个;⑤两边及第三边上的高对应相等的两个三角形全等.A .4B .3C .2D .17.如图,∠ACB=90°,AC=BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD=3,BE=1,则DE 的长是( )A .1.5B .2C .22D 10 8.下列命题中,假命题是( )A .在同一平面内,垂直于同一条直线的两直线平行B .到线段两端点距离相等的点在这条线段的垂直平分线上C .一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等D .一边长相等的两个等腰直角三角形全等9.如图,在ABC 中,B C ∠=∠,E 、D 、 F 分别是AB 、BC 、AC 上的点,且BE CD =,BD CF =,若 104A ∠=︒,则EDF ∠的度数为( )A .24°B .32°C .38°D .52°10.如图,AB =AC ,点D 、E 分别是AB 、AC 上一点,AD =AE ,BE 、CD 相交于点M .若∠BAC =70°,∠C =30°,则∠BMD 的大小为( )A .50°B .65°C .70°D .80°11.如图,在△ABC 中,点E 和F 分别是AC ,BC 上一点,EF ∥AB ,∠BCA 的平分线交AB 于点D ,∠MAC 是△ABC 的外角,若∠MAC =α,∠EFC =β,∠ADC =γ,则α、β、γ三者间的数量关系是( )A .β=α+γB .β=2γ﹣αC .β=α+2γD .β=2α﹣2γ二、填空题12.如图,已知在ABC ∆和ADC ∆中,,ACB ACD ∠=∠请你添加一个条件:_________,使ABC ADC ∆≅∆(只添一个即可).13.如图,∠ABC=∠DCB ,要使△ABC ≌△DCB ,还需要补充一个条件:___.(一个即可)14.如图,D ,E 分别是AB ,AC 上的点,AD=AE ,请添加一个条件,使得ABE ≌ACD .这个条件可以为_____(只填一个条件即可).15.已知在△ABC 中,AB =9,中线AD =4,那么AC 的取值范围是____16.如图,AC AE =,AD AB =,90ACB DAB ∠=∠=︒,33BAE ∠=︒,//CB AE ,AC 与DE 相交于点F .(1)DAC ∠=______.(2)当1AF =时,BC 的长为______.17.如图,ABC 的三边AB 、BC 、CA 长分别是10、15、20,三条角平分线交于O 点,则::ABO BCO CAO S S S 等于__________.18.如图,AC//BD ,OA ,OB 分别平分BAC ∠和ABD ∠,OE AB ⊥,垂足为E ,如果OE 5=,那么AC 与BD 的距离是________19.如图,射线OC 是∠AOB 的角平分线,D 是射线OC 上一点,DP ⊥OA 于点P ,DP =5,若点Q 是射线OB 上一点,OQ =4,则△ODQ 的面积是__________.20.如图,已知ABC DCB ∠=∠,则需添加的一个条件是______可使ACB DBC ≌.(只写一个即可,不添加辅助线).21.ABC 中,4AB =,6AC =, 则第三边BC 边上的中线m 的取值范围是______.三、解答题22.作图题:已知∠α,线段m 、n ,请按下列步骤完成作图(不需要写作法,保留作图痕迹)(1)作∠MON =∠α(2)在边OM 上截取OA =m ,在边ON 上截取OB =n .(3)作直线AB .23.如图,点E 在线段BD 上,已知,,AB AC AD AE BE CD ===.(1)求证:BAC EAD ∠=∠.(2)写出123∠∠∠、、之间的数量关系,并予以证明.24.如图,∠ACB 和∠ADB 都是直角,BC =BD ,E 是AB 上任意一点.(1)求证:△ABC ≌△ABD .(2)求证:CE =DE .25.如图,E 、A 、C 三点共线,//AB CD ,B E ∠=∠,AC CD =.求证:BC ED =.一、选择题1.如图,△ABC ≌△ADE ,AB =AD ,AC =AE ,∠B =28︒,∠E =95︒,∠EAB =20︒,则∠BAD 等于( )A .75︒B .57︒C .55︒D .77︒2.如图,在ABC 和DEF 中,,B DEF AB DE ∠=∠=,添加下列一个条件后,仍然不能证明ABC DEF ≌,这个条件是( )A .A D ∠=∠B .BC EF = C .ACB F ∠=∠D .AC DF = 3.如图,点O 是△ABC 中∠BCA ,∠ABC 的平分线的交点,已知△ABC 的面积是12,周长是8,则点O 到边BC 的距离是( )A .1B .2C .3D .44.如图,在ABC 中,B C ∠=∠,BD CE =,BF CD =,则EDF ∠等于( )A .90A ︒-∠B .1802A ︒-∠C .1902A ︒-∠D .11802A ︒-∠ 5.如图所示,已知AB ∥CD ,BAC ∠与ACD ∠的平分线交于点O ,OE AC ⊥于点E ,且3OE cm =,则点O 到AB ,CD 的距离之和是( )A .3cmB .6cmC .9cmD .12cm6.如图,AB ⊥CD ,且AB =CD .E 、F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE =a ,BF =b ,EF =c ,则AD 的长为( )A .a +cB .b +cC .a +b -cD .a -b +c7.如图,BD 是四边形ABCD 的对角线, AD//BC ,AB AD <,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为点E ,F ,若BE DF =,则图中全等的三角形有( )A .1对B .2对C .3对D .4对8.下列命题的逆命题是假命题的是( )A .直角三角形两锐角互余B .全等三角形对应角相等C .两直线平行,同位角相等D .角平分线上的点到角两边的距离相等9.下列说法不正确的是( )A .三边分别相等的两个三角形全等B .有两边及一角对应相等的两个三角形全等C .有两角及一边对应相等的两个三角形全等D .斜边和一条直角边分别相等的两个直角三角形全等10.如图,在Rt ABC △中,90C ∠=︒,CAB ∠的平分线交BC 于点D ,且DE 所在直线是AB 的垂直平分线,垂足为E .若3DE =,则BC 的长为( ).A .6B .7C .8D .911.如图,AD 平分∠BAC ,AB=AC ,连接BD ,CD 并延长,分别交AC ,AB 于点F ,E ,则图中全等三角形共有( ) A .2对B .3对C .4对D .5对 二、填空题12.如图,点C 在AOB ∠的平分线上,CD OA ⊥于点D ,且2CD =,如果E 是射线OB 上一点,那么CE 长度的最小值是___________.13.如图,在Rt ABC △中,90B ∠=︒,12AB =,5BC =,射线AP AB ⊥于点A ,点E 、D 分别在线段AB 和射线AP 上运动,并始终保持DE AC =,要使ABC 和DAE △全等,则AE 的长为______.14.如图所示,在ABC 中,D 是BC 的中点,点A 、F 、D 、E 在同一直线上.请添加一个条件,使BDE CDF ≌(不再添其他线段,不再标注或使用其他字母),并给出证明.你添加的条件是______15.如图,△ABE ≌△ADC ≌△ABC ,若∠1=130°,则∠α的度数为________.16.已知点A 、E 、F 、C 在同一条直线l 上,点B 、D 在直线l 的异侧,若AB=CD ,AE=CF ,BF=DE ,则AB 与CD 的位置关系是_______.17.如图,点P 是AOC ∠的角平分线上一点,PD OA ⊥,垂足为点D ,且5PD =,点M是射线OC 上一动点,则PM 的最小值为__.18.如图,在△ABC 中,AD 是∠BAC 的平分线,AB =8 cm ,AC =6 cm ,S △ABD ∶S △ACD =________.19.如图,四边形ABDC 中,对角线AD 平分BAC ∠,136ACD ∠=︒,44BCD ∠=︒,则ADB ∠的度数为_____20.如图,AB ⊥BC ,DC ⊥BC ,垂足分别为B 、C ,垂足为B 、C ,AC 与BD 相交于点E ,AC=BD 且∠A=50°,则∠BEA=___________.21.如图,在△ABC 中,∠C =90°,∠A 的平分线交BC 于D ,若20ABD S ∆=cm 2,AB =10cm ,则CD 为__________cm .三、解答题22.如图,已知A ABC ∠=∠,D CBD ∠=∠,ABD CBD ∠=∠,点E 在BC 的延长线上. 求证:CD 平分ACE ∠.23.如图,在△ABC 中,∠BAC 的平分线AD 交BC 于点D ,过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,连接EF .写出两个结论(∠BAD =∠CAD 和DE =DF 除外),并选择一个结论进行证明.(1)____________;(2)____________.24.已知在ABC 中,90ACB ∠=︒,AC BC =,直线l 绕点C 旋转,过点A 作AD l ⊥于D ,过点B 作BE l ⊥于E ,若6AD =,3BE =,画图并直接写出DE 的长. 25.如图,点E 在线段BD 上,已知,,AB AC AD AE BE CD ===.(1)求证:BAC EAD ∠=∠.(2)写出123∠∠∠、、之间的数量关系,并予以证明.。
山东潍坊一中八年级数学上册第十二章【全等三角形】基础练习(培优专题)
一、选择题1.如图,已知16AB AC +=,点O 为ABC ∠与ACB ∠的平分线的交点,且OD BC 于D .若4OD =,则四边形ABOC 的面积是( )A .36B .32C .30D .642.如图,OM 、ON 、OP 分别是AOB ∠,BOC ∠,AOC ∠的角平分线,则下列选项成立的( )A .AOP MON ∠>∠B .AOP MON ∠=∠C .AOP MON ∠<∠D .以上情况都有可能3.如图,在ABC 和AEF 中,EAC BAF ∠=∠,EA BA =,添加下面的条件:①EAF BAC ∠=∠;②E B ∠=∠;③AF AC =;④EF BC =,其中可以得到ABC AEF ≌△△的有( )个.A .1B .2C .3D .44.如图,OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,延长CP ,DP 交OB ,OA 于点E ,F ,下列结论错误的是( )A .PC PD =B .OC OD = C .CPO DPO ∠=∠ D .PC PE =5.如图,点O 在ABC 内,且到三边的距离相等.若110BOC ∠=°,则A ∠的度数为( )A .40︒B .45︒C .50︒D .55︒6.如图,123,,l l l 是三条两两相交的公路,现需建一个仓库,要求仓库到三条公路距离相等,则仓库的可能地址有( )处.A .1B .2C .3D .47.如图,已知△ABC 的周长是20,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于,且OD=2,△ABC 的面积是( )A .20B .24C .32D .408.如图,AB =AC ,点D 、E 分别是AB 、AC 上一点,AD =AE ,BE 、CD 相交于点M .若∠BAC =70°,∠C =30°,则∠BMD 的大小为( )A .50°B .65°C .70°D .80°9.在尺规作图作一个角的平分线时的两个三角形全等的依据是( )A .SASB .AASC .SSSD .HL10.下列说法正确的是 ( )A .一直角边对应相等的两个直角三角形全等B .斜边相等的两个直角三角形全等C .斜边相等的两个等腰直角三角形全等D .一边长相等的两个等腰直角三角形全等 11.如图,在四边形ABCD 中,//,AB CD AE 是BAC ∠的平分线,且AE CE ⊥.若,AC a BD b ==,则四边形ABDC 的周长为( )A .1.5()a b +B .2a b +C .3a b -D .2+a b二、填空题12.如图,AOP BOP ∠=∠,PD OA ⊥,C 是OB 上的动点,连接PC ,若4PD =,则PC的最小值为_________.13.如图,AB=4cm,AC=BD=3cm,∠CAB=∠DBA,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.设运动时间为t(s),则当△ACP与△BPQ全等时,点Q的运动速度为__cm/s.14.如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则点A到直线CD的距离是_____.15.如图,ABC的三边AB、BC、CA长分别是10、15、20,三条角平分线交于O点,S S S等于__________.则::ABO BCO CAO16.已知点A、E、F、C在同一条直线l上,点B、D在直线l的异侧,若AB=CD,AE=CF,BF=DE,则AB与CD的位置关系是_______.P m m-,当m=____时,点P在二、四象限的角平分线上.17.已知点(2,1)18.如图,AB ,CD 交于点O ,AD ∥BC .请你添加一个条件_____,使得△AOD ≌△BOC .19.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,BD 平分ABC ∠.若P 是BC 边上一动点,则DP 长的最小值为______.20.如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F .若28ABC S =,4DE =,8AB =,则AC =_________.21.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.三、解答题22.如图,在△ABC 中,∠BAC 的平分线AD 交BC 于点D ,过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,连接EF .写出两个结论(∠BAD =∠CAD 和DE =DF 除外),并选择一个结论进行证明.(1)____________;(2)____________.23.如图,,AD BF 相交于点,//,O AB DF AB DF =,点E 与点C 在BF 上,且BE CF =.(1)求证:ABC DFE ∆≅∆;(2)求证:点О为BF 的中点.24.如图,CB 为ACE ∠的角平分线,F 是线段CB 上一点,,CA CF B E =∠=∠,延长EF 与线段AC 相交于点D .(1)求证:AB FE =;(2)若,//ED AC AB CE ⊥,求A ∠的度数.25.如图1,在平面内取一个定点O ,自O 引一条射线O x ,设M 是平面内一点,点O 与点M 的距离为m (m >0), 以射线O x 为始边,射线OM 为终边的∠x OM 的度数为x °(x≥0).那么我们规定用有序数对(m ,x °)表示点M 在平面内的位置,并记为M (m ,x °).例如,在如图2中,如果OG=4,∠x OG=120°,那么点G 在平面内的位置记为G (4,120°).(1)如图3,如果点N 在平面内的位置记为N (6,35°),那么ON= ;xON ∠= °; (2)如图4,点A ,点B 在射线O x 上,点A ,B 在平面内的位置分别记为(a ,0°), (2a ,0°)点A,E,C在同一条直线上. 且OE=BC.用等式表示∠OEA与∠ACB之间的数量关系,并证明.一、选择题1.如图,在△ABC 中,∠B =∠C =50°,BD =CF ,BE =CD ,则∠EDF 的度数是( )A .40°B .50°C .60°D .30°2.如图,AB 是线段CD 的垂直平分线,则图中全等三角形的对数有( )A .2对B .3对C .4对D .5对3.如图,在ABC 中,B C ∠=∠,BD CE =,BF CD =,则EDF ∠等于( )A .90A ︒-∠B .1802A ︒-∠C .1902A ︒-∠D .11802A ︒-∠ 4.如图,ABC 和DEF 中,∠A=∠D ,∠C=∠F ,要使ABC DEF ≅,还需增加的条件是( )A .AB=EFB .AC=DFC .∠B=∠ED .CB=DE 5.用三角尺画角平分线:如图,先在AOB ∠的两边分别取OM ON =,再分别过点M ,N作OA,OB的垂线,交点为P.得到OP平分AOB∠的依据是()A.HL B.SSS C.SAS D.ASA6.如图,AP平分∠BAF,PD⊥AB于点D,PE⊥AF于点E,则△APD与△APE全等的理由是()A.SSS B.SAS C.SSA D.AAS7.下列说法不正确的是()A.三边分别相等的两个三角形全等B.有两边及一角对应相等的两个三角形全等C.有两角及一边对应相等的两个三角形全等D.斜边和一条直角边分别相等的两个直角三角形全等8.如图,已知∠A=∠D, AM=DN,根据下列条件不能够判定△ABN≅△DCN的是()A.BM∥CN B.∠M=∠N C.BM=CN D.AB=CD9.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=34°,那么∠BED=()A .134°B .124°C .114°D .104°10.如图,△ACB ≌△A 'CB ',∠BCB '=25°,则∠ACA '的度数为( )A .35°B .30°C .25°D .20°11.如图,在Rt ABC 和Rt ADE △中,90,,ACB AED AB AD AC AE ∠=∠===,则下列说法不正确的是( )A .BC DE =B .BAE DAC ∠=∠ C .OC OE =D .EAC ABC ∠=∠二、填空题12.如图,在Rt △ABC 中,∠C =90°,D 为BC 上一点,连接AD ,过D 点作DE ⊥AB ,且DE =DC .若AB =5,AC =3,则EB =____.13.如图,BD 平分ABC ∠交AC 于点D ,DE BC ⊥于点E ,若2DE =,7BC =,12ABC S =△,则AB 的长为______.14.如图,AB ,CD 交于点O ,AD ∥BC .请你添加一个条件_____,使得△AOD ≌△BOC .15.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,BD 平分ABC ∠.若P 是BC 边上一动点,则DP 长的最小值为______.16.如图所示,已知点A 、D 、B 、F 在一条直线上,∠A=∠F ,AC=FE ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是___________________ .(只需填一个即可)17.如图,在ABC 中,AB CB =,90ABC ∠=︒,AD BD ⊥于点D ,CE BD ⊥于点E ,若7CE =,5AD =,则DE 的长是______.18.如图,已知△ABC 的面积为18,BP 平分∠ABC ,且AP ⊥BP 于点P ,则△BPC 的面积是_____.19.如图,12∠=∠,要用“SAS ”判定ADC BDC ≌△△,则可加上条件__________.20.如图,在ABC 中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①120EDF ∠=︒;②DM 平分EDF ∠;③DE DF AD +=;④2AB AC AE +>;其中正确的有________(请将正确结论的序号填写在横线上).21.如图,在△ABC 中,∠C =90°,∠A 的平分线交BC 于D ,若20ABD S ∆=cm 2,AB =10cm ,则CD 为__________cm .三、解答题22.如图,在平面直角坐标系中,AC CD =,已知()3,0A ,()0,3B ,()0,5C ,点D 在第一象限内,90DCA ∠=︒,AB 的延长线与DC 的延长线交于点M ,AC 与BD 交于点N .(1)OBA ∠的度数为________.(2)求点D 的坐标.(3)求证:AM DN =.23.已知:如图,120AOB ∠=︒,过点O 作射线OP ,若OM 平分AOP ∠,ON 平分BOP ∠,AOP α∠=(1)如图1,补全图形,直接写出MON ∠=____________︒(2)如图2,若4BOM BON ∠=∠,求α的值.24.如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,AC =CE ,∠ACD =∠B .求证:△ABC ≌△CDE .25.如图,BD //GE ,150AFG ∠=∠=︒,AQ 平分FAC ∠,交BD 的延长线于点Q ,交DE 于点H ,15Q ∠=︒,求CAQ ∠的度数.一、选择题1.如图,已知16AB AC +=,点O 为ABC ∠与ACB ∠的平分线的交点,且OD BC 于D .若4OD =,则四边形ABOC 的面积是( )A .36B .32C .30D .642.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .13.在平面直角坐标系xOy 中,以原点O 为圆心,任意长为半径作弧,分别交x 轴的负半轴和y 轴的正半轴于A 点,B 点,分别以点A ,点B 为圆心,AB 的长为半径作弧,两弧交于P 点,若点P 的坐标为(m ,n),则下列结论正确的是( )A .m =2nB .2m =nC .m =nD .m =-n 4.如图,AP 平分∠BAF ,PD ⊥AB 于点D ,PE ⊥AF 于点E ,则△APD 与△APE 全等的理由是( )A .SSSB .SASC .SSAD .AAS5.已知如图,AC⊥BC,DE⊥AB,AD平分∠BAC,下面结论错误的是()A.BD+ED=BC B.DE平分∠ADB C.AD平分∠EDC D.ED+AC>AD6.下列说法不正确的是()A.三边分别相等的两个三角形全等B.有两边及一角对应相等的两个三角形全等C.有两角及一边对应相等的两个三角形全等D.斜边和一条直角边分别相等的两个直角三角形全等7.如图,已知△ABC的周长是20,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于,且OD=2,△ABC的面积是()A.20 B.24 C.32 D.408.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF其中正确的是()A.①②③B.①③④C.①②④D.①②③④△≌△9.如图所示,已知∠A=∠C,∠AFD=∠CEB,那么给出的条件不能得到ADF CBE 是()A .∠B =∠D B .EB=DFC .AD=BCD .AE=CF 10.如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB =4,则AC 长是( )A .2.5B .3C .3.5D .411.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒二、填空题12.如图所示的是一张直角ABC 纸片(90C ∠=︒),其中30BAC ∠=︒,如果用两张完全相同的这种纸片恰好能拼成如图2所示的ABD △,若2BC =,则ABD △的周长为______.13.如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =12,BC =18,CD =8,则四边形ABCD 的面积是____.14.如图,把等腰直角三角板放平面直角坐标系内,已知直角顶点C 的坐标为()0,3,另一个顶点B 的坐标为()8,8,则点A 的坐标为____________15.如图,点D 、E 分别在线段AB 、AC 上,BE 与CD 相交于点O .若AB AC =,AD AE =,60A ∠=︒,80ADC ∠=︒,则B 的度数为______.16.如图,在Rt ABC △中,90C ∠=︒,以顶点A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交BC 于点D .若3CD =,10AB =,则ABD △的面积是______.17.如图,点P 是AOC ∠的角平分线上一点,PD OA ⊥,垂足为点D ,且5PD =,点M 是射线OC 上一动点,则PM 的最小值为__.18.如图,四边形ABDC 中,对角线AD 平分BAC ∠,136ACD ∠=︒,44BCD ∠=︒,则ADB ∠的度数为_____19.如图,射线OC 是∠AOB 的角平分线,D 是射线OC 上一点,DP ⊥OA 于点P ,DP =5,若点Q 是射线OB 上一点,OQ =4,则△ODQ 的面积是__________.20.如图,在ABC 中,AB CB =,90ABC ∠=︒,AD BD ⊥于点D ,CE BD ⊥于点E ,若7CE =,5AD =,则DE 的长是______.21.如图,已知AB AC =,D 为BAC ∠的角平分线上面一点,连接BD ,CD ;如图,已知AB AC =,D 、E 为BAC ∠的角平分线上面两点,连接BD ,CD ,BE ,CE ;如图,已知AB AC =,D 、E 、F 为BAC ∠的角平分线上面三点,连接BD ,CD ,BE ,CE ,BF ,CF ;…,依此规律,第n 个图形中有全等三角形的对数是______.三、解答题22.如图,AD CB =,AB CD =.求证:ABC CDA ∠=∠.23.如图,在五边形ABCDE 中,AB DE =,AC AD =.(1)请你添加一个与角有关的条件,使得ABC DEA ≌,并说明理由; (2)在(1)的条件下,若65CAD ∠=︒,110B ∠=︒,求BAE ∠的度数. 24.(教材呈现)数学课上,赵老师用无刻度的直尺和圆规按照华师版教材八年级上册87页完成角平分线的作法,方法如下:试一试如图,AOB ∠为已知角,试按下列步骤用直尺和圆规准确地作出AOB ∠的平分线.第一步:在射线OA 、OB 上,分别截取OD 、OE ,使0;OD E =第二步:分别以点D 和点E 为圆心,适当长(大于线段DE 长的一半)为半径作圆弧,在AOB ∠内,两弧交于点C ;第三步:作射线OC .射线OC 就是所要求作的AOB ∠的平分线(问题1)赵老师用尺规作角平分线时,用到的三角形全等的判定方法是__________________.∠的角平分线,方法如下:(问题2)小明发现只利用直角三角板也可以作AOB=.步骤:①利用三角板上的刻度,在OA、OB上分别截取OM、ON,使OM ON②分别过点M、N作OM、ON的垂线,交于点P.∠的平分线.③作射线OP,则OP为AOB∠的平分线.请根据小明的作法,求证OP为AOB25.如图,点D,E分别在AB和AC上,DE//BC,点F是AD上一点,FE的延长线交BC延长线BH于点G.(1)若∠DBE=40°,∠EBC=35°,求∠BDE的度数;(2)求证:∠EGH>∠ADE;(3)若点E是AC和FG的中点,△AFE与△CEG全等吗?请说明理由.。
八年级数学全等三角形(培优篇)(Word版 含解析)
八年级数学全等三角形(培优篇)(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为______cm.-【答案】10310【解析】解:连接BD,在菱形ABCD中,∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,分三种情况讨论:①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10;②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP-;最小,最小值为10310③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;-(cm).综上所述,PA的最小值为10310-.故答案为:10310点睛:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).∵AB=5,∠BAC=45°,∴BH==5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为5.【点睛】本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.3.如图,已知正六边形 ABCDEF 的边长是 5,点 P 是 AD 上的一动点,则 PE+PF 的最小值是_____.【答案】10【解析】利用正多边形的性质,可得点B 关于AD 对称的点为点E ,连接BE 交AD 于P 点,那么有PB=PF ,PE+PF=BE 最小,根据正六边形的性质可知三角形APB 是等边三角形,因此可知BE 的长为10,即PE+PF 的最小值为10.故答案为10.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.【答案】(-4,2)或(-4,3)【解析】【分析】【详解】把点C 向下平移1个单位得到点D (4,2),这时△ABD 与△ABC 全等,分别作点C ,D 关于y 轴的对称点(-4,3)和(-4,2),所得到的△ABD 与△ABC 全等.故答案为(-4,2)或(-4,3).5.如图,ABC 中,ABC=45∠︒,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G ,下列结论:BF=AC ①;A=67.5∠︒②;DG=DF ③;ADGE GHCE S S =四边形四边形④,其中正确的有__________(填序号).【答案】①②③【解析】【分析】只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,∠DGF=∠DFG=67.5°,即可判断①②③正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断④错误.【详解】解:∵CD ⊥AB ,BE ⊥AC ,∴∠BDC=∠ADC=∠AEB=90°,∴∠A +∠ABE=90°,∠ABE +∠DFB=90°,∴∠A=∠DFB ,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°−45°=45°=∠DBC ,∴BD=DC ,在△BDF 和△CDA 中,∠BDF=∠CDA ,∠A=∠DFB ,BD=CD ,∴△BDF ≌△CDA (AAS ),∴BF=AC ,故①正确.∵∠ABE=∠EBC=22.5°,BE ⊥AC ,∴∠A=∠BCA=67.5°,故②正确,∵BE 平分∠ABC ,∠ABC=45°,∴∠ABE=∠CBE=22.5°,∵∠BDF=∠BHG=90°,∴∠BGH=∠BFD=67.5°,∴∠DGF=∠DFG=67.5°,∴DG=DF ,故③正确.作GM ⊥AB 于M .如图所示:∵∠GBM=∠GBH ,GH ⊥BC ,∴GH=GM <DG ,∴S △DGB >S △GHB ,∵S △ABE =S △BCE ,∴S 四边形ADGE <S 四边形GHCE .故④错误,故答案为:①②③.【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.6.如图,己知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,…均为等边三角形,若12OA =,则556A B A ∆的边长为________.【答案】32【解析】【分析】根据底边三角形的性质求出130∠=︒以及平行线的性质得出112233////A B A B A B ,以及22122A B B A =,得出332212244A B A B B A ===,441288A B B A ==,551216A B B A =⋯进而得出答案.【详解】解:△112A B A 是等边三角形,1121A B A B ∴=,341260∠=∠=∠=︒,2120∴∠=︒,30MON ∠=︒,11801203030∴∠=︒-︒-︒=︒,又360∠=︒,5180603090∴∠=︒-︒-︒=︒,130MON ∠=∠=︒,1112OA A B ∴==,212A B ∴=,△223A B A 、△334A B A 是等边三角形,111060∴∠=∠=︒,1360∠=︒,41260∠=∠=︒,112233////A B A B A B ∴,1223//B A B A ,16730∴∠=∠=∠=︒,5890∠=∠=︒,22122242A B B A =∴==,33232B A B A =,33312428A B B A ∴===,同理可得:444128216A B B A ===,⋯∴△1n n n A B A +的边长为2n ,∴△556A B A 的边长为5232=.故答案为:32.【点睛】本题考查了等边三角形的性质以及30°直角三角形的性质,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =进而发现规律是解题关键.7.如图,在直角坐标系中,点()8,8B -,点()2,0C -,若动点P 从坐标原点出发,沿y 轴正方向匀速运动,运动速度为1/cm s ,设点P 运动时间为t 秒,当BCP ∆是以BC 为腰的等腰三角形时,直接写出t 的所有值__________________.【答案】2秒或46秒或14秒【解析】【分析】分两种情况:PC 为腰或BP 为腰.分别作出符合条件的图形,计算出OP 的长度,即可求出t 的值.【详解】解:如图所示,过点B 作BD ⊥x 轴于点D ,作BE ⊥y 轴于点E ,分别以点B 和点C 为圆心,以BC 长为半径画弧交y 轴正半轴于点F ,点H 和点G∵点B (-8,8),点C (-2,0),∴DC=6cm ,BD=8cm ,由勾股定理得:BC=10cm∴在直角三角形COG中,OC=2cm,CG=BC=10cm,∴OP=OG= 22-=,10246(cm)当点P运动到点F或点H时,BE=8cm,BH=BF=10cm,∴EF=EH=6cm∴OP=OF=8-6=2(cm)或OP=OH=8+6=14(cm),故答案为:2秒,46秒或14秒.【点睛】本题综合考查了勾股定理和等腰三角形在平面直角坐标系中的应用,通过作图找出要求的点的位置,利用勾股定理来求解是本题的关键.8.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。
三角形全等培优证明题100题(有答案)
全等三角形证明题专项练习(100题)1.已知如图,△ABC≌△ADE,∠B=30°,∠E=20°,∠BAE=105°,求∠BAC的度数.∠BAC=_________.2.已知:如图,四边形ABCD中,AB∥CD,AD∥BC.求证:△ABD≌△CDB.3.如图,点E在△ABC外部,点D在边BC上,DE交AC于F.若∠1=∠2=∠3,AC=AE,请说明△ABC≌△ADE 的道理.4.如图,△ABC的两条高AD,BE相交于H,且AD=BD.试说明下列结论成立的理由.(1)∠DBH=∠DAC;(2)△BDH≌△ADC.5.如图,在△ABC中,D是BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF,则AB=AC,并说明理由.6.如图,AE是∠BAC的平分线,AB=AC,D是AE反向延长线的一点,则△ABD与△ACD全等吗?为什么?7.如图所示,A、D、F、B在同一直线上,AF=BD,AE=BC,且AE∥BC.求证:△AEF≌△BCD.8.如图,已知AB=AC,AD=AE,BE与CD相交于O,△ABE与△ACD全等吗?说明你的理由.9.如图,在△ABC中,AB=AC,D是BC的中点,点E在AD上,找出图中全等的三角形,并说明它们为什么是全等的.10.如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.11.已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,应增加什么条件?并根据你所增加的条件证明:△ABC≌△FDE.12.如图,已知AB=AC,BD=CE,请说明△ABE≌△ACD.13.如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C逆时针旋转角α(0°<α<90°)得到△A1B1C,连接BB1.设CB1交AB于D,A1B1分别交AB,AC于E,F,在图中不再添加其他任何线段的情况下,请你找出一对全等的三角形,并加以证明.(△ABC与△A1B1C1全等除外)14.如图,AB∥DE,AC∥DF,BE=CF.求证:△ABC≌△DEF.15.如图,AB=AC,AD=AE,AB,DC相交于点M,AC,BE相交于点N,∠DAB=∠EAC.求证:△ADM≌△AEN.16.将两个大小不同的含45°角的直角三角板如图1所示放置在同一平面内.从图1中抽象出一个几何图形(如图2),B、C、E三点在同一条直线上,连接DC.求证:△ABE≌△ACD.17.如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.请在图中找出所有全等的三角形,用符号“≌”表示,并选择一对加以证明.18.如图,已知∠1=∠2,∠3=∠4,EC=AD.(1)求证:△ABD≌△EBC.(2)你可以从中得出哪些结论?请写出两个.19.等边△ABC边长为8,D为AB边上一动点,过点D作DE⊥BC于点E,过点E作EF⊥AC于点F.(1)若AD=2,求AF的长;(2)求当AD取何值时,DE=EF.20.巳知:如图,AB=AC,D、E分别是AB、AC上的点,AD=AE,BE与CD相交于G.(Ⅰ)问图中有多少对全等三角形?并将它们写出来.(Ⅱ)请你选出一对三角形,说明它们全等的理由(根椐所选三角形说理难易不同给分,即难的说对给分高,易的说对给分低)21.已知:如图,AB=DC,AC=BD,AC、BD相交于点E,过E点作EF∥BC,交CD于F,(1)根据给出的条件,可以直接证明哪两个三角形全等?并加以证明.(2)EF平分∠DEC吗?为什么?22.如图,己知∠1=∠2,∠ABC=∠DCB,那么△ABC与△DCB全等吗?为什么?23.如图,B,F,E,D在一条直线上,AB=CD,∠B=∠D,BF=DE.试证明:(1)△DFC≌△BEA;(2)△AFE≌△CEF.24.如图,AC=AE,∠BAF=∠BGD=∠EAC,图中是否存在与△ABE全等的三角形?并证明.25.如图,D是△ABC的边BC的中点,CE∥AB,E在AD的延长线上.试证明:△ABD≌△ECD.26.如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.27.如图,已知AB∥DE,AB=DE,AF=DC.(1)求证:△ABF≌△DEC;(2)请你找出图中还有的其他几对全等三角形.(只要直接写出结果,不要证明)28.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:△ABD≌△GCA;(2)请你确定△ADG的形状,并证明你的结论.29.如图,点D、F、E分别在△ABC的三边上,∠1=∠2=∠3,DE=DF,请你说明△ADE≌△CFD的理由.30.如图,在△ABC中,∠ABC=90°,BE⊥AC于点E,点F在线段BE上,∠1=∠2,点D在线段EC上,给出两个条件:①DF∥BC;②BF=DF.请你从中选择一个作为条件,证明:△AFD≌△AFB.31.如图,在△ABC中,点D在AB上,点E在BC上,AB=BC,BD=BE,EA=DC,求证:△BEA≌△BDC.32.阅读并填空:如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.请说明△ADC≌△CEB的理由.解:∵BE⊥CE于点E(已知),∴∠E=90°_________,同理∠ADC=90°,∴∠E=∠ADC(等量代换).在△ADC中,∵∠1+∠2+∠ADC=180°_________,∴∠1+∠2=90°_________.∵∠ACB=90°(已知),∴∠3+∠2=90°,∴_________.在△ADC和△CEB中,.∴△ADC≌△CEB (A.A.S)33.已知:如图所示,AB∥DE,AB=DE,AF=DC.(1)写出图中你认为全等的三角形(不再添加辅助线);(2)选择你在(1)中写出的全等三角形中的任意一对进行证明.34.如图,点E在△ABC外部,点D在BC边上,DE交AC于点F,若∠1=∠2=∠3,AC=AE.试说明下列结论正确的理由:(1)∠C=∠E;(2)△ABC≌△ADE.35.如图,在Rt△ABC中,∠ACB=90°,AC=BC,D是斜边AB上的一点,AE⊥CD于E,BF⊥CD交CD的延长线于F.求证:△ACE≌△CBF.36.如图,在△ABC中,D是BC的中点,DE∥CA交AB于E,点P是线段AC上的一动点,连接PE.探究:当动点P运动到AC边上什么位置时,△APE≌△EDB?请你画出图形并证明△APE≌△EDB.37.已知:如图,AD∥BC,AD=BC,E为BC上一点,且AE=AB.求证:(1)∠DAE=∠B;(2)△ABC≌△EAD.38.如图,D为AB边上一点,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,CA=CB,CD=CE,图中有全等三角形吗?指出来并说明理由.39.如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:△ABD≌△ACE.40.如图,已知D是△ABC的边BC的中点,过D作两条互相垂直的射线,分别交AB于E,交AC于F,求证:BE+CF>EF.41.如图所示,在△MNP中,H是高MQ与NE的交点,且QN=QM,猜想PM与HN有什么关系?试说明理由.42.如图,在△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥GF,交AB于点E,连接EG.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并证明你的结论.43.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.44.如图,小明在完成数学作业时,遇到了这样一个问题,AB=CD,BC=AD,请说明:∠A=∠C的道理,小明动手测量了一下,发现∠A确实与∠C相等,但他不能说明其中的道理,你能帮助他说明这个道理吗?试试看.45.如图,AD是△ABC的中线,CE⊥AD于E,BF⊥AD,交AD的延长线于F.求证:CE=BF.46.如图,已知AB∥CD,AD∥BC,F在DC的延长线上,AM=CF,FM交DA的延长线上于E.交BC于N,试说明:AE=CN.47.已知:如图,△ABC中,∠C=90°,CM⊥AB于M,AT平分∠BAC交CM于D,交BC于T,过D作DE∥AB 交BC于E,求证:CT=BE.48.如图,已知AB=AD,AC=AE,∠BAE=∠DAC.∠B与∠D相等吗?请你说明理由.49.D是AB上一点,DF交AC于点E,DE=EF,AE=CE,求证:AB∥CF.50.如图,M是△ABC的边BC上一点,BE∥CF,且BE=CF,求证:AM是△ABC的中线.51.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.52.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.53.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.54.如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.55.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.56.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.57.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.58.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.59.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.60.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.61.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.62.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.63.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.64.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.65.如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.66.如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.67.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.68.已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.69.已知:点A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM≌△CDN,并给出证明.(1)你添加的条件是:;(2)证明:.70.如图,AB=AC,AD=AE.求证:∠B=∠C.71.如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.72.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.73.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:74.如图,在△ABC和△DEF中,AB=DE,BE=CF,∠B=∠1.求证:AC=DF.(要求:写出证明过程中的重要依据)75.如图,已知AB=DC,AC=DB.求证:∠1=∠2.76.如图,D、E分别为△ABC的边AB、AC上的点,BE与CD相交于O点.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:命题的条件是和,命题的结论是和(均填序号);(2)证明你写出的命题.77.如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形并任选其中一对给予证明.78.如图所示,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边上的中点.求证:AE=DE.79.如图,给出下列论断:①DE=CE,②∠1=∠2,③∠3=∠4.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明.80.已知:如图,∠ACB=90°,AC=BC,CD是经过点C的一条直线,过点A、B分别作AE⊥CD、BF⊥CD,垂足为E、F,求证:CE=BF.81.如图,在△ABC中,AC⊥BC,AC=BC,D为AB上一点,AF⊥CD交于CD的延长线于点F,BE⊥CD于点E,求证:EF=CF﹣AF.82.如图,在△ABC中,∠BAC=90°,AB=AC,若MN是经过点A的直线,BD⊥MN于D,EC⊥MN于E.(1)求证:BD=AE;(2)若将MN绕点A旋转,使MN与BC相交于点O,其他条件都不变,BD与AE边相等吗?为什么?(3)BD、CE与DE有何关系?83.已知:如图,△ABC中,AB=AC,BD和CE为△ABC的高,BD和CE相交于点O.求证:OB=OC.84.在△ABC中,∠ACB=90°,D是AB边的中点,点F在AC边上,DE与CF平行且相等.试说明AE=DF的理由.85.如图,在△ABC中,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连接DE,已知DE=2cm,BD=3cm,求线段BC的长.86.如图:已知∠B=∠C,AD=AE,则AB=AC,请说明理由.87.如图△ABC中,点D在AC上,E在AB上,且AB=AC,BC=CD,AD=DE=BE.(1)求证△BCE≌△DCE;(2)求∠EDC的度数.88.已知:∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD,垂足为E.求证:BD=2CE.89.如图,已知:AB=CD,AD=BC,过BD上一点O的直线分别交DA、BC的延长线于E、F.(1)求证:∠E=∠F;(2)OE与OF相等吗?若相等请证明,若不相等,需添加什么条件就能证得它们相等?请写出并证明你的想法.90.如下图,AD是∠BAC的平分线,DE垂直AB于点E,DF垂直AC于点F,且BD=DC.求证:BE=CF.91.如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B 落在点F处,连接FC,(1)求CF的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探索三角形全等
1、一长方形纸片沿对角线剪开,得到两三角形纸片,再将这两纸片摆成如下图形式,使点B 、F 、C 、D 在同一条直线上.
⑴求证:AB ⊥ED ;
⑵若PB =BC ,请找出图中与此条件有关的一对全等三角形,并给予证明
2、如图,在△ABC 中,AC =BC ,∠ACB =90°,AD 平分∠BAC ,BE ⊥AD 交AC 的延长线于F ,E 为垂足,则结论:①AD =BF ;②CF =CD ;③AC +CD =AB ;④BE =CF ;⑤BF =2BE.其中正确的是( )
3、如图,点C在线段AB上,DA ⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=51°,求∠DFC的度数.
4、如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,O 为对角线AC 的中点,
过点O 作一条直线分别与AB 、CD 交于点M 、N ,点E 、F 在直线M 、N 上,且OE =OF.
⑴图中共有几对全等三角形,请把它们都写下来; ⑵求证:∠MAE =∠NCF
全等三角形的应用
全等三角形常用来转移线段和角,用它来证明:
①线段和角的等量关系 ②线段和角的和差倍分关系
③直线与直线的平行或垂直等位置关系
1、如图,已知BD 、CE 分别是△ABC 的边AC 和AB 上的高,点P 在BD 的延长线上,BP =AC ,点Q 在CE 上,CQ =AB.试判断AP 与AQ 的关系,并证明.
E
2、如图,AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且BF =AC ,FD =CD , 求证:BE ⊥AC
3、如图,在△ABC 中,AB =AC,AD =AE,∠BAC =∠DAC =90°.
⑴当点D 在AC 上时,如图①,线段BD,CE 有怎样的数量和位置关系?证明你猜想的结论.
⑵将图①中的△ADE 绕点A 顺时针旋转α角(0°<α<90°) ,如图②,线段BD 、CE 有怎样的数量关系和位置关系?问明理由.
①
4、在△ABC中,AB=AC,点D是直线BC上一点(不与B、C 重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE =∠BAC,连接CE.
⑴如图①,当点D在线段BC上时,若∠BAC=90°,则∠BCE =_______度.
⑵设∠BAC=α,∠BCE=β
a、如图②,当点D在线段BC上移动时,α,β之间有
怎样的数量关系?请说明理由.
b、当点D在直线BC上移动时,α,β之间有怎样的数
量关系?请直接写出你的结论.
①
②
辅助线作法之连接法
在几何证明中,常通过添加辅助线来构造全等三角形.常见的添加辅助线方法有:连接法、截长补短法、倍长中线法、翻折法、旋转法以及利用特殊条件构造全等三角形等等.
1、如图,△ABC的两条高BD,CE相交于点P,且PD=PE.
证明∶AC=AB
2、已知AB=DE,BC=EF,∠B=∠E,AF=CD 求证:AC∥DF
A
B
C
3、如图,AB交CD于点O,AD、CB的延长线相交于点E,且OA=OC,EA=EC.∠A=∠C吗?点O在∠AEC的平分线上吗?
E
辅助线作法之倍长中线法
在题目条件中含有中线的问题,我们常用的辅助线就是将中线延长一倍,其目的是为了得一对全等三角形,将分散的条件集中到一个三角形中去.
1、△ABC中,AB=5,AC=3,求中线AD的取值围.
2、如图,在△ABC中,AD是∠BAC的平分线,又是BC 上的中线
求证:AB=AC
B
B
3、在△ABC中,D是边BC上的一点,且CD=AB,∠BAD=∠BDA,AE是△ABD的中线.
求证∶AC=2AE
B
4、△ABC中,D为BC的中点,DE⊥DF交AB,AC
于点E,F.
求证:BE+CF>EF
辅助线作法之截长补短法
截长法:在第三条线段上截下一段使其等于两条线段中的一条,再证明剩余部分与另一条相等.
补短法:把两条线段中的一条补到另一条线段上去,证明所得新线段与第三条线段相等.
1、已知AC∥BD,EA,EB分别平分∠CAB和∠DBA,
点E在CD上.
求证:AB=AC+BD
A
A
2、在四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=½(AB+AD).
求证∶∠B+∠D=180°
3、如图,已知△ABC中,∠A=90°,AB=AC,D为
AC的中点,AE⊥BD于E,延长AE交BC于F.
求证:∠ADB=∠CDF
B
D B
4、如图,∠C =90°,AC =BC ,AD 是∠BAC 的角平分线. 求证∶AC +CD =AB
12、如图,已知AB =CD =AE =BC +DE =2,∠ABC =∠AED =90°,求五边形ABCDE 的面积.
B
辅助线作法之利用特殊条件构造全等三角形
2、如图,在△ABC 中,AC =½AB ,AD 平分∠BAC ,且AD =BD
求证:CD ⊥AC
全等三角形在动态几何中的运用
1、如图,△ABC 的边BC 在直线l 上,AC ⊥BC ,且AC =BC.△EFP 的边FP 也在直线l 上,边EF 与边AC 重合,且EF =FP.
⑴在图①中,请你通过观察、测量、猜想并写出AB 与AP 所满足的数量关系和位置关系; ⑵将△EFP 沿直线l 向左平移到图②的位置时,EP 交AC 于点Q,连接AP,BQ.猜想并写出BQ 与AP 所满足的数量关系和位置关系,并证明你的猜想;
⑶将△EFP 沿直线l 向左平移到图③的位置时,EP 的延长线交AC 的延长线于点Q,连接AP,BQ.你认为⑵中所猜想的BQ 与AP 的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.
B
探究角平分线
1、如图,△ABC的外角∠ACD的平分线CP与角∠ABC的平分线BP相交于点P,若∠BPC=40°,则∠CAP=_____________.
2、如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.
求证:AM平分∠DAB
3、如图,在△ABC中,∠BAC=90°,AB=AC,BE平分∠ABC,CE
⊥BE.
求证:CE=1
2
BD
4、如图,在△ABC中,AD平分∠BAC,BD=CD 求证:∠B=∠C
B
B
5、如图,在Rt △ABC 中,∠C =90°,AC =BC ,AD 是∠BAC 的平分线,交BC 于D ,DE ⊥AB 于E ,若AB =10cm ,则△DBE 的周长是多少?
6、AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE =DG ,△ADG 和△AED 的面积分别为50和39,则△EDF 的面积为多少?
7、如图,△ABC 中,AD 平分∠BAC ,DG ⊥BC 且平分BC ,DE ⊥AB 于E ,DF ⊥AC 于F.
8、在△ABC 中,AD 是∠BAC 的平分线,E 、
F 分别为AB 、AC 上的点,且∠EDF +∠BAF =180°
⑴求证:DE =DF
⑵如果把最后一个条件改为AE >AF ,且∠AED +∠AFD =
180°,那么结论还成立吗?
9、如图,已知AB =AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,BE 与CF 交于点D
求证:点D 在∠BAC 的平分线上.
10、如图,在四边形ABCD中,对角线AC平分∠BAD,AB>
AD,下列结论正确的是( )
A.AB-AD>CB-CD
B.AB-AD=CB-CD
C.AB-AD<CB-CD
D.AB-CD与CB-CD的大小关系不确定
11、如图,已知△ABC中,∠B=60°,∠BAC,∠BCA的平分线AD,CE相交于点O.
求证:DC+AE=AC
12、如图,已知△ABC,P为角平分线AD、BE、CF的交点,过点P作PG⊥BC于G点。
试说明∠BPD与∠CPG的大小关系,并说明理由。
B。