第11章数与开方单元测试题含答案

合集下载

华东师大版八年级上册第11章《数的开方》单元测试卷(原卷版)

华东师大版八年级上册第11章《数的开方》单元测试卷(原卷版)

华东师大版八年级上册第11章《数的开方》单元测试卷本试卷三个大题共22个小题,全卷满分120分,考试时间120分钟。

题号 一 二 三全卷总分总分人 17 18 19 20 21 22 得分注意事项:1、答题前,请考生务必将自己姓名、考号、班级等写在试卷相应的位置上;2、选择题选出答案后,用钢笔或黑色水笔把答案标号填写在选择题答题卡的相应号上。

一、选择题(本大题共12个小题,每小题4分,共48分.以下每小题都给出了A 、B 、C 、D 四个选项,其中只有一个是符合题目要求的。

)1 2 3 4 5 6 7 8 9 10 11 121、16的平方根是( ) A 、4B 、4±C 、16D 、16±2、下列各数中,无理数是( )A 、3−B 、18C 、3.14D 、25 3、下列叙述错误的是( )A 、4−是16的算术平方根B 、5是25的算术平方根C 、3是9的算术平方根D 、0.04的算术平方根是0.24、一个正数的平方根分别为:62+a 与3−a ,则这个正数是( )A 、1B 、4C 、9D 、165、若a 、b 为实数,且满足012=−+−b a ,则ba的值为( ) A 、2− B 、21 C 、2 D 、21−6、下列说法中错误的是( )A 、3.0−是0.09的一个平方根B 、16的平方根是4±C 、0的立方根是0D 、1−的立方根是1−7、下列选项正确的是( ) A 、39±= B 、()22− C 、51253−=− D 、416=±8、估算340−的值在( ) A 、2到3之间B 、3到4之间C 、4到5之间D 、5到6之间9、下列说法:①无限小数是无理数;②负数的立方根仍是负数;③9的平方根是3±;④1的平方根与立方根都是1;⑤互为相反数的两个数的立方根仍为相反数。

其中正确的有( )学校: 考号: 姓名: 班级:密 封 线 内 不 要 答 题密封线A 、4 个B 、3 个C 、2 个D 、1 个10、若252=a ,9=b b ,则=+b a ( ) A 、8B 、8±C 、8或2−D 、2或8−11、若n m n m A −++=3是3++n m 的算术平方根,322+−+=n m n m B 是n m 2+的立方根,则AB −的立方根是( )A 、1B 、1−C 、0D 、无法确定12、对于有理数a 、b ,定义{}b a ,min 的含义为:当b a <时,{}a b a =,min ,例如:{}221min −=−,.已知{}a a =,31min ,{}3131min =b ,,且a 和b 为两个连续正整数,则()231−ab 的立方根为( )A 、1−B 、1C 、2−D 、2二、填空题(本大题共4个小题,每小题4分,共16分)13、2−x 的平方根是3±,72−+y x 的立方根是2,则22y x +的平方根是______; 14、若33113+−+−=x x y ,则xy的算术平方根是_________; 15、25的算术平方根是________;36的平方根是________;16、已知:75−的整数部分是a ,75+的小数部分是b ,则=+b a _________. 三、解答题(本大题6个小题,共56分。

数的开方综合练习题

数的开方综合练习题

数的开方?练习试题1一、填空题1.假设一个实数的算术平方根等于它的立方根,则这个数是_________;2.数轴上表示5-的点与原点的距离是________; 3.2-的相反数是,3的倒数是,13-的相反数是;4.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是;5.计算:_______10_________,112561363=-=--,2224145-=; 6.假设一个数的平方根是8±,则这个数的立方根是;7.当______m 时,m -3有意义;当______m 时,33-m 有意义;8.假设一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是;9.22)(a a =成立的条件是___________;10.假设1122a a a a --=--,则a 满足条件________; 11.0)3(122=++-b a ,则=332ab ; 12.假设最简二次根式5231-+-+-y x y x y x 与与是同类根式,则=x ,=y ________;二、选择题1314 15 16 17 18 19 2013.以下运算正确的选项是〔 〕A 、7272+=+B 、3232=+C 、428=⋅D 、228= 14.在实数0、3、6-、236.2、π、723、14.3中无理数的个数是〔 〕 A 、1 B 、2 C 、3D 、415.以下二次根式中与26-是同类二次根式的是〔 〕 A 、18 B 、30 C 、48 D 、5416.以下说法错误的选项是〔 〕A 、1)1(2=-B 、()1133-=- C 、2的平方根是2± D 、()232)3(-⨯-=-⨯-17.以下说法中正确的有〔 〕①带根号的数都是无理数;②无理数一定是无限不循环小数;③不带根号的数都是有理数;④无限小数不一定是无理数;A 、1个B 、2个C 、3个D 、4个18.一个等腰三角形的两边长分别为25和32,则这个三角形的周长是〔 〕A 、32210+B 、3425+C 、32210+或3425+D 、无法确定19.如果321,32-=+=b a ,则有〔 〕A 、b a >B 、b a =C 、b a <D 、b a 1=20.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是〔 〕A 、1B 、9C 、4D 、5三、计算题1.)32)(32(-+2.86127728⨯-+3.()()()62261322+-+-4.22)2332()2332(--+ 5.61422164323+⨯- 6.321)37(4732+--÷-- 四、解方程1.()64392=-x 2.8)12(3-=-x 五、解答题2.26-=x ,试求20082423+-+x x x 的值. 3.2323,2323-+=+-=y x ,求以下各式的值。

八年级数学第11章数的开方单元测试卷B

八年级数学第11章数的开方单元测试卷B

八年级数学第11章数的开方单元测试卷B一、选择题:(每小题2分,共30分)1.25的平方根是……………………………………………………………………………( )A 、5B 、–5C 、5±D 、5±2.2)3(-的算术平方根是………………………………………………………………….( )A 、9B 、–3C 、3±D 、33.下列叙述正确的是……………………………………………………………………….( )A 、0.4的平方根是2.0±B 、32)(--的立方根不存在 C 、6±是36的算术平方根 D 、–27的立方根是–34.下列等式中,错误的是……………………………………………………………………( )A 、864±=±B 、1511225121±= C 、62163-=- D 、1.0001.03-=- 5.下列各数中,无理数的个数有……………………………………………………………( )10.10100142π--, , ,A 、1B 、2C 、3D 、46.如果x -2有意义,则x 的取值范围是………………………………………………( )A 、2≥xB 、2<xC 、2≤xD 、2>x7.化简1|21|+-的结果是………………………………………………………………( )A 、22-B 、22+C 、2D 、28. 下列说法正确的是………………………………………………………………………( )A 、两个无理数的和一定是无理数B 、23是分数 C 、1和2之间的无理数只有2 D 、2是4的平方根9.估算2的值…………………………………………………………………………( ) A、在5和6之间 B、在6和7之间 C、在7和8之间 D、在8和9之间10.如果mm m m -=-33成立,则实数m 的取值范围是…………………………….( ) A 、3≥m B 、0≤m C 、30≤<m D 、30≤≤m11. 若一个数的立方根等于这个数的算术平方根,则这个数是…………………………( )A 、0B 、±1C 、-1或0D 、0或112.下列各式计算正确的是…………………………………………………………………( )A 、525±=B 、416±=±C 、5)5(2-=-D 、10100=-13.若0<x ,则xx x 2-的结果为……………………………………………………….( ) A 、2 B 、0 C 、0或–2 D 、–214. 下列说法正确的是……………………………………………………………………( )A 、327-是无理数B 、3.14是无理数C 、722是无理数 D 、15是无理数 15.a 、b 为实数,在数轴上的位置如图所示,则2a b a +-的值是……………………( )A.-bB.bC.b -2aD.2a -ba 0 b二、填空题:(每小题3分,共30分)1.–125的立方根是_____.2.如果9=x ,那么x =________;如果92=x ,那么=x ________.3.要使53-x 有意义,则x 可以取的最小整数是 .4.平方根等于本身的数是________;立方根等于本身的数是_______5.x 是实数,且02122=-x ,则.____=x 6.若b a 、是实数,012|1|=++-b a ,则._____22=-b a7. 比较:10,2-_____3-. 8. 2是_________的平方根.9. 若x-12是225的算术平方根,则x 的立方根是________.10.已知正数a 和b ,有下列命题:(1)若2=+b a ,则ab ≤1(2)若3=+b a ,则ab ≤23 (3)若6=+b a ,则ab ≤3根据以上三个命题所提供的规律猜想:若9=+b a ,则ab ≤________.三、解答题:(共40分)1.直接写出答案(18分)②④⑤4×25 ⑥ ±9252.(5分)已知a+3与2a-15是m 的两个平方根,求m 的值.3.(5分) 若x 、y 为实数,且8x 33x y +-+-=,求x+3y 的立方根.4.(6分)已知y x 、满足0|22|132=+-+--y x y x ,求2x+4y 的平方根.5.(6分)已知ABC ∆的三边为c b a 、、.化简:。

数的开方单元测试题(附答案)

数的开方单元测试题(附答案)

数的开方单元测试题一、选择题:(每题2分,共24分)1、在数-5,0,722,2006,20.80中,有平方根的数有( ) A 、1个 B 、2个 C 、3个 D 、4个2、10的平方根应表示为( )A 、210B 、10±C 、10D 、10-3、在数-27,-1.25,0,724中,立方根为正的数有( ) A 、1个 B 、2个 C 、3个 D 、0个4、下面的运算中,是开平方运算的是( )A 、4069)64(2=-B 、864=C 、864±=±D 、4643=5、下列各数中:5,-3,0,34,722,-1.732,25,2π-,293+,无理数的个数有( ) A 、1个 B 、2个 C 、3个 D 、4个6、下列说法中,准确的有( )①无限小数是无理数;②无理数是无限小数;③两个无理数的和是无理数;④对于实数a 、b,如果22b a =,那么a=b ;⑤所有的有理数都能够用数轴上的点来表示,反过来,数轴上的所有点都表示有理数。

A 、②④B 、①②⑤C 、②D 、②⑤7、下列各式准确的是( )A 、981±=B 、14.314.3-=-ππC 、3927-=-D 、235=-8、在数轴上,原点和原点左边的所有点表示的数是( )A 、负有理数B 、负数C 、零和负有理数D 、零和负实数9、a 、b A 、a 、b 互为相反数 B 、b+a 〉0 C 、零和负有理数 D 、 b-a 〉0 10、下列式子准确的是( )A 、55〈B 、23-〉-C 、3223-〈-D 、230-〈11一个自然数的算术平方根为a ,则与这个自然数相邻的下一个自然数的算术平方根为( )A 、22+aB 、12+aC 、1+aD 、1+a12、若x -有意义,则x x -一定是( )A 、正数 B 、非负数 C 、负数 D 、非正数二、填空题:(每空2分,共38分) 013、若a 的算术平方根为21,则a= 14、如果68.28,868.26.2333==x ,那么x=15、若0125=-++--y x y x ,则=x y16、若m=3,代数式2213m m m +-+=17、若29922--+-=x x x y +1,则y x 43+=18、比较大小:11, 11-6- 19、38的平方根是 ,2)4(-的算术平方根是 ,81的平方根是20、把2写成一个数的算术平方根的形式:21、若一个正数的两个平方根为2m-6与3m+1,则这个数是 ;若a+3与2a-15是m 的平方根,则m=22、绝对值最小的实数是 ,21-的绝对值是 ,21-的相反数是23、若实数满足1-=aa ,则a 是 ;若40≤≤a ,则a 的取值范围是 24、在数轴上,与表示7-的点相距2的点表示的数为三、解答题:(每题2分,共8分)25、求下列各数的平方根:(1)0 (2)0.49 (3)1691(4)2)5(-26、求下列各数的立方根:(每题2分,共8分)(1)27102(2)-0.008 (3)0 (4)125--27、求下列各式的值:(每题3分,共27分)(1)16.0 (2)169- (3)412± (4)3027.0(5)31512169-- (6)36.009.0+ (7) 222129-(8)31000511003631- (9)1691691271943--+28、求下列各式中的x 值:(每题5分,共20分)(1)641212=x (2)02433=-x(3)22)7()5(-=-x (4)32)4()12(25-=--x29按照从小到大的顺序,用“<”把下列各数连接起来(4分)14.31,1,5.0,)1(,8722005-----π30、若2+-b a 与1-+b a 互为相反数,求22a+2b 的立方根(6分)31、青云学府新建了一个面积为16平方米的传达室,计划用100块正方形的地板砖来铺设地面,那么所需要的正方形的地板砖的连长是多少?(7分)32、若a 和b 互为相反数,c 与d 互为倒数,m 的倒数等于它本身,试化简: m cdb a m 233222----+(8分)参考答案1、D2、B3、A4、C5、D6、C7、B8、D9、D10、C 11、B 12、D13、1/4 14、23600 15、3 16、11 17、13或5 18、> < 19、2± 4 ±3 20、4 21、 16 441或49 22、0 12- 12- 23、负实数 0≤a ≤2 24、2727--+-或25、(1)0 (2)±0.7 (3)±5/4(4)±526、4/3 -0.2 0 -527、0.4 -13 ±3/2 0.3 7/8 0.9 20 -9/5 -13/1628、(1)x=±8/11 (2)x=2 (3) x=-2 或 x=12 (4) x=13/10 或 x=-3/1029、略30、-231、0.432、2±2。

第11章 数的开方数学八年级上册-单元测试卷-华师大版(含答案)

第11章 数的开方数学八年级上册-单元测试卷-华师大版(含答案)

第11章数的开方数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、如图,数轴上点N表示的数可能是( )A. B. C. D.2、估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间3、下列关于的叙述,错误的是()A.在数轴上可以找到表示的点B.面积为5的正方形边长是C. 介于2和3之间D. 表示5的平方根4、9的算术平方根是()A.3B.﹣3C.±3D.5、﹣8的立方根是()A. B.2 C.﹣2 D.6、下列命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数的符号一致;④如果一个数的立方根等于它本身,那么它一定是1或0.其中正确有()个.A.1B.2C.3D.47、整数部分是()A.1B.2C.3D.48、估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间9、下列各式正确的是()A.2a 2﹣a 2=2B. + =C.( )2=25 D. =110、一块正方形的瓷砖,面积为cm2,它的边长大约在()A.4cm~5cm之间B.5cm~6cm之间C.6cm~7cm之间D.7cm~8cm之间11、下列各式中计算正确的是()A. B. C. D.12、-27的立方根与9的平方根的和是()A.0B.6C.-6D.0或-613、下列计算正确的是()A. =±3B.|﹣3|=﹣3C. =3D.﹣3 2=914、下列等式正确的是( )A. B. C. D.15、下列运算中,正确的是()A. + =B.﹣a+2a=aC.(a 3)3=a 6D.=﹣3二、填空题(共10题,共计30分)16、的平方根是________17、比较大小________ .18、计算:________.19、试举一例,说明“两个无理数的和仍是无理数”是错误的:________.20、的平方根是±3,的立方根是2,则的值是________.21、实数a、b在数轴上的位置如图所示,则化简|a﹣b|+a的结果为________.22、比较大小:________ (用“”或“”填空).23、的倒数为________;的算术平方根为________;比较实数的大小:________ .24、1﹣的相反数是________;﹣64的立方根是________.25、的整数部分是________。

第11章 数的开方数学八年级上册-单元测试卷-华师大版(含答案)

第11章 数的开方数学八年级上册-单元测试卷-华师大版(含答案)

第11章数的开方数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、实数的值在( )A.0和1之间B.1和2之间C.2和3之间D.3和4之间2、下列计算正确的是()A. (2a2)3=8a5B. ()2=9C. 3﹣=3D. ﹣a8÷a4=﹣a43、计算的结果是()A. B.0 C. D.4、下列各式中计算正确的是()A. =-9B.C.D.5、下列说法正确的是()A.1的相反数是﹣1B.1的倒数是﹣1C.1的立方根是±1D.﹣1是无理数6、4的平方根是()A.16B.2C.±2D.7、在数轴上有三个互不重合的点A,B,C,它们代表的实数分别为a,b,c,下列结论中①若abc0,则A,B,C三点中,至少有一个点在原点右侧;②若a+b+c=0,则A,B,C三点中,至少有一个点在原点右侧;③若a+c=2b,则点B 为线段AC的中点;④O为坐标原点且A,B,C均不与O重合,若OB﹣OC=AB﹣AC,则bc0,所有正确结论的序号是()A.①②B.③④C.①②③D.①②③④8、小涛在纸上画了一条数轴后,折叠纸面,使数轴上表示1的点与表示-3的点重合,若数轴上A、B两点之间的距离为2014(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数为()A.-1006B.-1007C.-1008D.-10099、实数a在数轴上对应的点如图所示,则a,-a,-1的大小关系是()A.-a<a<-1B.-a<-1<aC.a<-1<-aD.a<-a<-110、下列各数中,最小的数是()A.1B.﹣|﹣2|C.D.2×10 ﹣1011、下列四个数中,最小的数()A.1B.-C.2D.12、在下列说法中,①的算术平方根是4;②3是9的平方根;③在实数范围内,一个数如果不是有理数,则一定是无理数;④两个无理数之和还是无理数.其中正确个数是()A.4个B.3个C.2个D.1个13、下列四个数:﹣3,﹣,﹣π,﹣1,其中最小的数是()A.﹣πB.﹣3C.﹣1D.﹣14、下列说法正确的是()A.0.25是0.5的一个平方根B.49的平方根是7C.正数有两个平方根,且这两个平方根之和等于0D.负数有一个平方根15、下列命题的逆命题是真命题的是( )A.若,则B.等边三角形是锐角三角形C.相等的角是对顶角 D.全等三角形的面积相等二、填空题(共10题,共计30分)16、若的值在两个整数a与a+1之间,则a=________.17、已知一个表面积为12dm2的正方体,则这个正方体的棱长为________18、计算:≈________(结果精确到0.1)。

数的开方单元检测题及答案

数的开方单元检测题及答案

数的开方单元测试一、选择题。

(每题4分,共28分)1.下列各数:3.141592 ,- 3 ,0.16 ,0.01 ,–π,0.1010010001…,227,35 ,0.2 ,8 中无理数的个数是………………………………………………………()A.2个B.3个C.4个D.5个2.25的平方根是…………………………………………………………………………()A.±5 B.-5 C.5 D.± 53.-8的立方根是…………………………………………………………………………()A.±2 B.-2 C.2 D.不存在4.a=15,则实数a在数轴上对应的点的大致位置是…………………………………()A.B.C.D.5.一个正数的算术平方根是a,那么比这个正数大2的数的算术平方根是………()A.a2+2 B.±a2+2 C.a2+2 D.a+26.下列说法正确的是……………………………………………………………………()A.27的立方根是3,记作27=3 B.-25的算术平方根是5C.a的立方根是± a D.正数a的算术平方根是 a7.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④-17是17的平方根,其中正确的有…………………………()A.0个B.1个C.2个D.3个二、填空题。

(每题4分,共40分)8.9的算术平方根是___________;9.比较大小:32_______32 (用“<”或“>”填空);10.若∣x∣=3,则x=_______;0 1 2 3 4 50 1 2 3 4 511.-27的立方根是___________;12.2的相反数是___________;13.平方根等于本身的数是_______________;14.写出所有比11小且比3大的整数_____________________;15.81的算术平方根是___________;16.建筑工人李师傅想用钢材焊制一个面积为6平方米的正方形铁框,请你帮离师傅计算一下,他需要的钢材总长至少为____________米(精确到0.01);17.观察思考下列计算过程:因为112=121,所以121=11,同样,因为1112=12321,所以12321=111,则1234321=________,可猜想123456787654321=___________。

华东师大版八年级数学上册单元测试题全套及答案第11章

华东师大版八年级数学上册单元测试题全套及答案第11章

最新华东师大版八年级数学上册单元测试题全套及答案第11章 数的开方综合测评 一、选择题(每题3分,共30分)1. -364-的平方根是( ) A. ±4 B. 2 C. ±2 D. 不存在2.3的相反数是( ) A.33- B.3- C.33 D.3 3. 以下说法中正确的选项是( )A. 负数没有立方根B. 一个正数的立方根有两个,它们互为相反数C. 若是一个数有立方根,那么它必有平方根D. 不为0的任何数的立方根,都与那个数同号4. 以下各数中,比大的实数是( ) A .-5 B .0 C .3 D .5. 实数a ,b 在数轴上的位置如图1所示,且|a|>|b|,化简b a a +-2的结果为( )A .2a+bB. -2a+bC. b 图1D. 2a-b6. 已知a 为实数,若2a -的值存在,那么2a -的值为( )A .aB .-aC .-1D .07. 用计算器求得333+的结果(精准到0.001)是( )A. 3.1742B. 3.174C. 3.175D. 3.17438. 已知20n 是整数,那么知足条件的最小正整数n 为( )A .2B .3C .4D .59. 某居民生活小区需要建一个大型的球形储水罐,需储水113立方米,那么那个球罐的半径r (球的体积V =343r π,π取3.14, 结果精准到0.1米)为( ) a obA. 2.8米B. 2.9米C. 3.0米D. 3.1米10. 关于实数a ,b ,给出以下三个命题:①假设|a|=|b|,那么b a =;②假设|a|<|b|,那么a <b ;③假设a=-b ,那么(-a )2=b 2.其中真命题有( ) A .3个 B .2个 C .1个 D .0个二、填空题(每题4分,共24分)11. 若()22340a b c -+-+-=,则a-b+c = .12. 把7的平方根和立方根按从小到大的顺序排列为 .13. 图2是一个简单的数值运算程序,假设输入x 的值为,那么输出的数值为_____.图214.16的算术平方根是 ,()29-的平方根是 .15. 已知a 、b 为两个持续整数,且a <<b ,则a+b= .16. 借助于计算器能够求得2243+,224433+,22444333+,2244443333+,…的结果,观看上面几道题结果,试猜想2220032003444333+个个=___. 三、解答题(共66分)17. (8分)求以下各数的平方根和算术平方根:14 400,.1615289169,18. (8分)求以下各数的立方根:.729.02718125,,-19. (8分)将以下各数填入相应的集合内.-7,0.32, 13,0,8,12,3125,π,0.202 002 000 2…. 有理数集合:{ … };无理数集合:{ … };负实数集合:{ … }.20. (10分)求以下各式中x 的值.(1)()2162810x +-=;(2)31(21)42x -=-.21. (10分)若623b A a b -=+是a+3b 的算术平方根,2321a B a -=-是1-a 2的立方根,求A 与B 的值.22. (10分)已知3a-22和2a-3都是m 的平方根,求a 和m 的值.23. (12分)小丽把一块正方形纸片的每一个角剪掉一个36 cm 2的正方形后,再把它的边折起来做成一个无盖的长方体盒子,如图3,量得那个盒子的容积是150 cm 2.(1)由题意可知,剪掉正方形的边长为__________cm .(2)设原正方形的边长为x cm ,用x 表示盒子的容积为_____________________.(3)求原正方形的边长.图3 第11章 数的开方综合测评一、1. C 2. B 3. D 4. C 5. C 6. D 7. B 8. D 9. C 10. C二、11. 3 12. -<< 13. 2 14. 2 ±3 15. 5 16. 2003555个三、17. 解:14 400的平方根为±120,算术平方根为120; 289169的平方根为,1713±算术平方根为;1713 1615的平方根为49±,算术平方根为.49 18. 解:8125的立方根是25;271-的立方根是31-;0.729的立方根是0.9. 19. 解:有理数集合:{-7,0.32,13,0,3125,…};无理数集合:{8,12,π,0.202 002 000 2… ,…}; 负实数集合:{ -7, …}.20. 解:(1)由()2162810x +-=,得()281216x +=. 因此924x +=±. 解得14x =或x=174-. (2)由31(21)42x -=-,得(2x-1)3=-8.因此2x-1=-2.解得x=21-. 21. 解:由题意,可知6-2b=2,2a-3=3.解得a=3,b=2.因此A=9=3,B=38-=-2.22. 解:当3a-22=2a-3时,解得a=19,现在3a-22=35,因此m=352=1225; 当3a-22+2a-3=0时,解得a=5,现在3a-22=-7,2a-3=7,因此m=(-7)2=49. 综上,a=19,m=1225或a=5,m=49.23. 解:(1)6(2)6(x-12)2(3)由题意,可得6(x-12)2=150.解得x=17或x=7(舍去).因此原正方形的边长为17 cm .。

华师大八年级数学上《第11章数的开方》单元测试含答案解析

华师大八年级数学上《第11章数的开方》单元测试含答案解析

第11章数的开方(kāi fāng)一、选择题1.在﹣3,0,4,这四个数中,最大的数是()A.﹣3 B.0 C.4 D.2.下列(xiàliè)实数中,最小的数是()A.﹣3 B.3 C.D.03.在实数(shìshù)1、0、﹣1、﹣2中,最小的实数是()A.﹣2 B.﹣1 C.1 D.04.实数(shìshù)1,﹣1,﹣,0,四个数中,最小的数是()A.0 B.1 C.﹣1 D.﹣5.在实数(shìshù)﹣2,0,2,3中,最小的实数是()A.﹣2 B.0 C.2 D.36.a,b是两个连续整数,若a<<b,则a,b分别是()A.2,3 B.3,2 C.3,4 D.6,87.估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间8.在已知实数:﹣1,0,,﹣2中,最小的一个实数是()A.﹣1 B.0 C.D.﹣29.下列四个实数中,绝对值最小的数是()A.﹣5 B.C.1 D.410.在﹣2,0,3,这四个数中,最大的数是()A.﹣2 B.0 C.3 D.11.在1,﹣2,4,这四个数中,比0小的数是()A.﹣2 B.1 C. D.412.四个实数﹣2,0,﹣,1中,最大的实数是()A.﹣2 B.0 C.﹣D.113.与无理数最接近(jiējìn)的整数是()A.4 B.5 C.6 D.714.如图,已知数轴上的点A、B、C、D分别(fēnbié)表示数﹣2、1、2、3,则表示数3﹣的点P应落在线段(xiànduàn)()A.AO上B.OB上C.BC上D.CD上15.估计(gūjì)介于(jiè yú)()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间16.若m=×(﹣2),则有()A.0<m<1 B.﹣1<m<0 C.﹣2<m<﹣1 D.﹣3<m<﹣217.如图,表示的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C18.与1+最接近的整数是()A.4 B.3 C.2 D.119.在数轴上标注了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④20.若a=(﹣3)13﹣(﹣3)14,b=(﹣0.6)12﹣(﹣0.6)14,c=(﹣1.5)11﹣(﹣1.5)13,则下列有关a、b、c的大小关系,何者正确?()A.a>b>c B.a>c>b C.b>c>a D.c>b>a21.若k<<k+1(k是整数),则k=()A.6 B.7 C.8 D.922.估计×+的运算结果应在哪两个连续自然数之间()A.5和6 B.6和7 C.7和8 D.8和923.估计(gūjì)的值在()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间二、填空题24.把7的平方根和立方根按从小到大的顺序排列为.25.若a<<b,且a、b是两个连续(liánxù)的整数,则a b=.26.若两个连续(liánxù)整数x、y满足x<+1<y,则x+y的值是.27.黄金(huánɡ jīn jīn)比(用“>”、“<”“=”填空(tiánkòng))28.请将2、、这三个数用“>”连结起来.29.的整数部分是.30.实数﹣2的整数部分是.第11章数的开方参考答案与试题解析一、选择题1.在﹣3,0,4,这四个数中,最大的数是()A.﹣3 B.0 C.4 D.【考点】实数大小比较.【分析】根据有理数大小比较的法则进行判断即可.【解答】解:在﹣3,0,4,这四个数中,﹣3<0<<4,最大的数是4.故选C.【点评】本题考查了有理数大小比较的法则,解题的关键是牢记法则,正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小是本题的关键.2.下列实数中,最小的数是()A.﹣3 B.3 C.D.0【考点(kǎo diǎn)】实数大小比较.【分析】在数轴(shùzhóu)上表示出各数,再根据数轴的特点即可得出结论.【解答(jiědá)】解:如图所示:故选A.【点评(diǎn pínɡ)】本题考查的是实数的大小比较,利用数形结合求解是解答此题的关键.3.在实数(shìshù)1、0、﹣1、﹣2中,最小的实数是()A.﹣2 B.﹣1 C.1 D.0【考点】实数大小比较.【分析】先在数轴上表示出各数,再根据数轴的特点进行解答即可.【解答】解:如图所示:∵由数轴上各点的位置可知,﹣2在数轴的最左侧,∴四个数中﹣2最小.故选A.【点评】本题考查的是实数的大小比较,熟知数轴上的任意两个数,右边的数总比左边的数大是解答此题的关键.4.实数1,﹣1,﹣,0,四个数中,最小的数是()A.0 B.1 C.﹣1 D.﹣【考点】实数大小比较.【专题】常规题型.【分析】根据正数>0>负数,几个负数比较大小时,绝对值越大的负数越小解答即可.【解答】解:根据正数>0>负数,几个负数比较大小时,绝对值越大的负数越小,可得1>0>﹣>﹣1,所以(suǒyǐ)在1,﹣1,﹣,0中,最小的数是﹣1.故选:C.【点评】此题主要考查了正、负数(fùshù)、0和负数间的大小比较.几个负数比较大小时,绝对值越大的负数越小,5.在实数(shìshù)﹣2,0,2,3中,最小的实数是()A.﹣2 B.0 C.2 D.3【考点】实数(shìshù)大小比较.【专题(zhuāntí)】常规题型.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣2<0<2<3,最小的实数是﹣2,故选:A.【点评】本题考查了实数比较大小,正数大于0,0大于负数是解题关键.6. a,b是两个连续整数,若a<<b,则a,b分别是()A.2,3 B.3,2 C.3,4 D.6,8【考点】估算无理数的大小.【分析】根据,可得答案.【解答】解:根据题意,可知,可得a=2,b=3.故选:A.【点评】本题考查了估算无理数的大小,是解题关键.7.估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【考点】估算无理数的大小.【分析】先估计的整数部分,然后即可判断﹣2的近似值.【解答】解:∵5<<6,∴3<﹣2<4.故选C.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学(shùxué)能力,“夹逼法”是估算的一般方法,也是常用方法.8.在已知实数(shìshù):﹣1,0,,﹣2中,最小的一个(yī ɡè)实数是()A.﹣1 B.0 C.D.﹣2【考点】实数(shìshù)大小比较.【专题(zhuāntí)】常规题型.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,由此可得出答案.【解答】解:﹣2、﹣1、0、1中,最小的实数是﹣2.故选:D.【点评】本题考查了实数的大小比较,属于基础题,掌握实数的大小比较法则是关键.9.下列四个实数中,绝对值最小的数是()A.﹣5 B.C.1 D.4【考点】实数大小比较.【分析】计算出各选项的绝对值,然后再比较大小即可.【解答】解:|﹣5|=5;|﹣|=,|1|=1,|4|=4,绝对值最小的是1.故选C.【点评】本题考查了实数的大小比较,属于基础题,注意先运算出各项的绝对值.10.在﹣2,0,3,这四个数中,最大的数是()A.﹣2 B.0 C.3 D.【考点】实数大小比较.【专题】常规题型.【分析】根据(gēnjù)正数大于0,0大于负数,可得答案.【解答(jiědá)】解:﹣2<0<<3,故选:C.【点评】本题(běntí)考查了实数比较大小,是解题(jiě tí)关键.11.在1,﹣2,4,这四个数中,比0小的数是()A.﹣2 B.1 C. D.4【考点】实数大小(dàxiǎo)比较.【专题】常规题型.【分析】根据有理数比较大小的法则:负数都小于0即可选出答案.【解答】解:﹣2、1、4、这四个数中比0小的数是﹣2,故选:A.【点评】此题主要考查了有理数的比较大小,关键是熟练掌握有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.四个实数﹣2,0,﹣,1中,最大的实数是()A.﹣2 B.0 C.﹣D.1【考点】实数大小比较.【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:∵﹣2<﹣<0<1,∴四个实数中,最大的实数是1.故选:D.【点评】本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.13.与无理数最接近的整数是()A.4 B.5 C.6 D.7【考点(kǎo diǎn)】估算无理数的大小.【分析】根据无理数的意义和二次根式(gēnshì)的性质得出<<,即可求出答案(dá àn).【解答(jiědá)】解:∵<<,∴最接近(jiējìn)的整数是,=6,故选:C.【点评】本题考查了二次根式的性质和估计无理数的大小等知识点,主要考查学生能否知道在5和6之间,题目比较典型.14.如图,已知数轴上的点A、B、C、D分别表示数﹣2、1、2、3,则表示数3﹣的点P应落在线段()A.AO上B.OB上C.BC上D.CD上【考点】估算无理数的大小;实数与数轴.【分析】根据估计无理数的方法得出0<3﹣<1,进而得出答案.【解答】解:∵2<<3,∴0<3﹣<1,故表示数3﹣的点P应落在线段OB上.故选:B.【点评】此题主要考查了估算无理数的大小,得出的取值范围是解题关键.15.估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间【考点】估算无理数的大小.【分析】先估算的范围,再进一步估算,即可解答.【解答】解:∵2.22=4.84,2.32=5.29,∴2.2<<2.3,∵=0.6, =0.65,∴0.6<<0.65.所以(suǒyǐ)介于(jiè yú)0.6与0.7之间.故选:C.【点评】本题考查(kǎochá)了估算有理数的大小,解决本题的关键是估算的大小(dàxiǎo).16.若m=×(﹣2),则有()A.0<m<1 B.﹣1<m<0 C.﹣2<m<﹣1 D.﹣3<m<﹣2【考点】估算(ɡū suàn)无理数的大小.【分析】先把m化简,再估算大小,即可解答.【解答】解;m=×(﹣2)=,∵,∴,故选:C.【点评】本题考查了公式无理数的大小,解决本题的关键是估算的大小.17.如图,表示的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C【考点】估算无理数的大小;实数与数轴.【专题】计算题.【分析】确定出7的范围,利用算术平方根求出的范围,即可得到结果.【解答】解:∵6.25<7<9,∴2.5<<3,则表示的点在数轴上表示时,所在C和D两个字母之间.故选A【点评】此题考查了估算无理数的大小,以及实数与数轴,解题(jiě tí)关键是确定无理数的整数部分即可解决问题.18.与1+最接近(jiējìn)的整数是()A.4 B.3 C.2 D.1【考点】估算(ɡū suàn)无理数的大小.【分析(fēnxī)】由于4<5<9,由此根据算术平方根的概念可以找到5接近的两个(liǎnɡ ɡè)完全平方数,再估算与1+最接近的整数即可求解.【解答】解:∵4<5<9,∴2<<3.又5和4比较接近,∴最接近的整数是2,∴与1+最接近的整数是3,故选:B.【点评】此题主要考查了无理数的估算能力,估算无理数的时候,“夹逼法”是估算的一般方法,也是常用方法.19.在数轴上标注了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④【考点】估算无理数的大小;实数与数轴.【分析】根据数的平方,即可解答.【解答】解:2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,∵7.84<8<8.41,∴,∴的点落在段③,故选:C.【点评】本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.20.若a=(﹣3)13﹣(﹣3)14,b=(﹣0.6)12﹣(﹣0.6)14,c=(﹣1.5)11﹣(﹣1.5)13,则下列(xiàliè)有关a、b、c的大小关系(guān xì),何者正确?()A.a>b>c B.a>c>b C.b>c>a D.c>b>a【考点】实数大小(dàxiǎo)比较.【分析(fēnxī)】分别判断出a﹣b与c﹣b的符号,即可得出答案.【解答(jiědá)】解:∵a﹣b=(﹣3)13﹣(﹣3)14﹣(﹣0.6)12+(﹣0.6)14=﹣313﹣314﹣12+14<0,∴a<b,∵c﹣b=(﹣1.5)11﹣(﹣1.5)13﹣(﹣0.6)12+(﹣0.6)14=(﹣1.5)11+1.513﹣0.612+0.614>0,∴c>b,∴c>b>a.故选D.【点评】此题考查了实数的大小比较,关键是通过判断两数的差,得出两数的大小.21.若k<<k+1(k是整数),则k=()A.6 B.7 C.8 D.9【考点】估算无理数的大小.【分析】根据=9, =10,可知9<<10,依此即可得到k的值.【解答】解:∵k<<k+1(k是整数),9<<10,∴k=9.故选:D.【点评】本题考查了估算无理数的大小,解题关键是估算的取值范围,从而解决问题.22.估计×+的运算结果应在哪两个连续自然数之间()A.5和6 B.6和7 C.7和8 D.8和9【考点】估算无理数的大小(dàxiǎo);二次根式的乘除法.【分析】先把各二次根式(gēnshì)化为最简二次根式,再进行计算.【解答(jiědá)】解:×+=2×+3=2+3,∵6<2+3<7,∴×+的运算(yùn suàn)结果在6和7两个连续自然数之间,故选:B.【点评】本题考查的是二次根式的混合(hùnhé)运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.最后估计无理数的大小.23.估计的值在()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【考点】估算无理数的大小.【专题】计算题.【分析】由于9<11<16,于是<<,从而有3<<4.【解答】解:∵9<11<16,∴<<,∴3<<4.故选C.【点评】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.二、填空题24.把7的平方根和立方根按从小到大的顺序排列为.【考点】实数大小比较.【专题】计算题.【分析】先分别得到7的平方根和立方根,然后比较大小.【解答】解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<.故答案(dá àn)为:﹣<<.【点评】本题考查了实数大小比较:正数大于0,负数(fùshù)小于0;负数的绝对值越大,这个数越小.25.若a<<b,且a、b是两个连续(liánxù)的整数,则a b= 8 .【考点】估算(ɡū suàn)无理数的大小.【分析(fēnxī)】先估算出的范围,即可得出a、b的值,代入求出即可.【解答】解:∵2<<3,∴a=2,b=3,∴a b=8.故答案为:8.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出的范围.26.若两个连续整数x、y满足x<+1<y,则x+y的值是7 .【考点】估算无理数的大小.【分析】先估算的范围,再估算+1,即可解答.【解答】解:∵,∴,∵x<+1<y,∴x=3,y=4,∴x+y=3+4=7.故答案为:7.【点评】本题考查了估算无理数的大小,解决本题的关键是估算的范围.27.黄金比>(用“>”、“<”“=”填空)【考点】实数大小比较.【分析】根据分母相同,比较分子的大小即可,因为2<<3,从而得出﹣1>1,即可比较大小.【解答】解:∵2<<3,∴1<﹣1<2,∴>,故答案(dá àn)为:>.【点评】本题(běntí)考查了实数的大小比较,解题的关键是熟练掌握在哪两个整数(zhěngshù)之间,再比较大小.28.请将2、、这三个数用“>”连结起来>>2 .【考点(kǎo diǎn)】实数大小比较.【专题(zhuāntí)】存在型.【分析】先估算出的值,再比较出其大小即可.【解答】解:∵≈2.236, =2.5,∴>>2.故答案为:>>2.【点评】本题考查的是实数的大小比较,熟记≈2.236是解答此题的关键.29.的整数部分是 3 .【考点】估算无理数的大小.【分析】根据平方根的意义确定的范围,则整数部分即可求得.【解答】解:∵9<13<16,∴3<<4,∴的整数部分是3.故答案是:3.【点评】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.30.实数﹣2的整数部分是 3 .【考点】估算无理数的大小.【分析】首先得出的取值范围,进而得出﹣2的整数部分.【解答(jiědá)】解:∵5<<6,∴﹣2的整数(zhěngshù)部分是:3.故答案(dá àn)为:3.【点评】此题主要考查了估计(gūjì)无理数大小,得出的取值范围(fànwéi)是解题关键.内容总结。

2020-2021学年华东师大新版八年级上册数学《第11章 数的开方》单元测试卷(有答案)

2020-2021学年华东师大新版八年级上册数学《第11章 数的开方》单元测试卷(有答案)

2020-2021学年华东师大新版八年级上册数学《第11章数的开方》单元测试卷一.选择题1.下列算式中错误的是()A.B.C.D.2.下列实数中的无理数是()A.0.7B.C.πD.3.下列判断中,你认为正确的有()(1);(2)是分数;(3)0的倒数是0;(4)的值是±3.A.3个B.2个C.1个D.0个4.一个正数的两个平方根分别是2a﹣1与﹣a+2,则这个正数是()A.1B.﹣1C.9D.﹣35.的立方根是()A.±B.C.D.6.利用如图所示的计算器进行计算,按键操作不正确的是()A.按键即可进入统计算状态B.计算的值,按键顺序为:C.计算结果以“度”为单位,按键可显示以“度”“分”“秒”为单位的结果D.计算器显示结果为时,若按键,则结果切换为小数格式0.3333333337.已知m是的整数部分,n是的小数部分,则m2﹣n的值是()A.6﹣B.6C.12﹣D.138.已知=0,则(a﹣b)2020的值为()A.1B.﹣1C.±1D.09.下列说法正确的是()A.任何实数都有平方根B.无限小数是无理数C.负数没有立方根D.﹣8的立方根是﹣210.若规定,f(x)表示最接近x的整数(x≠n+0.5,n整数)例如:f(0.7)=1,f(2.3)=2,f(5)=5,则f(1)+f()+f()+…+f()的值()A.16B.17C.18D.19二.填空题11.的绝对值是.12.若利用计算器求得=2.573,=8.136,则根据此值估计6619的算术平方根是.13.定义新运算※,对于任意实数a,b都有a※b=a2+ab,如果3※4=32+3×4=9+12=21,那么方程x※5=0的解为.14.已知x为整数,且满足﹣≤x≤,则x=.15.若|3﹣a|+=0,则a+b的立方根是.16.若实数m在数轴上对应的点到原点的距离为2,实数n是最大的负整数,则代数式(m+n)(m﹣n)的值是.17.已知实数﹣,0.16,,,,,其中为分数的是.18.已知:一个正数的两个平方根分别是2a﹣3和a﹣2,则a的值是.19.面积为S的正方形的边长为.20.若(x﹣1)3=﹣64,则x=.三.解答题21.一个正数的两个平方根为2n+1和n﹣4,2n是2m+4的立方根,的小数部分是k,求的平方根.22.解方程:(1)25x2﹣169=0;(2)8(x+1)3=﹣125.23.作图:在数轴上作出表示﹣、3﹣的点(保留作图痕迹,不写作法).24.如图,AB∥CD,E为线段CD上一点,∠BAD=n°,n=15xy,且+(y﹣3)2=0.(1)求n的值.(2)求证:∠PEC﹣∠APE=135°.(3)若P点在射线DA上运动,直接写出∠APE与∠PEC之间的数量关系.(不考虑P 与A、D重合的情况)25.用计算器探索.已知按一定规律排列的一组数:1,,,…,,,如果从中选择出若干个数,使它们的和大于3,那么至少要选几个数?26.已知实数x,y满足关系式+|y2﹣1|=0.(1)求x,y的值;(2)判断是有理数还是无理数?并说明理由.参考答案与试题解析一.选择题1.解:A、﹣=﹣0.8,正确,不合题意;B、±=±1.4,正确,不合题意;C、=﹣,正确,不合题意;D、=,原式计算错误,符合题意.故选:D.2.解:A、0.7是有限小数,属于有理数;B、是分数、属于有理数;C、π是无理数;D、,是整数,属于有理数.故选:C.3.解:(1),正确;(2)是无理数,不是分数,错误;(3)0没有倒数,错误;(4)=3,错误;故选:C.4.解:∵一个正数的两个平方根分别是2a﹣1与﹣a+2,∴2a﹣1﹣a+2=0,解得:a=﹣1,故2a﹣1=﹣3,则这个正数是:(﹣3)2=9.故选:C.5.解:的立方根是;故选:D.6.解:A、按键即可进入统计算状态是正确的,故选项A不符合题意;B、计算的值,按键顺序为:,故选项B符合题意;C、计算结果以“度”为单位,按键可显示以“度”“分”“秒”为单位的结果是正确的,故选项C不符合题意;D、计算器显示结果为时,若按键,则结果切换为小数格式0.333333333是正确的,故选项D不符合题意;故选:B.7.解:∵3<<4,∴m=3;又∵3<<4,∴n=﹣3;则m2﹣n=9﹣+3=12﹣.故选:C.8.解:∵+=0,∴a=0,b=0,∴(a﹣b)2020=02020=0,故选:D.9.解:A、只有正数和0有平方根,原说法错误,故本选项不符合题意;B、无限不循环小数才是无理数,原说法错误,故本选项不符合题意;C、任何实数都有立方根,原说法错误,故本选项不符合题意;D、﹣8的立方根是﹣2,原说法正确,故本选项符合题意;故选:D.10.解:f(x)表示的意义可得,f(1)=1,f()=1,f()=2,f()=2,f()=2,f()=2,f()=3,f()=3,f()=3,∴f(1)+f()+f()+…+f()=1+1+2+2+2+2+3+3+3=19,故选:D.二.填空题11.解:∵4<<5,∴2<<,则﹣>0,∴﹣的绝对值是:﹣.故答案为:﹣.12.解:被开方数每扩大为原来的100倍,其算术平方根相应的扩大为原来的10倍,∵,∴.故答案为:81.36.13.解:x※5=0,则x2+5x=0,x(x+5)=0,解得:x=0或﹣5.故答案为:0或﹣5.14.解:∵﹣2<﹣<﹣1,1<<2,∴x应在﹣2和2之间,则x=﹣1,0,1.故答案为:﹣1,0,1.15.解:∵|3﹣a|+=0,∴3﹣a=0且2﹣b=0,解得a=3,b=2,则a+b的立方根===,故答案为:.16.解:∵实数m在数轴上对应的点到原点的距离为2,∴m=2或m=﹣2、∵实数n是最大的负整数,∴n=﹣1,∴当m=2,n=﹣1时,(m+n)(m﹣n)=1×3=3;当m=﹣2,n=﹣1时,(m+n)(m﹣n)=﹣3×(﹣1)=3.故答案为:3.17.解:=1.1,在实数﹣,0.16,,,,中,分数有﹣,0.16,.故答案为:﹣,0.16,.18.解:∵一个正数的两个平方根分别是2a﹣3和a﹣2,∴2a﹣3+a﹣2=0,解得:a=,故答案为:.19.解:面积为S的正方形的边长表示为,故答案为:.20.解:∵(﹣4)3=﹣64,(x﹣1)3=﹣64,∴x﹣1=﹣4,解得x=﹣3.故答案为:﹣3.三.解答题21.解:∵一个数的平方根为2n+1和n﹣4,∴2n+1+n﹣4=0,∴n=1,∴2n=2,∵2n是2m+4的立方根,∴2m+4=8,解得m=2;∵,的小数部分是k,∴k=,∴=2+1﹣(﹣6)+=2+1﹣+6+=9.22.解:(1)25x2﹣169=0,则x2=,解得:x=±;(2)8(x+1)3=﹣125,则(x+1)3=﹣,解得:x=﹣.23.解:因为10=9+1,则首先作出以1和3为直角边的直角三角形,则其斜边的长即是.再以原点为圆心,以为半径画弧,和数轴的负半轴交于一点,这点表示的数即为;作出一条线段等于OB=,再以O为圆心,BC的长为半径画弧交数轴于E即可,则点E为所求的点.24.(1)解:∵+(y﹣3)2=0,∴x﹣1=0,y﹣3=0,∴x=1,y=3,∴n=15×1×3=45;(2)证明:如图1,过P作PF∥AB,则∠APF=180°﹣∠BAD=135°,∵AB∥CD,∴CD∥PF,∴∠PEC=∠FPE,∴∠PEC﹣∠APE=∠APF=135°;(3)解:分两种情况:①当P在线段AD上时,如图2,∵AB∥CD,∴∠ADC=∠BAD=45°,∴∠DPE+∠DEP=180°﹣45°=135°,∴∠PEC+∠APE=360°﹣135°=225°;③当P在A点左边时,如图3,∵∠PEC=∠APE+∠PDE,∴∠PEC﹣∠APE=∠PDE=45°.25.解:左边第一个数是1,第二个是=≈0.7,第三个数是=≈0.57,第四个数是==0.5,第五个数是=≈0.44,第六个数是=≈0.41,1++++=1+0.7+0.56+0.5+0.44=3.2,所以可以把这些数加起来,得出至少要5个数和才大于3.26.解:(1)由题意,得,解得:;(2)当x=2,y=1时,=,是无理数.当x=2,y=﹣1时,==2,是有理数.。

_ 华东师大版八年级数学上册《第11章 数的开方》 单元测试卷

_ 华东师大版八年级数学上册《第11章 数的开方》 单元测试卷

第11章数的开方一、选择题(本大题共7小题,共21分)1.下列各数﹣,,,0.020020002…中是无理数的个数有()A.1B.2C.3D.4 2.64的平方根是()A.±8B.±4C.8D.32 3.﹣64的立方根是()A.﹣4B.4C.±4D.不存在4.如图,在数轴上表示实数的可能是()A.点P B.点Q C.点M D.点N 5.25的算术平方根是()A.5B.﹣5C.±5D.6.下列关于立方根的说法,正确的是()A.﹣9的立方根是﹣3B.立方根等于它本身的数有﹣1,0,1C.﹣的立方根为﹣4D.一个数的立方根不是正数就是负数7.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,用式子表示是=±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是()A.0个B.1个C.2个D.3个二、填空题(本大题共11小题,共33分)8.49的算术平方根是.9.比较大小:+14(填“>”、“<”或“=”).10.若|y﹣2|=1,则y=.11.﹣125的立方根是.12.的相反数.13.6的平方根为.14.大于且小于的整数是.15.若的算术平方根是2,则2x﹣3的平方根是.16.已知正方形A的面积是正方形B面积的3倍,正方形B的面积是3cm2,则正方形A的边长是cm.17.观察下列各式:,…将你猜想到的规律用一个式子来表示:.18.按要求填空:(1)填表:a0.00040.044400(2)根据你发现规律填空:已知:,则=,=;已知:,,则x=.三、计算题(本大题共3小题,共33分)19.计算:结果精确到0.1).20.先阅读下面的解题过程,然后解答:化简.解:∵,,∴.根据上述方法化简:.21.计算:.四、解答题(本大题共5小题,共33分)22.将下列各数填入相应的括号里:﹣|﹣0.7|,﹣(﹣9),﹣5,0,8,﹣2,,,﹣1.121121112…,﹣0..整数集合{…};负分数集合{…};无理数集合{…}.23.一个正数a的平方根是3m﹣1和7﹣5m,求a的值.24.如果(2x+1)3+=1,试求x的值.25.已知(1)求x,y的值;(2)求26.请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的表面积.参考答案一、选择题(本大题共7小题,共21分)1.B.2.A.3.A.4.B.5.A.6.B.7.D.二、填空题(本大题共11小题,共33分)8.7.9.>.10.3或1.11.﹣5.12.2﹣.13..14.2.15.±1.16.3.17..18.(1)0.02,0.2,2,20;(2)26.38,0.02638,3800.三、计算题(本大题共3小题,共33分)19.解:原式≈2×1.73﹣1.41+1.58≈3.46﹣1.41+1.58≈3.63≈3.6.20.解:==﹣.21.解:∵m<﹣,∴m﹣2<0,m+3<0,∴====.四、解答题(本大题共5小题,共33分)22.解:整数集合{﹣(﹣9),0,8,﹣2…};负分数集合{﹣|﹣0.7|,﹣5,﹣0.…};无理数集合{,﹣1.121121112……}.故答案为:﹣(﹣9),0,8,﹣2;﹣|﹣0.7|,﹣5,﹣0.;,﹣1.121121112….23.解:∵一个正数a的平方根是3m﹣1和7﹣5m,(3m﹣1)+(7﹣5m)=0解得,m=3,∴3m﹣1=8,7﹣5m=﹣8,∴a=(±8)2=64,即a的值是64.24.解:∵(2x+1)3+=1,∴(2x+1)3=,则2x+1=,解得:x=﹣.25.解:(1)∵+|y﹣5|=0,∴x﹣20=0,y﹣5=0,解得x=20,y=5;(2)当x=20,y=5时,===5.26.解:(1)设魔方的棱长为xcm,可得:x3=216,解得:x=6答:该魔方的棱长6cm;(2)设该长方体纸盒的长为ycm,则6y2=600,故y2=100,解得:y=±10因为y是正数,所以y=1010×10×2+10×6×4=440(平方厘米)答:该长方体纸盒的表面积为440平方厘米.。

数的开方 有答案

数的开方  有答案

数的开方一、填空题1.(3分)﹣125的立方根是,9的算术平方根是.的平方根是.2.(3分)如果|x|=,那么x= ;如果x2=9,那么x= .3.要使式子有意义,则x可以取的最小整数是.4.平方根等于本身的数是,立方根等于本身的数是.5.(3分)若a、b是实数,,则a2﹣2b= .6.(3分)的立方根是.计算:= .7.(3分)若和互为相反数,求的值为.8.(3分)已知正数a和b,有下列命题:(1)若a+b=2,则≤1(2)若a+b=3,则≤(3)若a+b=6,则≤3,根据以上的规律猜想:若a+b=n,则≤.二、选择题9.下列为(﹣3)2的算术平方根的是() A. 3 B. 9 C.﹣3 D.±310.下列叙述正确的是()A. 0.4的平方根是±0.2 B.﹣(﹣2)3的立方根不存在C.±6是36的算术平方根 D.﹣27的立方根是﹣311.在实数0、3、、2.236、π、、3.14中无理数的个数是()A. 1 B. 2 C. 3 D. 412.一个自然数的算术平方根是a,则与这个自然数相邻的后续自然数的平方根是()A. B. C. D.13.对于实数a、b,若=b﹣a,则()A. a>b B. a<b C.a≥b D.a≤b14.(3分)估算的值()A.在5和6之间 B.在6和7之间 C.在7和8之间 D.在8和9之间15.设x、y为实数,且,则|x﹣y|的值是()A. 1 B. 9 C. 4 D. 5三、解答题16.直接写出答案①②③④⑤.17.解方程(1)9(x﹣3)2=64 (2)(2x﹣1)3=﹣8.18.(2011秋•阳谷县期末)已知x、y满足,求的平方根.19.(6分)已知一个正方形边长为3cm,另一个正方形的面积是它的面积的4倍,求第二个正方形的边长.(精确到0.1cm)数学单元测试卷(数的开方)参考答案与试题解析一、填空题1.(3分)﹣125的立方根是﹣5 ,9的算术平方根是 3 .的平方根是±2.考点:立方根;平方根;算术平方根.专题:计算题.分析:原式利用立方根,算术平方根,以及平方根定义计算即可得到结果.解答:解:﹣125的立方根为﹣5;9的算术平方根为3;=4的平方根为±2.故答案为:﹣5;3;±2.点评:此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.2.(3分)如果|x|=,那么x= ;如果x2=9,那么x= ±3.考点:实数的性质;平方根.分析:根据互为相反数的绝对值相等,可得答案;根据开方运算,可得一个数的平方根.解答:解:|x|=,那么x=;x2=9,那么x=±3;故答案为:,±3.点评:本题考查了实数的性质,利用了绝对值的性质,平方根的性质,注意一个正数有两个平方根,这两个平方根互为相反数.3.要使式子有意义,则x可以取的最小整数是 2 .考点:算术平方根.分析:由于式子是一个二次根式,所以被开方数是一个非负数,由此即可求出x的取值范围,然后可以求出x可以取的最小整数.解答:解:∵式子有意义,∴3x﹣5≥0,∴x≥,∴x可以取的最小整数是x=2.点评:此题主要考查了二次根式的定义,首先利用二次根式的定义求出字母的取值范围,然后利用x 取整数的要求即可解决问题.4.平方根等于本身的数是0 ,立方根等于本身的数是0,±1.考点:立方根;平方根.分析:分别利用平方根和立方根的特殊性质即可求解.解答:解:∵平方根等于它本身的数是0,立方根都等于它本身的数是0,1,﹣1.故填0;0,±1.点评:此题主要考查了平方根和立方根的运用,要掌握一些特殊的数字的特殊性质,如:±1,0.牢记这些数的特性可以快捷的解决这类问题.5.(3分)若a、b是实数,,则a2﹣2b= 2 .考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:两项非负数之和等于0,分别求出a和b的值.解答:解:∵,∴a﹣1=0且2b+1=0解得a=1 b=﹣∴a2﹣2b=1﹣(﹣1)=2,故答案为2点评:此题属于低难度题型,求出a和b的值是关键.6.(3分)的立方根是﹣2 .计算:= .考点:立方根;算术平方根.专题:计算题.分析:原式利用立方根及算术平方根的定义计算即可得到结果.解答:解:﹣=﹣8的立方根为﹣2;=.故答案为:﹣2;点评:此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.7.(3分)若和互为相反数,求的值为.考点:立方根.分析:根据相反数定义得出2a﹣1=﹣(1﹣3b),推出2a=3b,即可得出答案.解答:解:∵和互为相反数,∴2a﹣1=﹣(1﹣3b),2a=3b,和互为相反∴=,故答案为:.点评:本题考查了立方根和相反数的应用,关键是得出方程2a﹣1=﹣(1﹣3b).8.(3分)已知正数a和b,有下列命题:(1)若a+b=2,则≤1(2)若a+b=3,则≤(3)若a+b=6,则≤3,根据以上的规律猜想:若a+b=n,则≤.考点:算术平方根.专题:规律型.分析:观察已知三等式得到一般性规律,写出即可.解答:解:根据以上的规律猜想:若a+b=n,则≤=,故答案为:点评:此题考查了算术平方根,弄清题中的规律是解本题的关键.二、选择题9.下列为(﹣3)2的算术平方根的是()A. 3 B. 9 C.﹣3 D.±3考点:算术平方根.分析:先求出(﹣3)2=9,再根据算术平方根的定义解答即可.解答:解:∵(﹣3)2=9,∴(﹣3)2的算术平方根是3.故选A.点评:本题考查了算术平方根的定义,是基础题,要注意正数的算术平方根都是正数.10.下列叙述正确的是()A. 0.4的平方根是±0.2 B.﹣(﹣2)3的立方根不存在C.±6是36的算术平方根 D.﹣27的立方根是﹣3考点:立方根;平方根;算术平方根.专题:常规题型.分析:根据平方根的定义,立方根的定义,算术平方根的定义,对各选项分析判断后利用排除法.解答:解:A、应为0.04的平方根是±0.2,故本选项错误;B、﹣(﹣2)3=8,立方根是2,存在,故本选项错误;C、应为6是36的算术平方根,故本选项错误;D、﹣27的立方根是﹣3,正确.故选D.点评:本题考查了平方根的定义,算术平方根的定义,立方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根,任何实数都有立方根.11.在实数0、3、、2.236、π、、3.14中无理数的个数是()A. 1 B. 2 C. 3 D. 4考点:无理数.专题:计算题.分析:根据无理数的定义得到无理数有﹣,π共两个.解答:解:无理数有:﹣,π.故选:B.点评:本题考查了无理数的定义:无限不循环小数叫无理数,常见形式有:①开方开不尽的数,如等;②无限不循环小数,如0.101001000…等;③字母,如π等.12.一个自然数的算术平方根是a,则与这个自然数相邻的后续自然数的平方根是()A. B. C. D.考点:算术平方根;平方根.分析:根据算术平方根的定义得这个自然数为a2,则与这个自然数相邻的后续自然数a2+1,由此即可得到其平方根.解答:解:∵一个自然数的算术平方根是a,∴这个自然数为a2,∴与这个自然数相邻的后续自然数a2+1,∴其平方根为±.故选D.点评:本题考查了求一个数的算术平方根,平方根,比较简单.13.对于实数a、b,若=b﹣a,则()A. a>b B. a<b C.a≥b D.a≤b考点:二次根式的性质与化简.分析:已知等式左边为a﹣b的算术平方根,结果为非负数,即a﹣b≥0.解答:解:我们知道一个数的算术平方根为非负数,又因为=|a﹣b|=b﹣a,可以知道a﹣b≤0,则a≤b.故选D.点评:注意:不可忽略a=b,因为a=b时,a﹣b=b﹣a.14.(3分)估算的值()A.在5和6之间 B.在6和7之间 C.在7和8之间 D.在8和9之间考点:估算无理数的大小.分析:先求出4的范围,再两边都减去2,即可得出答案.解答:解:∵8<4<9,∴6<4﹣2<7,即的值在6和7之间.故选:B.点评:本题考查了估算无理数的大小的应用,解此题的关键是求出4的范围.15.设x、y为实数,且,则|x﹣y|的值是()A. 1 B. 9 C. 4 D. 5考点:算术平方根.分析:首先根据二次根式的定义即可确定x的值,进而求出y的值,代入原式即可得出|x﹣y|的值.解答:解:根据题意,有意义,而x﹣5与5﹣x互为相反数,则x=5,故y=4;所以|x﹣y|=1;故选A.点评:本题考查的是根号下的数为非负数,去绝对值后为非负数.三、解答题16.直接写出答案①②③④⑤.考点:立方根;算术平方根.专题:计算题.分析:①原式利用算术平方根定义计算即可得到结果;②原式利用二次根式性质化简即可得到结果;③原式利用立方根定义计算即可得到结果;④原式利用立方根定义计算即可得到结果;⑤原式利用算术平方根定义计算即可得到结果.解答:解:①原式=12;②原式=±;③原式=﹣0.4;④原式=5;⑤原式=.点评:此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.17.解方程(1)9(x﹣3)2=64(2)(2x﹣1)3=﹣8.考点:立方根;平方根.专题:计算题.分析:(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用立方根定义开立方即可求出解.解答:解:(1)方程整理得:(x﹣3)2=,开方得:x﹣3=±,解得:x1=,x2=;(2)开立方得:2x﹣1=﹣2,解得:x=﹣.点评:此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.18.(2011秋•阳谷县期末)已知x、y满足,求的平方根.考点:非负数的性质:算术平方根;非负数的性质:绝对值;平方根;解二元一次方程组.专题:计算题.分析:根据非负数的性质列出方程组,然后解方程组求出x、y的值,再代入代数式求值,然后根据平方根的定义求解即可.解答:解:由可得,解得,∴2x﹣y=2×8﹣×5=12,∵(±2)2=12,∴的平方根是±2.故答案为:±2.注:因为还未学到二次根式的化简,结果为也为正确答案.点评:本题主要考查了非负数的性质,解二元一次方程组,根据几个非负数的和等于0,则每一算式都等于0列出方程组是解题的关键.19.(6分)已知一个正方形边长为3cm,另一个正方形的面积是它的面积的4倍,求第二个正方形的边长.(精确到0.1cm)考点:算术平方根.专题:计算题.分析:根据题意列出算式,利用算术平方根定义计算即可得到结果.解答:解:根据题意得:=2≈3.5(cm),则第二个正方形的边长为3.5cm.点评:此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.。

数的开方测试题

数的开方测试题

数的开方测试题数的开方是数学中一个重要的概念,它涉及到对一个数进行开方运算,以求解出相应的平方根。

开方运算在日常生活中有着广泛的应用,如测量、计算、设计等各个领域。

因此,对数的开方进行深入理解和掌握是非常必要的。

数的开方运算可以理解为求解一个数的平方根。

在数学上,任何一个非负数x都有一个唯一的正数平方根,记作√x。

同时,任何一个实数都有无数个平方根,这些平方根可以是正数、负数,也可以是零。

以下是一些关于数的开方的测试题,旨在帮助大家理解和掌握数的开方运算。

7a. (注:这是一个很大的数)若x是64的平方根,则x=_______.答案:x=±8,因为正数的平方根有两个,它们互为相反数。

一个数的平方根是123,则它的另一个平方根是_______.答案:-123,因为一个正数的平方根有两个,它们互为相反数。

答案:x=±2,因为正数的平方根有两个,它们互为相反数。

,因为正数的平方根有两个,它们互为相反数。

,因为正数的立方根只有一个。

解答:根据平方根的定义,对于任何一个正数,都有两个平方根,它们互为相反数。

所以选项A和B都是错误的。

选项C虽然部分正确,但并不是该题的最佳答案。

正确的答案是D,以上都不对。

解答:根据平方根的定义,0也有平方根,它等于0本身。

因此,选项C是错误的。

而选项A、B和D都是正确的。

如果一个数的平方根是a和-a,那么这个数是________。

如果一个数的平方根是2m和n-3m,那么这个数是________。

一个正数的平方根是x和y,如果x>y,那么这个正数是________。

由题意得,a + (-a) = 0,解得这个数是0。

由题意得,(2m)2 = (n-3m)2,解得这个数是0。

由题意得,x2 = y2,即x = y或x = -y,因为x>y,所以x = y不成立,所以这个正数是y的平方。

(2) -25没有平方根,因为负数没有平方根;(4) 25的平方根是±5。

第11章 数的开方数学八年级上册-单元测试卷-华师大版(含答案)

第11章 数的开方数学八年级上册-单元测试卷-华师大版(含答案)

第11章数的开方数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、±2是4的()A.平方根B.相反数C.绝对值D.算术平方根2、下列说法正确的是()A.|-2|=-2B.0的倒数是0C.4的平方根是2D.-3的相反数是33、下列实数中最大的是()A. B. C. D.4、实数的值在( )A.0和1之间B.1和2之间 C.2和3之间 D.3和4之间5、下列各式运算中正确的是()A. B. C. D.6、下列有关平方根的叙述,正确的个数是()①如果a存在平方根,那么a>0;②如果a有两个不同的平方根,那么a>0;③如果a没有平方根,那么a<0;④如果a>0,那么a的平方根也大于0.A.1B.2C.3D.47、下列命题中,为真命题的是()A. 是13的算术平方根B.三角形的一个外角大于任何一个内角C. 是最简二次根式D.两条直线被第三条直线所截,内错角相等8、估计()的值应在()A.1和2之间B.3和4之间C.4和5之间D.5和6之间9、实数的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间10、计算的结果为( )A.3B.C.D.11、下列说法中正确的是()A.10的平方根是100B.-2不是4的平方根C. 的平方根是D.0.01的算术平方根是0.112、下列计算正确的是()A. =3B.﹣=9C.﹣=1 D.|﹣3|=﹣313、下列说法中正确的是()A. 的平方根是B. 的算术平方根是C. 与相等 D. 的立方根是14、下列说法错误的是 ( )A.无理数的相反数还是无理数B.无理数都是无限小数C.正数、负数统称有理数D.实数与数轴上的点一一对应15、计算﹣()2+(+π)0+(﹣)﹣2的结果是()A.1B.2C.D.3二、填空题(共10题,共计30分)16、-2的倒数是________,4的算术平方根是________.17、计算:= ________。

(完整版)第11章数的开方单元测试题含答案

(完整版)第11章数的开方单元测试题含答案

第11章数的开方单元测试题姓名: ;成绩: ;一、选择题(4分×12=48分)1、16的算术平方根是( )A、±4 B、4 C、±2 D、22、下列各数一定是无理数的是( )A、2(-2) B、3π C、23() D、2549 3、下列各式计算正确的是( ) A 、366=± B 、416±=± C 、5)5(2-=- D 、10100=- 4、关于的叙述不正确的是( )A .=2B .面积是8的正方形的边长是C .是有理数D .在数轴上可以找到表示的点5、a 是一个无理数,则a 一定是一个( )A、非负实数 B、负实数 C、正有理数 D、非完全平方数6、若<a <,则下列结论中正确的是( )A .1<a <3B .1<a <4C .2<a <3D .2<a <4 7、下列各组中一定互为相反数的是( )272(-7) B、27()和27() C、1771- 3737-8、若a =-2+2×(-3), 23b =-,2c =--,则a , b , c 的大小关系是( )A、 a >b >c B、b >a >c C、c >a >b D、a >c >b9 4.3 2.0736≈,43 6.5574≈,下列运算正确的是( )0.430.65574≈ 43065.574≈430020.736≈ 430002073.6≈10、若2m ﹣4与3m ﹣1是同一个数的平方根,则m 的值是( )A .﹣3B .﹣1C .1D .﹣3或111、下列说法中错误的是( ) A .是0.25的一个平方根 B .正数a 的两个平方根的和为0C .的平方根是D .当x ≠0时,﹣x 2没有平方根 12、下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数; ③a 2的算术平方根是a ;④(π﹣4)2的算术平方根是π﹣4;⑤算术平方根不可能是负数,其中,不正确的有( )A .2个B .3个C .4个D .5个二、填空题(4分×6=24分)13、1-3的相反数是 ,绝对值是 ;14、平方根是本身的数有________,立方根是本身的数有_______;15、7的整数部分是__________,小数部分是_________;16、(a+2)2+|b -1|+c -3=0,则a +b +c = 。

《数的开方》综合练习题

《数的开方》综合练习题

《数的开方》练习试题1一、填空题1.若一个实数的算术平方根等于它的立方根,则这个数是_________; 2.数轴上表示5-的点与原点的距离是________; 3.2-的相反数是 ,3的倒数是 ,13-的相反数是 ;4.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ;5.计算:_______10_________,112561363=-=--,2224145-= ; 6.若一个数的平方根是8±,则这个数的立方根是 ;7.当______m 时,m -3有意义;当______m 时,33-m 有意义;8.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ; 9.22)(a a =成立的条件是___________; 10.若1122a a a a --=--,则a 满足条件________; 11.已知0)3(122=++-b a ,则=332ab; 12.若最简二次根式5231-+-+-y x y x y x 与与是同类根式,则=x ,=y ________; 二、选择题13 14 15 16 17 18 19 2013.下列运算正确的是( ) A 、7272+=+ B 、3232=+ C 、428=⋅ D 、228= 14.在实数0、3、6-、236.2、π、23、14.3中无理数的个数是( )A 、1B 、2C 、3D 、415.下列二次根式中与26-是同类二次根式的是( ) A 、18 B 、30 C 、48 D 、54 16.下列说法错误的是( )A 、1)1(2=-B 、()1133-=-C 、2的平方根是2±D 、()232)3(-⨯-=-⨯-17.下列说法中正确的有( )①带根号的数都是无理数;②无理数一定是无限不循环小数; ③不带根号的数都是有理数;④无限小数不一定是无理数; A 、1个B 、2个C 、3个D 、4个18.一个等腰三角形的两边长分别为25和32,则这个三角形的周长是( ) A 、32210+ B 、3425+ C 、32210+或3425+ D 、无法确定 19.如果321,32-=+=b a ,则有( )A 、b a >B 、b a =C 、b a <D 、ba 1= 20.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( )A 、1B 、9C 、4D 、5 三、计算题1.)32)(32(-+ 2.86127728⨯-+3.()()()62261322+-+- 4.22)2332()2332(--+5.61422164323+⨯- 6.321)37(4732+--÷--四、解方程1.()64392=-x 2.8)12(3-=-x五、解答题3.已知2323,2323-+=+-=y x ,求下列各式的值。

华师大版八年级上册第11章《数的开方》单元测试卷含答案

华师大版八年级上册第11章《数的开方》单元测试卷含答案

华师大版八年级上册第11章《数的开方》单元测试卷(满分100分)姓名:___________班级:___________学号:___________成绩:___________ 一.选择题(共8小题,满分24分,每小题3分)1.在﹣1,0,π,这四个数中,最大的数是()A.﹣1B.0C.πD.2.等于()A.﹣4B.4C.±4D.2563.实数﹣2,0.3,,﹣,﹣π中,无理数的个数是()A.2B.3C.4D.54.实数a,b,c在数轴上的对应点的位置如图所示,若|a|=|b|,则下列结论中错误的是()A.a+b=0B.a+c<0C.b+c>0D.ac<05.利用教材中的计算器依次按键如下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5B.2.6C.2.8D.2.96.下列说法,其中正确说法的个数是()①﹣64的立方根是4 ②49的算术平方根是±7③的立方根是④的平方根是A.1B.2C.3D.47.在实数范围内定义运算“☆”:a☆b=a+b﹣1,例如:2☆3=2+3﹣1=4.如果2☆x=1,则x的值是()A.﹣1B.1C.0D.28.利用计算器计算出的下表中各数的算术平方根如下:………0.250.7906 2.57.9062579.06250…根据以上规律,若≈1.30,≈4.11,则≈()A.13.0B.130C.41.1D.411二.填空题(共6小题,满分24分,每小题4分)9.(4分)我们规定:相等的实数看作同一个实数.有下列六种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③每个有理数都可以用数轴上唯一的点来表示;④数轴上每一个点都表示唯一一个实数;⑤没有最大的负实数,但有最小的正实数;⑥没有最大的正整数,但有最小的正整数.其中说法错误的有(注:填写出所有错误说法的编号)10.(4分)规定用符号[m]表示一个实数m的整数部分,例如[]=0,[π]=3,按此规定,[+1]=.11.(4分)若m,n为实数,且|m+3|+=0,则()2020的值为.12.(4分)甲同学利用计算器探索.一个数x的平方,并将数据记录如表:x16.216.316.416.516.616.716.816.917.0 x2262.44265.69268.96272.25275.56278.89282.24285.61289请根据表求出275.56的平方根是.13.(4分)的立方根是.14.(4分)比较大小:52.三.解答题(共8小题,满分52分)15.(5分)计算:(﹣1)2020﹣(+)+.16.(6分)求出下列x的值:(1)﹣27x3+8=0;(2)3(x﹣1)2﹣12=0.17.(6分)已知4a+7的立方根是3,2a+2b+2的算术平方根是4.(1)求a,b的值;(2)求6a+3b的平方根.18.(6分)(1)求出下列各数:①﹣27的立方根;②3的平方根;③的算术平方根.(2)将(1)中求出的每一个数准确地表示在数轴上,并用<连接大小.19.(6分)有一种用“☆”定义的新运算,对于任意实数a,b,都有a☆b=b2+2a+1.例如7☆4=42+2×7+1=31.(1)已知﹣m☆3的结果是﹣4,则m=.(2)将两个实数2n和n﹣2用这种新定义“☆”加以运算,结果为9,则n的值是多少?20.(7分)“比差法”是数学中常用的比较两个数大小的方法,即:.例如:比较﹣2与2的大小:∵﹣2﹣2=﹣4,又∵<<,则4<<5,∴﹣2﹣2=﹣4>0,∴﹣2>2.请根据上述方法解答以下问题:比较2﹣与﹣3的大小.21.(8分)阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:(1)若的整数部分为a,小数部分为b,求a2+b﹣的值.(2)已知:10+=x+y,其中x是整数,且0<y<1,求x﹣y的值.22.(8分)(1)用“<““>“或“=“填空:,;(2)由以上可知:①|1﹣|=,②||=(3)计算:|1﹣|+|﹣|+|﹣+…+|﹣|.(结果保留根号)参考答案一.选择题(共8小题,满分24分,每小题3分)1.解:根据实数比较大小的方法,可得﹣1<0<<π,∴在这四个数中,最大的数是π.故选:C.2.解:=4.故选:B.3.解:﹣,﹣π是无理数,共有2个无理数,故选:A.4.解:∵|a|=|b|,∴实数a,b在数轴上的对应点的中点是原点,∴a<0<b<c,且c>﹣a,∴a+b=0,A不符合题意;∴a+c>0,B符合题意;∴b+c>0,C不符合题意;∴ac<0,D不符合题意.故选:B.5.解:∵≈2.646,∴与最接近的是2.6,故选:B.6.解:①﹣64的立方根是﹣4,故此选项错误;②49的算术平方根是7,故此选项错误;③的立方根是,正确;④的平方根是:±,故此选项错误;故选:A.7.解:由题意知:2☆x=2+x﹣1=1+x,又2☆x=1,∴1+x=1,∴x=0.故选:C.8.解:由表格可以发现:被开方数的小数点(向左或者右)每移动两位,其算术平方根的小数点相应的向相同方向移动一位.∵16.9×100=1690,∴=×10=41.1.故选:C.二.填空题(共6小题,满分24分,每小题4分)9.解:①数轴上有无数多个表示无理数的点是正确的;②带根号的数不一定是无理数是正确的,如=2;③每个有理数都可以用数轴上唯一的点来表示是正确的;④数轴上每一个点都表示唯一一个实数是正确的;⑤没有最大的负实数,也没有最小的正实数,原来的说法错误;⑥没有最大的正整数,有最小的正整数,原来的说法正确.故答案为:⑤.10.解:∵3<<4,∴4<<5,∴[+1]=4.故答案为:411.解:∵|m+3|+=0,∴m+3=0,n﹣3=0,解得m=﹣3,n=3,则()2020=()2020=(﹣1)2020=1,故答案为:1.12.解:观察表格数据可知:=16.6所以275.56的平方根是±16.6.故答案为±16.6.13.解:的立方根是,故答案为:14.解:∵5=,2=,∴>,∴5>2.故答案为:>.三.解答题(共8小题,满分52分)15.解:原式=1﹣(6+)+3=1﹣7+3=﹣3.16.解:(1)∵﹣27x3+8=0,∴﹣27x3=﹣8,则x3=,解得:x=;(2)∵3(x﹣1)2﹣12=0,∴3(x﹣1)2=12,∴(x﹣1)2=4,则x﹣1=±2解得:x=3或x=﹣1.17.解:(1)∵4a+7的立方根是3,2a+2b+2的算术平方根是4,∴4a+7=27,2a+2b+2=16,∴a=5,b=2;(2)由(1)知a=5,b=2,∴6a+3b=6×5+3×2=36,∴6a+3b的平方根为±6.18.解:(1)①﹣27的立方根是﹣3;②3的平方根是±;③的算术平方根是3;(2)将(1)中求出的每个数表示在数轴上如下:用“<”连接为:﹣3<﹣<<3.19.解:(1)根据题意可得:﹣m☆3=32﹣2m+1=﹣4,解得:m=7;故答案为:7;(2)根据题意可得:2n☆(n﹣2)=9,即(n﹣2)2+4n+1=9,解得:n=2或﹣2,(n﹣2)☆2n=4n2+2(n﹣2)+1=9,解得:n=﹣2或,则n=﹣2或或2.20.解:2﹣﹣(﹣3)=2﹣+3=5﹣,∵<<,∴4<<5,∴5﹣>0,∴2﹣>﹣3.21.解:(1)∵3<<4,∴a=3,b=﹣3,∴a2+b﹣=32+﹣3﹣=6;(2)∵1<<2,又∵10+=x+y,其中x是整数,且0<y<1,∴x=11,y=﹣1,∴x﹣y=11﹣(﹣1)=12﹣.22.解:(1)∵1<2,2<3,∴<,<;故答案为:<;<;(2)∵1﹣<0,﹣<0,∴①|1﹣|=﹣1;②|﹣|=﹣;故答案为:﹣1;﹣;(3)原式=﹣1+﹣+﹣+…+﹣=﹣1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11 章数的开方单元测试题
姓名:;成绩:;
一、选择题( 4 分×12=48 分)
1、16 的算术平方根是()
A、± 4 B、4 C、± 2 D、2
2、下列各数一定是无理数的是()
A、 2
(-2 )B、 3
2
()D、
3
C、
25
49
3、下列各式计算正确的是()
2 D、100 10
A、36 6
B、16 4
C、( 5) 5
4、关于的叙述不正确的是()
A.=2
B.面积是8 的正方形的边长是
C.是有理数
D.在数轴上可以找到表示的点
5、 a 是一个无理数,则 a 一定是一个()
A、非负实数B、负实数C、正有理数D、非完全平方数
6、若<a<,则下列结论中正确的是()
A.1<a<3 B.1<a<4 C.2<a<3 D.2<a<4
7、下列各组中一定互为相反数的是()
A、 2 7 和 2 2 2
(-7)B、(+ 7)和(- 7)
C、1 7 和7 1 D、 3 7 和 3 7
8、若a=-2+2×(-3), 2
b 3 ,
c 2 ,则a, b, c的大小关系是()
A、a>b>c B、b>a>c C、c>a>b D、a>c> b
9、已知 4.3 2.0736,43 6.5574,下列运算正确的是()
A、0.43 0.65574 B、430 65.574
C、4300 20.736 D、43000 2073.6
10、若2m﹣4 与3m﹣1 是同一个数的平方根,则m 的值是()
A.﹣3 B.﹣1 C.1 D.﹣3 或1
11、下列说法中错误的是()
A.是0.25 的一个平方根B.正数a 的两个平方根的和为0
2
C.的平方根是D.当x≠0 时,﹣x 没有平方根
12、下列说法:
①任何数都有算术平方根;②一个数的算术平方根一定是正数;
③a
2 的算术平方根是a;④(π﹣4)2 的算术平方根是π﹣4;
⑤算术平方根不可能是负数,其中,不正确的有()
A.2 个B.3 个C.4 个D.5个
二、填空题( 4 分×6=24 分)
13、1-3的相反数是,绝对值是;
14、平方根是本身的数有________,立方根是本身的数有_______;
15、7 的整数部分是__________,小数部分是_________;
2+|b-1|+3-c =0,则a+b+c=。

16、
(a+2)
17、在如图所示的数轴上,点 C 与点B 关于点A 对称,C、A 两点对应的实数分别是和1,则点B 对应的实数为.21
世纪教育网版权所有
18、下面是一个某种规律排列的数阵:
根据数阵的规律,第n 行倒数第二个数是.(用含n 的代数式表示)
三、解答题(18 分)
19、求下列各式的值(每小题3 分,共9 分)
(1) 4 ×25 (-3 )2 ;(2)32 1 32 52 3 2 7
(3)
3
216
9 16
0 .25
1 7
9
20、 把下列各数分别填入适当的集合内:(
9 分)
3
1
3
8,
5, 3.1415, , 0.3222 ,
4, 6 ,0, 6
,1.3113111311113 .
3
4 无理数集合:
{
⋯ }
负数集合: { ⋯ } 分数集合: {
⋯ }
四、解答题( 10 分×4=40 分) 21、
实数 a ,b ,c 是数
轴A ,B ,C 所对应的数,如 +| a ﹣
b |c| 22、已知1
的平方根为±2,3x 1 的平方根为±4,求 3x +5y 的算术平方根. 23、请根据如图所示的对话内容回答题. (1)求该魔方的棱长; (2)求该长方的长. 24、若 A= a 2b 1 5a b 是 5a-b 的算术平方根, B= a b 1 b 2 a 2 是
2
1 a 的立方根, 求
A B 的平方根。

2017 年华师大版八年级上册第11 章数的开方单元测试题答案一、选择题
DBBCABDCACCA
二、填空题
13、 3 -1, 3 -1 14、0,± 1 和0;15 、2,7 -2;16、2;
17、2- ;
18、

三、解答题
19、(1)7 (2)6 (3)23 3
20、无理数: 3
5 ,4,1.31131113 11113
,,
3
负数: 3
5,3.1415,-0.322222 ,- 4
分数: 3.1415,-0.32222 ,6 1 4
四、解答题
21、a+ b﹣c;
22、5;
23、6cm,10cm;
24、4;。

相关文档
最新文档