高一数学函数的应用5
高一数学第五章函数知识点
![高一数学第五章函数知识点](https://img.taocdn.com/s3/m/30c251c003d276a20029bd64783e0912a3167c63.png)
高一数学第五章函数知识点函数是数学中一种重要的概念,广泛应用于各个领域。
在高中数学的学习中,函数是其中的一个重要内容。
本文将介绍高一数学第五章函数的知识点,包括函数的定义、函数的性质、函数的图像、函数的运算等内容。
一、函数的定义函数是一种特殊的关系,它将一个集合中的每个元素都对应到另一个集合中的唯一一个元素上。
具体而言,如果存在一个集合A和一个集合B,对于集合A中的任意一个元素a,都存在一个集合B中的唯一元素b与之对应,那么我们就说集合A与集合B之间存在一个函数。
函数通常用符号f来表示,表示为f:A→B。
二、函数的性质1. 定义域和值域:函数的定义域是指所有与自变量对应的值的集合,而值域是指函数所有可能的取值的集合。
2. 单调性:函数的单调性是指函数在定义域内的取值随自变量的增大或减小而增大或减小。
3. 奇偶性:如果对于函数中的任意一个x值,都有f(-x)=f(x),那么函数是偶函数;如果对于函数中的任意一个x值,都有f(-x)=-f(x),那么函数是奇函数。
4. 周期性:如果存在一个正数T,对于函数中的任意一个x值,都有f(x+T)=f(x),那么函数具有周期性。
三、函数的图像函数的图像是用来描述函数关系的一种方法。
在平面直角坐标系中,我们可以通过绘制函数的图像来研究函数的性质。
函数图像的特点包括:在平面直角坐标系中,函数图像是一条曲线;曲线上的每个点都对应着函数中的一个值对(x,y);曲线的形状可以反映函数的单调性、奇偶性等。
四、函数的运算1. 四则运算:对于给定的两个函数f(x)和g(x),我们可以进行加法、减法、乘法和除法运算。
加法和减法的运算规则与常规数的加减法类似,乘法和除法运算需要遵循特定的规则。
2. 复合函数:对于给定的函数f(x)和g(x),我们可以通过将函数g(x)的输出作为函数f(x)的输入来构造一个新的函数。
复合函数的定义为(f ∘ g)(x) = f(g(x))。
3. 反函数:如果一个函数f(x)满足任意两个不同的自变量x1和x2,都有f(x1)≠f(x2),那么我们称函数f(x)为可逆的,并将f(x)的逆函数记为f^{-1}(x)。
高一函数 知识点大全
![高一函数 知识点大全](https://img.taocdn.com/s3/m/63dcbb4702d8ce2f0066f5335a8102d276a261ca.png)
高一函数知识点大全一、函数的定义函数是一种数学操作,它将输入值(或参数)映射到输出值(或结果)。
函数的定义通常包括函数名称、参数列表和函数体。
在高一阶段,我们将学习一些基本的函数,如一次函数、二次函数、幂函数和对数函数等。
二、函数的表示方法函数的表示方法有三种:符号表示法、列表表示法和图像表示法。
符号表示法是用函数名称和参数列表来表示函数,例如y = 2x + 1;列表表示法是将输入值和对应的输出值列成一个表格;图像表示法是通过绘制函数的图像来表示函数的关系。
三、函数的性质函数的性质包括奇偶性、单调性、周期性和对称性等。
奇偶性是指函数是否具有奇偶性;单调性是指函数在某个区间内是单调递增或单调递减;周期性是指函数是否存在周期性;对称性是指函数是否具有对称性。
四、函数的运算函数的运算包括函数的加减乘除、复合运算和反函数运算等。
函数的加减乘除是指将两个或多个函数进行加、减、乘、除运算;复合运算是指将多个函数嵌套在一起,形成一个复合函数;反函数运算是指将一个函数转换为其反函数。
五、函数的图像函数的图像是用来描述函数变化的直观工具。
在绘制函数的图像时,我们需要先确定函数的定义域和值域,然后根据函数的表达式绘制出对应的图像。
同时,我们还需要掌握一些常见的图像变换方法,如平移、伸缩和对称变换等。
六、函数的实际应用高一函数知识点还包括一些实际应用,如利用函数解决实际问题、利用函数进行数据分析等。
在实际问题中,我们需要根据问题的具体情境来选择合适的函数和数学模型进行解决。
我们还需要掌握一些数据处理和分析的方法,如回归分析、聚类分析等。
高一函数知识点是数学学习的重要内容之一。
通过学习和掌握这些知识点,我们可以更好地理解函数的本质和特点,为后续的学习和实际应用打下坚实的基础。
高一函数知识点总结函数是数学的重要概念,是高中数学的核心内容。
在初中数学中,函数通常被视为变量之间的依赖关系,而高中的函数则更加强调映射的概念。
高中数学第5章函数应用章末综合提升课件必修第一册高一第一册数学课件
![高中数学第5章函数应用章末综合提升课件必修第一册高一第一册数学课件](https://img.taocdn.com/s3/m/2eff10a7be23482fb5da4c20.png)
化
整
训
合 使区间长度尽量小.
练
·
提
(2)计算时注意依据给定的精度,及时检验计算所得的区间是否 章
升
末
层 满足精度的要求.
综
题 型 探
(3)二分法在具体使用时有一定的局限性,首先二分法只能一次
合 测
究 求得一个零点,其次f(x)在(a,b)内有不变号零点时,不能用二分法 评
求得.
返
首
12/8/2021
B.(1,2)
末
层
综
题 型
C.(2,3)
D.(3,4)
合
探
测
究
评
·
返
首
12/8/2021
页
第五页,共二十五页。
·
巩
专
固
题
层
ex,x≤0,
强
知 识 整
(2)已知函数f(x)=
ln
x,x>0,
g(x)=f(x)+x+a.若g(x)存在2个零
化 训
合
练
点,则a的取值范围是( )
提
章
升
A.[-1,0)
B.[0,+∞)
提
章
升 层
方程f(x)=0的一个近似根.]
末 综
题
合
型
探
测
究
评
·
返
首
12/8/2021
页
第十七页,共二十五页。
·
函数的实际应用
巩
专
固 层
【例3】 《中华人民共和国个人所得税法》规定,个人所得税 题
强
知 识 整
起征点为3
500元(即3
500元以下不必纳税,超过3
函数性质的八大题型综合应用(解析版)-高中数学
![函数性质的八大题型综合应用(解析版)-高中数学](https://img.taocdn.com/s3/m/fd05677266ec102de2bd960590c69ec3d5bbdbf1.png)
函数性质的八大题型综合应用题型梳理【题型1函数的单调性的综合应用】【题型2函数的最值问题】【题型3函数的奇偶性的综合应用】【题型4函数的对称性的应用】【题型5对称性与周期性的综合应用】【题型6类周期函数】【题型7抽象函数的性质】【题型8函数性质的综合应用】命题规律从近几年的高考情况来看,本节是高考的一个热点内容,函数的单调性、奇偶性、对称性与周期性是高考的必考内容,重点关注单调性、奇偶性结合在一起,与函数图象、函数零点和不等式相结合进行考查,解题时要充分运用转化思想和数形结合思想,灵活求解.对于选择题和填空题部分,重点考查基本初等函数的单调性、奇偶性,主要考察方向是:判断函数单调性及求最值、解不等式、求参数范围等,难度较小;对于解答题部分,一般与导数相结合,考查难度较大.知识梳理【知识点1函数的单调性与最值的求解方法】1.求函数的单调区间求函数的单调区间,应先求定义域,在定义域内求单调区间.2.函数单调性的判断(1)函数单调性的判断方法:①定义法;②图象法;③利用已知函数的单调性;④导数法.(2)函数y=f(g(x))的单调性应根据外层函数y=f(t)和内层函数t=g(x)的单调性判断,遵循“同增异减”的原则.(3)函数单调性的几条常用结论:①若f(x)是增函数,则-f(x)为减函数;若f(x)是减函数,则-f(x)为增函数;②若f(x)和g(x)均为增(或减)函数,则在f(x)和g(x)的公共定义域上f(x)+g(x)为增(或减)函数;③若f(x)>0且f(x)为增函数,则函数f(x)为增函数,1f(x)为减函数;④若f(x)>0且f(x)为减函数,则函数f(x)为减函数,1f(x)为增函数.3.求函数最值的三种基本方法:(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.4.复杂函数求最值:对于较复杂函数,可运用导数,求出在给定区间上的极值,最后结合端点值,求出最值.【知识点2函数的奇偶性及其应用】1.函数奇偶性的判断判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.(3)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如f(x)+g(x),f(x)-g(x),f(x)×g(x),f(x)÷g(x).对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇×(÷)奇=偶;奇×(÷)偶=奇;偶×(÷)偶=偶.(4)复合函数y=f[g(x)]的奇偶性原则:内偶则偶,两奇为奇.(5)常见奇偶性函数模型奇函数:①函数f(x)=ma x+1a x-1(x≠0)或函数f(x)=m a x-1a x+1.②函数f(x)=±(a x-a-x).③函数f(x)=log a x+mx-m=log a1+2mx-m或函数f(x)=log a x-mx+m=log a1-2mx+m④函数f(x)=log a(x2+1+x)或函数f(x)=log a(x2+1-x).2.函数奇偶性的应用(1)利用函数的奇偶性可求函数值或求参数的取值,求解的关键在于借助奇偶性转化为求已知区间上的函数或得到参数的恒等式,利用方程思想求参数的值.(2)画函数图象:利用函数的奇偶性可画出函数在其对称区间上的图象,结合几何直观求解相关问题.【知识点3函数的周期性与对称性常用结论】1.函数的周期性常用结论(a是不为0的常数)(1)若f(x+a)=f(x),则T=a;(2)若f(x+a)=f(x-a),则T=2a;(3)若f(x+a)=-f(x),则T=2a;(4)若f(x+a)=f(1x),则T=2a;(5)若f(x+a)=f(1x),则T=2a;(6)若f(x+a)=f(x+b),则T=|a-b|(a≠b);2.对称性的三个常用结论(1)若函数f(x)满足f(a+x)=f(b-x),则y=f(x)的图象关于直线x=a+b2对称.(2)若函数f(x)满足f(a+x)=-f(b-x),则y=f(x)的图象关于点a+b2,0对称.(3)若函数f(x)满足f(a+x)+f(b-x)=c,则y=f(x)的图象关于点a+b2,c 2对称.3.函数的的对称性与周期性的关系(1)若函数y=f(x)有两条对称轴x=a,x=b(a<b),则函数f(x)是周期函数,且T=2(b-a);(2)若函数y=f(x)的图象有两个对称中心(a,c),(b,c)(a<b),则函数y=f(x)是周期函数,且T=2(b-a);(3)若函数y=f(x)有一条对称轴x=a和一个对称中心(b,0)(a<b),则函数y=f(x)是周期函数,且T=4(b-a).举一反三【题型1函数的单调性的综合应用】1(2023·广东深圳·统考模拟预测)已知函数f x 的定义域为R,若对∀x∈R都有f3+x= f1-x,且f x 在2,+∞上单调递减,则f1 ,f2 与f4 的大小关系是()A.f4 <f1 <f2B.f2 <f1 <f4C.f1 <f2 <f4D.f4 <f2 <f1【解题思路】由f3+x=f1-x,得到f1 =f3 ,利用单调性即可判断大小关系,即可求解.【解答过程】因为对∀x∈R都有f3+x=f1-x,所以f1 =f3-2=f[1-(-2)]=f3 又因为f x 在2,+∞上单调递减,且2<3<4,所以f4 <f3 <f2 ,即f4 <f1 <f2 .故选:A.【变式训练】1(2023·山西朔州·怀仁市第一中学校校考二模)定义在R上的函数f(x)满足f2-x=f x ,且当x ≥1时,f (x )单调递增,则不等式f 2-x ≥f (x +1)的解集为()A.12,+∞ B.0,12C.-∞,-12D.-∞,12【解题思路】根据函数的对称性和单调性即可.【解答过程】由f 2-x =f (x ),得f (x )的对称轴方程为x =1,故2-x -1 ≥x +1 -1 ,即(1-x )2≥x 2,解得x ≤12.故选:D .2(2023上·江西鹰潭·高三校考阶段练习)已知函数f x =-x 2+2ax +4,x ≤1,1x,x >1是-12,+∞ 上的减函数,则a 的取值范围是()A.-1,-12B.-∞,-1C.-1,-12D.-∞,-1【解题思路】首先分析知,x >1,函数单调递减,则x ≤1也应为减函数,同时注意分界点处的纵坐标大小关系即可列出不等式组,解出即可.【解答过程】显然当x >1时,f x =1x为单调减函数,f x <f 1 =1当x ≤1时,f x =-x 2+2ax +4,则对称轴为x =-2a2×-1=a ,f 1 =2a +3若f x 是-12,+∞上减函数,则a ≤-122a +3≥1解得a ∈-1,-12 ,故选:A .3(2023·四川绵阳·统考三模)设函数f x 为x -1与x 2-2ax +a +3中较大的数,若存在x 使得f x ≤0成立,则实数a 的取值范围为()A.-43,-1 ∪1,4 B.-∞,-43∪4,+∞ C.-∞,1-132∪1+132,4D.-1,1【解题思路】根据绝对值函数的图像和二次函数讨论对称轴判定函数的图像即可求解.【解答过程】因为f x =max x -1,x 2-2ax +a +3 ,所以f x 代表x -1与x 2-2ax +a +3两个函数中的较大者,不妨假设g (x )=|x |-1,h (x )=x 2-2ax +a +3g (x )的函数图像如下图所示:h(x)=x2-2ax+a+3是二次函数,开口向上,对称轴为直线x=a,①当a<-1时,h(x)=x2-2ax+a+3在-1,1上是增函数,需要h(-1)=(-1)2-2a(-1)+a+3=3a+4≤0即a≤-4 3,则存在x使得f x ≤0成立,故a≤-4 3;②当-1≤a≤1时,h(x)=x2-2ax+a+3在-1,1上是先减后增函数,需要h(x)min=h(a)=a2-2a⋅a+a+3=-a2+a+3≤0,即a2-a-3≥0,解得a≥1+132或a≤1-132,又1+132>1,1-132<-1故-1≤a≤1时无解;③当a>1时,h(x)=x2-2ax+a+3在-1,1上是减函数,需要h(1)=12-2a+a+3=-a+4≤0即a≥4,则存在x使得f x ≤0成立,故a≥4.综上所述,a的取值范围为-∞,-4 3∪4,+∞.故选:B.【题型2函数的最值问题】1(2023·江西九江·校考模拟预测)若0<x<6,则6x-x2有()A.最小值3B.最大值3C.最小值9D.最大值9【解题思路】根据二次函数的性质进行求解即可.【解答过程】令y =6x -x 2=-(x -3)2+9,对称轴为x =3,开口向下,因为0<x <6,所以当x =3时,6x -x 2有最大值9,没有最小值,故选:D .【变式训练】1(2023·全国·校联考三模)已知函数f x =bx -b +3 x 3在-1,1 上的最小值为-3,则实数b的取值范围是()A.-∞,-4B.9,+∞C.-4,9D.-92,9【解题思路】由已知可得当-1≤x <1时,可得bx 1+x ≥-3x 2+x +1 恒成立,通过分离变量,结合函数性质可求b 的取值范围【解答过程】因为f 1 =-3,函数f x =bx -b +3 x 3在-1,1 上的最小值为-3,所以对∀x ∈-1,1 ,f x ≥-3恒成立,所以bx -b +3 x 3≥-3恒成立,即bx 1-x 2 ≥-31-x 3 恒成立,当x =1时,b ∈R ,当-1≤x <1时,可得bx 1+x ≥-3x 2+x +1 恒成立.当x =0或x =-1时,不等式显然成立;当0<x <1时,b ≥-3x 2+x +1 x 1+x =-31+1x 2+x,因为x 2+x ∈0,2 ,所以1x 2+x ∈12,+∞ ,1+1x 2+x ∈32,+∞ ,-31+1x 2+x∈-∞,-92 ,所以b ≥-92;当-1<x <0时,b ≤-31+1x 2+x,因为x 2+x ∈-14,0 ,所以1x 2+x ∈-∞,-4 ,1+1x 2+x ∈-∞,-3 ,-31+1x 2+x∈9,+∞ ,所以b ≤9.综上可得,实数b 的取值范围是-92,9.故选:D .2(2023上·广东广州·高一校考阶段练习)定义一种运算min a ,b =a ,a ≤bb ,a >b,设f x =min 4+2x -x 2,x -t (t 为常数,且x ∈[-3,3],则使函数f x 的最大值为4的t 的值可以是()A.-2或4B.6C.4或6D.-4【解题思路】根据定义,先计算y=4+2x-x2在x∈-3,3上的最大值,然后利用条件函数f(x)最大值为4,确定t的取值即可.【解答过程】y=4+2x-x2=-x-12+5在x∈-3,3上的最大值为5,所以由4+2x-x2=4,解得x=2或x=0,所以x∈0,2时,y=4+2x-x2>4,所以要使函数f(x)最大值为4,则根据定义可知,当t≤1时,即x=2时,2-t=4,此时解得t=-2,符合题意;当t>1时,即x=0时,0-t=4,此时解得t=4,符合题意;故t=-2或4.故选:A.3(2023·广东惠州·统考一模)若函数f x 的定义域为D,如果对D中的任意一个x,都有f x > 0,-x∈D,且f-xf x =1,则称函数f x 为“类奇函数”.若某函数g x 是“类奇函数”,则下列命题中,错误的是()A.若0在g x 定义域中,则g0 =1B.若g x max=g4 =4,则g x min=g-4=1 4C.若g x 在0,+∞上单调递增,则g x 在-∞,0上单调递减D.若g x 定义域为R,且函数h x 也是定义域为R的“类奇函数”,则函数G x =g x h x 也是“类奇函数”【解题思路】对A,根据“类奇函数”的定义,代入x=0求解即可;对B,根据题意可得g-x=1g x,再结合函数的单调性判断即可;对C,根据g-x=1g x,结合正负分数的单调性判断即可;对D,根据“类奇函数”的定义,推导G x G-x=1判断即可.【解答过程】对于A,由函数g x 是“类奇函数”,所以g x g-x=1,且g x >0,所以当x=0时,g0 g-0=1,即g0 =1,故A正确;对于B,由g x g-x=1,即g-x=1g x,g-x随g x 的增大而减小,若g(x)max=g4 =4,则g(x)min=g-4=14成立,故B正确;对于C,由g x 在0,+∞上单调递增,所以g-x=1g x,在x∈0,+∞上单调递减,设t=-x∈-∞,0 ,∴g t 在t ∈-∞,0 上单调递增,即g x 在x ∈-∞,0 上单调递增,故C 错误;对于D ,由g x g -x =1,h x h -x =1,所以G x G -x =g x g -x h x h -x =1,所以函数G x =g x h x 也是“类奇函数”,所以D 正确;故选:C .【题型3 函数的奇偶性的综合应用】1(2023·广东·东莞市校联考一模)已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=ax +1,若f (-2)=5,则不等式f (x )>12的解集为()A.-∞,-12 ∪0,16B.-12,0 ∪0,16C.-∞,-12 ∪16,+∞ D.-12,0 ∪16,+∞ 【解题思路】根据条件可求得x >0时f (x )的解析式,根据函数为奇函数继而可求得当x <0时f (x )的解析式,分情况解出不等式即可.【解答过程】因为函数f (x )是定义在R 上的奇函数,所以f (-2)=-f (2)=5,则f (2)=-5,则2a +1=-5,所以a =-3,则当x >0时,f (x )=-3x +1,当x <0时,-x >0,则f (x )=-f (-x )=-[-3×(-x )+1]=-3x -1,则当x >0时,不等式f (x )>12为-3x +1>12,解得0<x <16,当x <0时,不等式f (x )>12为-3x -1>12,解得x <-12,故不等式的解集为-∞,-12 ∪0,16,故选:A .【变式训练】1(2023·全国·模拟预测)已知函数f (x ),g (x )的定义域均为R ,f (3x +1)为奇函数,g (x +2)为偶函数,f (x +1)+g (1-x )=2,f (0)=-12,则102k =1 g (k )=()A.-51B.52C.4152D.4092【解题思路】由题意,根据函数奇偶性可得f (x )的图象关于点(1,0)中心对称、g (x )的图象关于点(1,2)中心对称,进而可知g (x )是以4为周期的周期函数.求出g (1),g (2),g (3),g (4),结合周期即可求解.【解答过程】因为f (3x +1)为奇函数,所以f (x +1)为奇函数,所以f (x +1)=-f (-x +1),f (x )的图象关于点(1,0)中心对称,f (1)=0.因为g (x +2)为偶函数,所以g (x +2)=g (-x +2),g (x )的图象关于直线x =2对称.由f (x +1)+g (1-x )=2,得f (-x +1)+g (1+x )=2,则-f (x +1)+g (1+x )=2,所以g (x +1)+g (1-x )=4,g (x )+g (2-x )=4,所以g (x )的图象关于点(1,2)中心对称.因为g (x )的图象关于x =2轴对称,所以g (x )+g (2+x )=4,g (x +2)+g (x +4)=4,所以g (x +4)=g (x ),即g (x )是以4为周期的周期函数.因为f (1)=0,f (0)=-12,所以g (1)=2,g (2)=52,g (3)=g (1)=2,g (4)=g (0)=4-g (2)=32,所以102k =1g (k )=25×2+52+2+32 +2+52=4092.故选:D .2(2023·安徽亳州·蒙城第一中学校联考模拟预测)已知函数f x 是定义在R 上的偶函数,函数g x 是定义在R 上的奇函数,且f x ,g x 在0,+∞ 上单调递减,则()A.f f 2 >f f 3B.f g 2 <f g 3C.g g 2 >g g 3D.g f 2 <g f 3【解题思路】利用函数的单调性以及函数的奇偶性,判断各选项的正负即可.【解答过程】因为f x ,g x 在0,+∞ 上单调递减,f x 是偶函数,g x 是奇函数,所以g x 在R 上单调递减,f x 在-∞,0 上单调递增,对于A ,f 2 >f 3 ,但无法判断f 2 ,f 3 的正负,故A 不正确;对于B ,g 2 >g 3 ,但无法判断g 2 ,g 3 的正负,故B 不正确;对于C ,g 2 >g 3 ,g x 在R 上单调递减,所以g g 2 <g g 3 ,故C 不正确;对于D ,f 2 >f 3 ,g x 在R 上单调递减,g f 2 <g f 3 ,故D 正确.故选:D .3(2023·江西吉安·江西省遂川中学校考一模)若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R有f (x 1+x 2)=f (x 1)+f (x 2)-2016,且x >0时,f (x )>2016,记f (x )在[-2017,2017]上的最大值和最小值为M ,N ,则M +N 的值为()A.2016B.2017C.4032D.4034【解题思路】先计算得到f (0)=2016,再构造函数g (x )=f (x )-2016,判断g (x )的奇偶性得出结论.【解答过程】解:令x 1=x 2=0得f (0)=2f (0)-2016,∴f (0)=2016,令x 1=-x 2得f (0)=f (-x 2)+f (x 2)-2016=2016,∴f (-x 2)+f (x 2)=4032,令g(x)=f(x)-2016,则g max(x)=M-2016,g min(x)=N-2016,∵g(-x)+g(x)=f(-x)+f(x)-4032=0,∴g(x)是奇函数,∴g max(x)+g min(x)=0,即M-2016+N-2016=0,∴M+N=4032.故选:C.【题型4函数的对称性的应用】1(2023·江西赣州·统考二模)已知函数f(x)的图像既关于点(-1,1)对称,又关于直线y=x对称,且当x∈[-1,0]时,f(x)=x2,则f174=()A.-194B.-92C.-72D.-174【解题思路】用Γ表示函数y=f x 的图像,设x0,y0∈Γ,根据中心对称性与轴对称性,得到4+y0,-4+x0∈Γ,令4+y0=174,求出y0,即可求出x0,即可得解.【解答过程】用Γ表示函数y=f x 的图像,对任意的x0∈-1,0,令y0=x20,则x0,y0∈Γ,且y0∈0,1,又函数f(x)的图像既关于点(-1,1)对称,且关于直线y=x对称,所以y0,x0∈Γ,则-2-y0,2-x0∈Γ,则2-x0,-y0-2∈Γ,则-4+x0,4+y0∈Γ,则4+y0,-4+x0∈Γ,令4+y0=174,即y0=14,此时x0=-12或x0=12(舍去),此时-4+x0=-4+-1 2=-92,即174,-92∈Γ,因此f174 =-92.故选:B.【变式训练】1(2023·四川绵阳·绵阳中学校考一模)若函数y=f x 满足f a+x+f(a-x)=2b,则说y=f x 的图象关于点a,b对称,则函数f(x)=xx+1+x+1x+2+x+2x+3+...+x+2021x+2022+x+2022x+2023的对称中心是()A.(-1011,2022)B.1011,2022C.(-1012,2023)D.1012,2023【解题思路】求出定义域,由定义域的对称中心,猜想a=-1012,计算出f(-1012+x)+f(-1012-x) =4046,从而求出对称中心.【解答过程】函数定义域为{x|x≠-1,x≠-2...,...x≠-2022,x≠-2023},定义域的对称中心为(-1012,0),所以可猜a=-1012,则f(-1012+x)=-1012+x-1011+x+-1011+x-1010+x+-1010+x-1009+x+...+1009+xx+1010+1010+x1011+x,f(-1012-x)=-1012-x-1011-x +-1011-x-1010-x+-1010-x-1009-x+...+1009-x1010-x+1010-x1011-x=1012+x 1011+x +1011+x1010+x+1010+x1009+x+...+1009-x1010-x+1010-x1011-x,故f(-1012+x)+f(-1012-x)=1010+x1011+x +1012+x 1011+x+1009+xx+1010+1011+x 1010+x⋯+-1012+x-1011+x +1010-x 1011-x=2×2023=4046所以y=f x 的对称中心为(-1012,2023),故选:C.2(2023·四川南充·四川省南充高级中学校考三模)函数f x 和g x 的定义域均为R,且y=f3+3x为偶函数,y=g x+3+2为奇函数,对∀x∈R,均有f x +g x =x2+1,则f7 g7 = ()A.615B.616C.1176D.2058【解题思路】由题意可以推出f x =f6-x,g x =-4-g6-x,再结合f x +g x =x2+1可得函数方程组,解出函数方程组后再代入求值即可.【解答过程】由函数f3+3x为偶函数,则f3+3x=f3-3x,即函数f x 关于直线x=3对称,故f x =f6-x;由函数g x+3+2为奇函数,则g x+3+2=-g-x+3-2,整理可得g x+3+g-x+3=-4,即函数g x 关于3,-2对称,故g x =-4-g6-x;由f x +g x =x2+1,可得f6-x+g6-x=(6-x)2+1,所以f x -4-g x =(6-x)2+1,故f x +g x =x2+1f x -4-g x =(6-x)2+1 ,解得f x =x2-6x+21,g x =6x-20,所以f7 =72-6×7+21=28,g7 =6×7-20=22,所以f7 g7 =28×22=616.故选:B.3(2023·甘肃张掖·高台县校考模拟预测)已知函数f(x)的定义域为R,f x-1的图象关于点(1,0)对称,f3 =0,且对任意的x1,x2∈-∞,0,x1≠x2,满足f x2-f x1x2-x1<0,则不等式x-1f x+1≥0的解集为()A.-∞,1∪2,+∞B.-4,-1∪0,1C.-4,-1∪1,2D.-4,-1∪2,+∞【解题思路】首先根据f(x-1)的图象关于点(1,0)对称,得出(x)是定义在R上的奇函数,由对任意的x1,x2∈(-∞,0),x1≠x2,满足f(x2)-f(x1)x2-x1<0,得出f(x)在(-∞,0)上单调递减,然后根据奇函数的对称性和单调性的性质,求解即可.【解答过程】∵f(x-1)的图象关于点(1,0)对称,∴f(x)的图象关于点(0,0)对称,∴f(x)是定义在R 上的奇函数,∵对任意的x1,x2∈(-∞,0),x1≠x2,满足f(x2)-f(x1)x2-x1<0,∴f(x)在(-∞,0)上单调递减,所以f(x)在(0,+∞)上也单调递减,又f3 =0所以f-3=0,且f0 =0,所以当x∈-∞,-3∪0,3时,f x >0;当x∈-3,0∪3,+∞时,f x <0,所以由x-1f x+1≥0可得x-1<0,-3≤x+1≤0或x-1>0,0≤x+1≤3或x-1=0,解得-4≤x≤-1或1≤x≤2,即不等式x-1f x+1≥0的解集为-4,-1∪1,2.故选:C.【题型5对称性与周期性的综合应用】1(2023·四川宜宾·统考一模)已知函数f x ,g x 的定义域为R,g x 的图像关于x=1对称,且g2x+2为奇函数,g1 =1,f x =g3-x+1,则下列说法正确的个数为()①g(-3)=g(5);②g(2024)=0;③f(2)+f(4)=-4;④2024n=1f(n)=2024.A.1B.2C.3D.4【解题思路】根据奇函数定义得到g-2x+2=-g2x+2,进而得到g x 的对称中心为,再根据对称轴求出周期,通过赋值得到答案.【解答过程】因为g2x+2为奇函数,所以g-2x+2=-g2x+2,则g-x+2=-g x+2,所以g x 对称中心为2,0,又因为g x 的图像关于x=1对称,则g-x+2=g x ,所以-g x+2=g x ,则g x+4=-g x+2=g x ,所以g x 的周期T=4,①g-3=g-3+8=g5 ,所以①正确;②因为g1 =1,g-x+2=g x ,g x 对称中心为2,0,所以g0 =g2 =0,所以g(2024)=g0 =0,所以②正确;③因为f x =g3-x+1,所以f2 =g1 +1=2,因为-g x+2=g x ,所以g-1=-g1 ,则f4 =g-1+1=-g1 +1=0,所以f(2)+f(4)=2,所以③错误;④因为f x =g 3-x +1且g x 周期T =4,所以f x +4 =g 3-x -4 +1=g 3-x +1=f x ,则f x 的周期为T =4,因为f 1 =g 2 +1=1,f 2 =2,f 3 =g 0 +1=1,f 4 =0,所以f 1 +f 2 +f 3 +f 4 =4,所以2024n =1 f (n )=506f 1 +f 2 +f 3 +f 4 =4 =506×4=2024,所以④正确.故选:C .【变式训练】1(2023·北京大兴·校考三模)已知函数f x 对任意x ∈R 都有f x +2 =-f x ,且f -x =-f x ,当x ∈-1,1 时,f x =x 3.则下列结论正确的是()A.函数y =f x 的图象关于点k ,0 k ∈Z 对称B.函数y =f x 的图象关于直线x =2k k ∈Z 对称C.当x ∈2,3 时,f x =x -2 3D.函数y =f x 的最小正周期为2【解题思路】根据f x +2 =-f x 得到f x +2 =f x -2 ,所以f x 的周期为4,根据f -x =-f x 得到f x 关于x =-1对称,画出f x 的图象,从而数形结合得到AB 错误;再根据f x =-f x -2 求出x ∈2,3 时函数解析式;D 选项,根据y =f x 的最小正周期,得到y =f x 的最小正周期.【解答过程】因为f x +2 =-f x ,所以f x =-f x -2 ,故f x +2 =f x -2 ,所以f x 的周期为4,又f -x =-f x ,所以f -x =f x -2 ,故f x 关于x =-1对称,又x ∈-1,1 时,f x =x 3,故画出f x 的图象如下:A 选项,函数y =f x 的图象关于点1,0 不中心对称,故A 错误;B 选项,函数y =f x 的图象不关于直线x =2对称,B 错误;C 选项,当x ∈2,3 时,x -2∈0,1 ,则f x =-f x -2 =-x -2 3,C 错误;D 选项,由图象可知y =f x 的最小正周期为4,又f x +2 =-f x =f x ,故y =f x 的最小正周期为2,D 正确.故选:D .2(2023·四川绵阳·绵阳校考模拟预测)已知函数f x 的定义域为R ,f 1 =0,且f 0 ≠0,∀x ,y∈R 都有f x +y +f x -y =2f x f y ,则下列说法正确的命题是()①f 0 =1;②∀x ∈R ,f -x +f x =0;③f x 关于点1,0 对称;④2023i =1 f (i )=-1A.①②B.②③C.①②④D.①③④【解题思路】利用特殊值法,结合函数的奇偶性、对称性和周期性进行求解即可.【解答过程】对于①,由于∀x ,y ∈R 都有f x +y +f x -y =2f x f y ,所以令x =y =0,则f 0 +f 0 =2f 0 f 0 ,即f 0 =f 20 ,因为f 0 ≠0,所以f 0 =1,所以①正确,对于②,令x =0,则f y +f -y =2f 0 f y =2f y ,所以f y =f -y ,即f x =f -x ,所以∀x ∈R ,f -x -f x =0,所以②错误,对于③,令x =1,则f 1+y +f 1-y =2f 1 f y =0,所以f 1+y =-f 1-y ,即f 1+x =-f 1-x ,所以f x 关于点1,0 对称,所以③正确,对于④,因为f 1+x =-f 1-x ,所以f 2+x =-f -x ,因为f x =f -x ,所以f 2+x =-f x ,所以f 4+x =-f 2+x ,所以f 4+x =f x ,所以f x 的周期为4,在f x +y +f x -y =2f x f y 中,令x =y =1,则f 2 +f 0 =2f 1 f 1 =0,因为f 0 =1,所以f (2)=-1,f (3)=f (-1)=f (1)=0,f (4)=f (0)=1,所以f (1)+f (2)+f (3)+f (4)=0+(-1)+0+1=0,所以2023i =1 f (i )=505×f (1)+f (2)+f (3)+f (4) +f (1)+f (2)+f (3)=-1,所以④正确,故选:D .3(2023·安徽合肥·合肥一中校考模拟预测)已知函数f x 与g (x )的定义域均为R ,f (x +1)为偶函数,且f (3-x )+g (x )=1,f (x )-g (1-x )=1,则下面判断错误的是()A.f x 的图象关于点(2,1)中心对称B.f x 与g x 均为周期为4的周期函数C.2022i =1f (i )=2022D.2023i =0g (i )=0【解题思路】由f (x +1)为偶函数可得函数关于直线x =1轴对称,结合f (3-x )+g (x )=1和f (x )-g (1-x )=1可得f x 的周期为4,继而得到g x 的周期也为4,接着利用对称和周期算出对应的值即可判断选项【解答过程】因为f x +1 为偶函数,所以f x +1 =f -x +1 ①,所以f x 的图象关于直线x =1轴对称,因为f x -g 1-x =1等价于f 1-x -g x =1②,又f 3-x +g x =1③,②+③得f 1-x +f 3-x =2④,即f 1+x +f 3+x =2,即f 2+x =2-f x ,所以f 4+x =2-f 2+x =f x ,故f x 的周期为4,又g x =1-f 3-x ,所以g x 的周期也为4,故选项B 正确,①代入④得f 1+x +f 3-x =2,故f x 的图象关于点2,1 中心对称,且f 2 =1,故选项A 正确,由f 2+x =2-f x ,f 2 =1可得f 0 =1,f 4 =1,且f 1 +f 3 =2,故f 1 +f 2 +f 3 +f 4 =4,故2022i =1 f (i )=505×4+f (1)+f (2)=2021+f (1),因为f 1 与f 3 值不确定,故选项C 错误,因为f 3-x +g x =1,所以g 1 =0,g 3 =0,g 0 =1-f 3 ,g 2 =1-f 1 ,所以g 0 +g 2 =2-f 1 +f 3 =0,故g 0 +g 1 +g 2 +g 3 =0,故2023i =0 g (i )=506×0=0,所以选项D 正确,故选:C .【题型6 类周期函数】1(2023·安徽合肥·合肥一六八中学校考模拟预测)定义在R 上的函数f x 满足f x +1 =12f x ,且当x ∈0,1 时,f x =1-2x -1 .当x ∈m ,+∞ 时,f x ≤332,则m 的最小值为()A.278B.298C.134D.154【解题思路】根据已知计算出f x =12n 1-2x -2n +1 ≤12n ,画出图象,计算f x =332,解得x =298,从而求出m 的最小值.【解答过程】由题意得,当x ∈1,2 时,故f x =12f x -1 =121-2x -3 ,当x ∈2,3 时,故f x =12f x -1 =141-2x -5 ⋯,可得在区间n ,n +1 n ∈Z 上,f x =12n 1-2x -2n +1 ≤12n ,所以当n ≥4时,f x ≤332,作函数y =f x 的图象,如图所示,当x ∈72,4 时,由f x =181-2x -7 =332,2x -7 =14,x =298,则m ≥298,所以m 的最小值为298故选:B .【变式训练】1(2023上·湖南长沙·高三校考阶段练习)定义域为R 的函数f x 满足f x +2 =2f x -1,当x∈0,2 时,f x =x 2-x ,x ∈0,1 1x,x ∈1,2.若x ∈0,4 时,t 2-7t 2≤f x ≤3-t 恒成立,则实数t 的取值范围是()A.1,2B.1,52C.12,2D.2,52【解题思路】由f (x +2)=2f (x )-1,求出x ∈(2,3),以及x ∈[3,4]的函数的解析式,分别求出(0,4]内的四段的最小值和最大值,注意运用二次函数的最值和函数的单调性,再由t 2-7t2≤f x ≤3-t 恒成立即为t 2-7t2≤f x min ,f x max ≤3-t ,解不等式即可得到所求范围【解答过程】当x ∈(2,3),则x -2∈(0,1),则f (x )=2f (x -2)-1=2(x -2)2-2(x -2)-1,即为f (x )=2x 2-10x +11,当x ∈[3,4],则x -2∈[1,2],则f (x )=2f (x -2)-1=2x -2-1.当x ∈(0,1)时,当x =12时,f (x )取得最小值,且为-14;当x ∈[1,2]时,当x =2时,f (x )取得最小值,且为12;当x ∈(2,3)时,当x =52时,f (x )取得最小值,且为-32;当x ∈[3,4]时,当x =4时,f (x )取得最小值,且为0.综上可得,f (x )在(0,4]的最小值为-32.若x ∈(0,4]时, t 2-7t2≤f x min 恒成立,则有t 2-7t 2≤-32.解得12≤t ≤3.当x ∈(0,2)时,f (x )的最大值为1,当x ∈(2,3)时,f (x )∈-32,-1 ,当x ∈[3,4]时,f (x )∈[0,1],即有在(0,4]上f (x )的最大值为1.由f x max ≤3-t ,即为1≤3-t ,解得t ≤2,综上,即有实数t 的取值范围是12,2.故选:C .2(2022·四川内江·校联考二模)定义域为R 的函数f (x )满足f (x +2)=3f (x ),当x ∈[0,2]时,f (x )=x 2-2x ,若x ∈[-4,-2]时,f (x )≥1183t-t 恒成立,则实数t 的取值范围是()A.-∞,-1 ∪0,3B.-∞,-3 ∪0,3C.-1,0 ∪3,+∞D.-3,0 ∪3,+∞【解题思路】根据题意首先得得到函数的具体表达式,由x ∈[-4,-2],所以x +4∈[0,2],所以f (x +4)=x 2+6x +8,再由f (x +4)=3f (x +2)=9f (x )可得出f (x )的表达式,在根据函数思维求出f (x )最小值解不等式即可.【解答过程】因为x ∈[-4,-2],所以x +4∈[0,2],因为x ∈[0,2]时,f x =x 2-2x ,所以f x +4 =(x +4)2-2(x +4)=x 2+6x +8,因为函数f x 满足f x +2 =3f x ,所以f x +4 =3f x +2 =9f x ,所以f x =19f x +4 =19x 2+6x +8 ,x ∈[-4,-2],又因为x ∈[-4,-2],f x ≥1183t-t 恒成立,故1183t -t ≤f x min =-19,解不等式可得t ≥3或-1≤t <0.故选C .3(2023上·浙江台州·高一校联考期中)设函数f x 的定义域为R ,满足f x =2f x -2 ,且当x∈0,2 时,f x =x 2-x .若对任意x ∈-∞,m ,都有f x ≤3,则m 的取值范围是()A.-∞,52B.-∞,72C.-∞,92D.-∞,112【解题思路】根据给定条件分段求解析式及对应函数值集合,再利用数形结合即得.【解答过程】因为函数f x 的定义域为R ,满足f x =2f x -2 ,且当x ∈0,2 时,f x =x 2-x =-x -1 2+1∈0,1 ,当x ∈(2,4],时,x -2∈(0,2],则f (x )=2f (x -2)=2x -2 2-x -2 =-2x -3 2+2∈0,2 ,当x ∈(4,6],时,x -4∈(0,2],则f (x )=4f (x -2)=4x -2-2 4-x -2 =-4x -5 2+4∈0.4 ,当x ∈(-2,0],时,x +2∈(0,2],则f (x )=12f (x +2)=12(x +2)-x =-12x +1 2+12∈0,12,作出函数f x 的大致图象,对任意x ∈-∞,m ,都有f x ≤3,设m 的最大值为t ,则f t =3,所以-4t -5 2+4=3,解得t =92或t =112,结合图象知m 的最大值为92,即m 的取值范围是-∞,92.故选:C .【题型7 抽象函数的性质】1(2023·新疆乌鲁木齐·统考二模)已知f x ,g x 都是定义在R 上的函数,对任意x ,y 满足f x -y=f x g y -g x f y ,且f -2 =f 1 ≠0,则下列说法正确的是()A.f 0 =1B.函数g 2x +1 的图象关于点1,0 对称C.g 1 +g -1 =0D.若f 1 =1,则2023n =1 f n =1【解题思路】利用赋值法结合题目给定的条件可判断AC ,取f x =sin2π3x ,g x =cos 2π3x 可判断B ,对于D ,通过观察选项可以推断f x 很可能是周期函数,结合f x g y ,g x f y 的特殊性及一些已经证明的结论,想到令y =-1和y =1时可构建出两个式子,两式相加即可得出f x +1 +f x -1 =-f x ,进一步得出f x 是周期函数,从而可求2023n =1 f n 的值.【解答过程】解:对于A ,令x =y =0,代入已知等式得f 0 =f 0 g 0 -g 0 f 0 =0,得f 0 =0,故A 错误;对于B ,取f x =sin 2π3x ,g x =cos 2π3x ,满足f x -y =f x g y -g x f y 及f -2 =f 1 ≠0,因为g 3 =cos2π=1≠0,所以g x 的图象不关于点3,0 对称,所以函数g 2x +1 的图象不关于点1,0 对称,故B 错误;对于C ,令y =0,x =1,代入已知等式得f 1 =f 1 g 0 -g 1 f 0 ,可得f 1 1-g 0 =-g 1 f 0 =0,结合f 1 ≠0得1-g 0 =0,g 0 =1,再令x =0,代入已知等式得f -y =f 0 g y -g 0 f y ,将f 0 =0,g 0 =1代入上式,得f -y =-f y ,所以函数f x 为奇函数.令x =1,y =-1,代入已知等式,得f 2 =f 1 g -1 -g 1 f -1 ,因为f -1 =-f 1 ,所以f 2 =f 1 g -1 +g 1 ,又因为f 2 =-f -2 =-f 1 ,所以-f 1 =f 1 g -1 +g 1 ,因为f 1 ≠0,所以g 1 +g -1 =-1,故C 错误;对于D ,分别令y =-1和y =1,代入已知等式,得以下两个等式:f x +1 =f x g -1 -g x f -1 ,f x -1 =f x g 1 -g x f 1 ,两式相加易得f x +1 +f x -1 =-f x ,所以有f x +2 +f x =-f x +1 ,即:f x =-f x +1 -f x +2 ,有:-f x +f x =f x +1 +f x -1 -f x +1 -f x +2 =0,即:f x -1 =f x +2 ,所以f x 为周期函数,且周期为3,因为f 1 =1,所以f -2 =1,所以f 2 =-f -2 =-1,f 3 =f 0 =0,所以f 1 +f 2 +f 3 =0,所以2023n =1 f n =1=f 1 +f 2 +f 3 +⋯+f 2023 =f 2023 =f 1 =1,故D 正确.故选:D .【变式训练】1(2023·福建宁德·福鼎市校考模拟预测)已知函数f x 及其导函数f x 的定义域均为R ,对任意的x ,y ∈R ,恒有f x +y +f x -y =2f x f y ,则下列说法正确的个数是()①f 0 =0;②fx 必为奇函数;③f x +f 0 ≥0;④若f (1)=12,则2023n =1f (n )=12.A.1B.2C.3D.4【解题思路】利用赋值法可判断①;利用赋值法结合函数奇偶性定义判断②;赋值,令y =x ,得出f 2x+f0 ≥0,变量代换可判断③;利用赋值法求出f(n)部分函数值,推出其值具有周期性,由此可计算2023n=1f(n),判断④,即可得答案.【解答过程】令x=y=0,则由f x+y+f x-y=2f x f y 可得2f0 =2f20 ,故f(0)=0或f0 =1,故①错误;当f(0)=0时,令y=0,则f(x)+f(x)=2f(x)f(0)=0,则f(x)=0,故f (x)=0,函数f (x)既是奇函数又是偶函数;当f(0)=1时,令x=0,则f(y)+f(-y)=2f(0)f(y),所以f-y=f y ,则-f (-y)=f (y),即f (-y)=-f (y),则f (x)为奇函数,综合以上可知f (x)必为奇函数,②正确;令y=x,则f2x+f0 =2f2x ,故f2x+f0 ≥0.由于x∈R,令t=2x,t∈R,即f t +f0 ≥0,即有f x +f0 ≥0,故③正确;对于D,若f1 =12,令x=1,y=0,则f1 +f1 =2f1 f0 ,则f(0)=1,令x=y=1,则f2 +f0 =2f21 ,即f2 +1=12,∴f2 =-12,令x=2,y=1,则f3 +f1 =2f2 f1 ,即f3 +12=-12,∴f(3)=-1,令x=3,y=1,则f4 +f2 =2f3 f1 ,即f4 -12=-1,∴f(4)=-12,令x=4,y=1,则f5 +f3 =2f4 f1 ,即f5 -1=-12,∴f(5)=12,令x=5,y=1,则f6 +f4 =2f5 f1 ,即f6 -12=12,∴f(6)=1,令x=6,y=1,则f7 +f5 =2f6 f1 ,即f7 +12=1,∴f(7)=12,令x=7,y=1,则f8 +f6 =2f7 f1 ,即f8 +1=12,∴f(8)=-12,⋯⋯,由此可得f(n),n∈N*的值有周期性,且6个为一周期,且f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0,故2023n=1f n =337×[f(1)+f(2)+f(3)+f(4)+f(5)+f(6)]+f(1)=12,故④正确,即正确的是②③④,故选:C.2(2023·河南·校联考模拟预测)已知函数f x 对任意实数x,y恒有f(x-y)+f(x+y)=f(2x)成立,且当x<0时,f(x)>0.(1)求f(0)的值;(2)判断f x 的单调性,并证明;(3)解关于x的不等式:f x2-(a+2)x+f(a+y)+f(a-y)>0.【解题思路】(1)根据题意,令x=0,y=0,即可求得f(0)=0;(2)令x=0,得到f(-y)=-f(y),所以f x 为奇函数,在结合题意和函数单调性的定义和判定方法,即可求解;(3)化简不等式为f x2-(a+2)x>f(-2a),结合函数f x 的单调性,把不等式转化为x2-(a+2)x <-2a,结合一元二次不等式的解法,即可求解.【解答过程】(1)解:因为函数f(x)对任意实数x,y恒有f(x-y)+f(x+y)=f(2x)成立,令x=0,y=0,则f(0)+f(0)=f(0),所以f(0)=0.(2)解:函数f x 为R上的减函数.证明:令x=0,则f(-y)+f(y)=f(0)=0,所以f(-y)=-f(y),故f x 为奇函数.任取x1,x2∈R,且x1<x2,则x1-x2<0,因为当x<0时,f(x)>0,所以f x1-x2>0,所以f x1-f x2=f x1+f-x2=fx1-x22+x1+x22+f x1-x22-x1+x22=f x1-x2>0,即f x1>f x2,所以f x 是R上的减函数.(3)解:根据题意,可得f x2-(a+2)x>-[f(a+y)+f(a-y)]=-f(2a)=f(-2a),由(2)知f x 在R上单调递减,所以x2-(a+2)x<-2a,即x2-(a+2)x+2a<0,可得(x-2)(x-a)<0,当a>2时,原不等式的解集为(2,a);当a=2时,原不等式的解集为∅;当a<2时,原不等式的解集为(a,2).3(2023上·广东东莞·高一校联考期中)已知函数f x 对任意实数x,y恒有f x+y=f x +f y ,当x>0时,f x <0,且f1 =-2.(1)判断f x 的奇偶性;(2)判断函数单调性,求f x 在区间-3,3上的最大值;(3)若f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,求实数m的取值范围.【解题思路】(1)令x=y=0,求得f0 =0,再令y=-x,从而得f-x=-f x ,从而证明求解. (2)设x1,x2∈R且x1<x2,结合条件用单调性的定义证明函数f x 的单调性,然后利用单调性求解区间-3,3上的最大值.(3)根据函数f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,说明f x 的最大值2小于右边,因此先将右边看作a的函数,解不等式组,即可得出m的取值范围.【解答过程】(1)f x 为奇函数,证明如下:令x=y=0,则f0+0=2f0 ,所以f0 =0,令y=-x,则f x-x=f x +f-x=f0 =0,所以:f-x=-f x 对任意x∈R恒成立,所以函数f x 为奇函数.(2)f x 在R上是减函数,证明如下:任取x1,x2∈R且x1<x2,则x2-x1>0f x2-f x1=f x2+f-x1=f x2-x1<0,所以f x2<f x1,所以f x 在R上为减函数.当x∈-3,3时,f x 单调递减,所以当x=-3时,f x 有最大值为f-3,因为f3 =f2 +f1 =3f1 =-2×3=-6,所以f-3=-f3 =6,故f x 在区间-3,3上的最大值为6.(3)由(2)知f x 在区间-1,1上单调递减,所以f x ≤f-1=-f1 =2,因为f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,即m2-2am>0对任意a∈-1,1恒成立,令g a =-2am+m2,则g-1>0g1 >0,即2m+m2>0-2m+m2>0,解得:m>2或m<-2.故m的取值范围为-∞,-2∪2,+∞.【题型8函数性质的综合应用】1(2023上·河北石家庄·高一校考阶段练习)已知函数f(x)=a x,g(x)=b⋅a-x+x,a>0且a≠1,若f(1)+g(1)=52,f(1)-g(1)=32,设h(x)=f(x)+g(x),x∈[-4,4].(1)求函数h(x)的解析式并判断其奇偶性;(2)判断函数h(x)的单调性(不需证明),并求不等式h(2x+1)+h(2x-1)≥0的解集.【解题思路】(1)由f(1)+g(1)=52、f(1)-g(1)=32代入可解出a、b,得到h(x),再计算h(x)与h(-x)的关系即可得到奇偶性;(2)分别判断h(x)中每一部分的单调性可得h(x)的单调性,结合函数的单调性与奇偶性解决该不等式即可得.【解答过程】(1)由f(1)+g(1)=52,f(1)-g(1)=32,即有a+ba+1=52a-ba-1=32,解得a=2b=-1,即f(x)=2x,g(x)=-2-x+x,则h(x)=2x-2-x+x,其定义域为R,h (-x )=2-x -2x -x =-2x -2-x +x =-h (x ),故h (x )为奇函数.(2)h (x )=2x -2-x +x ,由2x 在R 上单调递增,-2-x 在R 上单调递增,x 在R 上单调递增,故h (x )在R 上单调递增,由h (2x +1)+h (2x -1)≥0,且h (x )为奇函数,即有h (2x +1)≥-h (2x -1)=h 1-2x ,即有2x +1≥1-2x ,解得x ≥0,故该不等式的解集为x x ≥0 .【变式训练】1(2023上·上海·高一校考期中)已知定义在全体实数上的函数f x 满足:①f x 是偶函数;②f x 不是常值函数;③对于任何实数x 、y ,都有f x +y =f x f y -f 1-x f 1-y .(1)求f 1 和f 0 的值;(2)证明:对于任何实数x ,都有f x +4 =f x ;(3)若f x 还满足对0<x <1有f x >0,求f 13+f 23 +⋯+f 20263 的值.【解题思路】(1)取x =1,y =0代入计算得到f 1 =0,取y =0得到f x =f x f 0 ,得到答案.(2)取y =1,结合函数为偶函数得到f x +2 =-f x ,变换得到f x +4 =f x ,得到证明.(3)根据函数的周期性和奇偶性计算f 13 +f 23 +⋯+f 123 =0,取x =y =13和取x =13,y =-13得到f 13 =32,根据周期性得到f 13 +f 23 +⋯+f 20263=-f 13 -1,计算得到答案.【解答过程】(1)f x +y =f x f y -f 1-x f 1-y取x =1,y =0得到f 1 =f 1 f 0 -f 0 f 1 =0,即f 1 =0;取y =0得到f x =f x f 0 -f 1-x f 1 =f x f 0 ,f x 不是常值函数,故f 0 =1;(2)f x +y =f x f y -f 1-x f 1-y ,取y =1得到f x +1 =f x f 1 -f 1-x f 0 =-f 1-x ,f x 是偶函数,故f x +1 =-f x -1 ,即f x +2 =-f x ,f x +4 =-f x +2 =f x .(3)f x +2 +f x =0,f x 为偶函数,取x =-13,则f 53 +f -13 =0,即f 53 +f 13 =0;取x =-23,则f 43 +f -23 =0,即f 43 +f 23=0;故f 73+f 83 +f 103 +f 113 =-f 13 -f 23 -f 43 -f 53 =0,f 2 =-f 0 =-1,f 3 =f -1 =f 1 =0,f 4 =f 0 =1,故f 13+f 23 +⋯+f 123 =0,取x =y =13得到f 23 =f 213 -f 223,取x =13,y =-13得到f 0 =f 213 -f 23 f 43 =f 213 +f 223=1,f 13 >0,f 23 >0,解得f 13 =32,f 13+f 23 +⋯+f 20263 =-f 113 -f 123 =-f 13 -1=-32-1.2(2023下·山西运城·高二统考期末)已知f x =e x -1+e 1-x +x 2-2x +a ,(1)证明:f x 关于x =1对称;(2)若f x 的最小值为3(i )求a ;(ii )不等式f m e x +e -x +1 >f e x -e -x 恒成立,求m 的取值范围【解题思路】(1)代入验证f (x )=f (2-x )即可求解,(2)利用单调性的定义证明函数的单调性,即可结合对称性求解a =2,分离参数,将恒成立问题转化为m >e x -e -x -1e x +e -xmax ,构造函数F (x )=e x -e -x -1e x +e-x ,结合不等式的性质即可求解最值.【解答过程】(1)证明:因为f x =e x -1+e 1-x +x 2-2x +a ,所以f (2-x )=e 2-x -1+e1-(2-x )+(2-x )2-2(2-x )+a =e 1-x +e x -1+x 2-2x +a ,所以f (x )=f (2-x ),所以f (x )关于x =1对称.(2)(ⅰ)任取x 1,x 2∈(1,+∞),且x 1<x 2f x 1 -f x 2 =e x 1-1+e1-x 1+x 21-2x 1-ex 2-1+e1-x 2+x 22-2x 2=e x 1-1-ex 2-1+e1-x 1-e1-x 2+x 21-x 22 -2x 1-x 2=(ex 1-1-ex 2-1)(e x 1-1e x 2-1-1)ex 1-1ex 2-1+(x 1-x 2)(x 1+x 2-2)∵1<x 1<x 2,∴0<x 1-1<x 2-1,∴e x 1-1>1,ex 2-1>1,ex 1-1-ex 2-1<0,ex 1-1e x 2-1-1>0,x 1-x 2<0,x 1+x 2-2>0,∴f (x 1)<f (x 2),所以f (x )在1,+∞ 上单调递增,又f (x )关于x =1对称,则在-∞,1 上单调递减.所以f (x )min =f (1)=1+a =3,所以a =2.(单调性也可以用单调性的性质、复合函数的单调性判断、导数证明)(ⅱ)不等式f (m (e x +e -x )+1)>f (e x -e -x )恒成立等价于(m (e x +e -x )+1)-1 >e x -e -x -1 恒成立, 即m >ex-e -x -1 e x +e -x =e x -e -x -1e x +e -x恒成立,即m >e x -e -x -1e x +e -xmax令F (x )=e x -e -x -1e x +e -x ,则F (x )=e 2x -e x -1e 2x +1=1-e x +2e 2x +1,令e x +2=n ,n ∈2,+∞ ,则e x =n -2则g n =1-n n 2-4n +5=1-1n -4+5n,因为n ∈2,+∞ ,n -4+5n ≥25-4,n =5取等号,则g n ∈-52,1,所以g n ∈0,52,所以m >52,即m ∈-∞,-52 ∪52,+∞ .3(2023下·广东·高一统考期末)已知函数y =φx 的图象关于点P a ,b 成中心对称图形的充要条件是φa +x +φa -x =2b .给定函数f x =x -6x +1及其图象的对称中心为-1,c .(1)求c 的值;(2)判断f x 在区间0,+∞ 上的单调性并用定义法证明;(3)已知函数g x 的图象关于点1,1 对称,且当x ∈0,1 时,g x =x 2-mx +m .若对任意x 1∈0,2 ,总存在x 2∈1,5 ,使得g x 1 =f x 2 ,求实数m 的取值范围.【解题思路】(1)根据函数的对称性得到关于c 的方程,解出即可求出函数的对称中心;(2)利用函数单调性的定义即可判断函数f (x )单增,(3)问题转化为g (x )在[0,2]上的值域A ⊆[-2,4],通过讨论m 的范围,得到关于m 的不等式组,解出即可.【解答过程】(1)由于f (x )的图象的对称中心为-1,c ,则f (-1+x )+f (-1-x )=2c ,即(x -1)-6x -1+1+(-x -1)-6-x -1+1=2c ,整理得-2=2c ,解得:c =-1,故f (x )的对称中心为(-1,-1);(2)函数f (x )在(0,+∞)递增;设0<x 1<x 2,则f x 1 -f x 2 =x 1-6x 1+1-x 2+6x 2+1=x 1-x 2 +6x 1-x 2 x 2+1 x 1+1=x 1-x 2 1+6x 2+1 x 1+1,由于0<x 1<x 2,所以x 1-x 2<0, 6x 2+1 x 1+1>0,所以f x 1 -f x 2 <0⇒f x 1 <f x 2 ,故函数f (x )在(0,+∞)递增;。
高一数学函数的应用
![高一数学函数的应用](https://img.taocdn.com/s3/m/dc3bf88fdaef5ef7ba0d3ce1.png)
学习目标:
1、初步掌握一次和二次函数模型的应用,会 解决较简单的实际应用问题,初步掌握数学 建模的一般步骤和方法. 2、通过具体实例,感受运用函数建立模型的 过程和方法,体会一次函数、二次函数模型 在数学和其他学科中的重要性,初步树立函 数的观点; 3、了解数学知识来源于生活,又服务与实际。
合作交流
解答数学应用题的关键有两点: 一是认真读题,缜密审题,确切理解题意,明确问题 的实际背景,然后进行科学的抽象、概括,将实际问题归 纳为相应的数学问题; 二是要合理选取参变数,设定变元后,就要寻找它们 之间的内在联系,选用恰当的代数式表示问题中的关系, 建立相应的函数、方程、不等式等数学模型;最终求解数 学模型使实际问题获解.一般的解题程序是: 读题 (文字语言) 建模 (数学语言) 求解 (数学应用) 反馈 (检验作答)
祝同学们: 学习进步!
; 聚丙烯酰胺厂家 聚丙烯酰胺价格 福晋的呓语之声早就传进咯张太医的耳朵,可想而知这病实在是不轻。另外让张太医奇怪的是,院子里不但见不到王爷,连福晋也不曾见到, 不但福晋没有见到,连苏总管也不曾见到,这可真是稀奇!作为王府的常客,张太医诊治最多的还是李侧福晋,先不说那李侧福晋不管大病小 病,有时候甚至是没病,都要请他来诊治壹番,单说只要他张太医壹到王府里,哪壹次不是王爷坐陪就是福晋忙着忙后?实在没有人的时候, 苏总管更是早早地就在房门外候着,随时听着屋里的吩咐。今天可好,年侧福晋这里就这么两各丫环和壹各本院的管事太监,而且病重得都开 始说起咯胡话,看来这各年侧福晋在王府里的日子可真是不好过。不得宠就罢咯,甚至是备受冷落。既然不得宠,王爷何苦要着急上赶着求咯 皇上的赐婚?难道真的是像坊间传闻那样,图谋年家的朝中势力?不管是啥啊情况,这些全不是他张太医能够,或者说应该关心的事情,尽快 诊治才是他的首要职责。隔着绢帕号过脉,张太医那颗心总算是稍微踏实咯壹些,还好,还好,只是发热和神志不清,但神志问题是首因。因 此张太医先开咯安神的药,发热也是由于不能安神的原因引起的,先治咯根本,再看效果吧。开完药方,张太医壹边摇头叹气,壹边收咯药箱。 千恩万谢地送走咯太医,月影赶快将药送去小厨房煎制,吟雪继续负责换着凉手巾,两各人又是壹阵紧忙。待好不容易将药煎好,两人为咯如 何让丫鬟将药喝下去而犯咯愁。冰凝已经陷入咯昏沉之中,不可能喝药,于是吟雪好拿来壹各瓷勺,将冰凝的嘴撬开,月影赶快用另壹各瓷勺 盛咯壹小勺汤药,顺着撬出来的那壹点点缝隙强行将药灌进嘴里去。昏迷中的冰凝根本就不会主动吞咽,因此灌进去的那壹点点药,大部分又 都顺着嘴角流咯下来。第壹卷 第156章 同行雅思琦提议去园子,本是想将爷对天仙妹妹的好感扼杀在摇篮之中,谁想到却是酿成咯更为严重 的、壹发不可收拾的后果。假如她知道事情的发展会是这各样子,哪里还会提这各议呢?这些日子,淑清的身体壹直不适,雅思琦提议去园子 可谓壹箭双雕,两各侧福晋都病着,都留在咯府里岂不是更好?不过,这只是雅思琦的壹厢情愿而已,王爷还是将淑清带去咯园子。对于这各 结果,虽然没有太出她的意料,但仍是非常失落。爷对淑清姐姐可真谓是壹往情深,这次居然还是带上咯。不过这各结果也算还好,毕竟爷对 天仙妹妹可是只图壹时的新鲜,被自己劝留在咯府里。只有这壹各人还算好对付,假如壹下子要同时应对两各诸人,自己还真有点儿招架不住。 雅思琦不停地自我安慰着。李淑清所患的血崩之症已经有些日子咯,时好时坏,张太医虽然医术高超,可是遇到任性的李侧
高一数学函数的应用
![高一数学函数的应用](https://img.taocdn.com/s3/m/e58dd4f7b9d528ea80c7793c.png)
解:这个函数的定义域为{1,2,
3,4},函数的解析式为y=5x
20 y/元
( x∈{1,2,3,4} ),它的图 15
像由4个孤立点组成,如图所示, 10
这些点的坐标分别是(1,5), 5
(2,10),(3,15),(4,20)。Biblioteka 0x/个 123 45
导入新课
大约在一千五百年前,大数学家孙 子在《孙子算经》中记载了这样的 一道题:“今有雏兔同笼,上有三 十五头,下有九十四足,问雏兔各 几何?”这四句的意思就是:有若 干只有几只鸡和兔?你知道孙子是 如何解答这个“鸡兔同笼”问题的 吗?你有什么更好的方法?
;美国夏校 https:///summer-school
;
上下功夫。 口福和眼福俱饱矣,耳福呢? 无一座城市致力于“音容”,无一处居所以“寂静”命名。 我们几乎满足了肉体所有部位,唯独冷遇了耳朵。 甚至连冷遇都不算,是折磨,是羞辱。 做一只现代耳朵真的太不幸了,古人枉造了“悦耳”一词,实在对不住,我们更多的是“虐耳”。 有个说法叫“花开的声音”,一直,我当作一个比喻和诗意幻觉,直到遇一画家,她说从前在老家,中国最东北的荒野,夏天暴雨后,她去坡上挖野菜,总能听见苕树梅绽放的声音,四下里噼啪响 “苕树梅”,我家旁的园子里就有,红、粉、白,水汪汪、亮盈盈,一盏盏,像玻璃纸剪出的小太 阳。我深信她没听错,那不是幻听和诗心的矫造,我深信那片野地的静、那个年代的静,还有少女耳膜的清澈她有聆听物语的天赋,她有幅画,《你能让满山花开我就来》,那绝对是一种通灵境界我深信,一个野菜喂大的孩子,大自然向她敞开得就多。 我们听不见,或难以置信,是因为失聪日 久,被磨出了茧子。 是的,你必须承认,世界已把寂静 这大自然的“原配”,给弄丢了。 是的,你必须承认,耳朵 失去了最伟大的爱情。 我听不见花开的声
河北省高一数学上册第三单元《函数的应用》全套教案
![河北省高一数学上册第三单元《函数的应用》全套教案](https://img.taocdn.com/s3/m/bed71fa2d0d233d4b14e696b.png)
河北省高一数学上册第三单元《函数的应用》全套教案本单元以函数的应用为主题,分为两节,通过本单元学习,引导学生明白通过对二次函数图象的描绘,了解函数零点的概念,渗透由具体到抽象思想,领会函数与相应方程实数根之间关系的表示方法。
3.1 函数与方程教学课时:2课时方程的根与函数的零点(第一课时)教学目标:1.理解集合的含义。
2.了解元素与集合的表示方法及相互关系。
3.熟记有关数集的专用符号。
4.培养学生认识事物的能力。
教学重点:集合含义教学难点:集合含义的理解。
学前准备:学生准备数集卡片/材料,多媒体。
新1、零点的概念 初步提出零点的概念:-1、3既是方程x 2-2x -3=0的根,又是函数y =x 2-2x -3在y =0时x 的值,也是函数图象与x 轴交点的横坐标。
-1、3在方程中称为实数根,在函数中称为零点。
提出零点的定义:对于函数,把使成立的实数叫做函数的零点.2、函数零点的判定: 研究方程的实数根也就是研究相应函数的零点,也就是研究函数的图象与x 轴的交点情况。
一般地,我们有:如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线并且有f (a )·f (b )<0,那么函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.问题1 求方程x 2-2x -3=0的实数根,并画出函数y =x 2-2x -3的图象; 方程x 2-2x -3=0的实数根为-1、3。
函数y=x 2-2x -3的图象如图所示。
问题 2 观察形式上函数y =x 2-2x -3与相应方程x 2-2x -3=0的联系。
函数y =0时的表达式就是方程x 2-2x -3=0。
问题 3 由于形式上的联系,则方程x 2-2x -3=0的实数根在函数y =x 2-2x -3的图象中如何体现?y =0即为x 轴,所以方程x 2-2x -3=0的实数根就是y =x 2-2x -3的图问题4 函数y=x 2-2x +1和函数y =x 2-2x +3零点分别是什么?函数y =x 2-2x +1的零点是-1。
函数在实际生活中的运用
![函数在实际生活中的运用](https://img.taocdn.com/s3/m/82fce4486bd97f192379e94c.png)
函数在实际生活中的运用数学是一切科学之母"、"数学是思维的体操",它是一门研究数与形的科学,它不处不在。
要掌握技术,先要学好数学,想攀登科学的高峰,更要学好数学。
数学的三大特点严谨性、抽象性、广泛的应用性所谓数学的严谨性,指数学具有很强的逻辑性和较高的精通性,一般以公理化体系来体。
函数有着渊远的历史,笛卡儿引入变量后,随之而来的便是函数的概念.他指出y和是变量(“未知量和未定的量”)的时候,也注意到y依赖于而变.这正是函数思想的萌芽.但是他没有使用“函数”这个词。
函数这个数学名词是莱布尼兹在1694年开始使用的,以描述曲线的一个相关量,如曲线的斜率或者曲线上的某一点。
莱布尼兹所指的函数现在被称作可导函数,数学家之外的普通人一般接触到的函数即属此类。
对于可到函数可以讨论它的极限和导数。
此两者描述了函数输出值的变化同输入值变化的关系,是微积分学的基础。
函数概念是全部数学概念中最重要的概念之一,纵观300年来函数概念的发展,众多数学家从集合、代数、直至对应、集合的角度不断赋予函数概念以新的思想,从而推动了整个数学的发。
函数相关知识简介1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
注意:判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域4 确定函数定义域的方法5、函数的解析式用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式 6、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来。
三角函数的应用教案(1 高一上学期数学人教A版(2019)必修第一册
![三角函数的应用教案(1 高一上学期数学人教A版(2019)必修第一册](https://img.taocdn.com/s3/m/2f4fd34c54270722192e453610661ed9ad5155f4.png)
第五章三角函数5.7 三角函数的应用(第2 课时)【教学内容】学习三角函数模型的简单应用,进一步突出函数来源于生活应用于生活的思想,让学生体验一些具有周期性变化规律的实际问题的数学“建模”。
【教学目标】1.了解三角函数是描述周期变化现象的重要函数模型;2.初步学会使用数据分析或图像特征进行一些简单的函数模型求解;3.会使用三角函数模型解决简单的实际问题。
【教学重难点】教学重点:用三角函数模型解决具有周期变化的实际问题.教学难点:对问题实际意义的数学解释,从实际问题中抽象出三角函数模型.【教学过程】一、导入新课思考:生活中有什么事情是周而复始发生的?举例:小结:从上述例子中,可以得知生活中有很多重复出现的现象,我们尝试利用某种函数模型去研究当中的规律,帮助我们做出更加科学的决策。
请问你认为目前我们所学的什么函数模型适用于上述规律呢?函数模型;因为它具有性质。
二、课堂探究例题 1 如图,我国某地一天从 6—14 时的温度变化曲线近似满足函数y =A sin(ωx +ϕ) +b ( A > 0,ω> 0, ϕ<π)(1)求这一天 6—14 时的最大温差;(2)写出这段曲线的函数解析式。
解:(1)由图可知,这段时间的最大温差是20℃(2)由图可以看出,从 6—14 时的图像是函数小结:(1)振幅A=b=如何求函数中的ω和ϕ;(2)所求函数模型只能近似刻画某个区间的变化规律。
例题 2:货船进出港时间问题:海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节某天的时刻与水深关系的预报.(1)选用一个函数来近似描述这一天该港口的水深与时间的函数关系,给出整点时的水深的近似数值(精确到0.001).(2)一条货船的吃水深度(船底与水面的距离)为4 米,安全条例规定至少要有1.5 米的安全间隙(船底与洋底的距离),该船这一天何时能进入港口?在港口能呆多久?(3)若某船的吃水深度为4 米,安全间隙为1.5 米,该船在2:00 开始卸货,吃水深度以每小时0.3 米的速度减少,如果这条船停止卸货后需0.4 小时才能驶到深水域,那么该船在什么时间必须停止卸货,将船驶向较深的水域?问题探究 1:请同学们仔细观察表格中的数据,你能够从中得到一些什么信息?小组合作发现,代表发言。
高一数学函数的应用
![高一数学函数的应用](https://img.taocdn.com/s3/m/251db4d505087632311212c0.png)
高一数学第一学期授课讲义一、教学要求:结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;掌握零点存在的判定条件.二、教学重点:体会函数的零点与方程根之间的联系,掌握零点存在的判定条件.三、教学难点:恰当的使用信息工具,探讨函数零点个数.四、教学过程:(一)、复习准备:※★思考:一元二次方程2ax +bx+c=o(a ≠0)的根与二次函数y=ax 2+bx+c 的图象之间有什么关系?(二)、讲授新课:1、探讨函数零点与方程的根的关系:① 探讨:方程x 2-2x-3=0 的根是什么?函数y= x 2-2x-3的图象与x 轴的交点?方程x 2-2x+1=0的根是什么?函数y= x 2-2x+1的图象与x 轴的交点?方程x 2-2x+3=0的根是什么?函数y= x 2-2x+3的图象与x 轴有几个交点?② 根据以上探讨,让学生自己归纳并发现得出结论: → 推广到y=f(x)呢?一元二次方程2ax +bx+c=o(a ≠0)的根就是相应二次函数y=ax 2+bx+c 的图象与x 轴交点横坐标.③ 定义零点:对于函数y=f(x),我们把使f(x)=0的实数x 叫做函数y=f(x)的零点.④ 讨论:y=f(x)的零点、方程f(x)=0的实数根、函数y=f(x) 的图象与x 轴交点的横坐标的关系? ■结论:方程f(x)=0有实数根⇔函数y=f(x) 的图象与x 轴有交点⇔函数y=f(x)有零点⑤ 练习:求下列函数的零点 244y x x =-+;243y x x =-+ →▲ 小结:二次函数零点情况(由一元二次次方程的判别式去确定)2、教学零点存在性定理及应用:①、观察下面函数)(x f y =的图象,在区间],[b a 上______(有/无)零点;)(a f ·)(b f _____0(<或>). 在区间],[c b 上______(有/无)零点;)(b f ·)(c f _____0(<或>). 在区间],[d c 上______(有/无)零点;)(c f ·)(d f _____0(<或>).②、◆定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)<0,那么,函数y=f(x)在区间(a,b )内有零点,即存在c ∈(a,b),使得f(c)=0,这个c 也就是方程f(x)=0的根.④ 应用:书本例题1:(P88)求函数f(x)=Lnx+2x-6的零点的个数.(注意:如何证明该函数是严格的单调递增函数?) (试讨论一些函数值→分别用代数法、几何法)⑤小结:函数零点的求法■★代数法:求方程()0f x =的实数根;■★几何法:对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点.⑥ 练习:求函数23x y =-的零点所在区间.3、小结:零点概念;零点、与x 轴交点、方程的根的关系;零点存在性定理三、巩固练习:1. P88: 1题、2题 (教师计算机演示,学生回答)2. 求函数3222y x x x =--+的零点所在区间,并画出它的大致图象.3. 求下列函数的零点:① 、254y x x =--; ②、)13)(1(2+--=x x x y ;③、220y x x =-++; ④、22()(2)(32)f x x x x =--+.4. 已知2()2(1)421f x m x mx m =+++-:(1)m 为何值时,函数的图象与x 轴有两个零点;(2)如果函数至少有一个零点在原点右侧,求m 的值.5. 作业:P92, 2题;P93: 3题四、课堂教学巩固练习及学生作业:●1、判断方程在区间(12,8)上是否存在有实数解,并说明理由:log 2x +3x-2=0 ★解:∵f(12)<0,f(8)>0,且f(x)连续,则方程有实数解。
函数的应用-高一数学教材配套教学课件(人教A版必修第一册)
![函数的应用-高一数学教材配套教学课件(人教A版必修第一册)](https://img.taocdn.com/s3/m/c94fc8c2b9f67c1cfad6195f312b3169a451ea9e.png)
2.函数零点存在定理
【函数零点存在定理】 条件:①f(x)在[a,b]连续,②f (a)·f (b)<0 结论:函数f(x)在(a,b)内至少有1个零点.
①两个条件缺一不可; 若二缺一,则f(x)在(a,b)内可能有零点、也可能无零点. ②其逆定理不成立. 即:若f(x)在(a,b)内有零点,f(a)·f(b)<0不一定成立.
A.(-1,0) B.(0,1)
C.(1,2) D.(2,3)
x -1 0 1 2 3 设f(x)=ex-(x+2)
ex 0.37 1 2.72 7.39 20.09 f(-1)=0.37-1<0 x+2 1 2 3 4 5 f(0)=1-2<0
f(1)=2.72-3<0
f(2)=7.39-4>0 f(3)=20.09-5>0
一元二次方程 01 根的分布问题
一元二次方程根的分布问题①
设方程ax2 bx c 0(a 0)的两根为x1, x2,
两根与0比较(a>0):
两根与0比较(a<0):
两个负根 两个正根 一正根一负根 两个负根 两个正根
一正根一负根
0
b 2a
0
f 0 0
0
x1
x2
b a
0
x1x2
开口系数±、△、
对称轴、临界点函数值±
0
b 2a
k0
ff (0k)00
0
b 2a
k0
ff(0k)00
f (k) 0 0
一元二次方程根的分布问题③
设方程ax2 bx c 0(a 0)的两根为x1, x2,
两根在区间上的分布(a>0):
两根都在 两根仅有一根 一根在(m,n)内
5.7三角函数的应用(教学课件)高一数学(人教A版必修第一册)
![5.7三角函数的应用(教学课件)高一数学(人教A版必修第一册)](https://img.taocdn.com/s3/m/6064c279c381e53a580216fc700abb68a982adcb.png)
ωx+φ称为相位;x=0时的相位φ 称为初相.
问题2 图5.7 2(1)是某次实验测得的交变电流i (单位:A)随时间t (时间:s )
变化的图象. 将测得的图象放大, 得到图5.7 2(2).
(1) 求电流i随时间t 变化的函数解析式;
由交变电流的产生原理可知, 电流i随时间t的变化规律可用i A sin( t )
【解析】
【答案】 B
由题图可知,该质点的振幅为 5 cm.
)
2.与图中曲线对应的函数解析式是(
)
A.y=|sin x|
B.y=sin |x|
C.y=-sin |x|
D.y=-|sin x|
【解析】
注意题图所对的函数值正负,因此可排除选项 A,D.
当 x∈(0,π)时,sin |x|>0,而图中显然是小于零,因此排除选项
来刻画, 其中
表示频率, A表示振幅 , 表示初相.
2
由图5.7 2(2)可知, 电流最大值为5 A, 因此A 5; 电流变化的周期为
频率为50 Hz , 即
50, 解得 100
2
再由初始状态 ( t 0)的电流约为4.33 A,
可得 sin 0.866,因此 约为
31
5
5
交点A, B , 因此 sin
x 0.2014或
x 0.2014
31
31
如图, 在区间[0,12]内, 函数y 2.5sin
解得x A 0.3975, xB 5.8025
由函数的周期性易得 :
xC 12.4 0.3975 12.7975,
x D 12.4 5.8025 18.2025
高一数学函数知识点及技巧
![高一数学函数知识点及技巧](https://img.taocdn.com/s3/m/29191b2526d3240c844769eae009581b6bd9bdfc.png)
高一数学函数知识点及技巧随着高一学习的深入,数学成为了学生们必须面对、必须攻克的科目之一。
而在数学中,函数无疑是一个重要的考点,也是学习者们最容易迷失的地方之一。
为了帮助大家更好地掌握高一数学中的函数知识点和技巧,本文将重点介绍一些相关内容。
一、函数的定义和性质函数是数学中的一种重要工具,它描述了输入和输出之间的关系。
在高一阶段,我们首先需要理解函数的定义和基本性质。
函数通常用符号“f(x)”表示,其中“x”是自变量,而“f(x)”是函数对应的因变量。
函数的定义要求每个自变量都对应唯一的因变量,这就意味着一个自变量不可以对应两个以上的因变量。
二、函数的图像和图像的性质理解函数的图像是非常重要的,因为它可以直观地展示函数的变化规律。
通过观察图像,我们可以得到很多有用的信息。
例如,函数的对称性、奇偶性和单调性等。
在绘制函数图像时,我们应该掌握一些技巧,如按比例选择坐标轴、注意函数在不同区间的特征等。
三、函数的基本类型高一阶段,我们将学习到一些常见的函数类型。
例如,线性函数、二次函数、指数函数和对数函数等。
对于每种类型的函数,我们要掌握其定义、表达式、图像和性质。
在解题过程中,我们可以根据函数的类型来选择相应的解题方法,从而更好地解决问题。
四、函数的运算在函数知识的学习中,我们还需要了解函数的运算。
这些运算包括函数的加法、减法、乘法和除法。
在进行函数的运算时,我们要注意运算规则和运算对象的约束条件。
通过熟练掌握函数的运算规则,我们可以更快地解决复杂的问题。
五、函数的应用函数在现实生活中有着广泛的应用。
例如,我们可以利用函数来描述物体的运动、人口的增长、利润的变化等等。
在高一数学中,我们需要学会将函数知识应用到实际问题中,通过建立数学模型来解决具体的问题。
这种应用能力对于我们今后的学习和工作都具有重要意义。
总结起来,高一数学中的函数知识点需要我们掌握函数的定义和性质、图像和性质、基本类型、运算以及应用等内容。
高一数学教案函数的最值5篇最新
![高一数学教案函数的最值5篇最新](https://img.taocdn.com/s3/m/f2bc9534a200a6c30c22590102020740be1ecdac.png)
高一数学教案函数的最值5篇最新使学生从形与数两方面理解函数的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象判断、证明函数的方法,今天小编在这里整理了一些高一数学教案函数的最值5篇最新,我们一起来看看吧!高一数学教案函数的最值1一、教材分析及处理函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,《函数》教学设计。
对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质。
教学重点是函数的概念,难点是对函数概念的本质的理解。
学生现状学生在第一章的时候已经学习了集合的概念,同时在初中时已学过一次函数、反比例函数和二次函数,那么如何用集合知识来理解函数概念,结合原有的知识背景,活动经验和理解走入今天的课堂,如何有效地激活学生的学习兴趣,让学生积极参与到学习活动中,达到理解知识、掌握方法、提高能力的目的,使学生获得有益有效的学习体验和情感体验,是在教学设计中应思考的。
二、教学三维目标分析1、知识与技能(重点和难点)(1)、通过实例让学生能够进一步体会到函数是描述变量之间的依赖关系的重要数学模型。
并且在此基础上学习应用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。
不但让学生能完成本节知识的学习,还能较好的复习前面内容,前后衔接。
(2)、了解构成函数的三要素,缺一不可,会求简单函数的定义域、值域、判断两个函数是否相等等。
(3)、掌握定义域的表示法,如区间形式等。
(4)、了解映射的概念。
2、过程与方法函数的概念及其相关知识点较为抽象,难以理解,学习中应注意以下问题:(1)、首先通过多媒体给出实例,在让学生以小组的形式开展讨论,运用猜想、观察、分析、归纳、类比、概括等方法,探索发现知识,找出不同点与相同点,实现学生在教学中的主体地位,培养学生的创新意识。
高一数学必修一函数的概念与性质知识点总结
![高一数学必修一函数的概念与性质知识点总结](https://img.taocdn.com/s3/m/0ef28e653868011ca300a6c30c2259010302f34a.png)
高一数学必修一函数的概念与性质知识点总结一、内容描述高一数学必修一函数的概念与性质知识点总结涵盖了高中阶段关于函数基础概念及其性质的核心内容。
文章首先介绍了函数的基本概念,包括函数的定义、表示方法以及函数的性质等。
文章详细阐述了函数的性质,包括单调性、奇偶性、周期性以及复合函数的性质等。
文章还介绍了函数图像的画法及其与性质之间的关系,以及如何利用函数性质解决实际问题。
文章总结了函数在数学学习中的重要性,强调掌握函数概念与性质对于后续数学学习的基础作用。
通过本文的学习,学生可以更好地理解和掌握函数知识,为后续数学学习打下坚实的基础。
1. 简述函数概念的重要性函数是描述自然现象和规律的重要工具。
在物理、化学、生物等自然学科中,许多现象的变化过程都可以通过函数关系进行描述。
物理学中的运动规律、化学中的化学反应速率与浓度的关系等,都需要借助函数概念进行建模和分析。
函数是数学体系中的核心和基础。
函数连接了代数、几何、三角学等多个分支,是数学知识和方法综合运用的基础。
对函数概念的深入理解,有助于我们更好地理解和掌握数学的其它分支和领域。
函数也是解决实际问题的重要工具。
在现实生活中,很多问题的解决都需要建立数学模型,而函数作为构建数学模型的基本元素之一,能够帮助我们准确地描述问题并找到解决方案。
在经济学、统计学、工程学等领域,函数的运用非常广泛。
函数概念的重要性不言而喻。
高一学生在学习数学时,应深入理解函数的概念,掌握其性质和特点,为后续学习和解决实际问题打下坚实的基础。
2. 引出本文目的:总结函数的概念与性质本文旨在系统梳理和归纳高一数学必修一课程中函数的核心概念与基本性质。
函数是数学中的核心概念之一,具有广泛的应用领域。
在高中阶段,学生需要深入理解函数的基础定义、性质和图像特征,为后续学习奠定坚实基础。
本文的目的在于帮助学生全面总结函数的相关知识点,加深对函数概念与性质的理解,以便更好地掌握和应用函数这一重要的数学工具。
高一数学函数的应用试题答案及解析
![高一数学函数的应用试题答案及解析](https://img.taocdn.com/s3/m/6fe3f6d685254b35eefdc8d376eeaeaad1f316a5.png)
高一数学函数的应用试题答案及解析1.定义在R上的偶函数满足:①对都有;②当且时,都有,若方程在区间上恰有3个不同实根,实数的取值范围是 .【答案】【解析】因为是偶函数,所以在中令可得,所以是周期为6的周期函数,又当且时,都有,所以该函数在上递增,所以再上递减,所以在上只有两个实数根,所以若方程在区间上恰有3个不同实根,则需要区间长度解得【考点】本小题主要考查根的存在性及根的个数判断和函数奇偶性的性质以及抽象函数及其应用. 点评:本题是一道抽象函数问题,题目的设计“小而巧”,解题的关键是巧妙的赋值,利用其奇偶性和所给的关系式得到函数的周期性,再利用周期性求函数值.灵活的“赋值法”是解决抽象函数问题的基本方法,属于中档题.2.(本小题满分12分)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品在该售价的基础上每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨元(为正整数),每个月的销售利润为元.(14分)(1)求与的函数关系式并直接写出自变量的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?【答案】(1)(且为正整数);(2)当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元;【解析】本试题主要是考查了函数在实际生活中的运用。
(1)根据已知的进价和售价,以及利润函数可知结论,注明定义域,(2)由上可知,那么利用二次函数的性质得到最值。
21.(1)(且为正整数);(2).,当时,有最大值2402.5.,且为正整数,当时,,(元),当时,,(元)当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元;3.某公司要将一批不易存放的蔬菜从地运到地,有汽车、火车两种运输工具可供选择,两种运输工具的主要参考数据如下表:途中速度途中单位费用装卸时间装卸费用若这批蔬菜在运输过程中(含装卸时间)损耗为300元/小时,设、两地距离为千米.(1)设采用汽车与火车运输的总费用分别为与,求与的解析式;(2)试根据、两地距离的大小比较采用哪种运输工具更合算(即运输总费用最小).(注:总费用=途中费用+装卸费用+损耗费用)【答案】(1);(2)当A、B两地距离小于时,采用汽车运输好;当A、B两地距离等于时,采用汽车或火车都一样;当A、B两地距离大于时,采用火车运输好.【解析】本题以实际问题为载体,考查函数模型的构建,考查解不等式,解题的关键是正确运用表格中的数据(1)根据表格,利用总费用=途中费用+装卸费用+损耗费用,分别求出运输的总费用;(2)分类讨论,比较它们的大小,由此确定采用哪种运输工具较好解:(1)由题意可知,用汽车运输的总费用为:;4分用火车运输的总费用为:8分(2)由得;由得由得10分答:当A、B两地距离小于时,采用汽车运输好;当A、B两地距离等于时,采用汽车或火车都一样;当A、B两地距离大于时,采用火车运输好. 12分4.某公司要将一批不易存放的蔬菜从地运到地,有汽车、火车两种运输工具可供选择,两种运输工具的主要参考数据如下表:途中速度途中单位费用装卸时间装卸费用. (1)设采用汽车与火车运输的总费用分别为与,求与的解析式;(2)试根据、两地距离的大小比较采用哪种运输工具更合算(即运输总费用最小).(注:总费用=途中费用+装卸费用+损耗费用)【答案】(1)(2)当A、B两地距离小于时,采用汽车运输好;当A、B两地距离等于时,采用汽车或火车都一样;当A、B两地距离大于时,采用火车运输好。
函数的应用说课稿
![函数的应用说课稿](https://img.taocdn.com/s3/m/2e10799a6037ee06eff9aef8941ea76e58fa4a2a.png)
函数的应用说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是“函数的应用”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“函数的应用”是高中数学课程中的重要内容,它不仅是函数知识的延续和深化,更是培养学生数学应用意识和解决实际问题能力的重要途径。
本节课所选用的教材是人民教育出版社出版的普通高中课程标准实验教科书《数学》必修 1。
在教材中,函数的应用通过实际问题的引入,让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。
同时,教材中提供了丰富的例题和习题,帮助学生掌握函数应用的方法和技巧。
二、学情分析授课对象是高一年级的学生,他们已经学习了函数的基本概念和性质,具备了一定的函数知识储备。
但是,学生在将函数知识应用到实际问题中时,往往会遇到困难,缺乏解决实际问题的思路和方法。
此外,高一学生的思维正处于从形象思维向抽象思维过渡的阶段,在教学中需要注重引导学生从实际问题中抽象出数学模型,培养学生的抽象思维能力。
三、教学目标基于以上对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)学生能够理解函数在实际问题中的应用,掌握建立函数模型解决实际问题的一般步骤。
(2)学生能够运用常见的函数模型(如一次函数、二次函数、指数函数、对数函数等)解决简单的实际问题。
2、过程与方法目标(1)通过实际问题的探究,培养学生观察、分析、归纳、概括的能力,提高学生的数学思维能力。
(2)让学生经历从实际问题中建立函数模型,求解模型,检验模型的过程,体会数学建模的思想方法。
3、情感态度与价值观目标(1)让学生感受数学与生活的密切联系,激发学生学习数学的兴趣和积极性。
(2)培养学生的创新意识和应用意识,提高学生解决实际问题的能力,增强学生的自信心。
四、教学重难点1、教学重点(1)建立函数模型解决实际问题的一般步骤。
(2)常见函数模型在实际问题中的应用。
新教材高中数学第五章函数应用1方程解的存在性及方程的近似解第2课时利用二分法求方程的近似解课后习题北
![新教材高中数学第五章函数应用1方程解的存在性及方程的近似解第2课时利用二分法求方程的近似解课后习题北](https://img.taocdn.com/s3/m/a772fa0058eef8c75fbfc77da26925c52cc5917f.png)
1.2 利用二分法求方程的近似解A级必备知识基础练1.已知函数f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在区间(1,2)上的近似解的过程中得到f(1)<0,f(1.5)>0,f(1.25)<0,则方程的解落在区间()A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定2.(多选题)下列函数中,能用二分法求函数零点的有()A.f(x)=3x-1B.f(x)=x2-4x+4C.f(x)=log4xD.f(x)=e x-23.若函数f(x)=x2-4x+m存在零点,且不能用二分法求该函数的零点,则m的取值范围是()A.(4,+∞)B.(-∞,4)C.{4}D.[4,+∞)4.[x]表示不超过x的最大整数,例如[3.5]=3,[-0.5]=-1.已知x0是方程ln x+3x-15=0的根,则[x0]=()A.2B.3C.4D.55.(多选题)已知函数f(x)在区间(0,a)上有唯一的零点(a>0),在用二分法寻找零点的过程中,依次确定了零点所在的区间为0,a2,0,a4,0,a8,则下列说法正确的有()A.函数f(x)在区间0,a16内可能有零点B.函数f(x)在区间a16,a8内可能有零点C.函数f(x)在a16,a内无零点D.函数f(x)的零点可能是a166.(多选题)某同学求函数f(x)=ln x+2x-6的零点时,用计算器算得部分函数值,如表所示:f(2)≈-1.307 f(3)≈1.099 f(2.5)≈-0.084f(2.75)≈0.512 f(2.625)≈0.215 f(2.562 5)≈0.066则方程ln x+2x-6=0的近似解(精确度0.1)可取为()A.2.52B.2.56C.2.66D.2.757.根据表格中的数据,可以判定方程e x-x-2=0的一个实数根所在的区间为(k,k+1)(k∈N),则k的值为.8.如图,一块电路板的线路AB之间有64个串联的焊接点(不含端点A,B),如果线路不通的原因是由于焊口脱落所致,要想检验出哪一处的焊口脱落,则至多需要检测次.9.用二分法求函数f(x)=3x-x-4的一个零点,其参考数据如下:f(1.600 0)≈0.200 f(1.587 5)≈0.133 f(1.575 0)≈0.067f(1.562 5)≈0.003 f(1.556 25)≈-0.029 f(1.550 0)≈-0.060根据上述数据,可得f(x)=3x-x-4的一个零点的近似值(精确度0.01)为.10.用二分法求函数y=x3-3的一个正零点(精确度0.1).B级关键能力提升练11.(多选题)若函数f(x)的图象是连续的,且函数f(x)的唯一零点同在(0,4),(0,2),1,32,54,32内,则与f(0)符号不同的是()A.f(4)B.f(2)C.f(1)D.f3212.(2022安徽宿州高一期末)已知函数f(x)=2x-3x在区间(1,2)上有一个零点x0,如果用二分法求x0的近似值(精确度为0.01),则应将区间(1,2)至少等分的次数为()A.5B.6C.7D.813.已知f(x)=1x-ln x在区间(n,n+1)(n∈Z)上有一个零点x0,则n= ,若用二分法求x0的近似值(精确度0.1),则至少需将区间等分次.14.求方程3x+xx+1=0的近似解(精确度0.1).15.已知方程2x+2x=5.(1)判断该方程解的个数以及所在区间;(2)用二分法求出方程的近似解(精确度0.1).参考数值:16.某公司生产A种型号的电脑,2018年平均每台电脑的生产成本为5 000元,并按纯利润为20%定出厂价.2019年开始,公司更新设备,加强管理,逐步推行股份制,从而使生产成本逐年降低,2022年平均每台A种型号的电脑出厂价仅是2018年的80%,实现了纯利润50%.(1)求2022年每台A种型号电脑的生产成本;(2)以2018年的生产成本为基数,用二分法求2018~2022年间平均每年生产成本降低的百分率(精确度0.01).C级学科素养创新练x3-x2+1.17.已知函数f(x)=13(1)证明方程f(x)=0在区间(0,2)内有实数解;(2)请使用二分法,取区间的中点二次,指出方程f(x)=0,x∈[0,2]的实数解x0在哪个较小的区间内.1.2 利用二分法求方程的近似解1.B ∵f (1)<0,f (1.5)>0,f (1.25)<0,∴f (1.25)·f (1.5)<0,因此方程的解落在区间(1.25,1.5)内,故选B .2.ACD f (x )=x 2-4x+4=(x-2)2,f (2)=0,当x<2时,f (x )>0,当x>2时,f (x )>0,在零点两侧函数值同号,不能用二分法求零点,其余选项中在函数的零点两侧函数值异号.故选ACD . 3.C 易知方程x 2-4x+m=0有实数根,且Δ=16-4m=0,知m=4. 4.C 令f (x )=ln x+3x-15, 当x=4时,f (4)=ln4+3×4-15<0, 当x=5时,f (5)=ln5+3×5-15>0,所以f (4)·f (5)<0,所以f (x )在(4,5)上有零点,即方程ln x+3x-15=0有根. 所以[x 0]=4, 故选C .5.ABD 根据二分法原理,依次“二分”区间后,零点应存在于更小的区间,因此,零点应在0,a16或a16,a8中,或f a 16=0,故选ABD .6.AB 由表格函数值在0的左右两侧,最接近的值,即f (2.5)≈-0.084,f (2.5625)≈0.066可知方程ln x+2x-6=0的近似根在(2.5,2.5625)内,因此选项A 中2.52符合,选项B 中2.56也符合,故选AB .7.1 记f (x )=e x-x-2,则该函数的零点就是方程e x-x-2=0的实数根.由题表可知f (-1)=0.37-1<0,f (0)=1-2<0,f (1)=2.72-3<0,f (2)=7.39-4>0,f (3)=20.09-5>0.由零点存在性定理可得f (1)·f (2)<0,故函数的零点所在的区间为(1,2).所以k=1.8.6 第1次取中点把焊点数减半为642=32,第2次取中点把焊点数减半为322=16,第3次取中点把焊点数减半为162=8,第4次取中点把焊点数减半为82=4,第5次取中点把焊点数减半为42=2,第6次取中点把焊点数减半为22=1,所以至多需要检测的次数是6.9.1.562 5(答案不唯一) 由参考数据知,f (1.5625)≈0.003>0,f (1.55625)≈-0.029<0,即f (1.5625)·f (1.55625)<0,且1.5625-1.55625=0.00625<0.01,∴f (x )=3x-x-4的一个零点的近似值可取为1.5625. 10.解∵f (1)=1-3=-2<0,f (2)=23-3=5>0,因此可取区间[1,2]作为计算的初始区间,用二分法逐次计算,见下表:从表中可知|1.5-1.4375|=0.0625<0.1, ∴函数y=x 3-3精确度为0.1的零点,可取1.44. 11.ABD 由二分法的步骤可知①零点在(0,4)内,则有f (0)·f (4)<0,不妨设f (0)>0,f (4)<0,取中点2; ②零点在(0,2)内,则有f (0)·f (2)<0,则f (0)>0,f (2)<0,取中点1; ③零点在(1,2)内,则有f (1)·f (2)<0,则f (1)>0,f (2)<0,取中点32; ④零点在1,32内,则有f (1)·f 32<0,则f (1)>0,f 32<0,则取中点54;⑤零点在54,32内,则有f54·f32<0,则f54>0,f 32<0,所以与f (0)符号不同的是f (4),f (2),f 32,故选ABD .12.C 由于每等分一次,零点所在区间的长度变为原来的12,则等分n 次后的区间长度变为原来的12n , 则由题可得12n <0.01,即n>log 2100, 又6<log 2100<7,则至少等分的次数为7. 故选C .13.1 4 因为f (x )=1x-ln x 在(0,+∞)上单调递减,在区间(n ,n+1)(n ∈Z )上有一个零点x 0,所以零点只能有一个,又f (2)=12-ln2<0,f (1)=1-0=1>0,所以f (2)·f (1)<0,所以x 0∈(1,2),所以n=1,由题意12n<0.1,所以2n >10,所以n>3,至少等分4次.14.解原方程可化为3x-1x+1+1=0,即3x=1x+1-1.令g (x )=3x,h (x )=1x+1-1,在同一平面直角坐标系中,分别画出函数g (x )=3x与h (x )=1x+1-1的简图.g (x )与h (x )图象的交点的横坐标位于区间(-1,0),且只有一个交点,∴原方程只有一个解x=x 0. 令f (x )=3x+xx+1=3x-1x+1+1, ∵f (0)=1-1+1=1>0,f (-0.5)=√3-2+1=√3√3<0,∴x 0∈(-0.5,0).用二分法逐次计算,列表如下:∵|-0.4375-(-0.375)|=0.0625<0.1, ∴原方程的近似解可取为-0.4375. 15.解(1)令f (x )=2x+2x-5.因为函数f (x )=2x+2x-5在R 上是增函数,所以函数f(x)=2x+2x-5至多有一个零点.因为f(1)=21+2×1-5=-1<0,f(2)=22+2×2-5=3>0,所以函数f(x)=2x+2x-5的零点在(1,2)内.(2)用二分法逐次计算,列表如下:因为|1.375-1.25|=0.125>0.1,且|1.3125-1.25|=0.0625<0.1,所以函数的零点近似值可取1.3125, 即方程2x+2x=5的近似解为1.3125.16.解(1)设2022年每台A种型号电脑的生产成本为p元,根据题意,得(1+50%)p=5000×(1+20%)×80%,解得p=3200.故2022年每台A种型号电脑的生产成本为3200元.(2)设2018~2022年间平均每年生产成本降低的百分率为x(0<x<1),根据题意,得5000(1-x)4=3200.令f(x)=5000(1-x)4-3200,求出x与f(x)的对应值(精确到个位)如下表:所以原方程的近似解可取0.1025.故平均每年生产成本降低的百分率约为10.25%. 17.(1)证明∵f (0)=1>0,f (2)=-13<0,∴f (0)·f (2)=-13<0,函数f (x )=13x 3-x 2+1是连续函数,由函数的零点存在定理可得方程f (x )=0在区间(0,2)内有实数解.(2)解取x 1=12(0+2)=1,得f (1)=13>0,由此可得f (1)·f (2)<0,下一个有解区间为(1,2),取x 2=12(1+2)=32,得f32=-18<0,由f (1)·f32<0,则下一个有解区间为1,32.综上所述,实数解x 0在较小区间1,32内.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。