流体流动-流体静力学

合集下载

2 化工原理_刘雪暖_第1章流体流动流体静力学

2  化工原理_刘雪暖_第1章流体流动流体静力学

⒉压力的单位及换算:
1atm=1.013105 Pa=10.33 mH2O=760mmHg 1at=9.81104Pa=10mH2O=735.6mmHg=1kgf/cm2 1atm=1.033at 1bar=1105Pa 1kgf/m2=1mmH2O
1.2 流体静力学 ⒊压力的表示方法:
以绝对真空(0atm)为基准:绝对压力,真实压力 以当地大气压为基准:表压或真空度 绝压>大气压:压力表→表压力 表压=绝压-大气压力 绝压<大气压:真空表→真空度 真空度=大气压力-绝压 注:①大气压力应从当地气压计上读得; ②对表压和真空度应予以注明。
整理后得:
P P1 P2 ( g ) gR gR
(ρ>>ρg)
1.2 流体静力学 ⒊斜管压差计(Inclined manometer)
采用倾斜 U 型管可在测量较小的压差 p 时, 得到较大的读数 R1 值。
压差计算式:
p 1 p 2 R 1 sin 0 g
1.2 流体静力学
(二)液面测量
• 解:
pa pb p a p o gh
h
p b p o o gR
2 . 72 m
o R

13600 1250 0 . 2
1.2 流体静力学
(三)液封高度的计算
如各种气液分离器的后面、 气体洗涤塔底以及气柜等, 为了防止气体泄漏和安全等 目的,都要采用液封(或称 水封)。
根据流体静力学基本方程式,可得:
P A P1 gZ 1
PB P2 gZ 2 0 gR
P1 gZ 1 P2 gZ
2
0 gR

化工原理 第二章 流体流动.

化工原理 第二章 流体流动.
内容提要
本章着重讨论流体流动过程的基本原理和流体 在管内的流动规律,并应用这些规律去分析和计 算流体的输送问题:
1. 流体静力学 3. 流体的流动现象 5. 管路计算
2. 流体在管内的流动 4. 流动阻力 6. 流量测量
要求 掌握连续性方程和能量方程 能进行管路的设计计算
概述 流体: 在剪应力作用下能产生连续变形的物体称
为流体。如气体和液体。
流体的特征:具有流动性。即
抗剪和抗张的能力很小; 无固定形状,随容器的形状而变化;
在外力作用下其内部发生相对运动。
流体的研究意义
流体的输送:根据生产要求,往往要将这些流体按照生产 程序从一个设备输送到另一个设备,从而完成流体输送的任
务:流速的选用、管径的确定、输送功率计算、输送设备选用
为理想气体)
解: 首先将摄氏度换算成开尔文:
100℃=273+100=373K
求干空气的平均分子量: Mm = M1y1 + M2y2 + … + Mnyn
Mm =32 × 0.21+28 ×0.78+39.9 × 0.01
=28.96
气体平均密度:


0
p p0
T0 T

0
T0 p0
p T

Mm R
解:应用混合液体密度公式,则有
1
m

a1
1

a2
2
0.6 0.4 1830 998
7.285 10 4
m 1370 kg / m3
例2 已知干空气的组成为:O221%、N278%和Ar1%(均为体积%)。 试求干空气在压力为9.81×104Pa、温度为100℃时的密度。(可作

化工原理第一章 流体流动

化工原理第一章 流体流动
两根不同的管中,当流体流动的Re相 同时,只要流体的边界几何条件相 似,则流体流动状态也相同,这称为 流体流动的相似原理。
例1-10 20℃的水在内径为 50mm的管内流动,流速为 2m/s,是判断管内流体流动的 型态。
三.流体在圆管内的速度分布
(a)层流
(b)湍流
u umax / 2 u 0.82umax
hf
le
d
u2 2
三.管内流体流动的总摩擦阻力损失计算 总摩擦阻力损失 =直管摩擦阻力损失+局部摩擦阻力损失
hf hf 直 hf局
l u2 ( le u2 z u2 )
d2 d 2
2
[
(
l
d
l
e
)
z
]
u2 2
管内流体流动的总摩擦阻力损失计算 直管管长 管件阀件当量长度法
hf
l
制氮气的流量使观察瓶内产生少许气泡。 已知油品的密度为850 kg/m3。并铡得水 银压强计的读数R为150mm,同贮槽内的 液位 h等于多少?
(三)确定液封高度 h p ρg
H 2O
气体 压力 p(表压)
为了安全, 实际安装
水 的管子插入 液面的深度
h 比上式略低
第二节 流体流动中的基本方程式
截面突然变化的局部摩擦损失
突然扩大
突然缩小
A1 / A2 0
z (1 A1 )2
A2
z 0.5(1 A2 )2
A1
当流体从管路流入截面较 大的容器或气体从管路排 到大气中时z1.0
当流体从容器进入管的入 口,是自很大截面突然缩 小到很小的截面z=0.5
局部阻力系数法
hf
z
u2 2

流体静力学基本方程

流体静力学基本方程
当p1-p2值较小时,R值也较小,若希望读数R清晰,可
采取三种措施:两种指示液的密度差尽可能减小、采用倾斜
U型管压差计、 采用微差压差计。
2)倾斜U型管压差计
假设垂直方向上的高 度 为 Rm, 读 数 为 R1, 与水平倾斜角度α
R 1sin R m
R1
Rm
sin
3) 微差压差计 U型管的两侧管的顶端增设两个小扩大
p 1 p 2 A B g R B g z
当管子平放时: p 1 p 2 A B g R
——两点间压差计算公式
当被测的流体为气体时,AB,B 可忽略,则
p1p2AgR
若U型管的一端与被测流体相连接,另一端与大气相通, 那么读数R就反映了被测流体的绝对压强与大气压之差,也 就是被测流体的表压。
表压强=绝对压强-大气压强
3)真空度: 真空表的读数 真空度=大气压强-绝对压强=-表压
绝对压强、真空度、表压强的关系:
真空度 B
绝对压强
A 表 压 强 大气压强线
绝 对 压 强
绝对零压线
当用表压或真空度来表示压强时,应分别注明。 如:4×103 Pa(真空度)、200 kPa(表压)。
表压真空度动画
液柱压差计测量液位的方法:
由压差计指示液的读数R可以 计算出容器内液面的高度。
当R=0时,容器内的液面高度
将达到允许的最大高度,容器内 液面愈低,压差计读数R越大。
远距离控制液位的方法:
压缩氮气自管口 经调节阀通入,调 节气体的流量使气 流速度极小,只要 在鼓泡观察室内看 出有气泡缓慢逸出 即可。
任意界面两侧所受压力,大小相等、方向相反;
作用于任意点不同方向上的压力在数值上均相同。
换算关系为: 1 a tm 1 .0 3 3 k g f/c m 2 7 6 0 m m H g 1 0 .3 3 m H 2 O 1 .0 1 3 3 b a r 1 .0 1 3 3 1 0 5 P a

化工原理--流体流动--第一节-流体静力学基本方程

化工原理--流体流动--第一节-流体静力学基本方程

① 液体混合物的密度ρm
mi 其中xwi m总 当m总 1 kg时,xwi mi m总 x x x 假设混合后总体积不变,V总 wA wB wn 1 2 n m
取1kg液体,令液体混合物中各组分的质量分率分别为:
xwA、xwB、 、xwn ,

1
m

2) 倾斜U型管压差计
假设垂直方向上的高度为Rm,读 数为R1,与水平倾斜角度α
R1 sin Rm
Rm R1 sin
2018/8/3
13
3) 微差压差计
U型管两侧管的顶端增设两个小扩大室,其内径与U型管的内径之比大于10, 装入两种密度接近且互不相溶的指示液A和C,且指示液C与被测流体B亦不互溶。 根据流体静力学方程可以导出:
2018/8/3 2
一、流体的密度
1、密度的定义
单位体积的流体所具有的质量,ρ; SI单位kg/m3。
m V 2、影响密度的主要因素
液体:
f T ——不可压缩性流体
f T , p
气体:
3、密度的计算
(1) 理想气体
f T , p ——可压缩性流体
0
1、压强的定义
流体垂直作用于单位面积上的压力,称为流体的静压强,简称压强。
SI制单位:N/m2,即Pa。 其它常用单位有: atm(标准大气压)、工程大气压kgf/cm2、bar;流体柱高度(mmH2O, mmHg等)。 换算关系为: 1atm 1.033kgf / cm 2 760mmHg
p1 p2 A C gR
——微差压差计两点间压差计算公式
2018/8/3
14
例:用3种压差计测量气体的微小压差 P 100Pa 试问:(1)用普通压差计,以苯为指示液,其读数R为多少? (2)用倾斜U型管压差计,θ=30°,指示液为苯,其读 数R’为多少? (3)若用微差压差计,其中加入苯和水两种指示液,扩大室截面积远远 大于U型管截面积,此时读数R〃为多少?R〃为R的多少倍? 3 3 水的密度 998 kg / m c 879kg / m 已知:苯的密度 A 计算时可忽略气体密度的影响。 解:(1)普通管U型管压差计 100 P R 0.0116m C g 879 9.807 (2)倾斜U型管压差计 (3)微差压差计 100 P " 0.0857m R A C g 998 879 9.807 R" 0.0857 故: 7.39 R 0 . 0116 2018/8/3

第一章-流体`流动

第一章-流体`流动

⊿ p~ R 一 一 对 应
U型测压管
•指示液与被测流体 物化学反应且不互溶; •密度大于流体密度
pA
A
h R
p1 p A gh p2 pa i gR
1
2
p A pa i gR gh A点的表压 p A pa i gR gh
第 二 节
流 体 静 力 解:(1) pA = p1 + ρH2O g(1.2 - R) 学 p1 = p2 = p3 = pa + ρHg g R 基 pA = pa + ρHg g R + ρH2O g(1.2 - R) 本 方 = pa + ( ρHg - ρH2O) g R + ρH2O g×1.2 程 = 1.279×105N/m2 式 (2) pA = [(1.279×105 ÷ 1.013×105) -1] ×1.033 = 0.271kgf/cm2
— 连续性假定
第 一 节 概 论
从微观上,流体是由大量的彼此之间有一定间隙 的单个分子所组成的,并且各单个分子作着随机的、混 乱的运动,如果以单个分子作为考察对象,那么流体将 是一种不连续的介质,所需处理的运动将是一种随机的 运动,问题将是非常复杂的。 但是,在研究流动规律时,人们感兴趣的不是单 个分子的微观运动,而是流体宏观的机械运动。
内能 流体所含的能量包括 动能
机械能
势能
位能 压能
○压能(静压能、压强能以及弹簧的势能等)
● 流体流动时存在着三种机械能(即动能、 位能和压能)之间的相互转换。
第 一 节 概 论
● 流体粘性所造成的剪力是一种内摩擦力, 它将消耗部分机械能使之转化为热能(即 内能)。输送机械提供能量补偿。 ● 气体在流动过程中因压强的变化而发生 体积变化时,存在着内能与机械能之间的 相互转换。

第一章 流体流动

第一章  流体流动

气体密度 一般温度不太低,压强不太高时气体可按理想气 体考虑,所以理想气体密度可由理想气体状态方程 导出: T0 p M pM m
v
RT
0
Tp 0
0 22.4 ,kg / m
3
混合气体密度
ρm= ρ1y1+ ρ2y2+ …+ ρnyn
MT0 p 22.4Tp 0
式 y1、y2……yn——气体混合物各组分的体积分数 ρ1、 ρ2、…、 ρn—气体混合物中各组分的密度,kg/m3; ρm——气体混合物的平均密度,kg/m3;
2.2 流体静力学基本方程的应用
1、压力的测量 (1) U型管压差计 构造: U型玻璃管内盛指示液A 指示液:指示液A(蓝色)与被测液B(白)互不相溶,且ρA>ρB 原理:图中a、b两点在相连通的同一静止流体内,并且在 同一水平面上,故a、b两点静压力相等,pa=pb。 对a、b两点分别由静力学基本方程,可得 pa= p1+ρB· g(Z+R) pb= p2+ρB· gZ+ρAgR
三、流体的研究方法
连续介质假说:流体由无数个连续的质点组
成。﹠质点的运动过程是连 续的 质点:由许多个分子组成的微团,其尺寸比 容器小的多,比分子自由程大的多。 (宏观尺寸非常小,微观尺寸又足够大)
四、流体的物理性质
◆密度ρ 单位体积流体的质量,称为流体的密度,其表 m 达式为
V
式中 ρ——流体的密度,kg/m3; m——流体的质量,kg; V——流体的体积,m3。 流体的密度除取决于自身的物性外,还与其温 度和压力有关。液体的密度随压力变化很小,可 忽略不计,但随温度稍有改变;气体的密度随温 度和压力变化较大。
pA=p0+ ρgz pB=p0+ ρi gR 又∵ pA=pB

流体力学重要公式

流体力学重要公式

流体流动流体特性→流体静力学→流体动力学→流体的管内流动gΔZ+Δu2/2+Δp/ρ=W e-∑h f静压能:p/ρ,J/kg静压头:p/(ρg),m流体密度:ρ,kg/m3 ,不可压缩流体与可压缩流体压强差:Δp,Pa, mmHg,表压强,绝对压强,大气压强,真空度流体静力学基本方程:gΔz+Δp/ρ=0或p1/ρ+gZ1=p1/ρ+gZ1或p=p A+hρg应用:U型压差计gΔZ+Δu2/2+Δp/ρ=W e-∑h f位能:gZ,J/kg位头:Z,m截面的选择基准面的选定gΔz+Δu2/2+Δp/ρ=W e-∑h f动能:u2/2,J/kg动压头(速度头):u2/(2g),m流速:u, m/s当两截面积相差很大时,大截面上(贮液槽)u≈0流体在圆管内连续定态流动:u2=u1(d1/d2)2体积流速:q v, m3/s q v=uA质量流速:q m, kg/s q m=q vρ=uAρ流速测定:变压差(定截面)流量计:测速管/孔板/文丘里u=C(2Δp/ρ)1/2=C[2R(ρA-ρ)g/ρ]1/2孔板C=0.6-0.7;测速管/文丘里C=0.98-1.0变截面(定压差)流量计:转子流量计gΔZ+Δu2/2+Δp/ρ=W e-∑h f管路总阻力:∑h f=h f+h f’,J/kg;总压头损失:H f=∑h f/g,m对静止流体或理想流体:∑h f=0直管阻力:h f=λ.L/d.u2/2局部阻力:h f’=ζu2/2 (阻力系数法)或h f’=λ.L e /d.u2/2 (当量长度法)(进口:ζ=0.5;出口:ζ=1)雷诺准数:Re=duρ/μ, 流型判断管内层流:Re≤2000ur=Δp f/(4μL).(R2-r2), u=u max/2;λ=64/Re管内湍流:Re>2000λ=0.3164/Re0.25 (光滑管)λ=f(Re,ε/d)(粗糙管)牛顿黏性定律:τ=μ(du/dy)当量直径:d e=4流通面积/润湿周边长度gΔZ+Δu2/2+Δp/ρ=W e-∑h f有效功(净功):W e,J/kg;有效压头:H e=W e/g,m有效功率:P e=W e q m,W功率:P=P e/η非均相混合物分离及固体流态化非均相混合物(颗粒相+连续相)→相对运动(沉降/过滤)→分离颗粒相+连续相→固体流态化→混合沉降沉降(球形颗粒):连续相:气体/液体颗粒受力:(重力/离心)场力-浮力-阻力=ma沉降速率重力沉降离心沉降ζ=f(Re t,υs),Re t=du tρ/μ<10-4-1(层流区),ζ=24/ Ret离心分离因数沉降设备设计沉降条件:θ≥θt重力沉降:降尘室离心沉降:旋风分离器生产能力qv=blu t q v=hBu i(q v与高度无关)n层沉降室q v=(n+1)blu t过滤(滤饼过滤)恒压滤饼过滤(忽略过滤介质阻力)K过滤常数:K=2k(Δp)1-s, m2/s;*K取决于物料特性与过滤压差;单位过滤面积所得的滤液体积q=V/A,m3/m2;单位过滤面积所得的当量滤液体积q e=V e/A,m3/m2;s-滤饼的压缩性指数每得1m3滤液时的滤饼体积υ(1m3滤饼/1m3滤液)体积为V W的洗水所需时间θW = V W/(dV/dθ)W过滤机的生产能力(单位时间获得的滤液体积)间歇式连续式Q=V/T=V/(θ+θW+θD)若V e可忽略转筒表面浸没度ψ=浸没角度/3600转筒转速为n-- r/min,过滤时间θ=60 ψ/n传热传热方式及定律热传导:傅立叶定律对流:牛顿冷却定律辐射;斯蒂芬-波耳兹曼定律:E b=σ0T4=C0(T/100)4传热基本方程Q=KS△t m换热器的热负荷用热焓用等压比热容用潜热两平行灰体板间的辐射传热速度Q1-2Q1-2=C1-2S[(T1/100)4-(T2/100)4对流和辐射联合传热总散热速率:Q=Q c+Q R=αTS w(t w-t b)αT=αc+αR恒温传热△t m=T-t变温传热:平均温差*逆流和并流错流和折流温差校正系数=f(P,R)传热单元数法计算确定C min→NTU,C R→ε→由冷热流体进口温度和ε→冷热出口温度传热表面积S=Q/(K△t m)热传导和对流联合传热总传热系数R so,R si垢阻;壁阻对流传热系数αi,αo流体有相变时的对流传热系数层流膜状冷凝时:努塞尔特方程湍流液膜冷凝时:水平管外液膜冷凝时:液体沸腾传热系数:罗森奥公式:α=(Q/S)/Δt蒸发蒸发器的热负荷Q,kJ/hQ=D(H-h c)=WH’+(F-W)h1-Fh c+Q L冷凝水在饱和温度下排出Q=Dr=WH’+(F-W)h1-Fh0+Q L溶液稀释热可忽略D=[Wr’ +Fc0(t1–t0)+Q L]/rr’=(H’-c W t1)近似可作为水在沸点t1的汽化热。

化工原理知识点总结复习重点(完美版)

化工原理知识点总结复习重点(完美版)

第一章、流体流动一、 流体静力学 二、 流体动力学 三、 流体流动现象四、流动阻力、复杂管路、流量计一、流体静力学:● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。

表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用:压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式g z p g z p 2211+=+ρρ水平面上各点压力都相等。

此方程式只适用于静止的连通着的同一种连续的流体。

应用:U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计微差压差计二、流体动力学● 流量质量流量 m S kg/sm S =V S ρ体积流量 V S m 3/s质量流速 G kg/m 2s(平均)流速 u m/s G=u ρ ● 连续性方程及重要引论:22112)(d d u u = ● 一实际流体的柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W pu g z W p u g z ∑+++=+++ρρ222212112121 J/kg 以单位重量流体为基准:f e h gp u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηeN N =(运算效率进行简单数学变换)应用解题要点:1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、 截面的选取:两截面均应与流动方向垂直;3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、 两截面上的压力:单位一致、表示方法一致;5、 单位必须一致:有关物理量的单位必须一致相匹配。

三、流体流动现象:流体流动类型及雷诺准数:(1)层流区 Re<2000 (2)过渡区 2000< Re<4000 (3)湍流区 Re>4000本质区别:(质点运动及能量损失区别)层流与端流的区分不仅在于各有不同的Re 值,更重要的是两种流型的质点运动方式有本质区别。

第一章 1[1].1流体流动静力学基本方程

第一章  1[1].1流体流动静力学基本方程

第一章 1[1].1流体流动静力学基本方程第一章流体流淌1-0 概述一学习本章的意义:1.流体存在的广泛性。

在化工厂中,管道和设备中绝大多数物质都是流体(包括气体、液体或气液混合物)。

只是到最后,有些产品才是固体。

2 .通过讨论流体流淌逻辑,可以正确设计管路和合理挑选泵、压缩机、风机等流体输送设备,并且计算其所需的功率。

3 .流体流淌是化工原理各种单元操作的基础,对强化传热、传质具有重要的实践意义。

由于热量传递,质量传递,以及化学反应都在流淌状态下举行,与流体流淌密切相关。

所以大家要仔细学习这一章,充分打好基础。

二流体流淌的讨论范畴1 流体定义:具有流淌性的液体和蔼体统称为流体。

2 延续性介质假定:流体是由大量的单个分子组成,而每个分子之间彼此有一定的间隙,它们将随时都在作无规章随机的运动。

所以,若把流体分子作为讨论对象,则流体将是一种不延续介质,这将使讨论十分困难。

好在在化工生产过程中,我们对流体流淌逻辑的讨论感爱好的并非是单个分子的微观运动,而是流体宏观的机械运动。

所以我们不取单个分子作为考察对象,而取比分子平均自由程大得多,比设备尺寸小得多的这样一个流体质点作为最小考察对象,质点是由大量分子组成的微团,它可以代表流体的性质。

流体可以看成是由大量微团组成的,质点间无空隙,而是弥漫所占空间的延续介质,从而可以使用延续函数的数学工具对流体的性质加以描述。

提高:延续性介质假定如图1所示,考虑一个微元体积内流体平均密度的变化状况:取包含P(x,y,z)点在内的微元体积⊿V,其中包含流体的质量为⊿m,则微元流体的平均密度为⊿m/⊿V,微元流体的平均密度随体积的变化如图2所示。

当微元体积⊿V从十分小逐渐增大,趋向一个特定的微元体积V时,流体的平均密度逐渐趋向一个极限值,且不再随微元体积的继续增大而发生变化。

当微元体积⊿V比δV小时,这时微元体积内所包含的流体分子数目是那样少,以致流体分子因为其无规章的热运动,进入或离开微元体积的流体分子数目已足以引起该微元体积内流体平均密度的随机波动。

流体流动第二讲流体静力学基本方程及其应用

流体流动第二讲流体静力学基本方程及其应用

第二讲流体静力学基本方程及其应用【学习要求】1.理解流体静力学方程的意义;2.掌握流体静力学方程的应用。

【预习内容】1.在均质流体中,流体所具有的与其所占有的之比称为。

任何流体的密度都随它的和而变化,但对液体的密度影响很小,可忽略,故常称液体为的流体。

2.流体静压力的两个重要特性分别是:(1);(2)。

3.1atm = mmHg = Pa = mH2O【学习内容】一、流体静力学基本方程式1.流体静力学基本方程式的形式p2 = p1+ ρ ( z1—z2 )g 或p2 = p1+ hρg流体静力学方程表明:在重力作用下静止液体内部的变化规律。

即在液体内部任一点的流体静压力等于。

2.流体静力学基本方程式的意义流体静力学方程表明:(1)当作用于流体面上方的压强有变化时;(2)当流体面上方的压强一定时,静止流体内部任一点压强的大小与流体本身的和有关,因此在的的同一液体处,处在都相等。

二、流体静力学基本方程式的应用1.流体进压强的测量(1)U形管压差计①U形管压差计由、及管内指示液组成。

②指示液要与被测流体不,不起,其密度要,通常采用的指示液有、、及等。

③U形管压差计可用来测量压强差,也可以用来测量或。

【典型例题】例1用U形管测量管道中1、2两点的压强差。

已知管内流体是水,指示液是密度为1595 kg/m3的CCl4,压差计读数为40cm,求压强差(p1– p2)。

若管道中的流体是密度为2.5kg/m3的气体,指示液仍为CCl4,U形管读数仍为40cm,则管道中1、2两点的压强差是多少Pa?【例2】某蒸汽锅炉用本题附图中串联的汞-水U形管压差计以测量液面上方的蒸气压。

已知汞液面与基准面的垂直距离分别为h1 = 2.3 m,h2 = 1.2 m,h3 = 2.5 m,h4 = 1.4m,两U形管间的连接管内充满了水。

锅炉中水面与基准面的垂直距离h5 = 3.0m,大气压强p a = 99kPa。

试求锅炉上方水蒸汽的压强p0为若干(Pa)?【随堂练习】1.大气压强为750mmHg时,水面下20m深处水的绝对压强为多少Pa?2.水平导管上的两点接一盛有水银的U形管压差计(如图所示),压差计读数为26mmHg。

第一章 流体流动

第一章 流体流动

wn
n

i 1
n
wi
i
wi为混合物中各组分的质量分数, ρ i为构成液体 混合物的各组分密度
第一节 流体的基本物理量
例1-1 已知乙醇水溶液中各组分的质量分数为乙醇0.6,水 0.4。试求该溶液在293K时的密度。 解:已知w1=0.6,w2=0.4;293K时乙醇的密度ρ1为789 kg/m3,水的密度为ρ2998.2 kg/m3


2
0.93 (m / s )
第一节 流体的基本物理量
例 1-6 某厂精馏塔进料量为50000kg/h,该料液的性质 与水相近,其密度为960kg/m3,试选择进料管的管径。 解:
50000/ 3600 qv 0.0145 ( m 3 / h) 960
qm
因为料液与水接近,选取流速μ=1.8 m/s,则:
解:已知 p0 760mmHg 1.013105 Pa
2
H O 1000kg / m 3 , Hg 13600 kg / m 3
h 1m, R 0.2m 水平面A - A ' , 根据流体静力学原理, p A p A p0 由静力学基本方程可得 : p A p H 2O gh Hg gR
800 0.7 h 0.6 1.16(m) 1000
第二节 流体静力学
一、流体静力学基本方程式的应用
1.压力的测量 正U形管压差计 要求:指示液与被测流体不互溶,不起化学反应, 密度要大于被测液体

பைடு நூலகம்
测量方法:U形管两端与被测两点直接相连。
第二节 流体静力学
A、A’处的压强分别为:
p p0 h g

第一章流体流动

第一章流体流动

压强的基准:
绝对压强——以绝对真空(零压)为基准测得 表 压——以大气压强为基准测得(高于大气压) 真 空 度——以大气压强为基准测得(低于大气压) 表 压=绝对压强-大气压强 P表=P绝-P大 P真=P大-P绝 P绝=P大-P真 P绝=P大+P表
真 空 度=大气压强-绝对压 绝对压力=大气压-真空度 =大气压+表压
推而广之即: uA =常数 若为不可压缩流体则: uA =常数 上两式即为连续性方程式。
[例] 在定态流动系统中,水连续地从粗管流入细管。 粗管内径为细管的两倍,求细管内水的流速是粗管内的 若干倍。 解:以下标1及2分别表示粗管和细管。不可压缩流体 的连续性方程式为: u 1A 1 = u 2A 2
第一章 第一节
四、流体静力学基本方程式的应用
(一)压力测量
1、U型管差压计 如图1-4所示 压差(p1-p2)与R的关系根据流体静力学基本方程式 进行推导。 a,a’是等压点,即Pa=Pa’ Pa=P1+ ρBg(m+R) Pa’=P2+ ρBg(Z+m)+ ρAgR
所以:P1+ ρBg(m+R)=P2+ ρBg(Z+m)+ ρAgR
目的: ① 恒定设备内的压力, 防止超压;

气 液
p

溢流
0 安全液封 h0 0
② 防止气体外泄; 水封 液封高度计算:
0
p
0 h.0
p h0 g

气体
煤气柜
第一章 第一节
• 如本题附图所示,某厂为了控制乙炔发生炉a内的压强不超过 10.7×103Pa(表压),需在炉外装有安全液封(又称水封)装置,其 作用是当炉内压强超过规定值时,气体就从液封b中排山。试求此 炉的安全液封管应插入槽内水面下的深度h。 解:当炉内压强超过规定值时,气体将由液封管排出, 故先按炉内允许的最高压强计算液封管插入槽内水面

流体流动

流体流动
② ③ ④ 基准统一; 选择界面,已知条件充分,垂直流动方向; 原则上沿流动方向上任意两截面均可。
在0-0 和1-1面间列柏努利方程
p0 1 2 p1 1 2 z1 g u1 z0 g u0 ρ 2 ρ 2
pa h
1
A
1
z0 0
u1 0
p0 p1 0
0
H B pa 虹吸管
推广至任意截面
m m2
图 1-15
分支管路
m 1u1 A1 2u2 A2 uA 常数
3 机械能守恒和柏努利方程式
系统的总能量(以1kg流体为例)
能 量 形 式 位能 动能 静压能 内能 热 功 意 义 将1kg的流体自基准水平面升举到某高度Z 所作的功 将1kg的流体从静止加速到速度u所作的功 1kg流体克服截面压力p所作的功 1kg流体内部能量的总和 换热器向1 kg流体供应的或从1kg流体取 出的热量 1kg流体通过泵(或其他输送设备)所获得 的有效能量)
02
a b
01
4. 液封高度
液封在化工生产中被广泛应用:通过液封装置的液 柱高度 ,控制器内压力不变或者防止气体泄漏。 为了控制器内气体压力不超过给定的数值,常常使 用安全液封装置(或称水封装置),其目的是确保设备 的安全,若气体压力超过给定值,气体则从液封装置排 出。
小结
密度具有点特性,液体的密度基本上不随压强而变化,随温度略有 改变;气体的密度随温度和压强而变。混合液体和混合气体的密度 可由公式估算。 与位能一样,压强也有计算基准。工程上常用绝对压强和表压两种 基准。在计算中,应注意用统一的压强基准。
静压能(P/ρ)
在静止和流动流体内部都存在着静压强,因此,系统的任一 截面上都具有压力。当流体要通过某一截面进入系统时,必 须要对流体做功,才能克服该截面的压力,把流体压入系统 内。这样通过该截面的流体便带着与此功相当的能量进入系 统,流体所具有的这种能量称为静压能。 设:单位质量流体体积为1/,流体通过管道某截面所受压 力F=pA。

化工原理第一章 流体流动-学习要点

化工原理第一章 流体流动-学习要点

1.3 流体动力学 ( Fluid dynamics )
1.3.3 伯努利方程 ( Bernoulli equation ) 机械能的形式
位能: 流体在重力场中, 位能: 流体在重力场中,相对于基准水平面所具有的能量 动能: 动能: 流体由于流动所具有的能量 静压能:流体由于克服静压强流动所具有的能量 静压能: 能量损失: 能量损失:流体克服流动阻力损失的机械能 外加功:流体输送机械向流体传递的能量 外加功:
ε r :=
1
2ε 18.7 ) = 1.74 − 2 ⋅ lg( + d Re λ λ
Re :=
−3
0.005 × 10
−3
ε r = 2.857 × 10
1.1 流体性质 ( Properties of fluid )
1.1.2 压强 ( pressure )
表 压=绝对压力-大气压力 绝对压力真空度= 真空度=-表压强 真空度=大气压力真空度=大气压力-绝对压力 压强表:读数为表压强, 压强表:读数为表压强,用于被测体系绝对压强高于环境 大气压 真空表:读数为真空度, 真空表:读数为真空度,用于被测体系绝对压强低于环境 大气压 说明:(1)表压于当地大气压强有关 说明:(1)表压于当地大气压强有关 (2)绝压、表压、真空度, (2)绝压、表压、真空度,一定要标注 绝压 (3)压力相除运算时, (3)压力相除运算时,一定要用绝压 压力相除运算时 压力加减运算时,都可以,但要统一并注明 压力加减运算时,都可以,
1.4 流体流动现象 ( Fluid-flow phenomena )
1.4.1 流动类型 (The types of fluid flow)
Re = duρ
µ
Reynolds number is a dimensionless group .

化工原理——第一章 流体流动

化工原理——第一章 流体流动

黏度在物理单位制中的导出单位,即
dyn / cm 2 dyn s
g
P(泊)
du
cm/ s
dy
cm
cm2 cm s
1cP 0.01P 0.01 dyn s
1
1 100000
N
s
1
Pa s
cm2
100
(
1 100
)
2
mபைடு நூலகம்
2
1000
即1Pa s 1000cP
流体的黏性还可用黏度μ与密度ρ的比值表示。这 个比值称为运动黏度,以ν表示即
pM
RT
注意:手册中查得的气体密度都是在一定压力与温度 下之值,若条件不同,则密度需进行换算。
三、混合物的密度
混合气体 各组分在混合前后质量不变,则有
m A xVA B xVB n xVn
xVA, xVB xVn——气体混合物中各组分的体积分率。

m
pM m RT
M m ——混合气体的平均摩尔质量
例如用手指头插入不同黏度的流体中,当流体大 时,手指头感受阻力大,当小时,手指头感受阻 力小。这就是人们对粘度的通俗感受。
在法定单位制中,黏度的单位为
du
Pa m
Pa • s
dy
s
m
某些常用流体的黏度,可以从本教材附录或手册中查
得,但查到的数据常用其他单位制表示,例如在手册中
黏度单位常用cP(厘泊)表示。1cP=0.01P(泊),P是
M m M A yA M B yB M n yn
yA, yB yn——气体混合物中各组分的摩尔(体积)分率。
混合液体 假设各组分在混合前后体积不变,则有
1 xwA xwB xwn
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流体流动中的机械能
固体:位能和动能 流体流动时:除位能和动能外,还有压强能 压强能是什么能量? 流体流动时,内能与机械能可能存在相互转化。 本课程主要学习三种机械能的相互转化。
流体静力学
流体的压力
流体垂直作用于单位面积上的力,称为流体的
静压强,简称压强,习惯上称为压力,常用 p
表示,即
F du S
dy 该式称为牛顿(Newton)粘性定律。它的物理意义是 流体流动的内摩擦力的大小与流体性质有关,且与流 体流动的速度梯度和流层接触面积成正比。
单位面积上的内摩擦力称为摩擦应力或剪应力, 以τ表示,于是上式可写成
du
dy
粘度
❖把流体的粘性系数称为动力粘度,简称粘度。
du
压力还可以以不同的基准来表示和计量,如以 绝对真空(即零大气压)为基准计量的压力称为 绝对压力,是流体的真实压力;以当地大气压 为基准计量的压力称为表压力或真空度。
当被测流体的绝对压力大于外界大气压力时, 所用的测压仪表叫做压力表。压力表上的读数 表示被测流体的绝对压力高出当地大气压力的 数值,称为表压力。表压力与绝对压力的关系 为:
dudcym ncsm 2 dcym 2nscm gsP泊
dy cm
❖由于泊的单位太大,使用不方便,所以通常采用 cP(厘泊)作为粘度的单位,lcP=0.01P,cP与Pa·s的 换算关系为 1
1cp 110dc0ym 2sn1100 110 2m 020 10100N 0 m 20 s110p 0a0 s 10
z
p 1 p dz 2 z
1 p p dy
2 y
中心压力: p
p 1 p dx 2 x
p 1 p dy 2 y
y
dz
dy
dx
p 1 p dz 2 z
p 1 p dx 2 x
x
注意:xoy平面不一定是地平面。 对 z 轴方向的平衡方程(取向上的力为正)
p1 2 p zd d z x d p y 1 2 p zd d z x d g zd yx d0ydz
自由液面上0点和液体内距自由液面的垂直距离为 h 的任一点
(其压力为 p ),则有
zO
p
zh
dp gdz
p0
z
h1
2
p p 0 g z h z
z1 z2
pp0 gh
上式称为流体静力学基本方程式,表明了在重力的作 用下,静止液体内部压力变化规律。
p 1p 0g z z1 p 2 p 0g z z2
定态流动
❖以欧拉法观察流体的流动时,如果空间各点的参数 不随时间变化则为定态流动。
系统与控制体
❖系统(封闭系统):拉格朗日法 特点:与环境有可以有力的作用和能量的交换; 边界随流体一起运动;形状和大小随时间变化。
❖控制体:欧拉法 特点:封闭的固定界面;流体可自由进出;控制 面上可以有力的作用与能量、质量的交换。
0
p z
gz
0
dppdxpdypdz x y z
p x
gx
0
p y
gy
0
p z
gz
0
p x
dx
gxdx
p y
dy
gydy
p z
dz
gzdz
d p g x d g x y d g y z dz
这是流体平衡的一般表达式,以后在推导中会经常用到。
若流体是不可压缩流体,即其密度ρ为常数,如果取下图中
化工原理
Reporter
第一章 流 1 基础知识 体流动 2 流体静力主学 要 内 容
3 流体动力学
4 流体流动的类型
5 流体流动阻力的计算 6 管路计算 7 流量测量
基础知识
流体
气体和液体统称为流体。 流体流动普遍存在
❖在炼油、石油化工等生产过程中,不论是所处理的 原料、还是中间品或产品,大多都是流体;而且生 产过程都是在流体流动下进行的,在炼油和石油化 工厂中有纵横交错的管道和众多的机泵在各生产设 备之间输送流体。
由程大得多,但远小于设备尺寸。 ❖因此流体是由大量质点组成,彼此之间没有空隙、
完全充满所占空间的连续介质。
描述流体运动的两种方法
❖拉格朗日法 观察者缩小到微团尺度大小并站立于微团上,叙 述观察者自己移动的距离、速度等与时间的关系。 同一质点在不同时刻的状态。 某一流体质点的运动轨迹为轨线。
❖欧拉法 观察者站立在流体外空间中某一固定位置,观察 流体中各点的速度、密度、压强等的分布情况和 随时间的变化情况。 空间各点的状态及其与时间的关系。 某一时刻速度一样的质点连线。(特点:不交)
p 2 p 1g z 1 z 2 p 2 p 1 g z 1 z 2
这是流体处于重力场中静止的不可压缩流体所得到的 静压强分布结果。
流体静力学基本方程式形式虽然简单,但 它包含了许多基本概念,如
(1)当容器液面上方的压力一定时,静止液体内 部任一点压力的大小,与液体本身密度ρ和该 点距离液面的深度有关。越深则其压力越大。
流体流动的状况对生产过程正常而高效进行、能量消 耗、设备投资等密切相关,同时对传热、传质等其它 单元操作的研究也离不开流体流动的基本规律。
流体的密度
❖流体:包括气体、液体、等离子体等 ❖单位体积的流体所具有的质量称为流体的密度,通
常以符号ρ表示。
m V
❖不同的流体其密度是不同的。对于任何一种流体, 其密度又随其所具有的压力和温度而变化,即
V ──流体的体积,m3。
Fg mgg
VV
相对密度
❖相对密度是指液体的密度(或重度)与277K(即4℃)时 纯水的密度(或重度)之比,工程上也称比重。相对 密度(或比重)是没有单位的,通常以符号 d 表示, 其表达式为
d
水 水
❖由于在4℃时,国际单位制中水的密度和工程单位制 中水的重度在数值上都是1000,所以由上式可知 ρ=1000d,单位为kg/m3,γ=1000d,单位为kgf/m3。
流体的比容
❖单位质量流体的体积,称为流体的比容,通常以υ
表示,单位为m3/kg。显然,比容与密度互为倒数, 即
V 1 m
1.1 概述
流体流动的两种考察方法
连续性假定
❖以单个分子考察时,流体是不连续的; ❖化工原理中,以流体质点(或微团)为考察对象; ❖质点(或微团):含有大量分子,其尺寸比分子自
❖表压力=绝对压力-大气压力 ❖绝对压力=大气压力+表压力
Vacuum meter
当被测流体的绝对压力小于外界大气压力时, 所用的测压仪表叫做真空表。真空表上的读数 表示被测流体的绝对压力低于当地大气压力的 数值,称为真空度,它与绝对压力的关系为:
❖真空度 = 大气压力— 绝对压力 ❖绝对压力 = 大气压力 — 真空度 ❖显然,设备内流体的绝对压力愈低,则其真空度就
m 1 x v 12 x v 2 . ..n x v n
1,2,...n ──气体混合物中各组分的密度,kg/m3;
xv1,xv2,..x.vn ──气体混合物中各组分的体积分率。
重度
❖指单位体积流体所具有的重量,其表达式为
Fg V
──流体的重度,kgf/m3;
F g ──流体的重量,kgf;
F u S ❖引进比例系数μ,可把y 上式写成等式,即:
F u S y
F u S y
F du S
dy
du ──速度梯度,即在与流体流动方向垂直 dy
的方向上速度随距离的变化率;
──比例系数,其值与流体性质有关,流体
的粘性越大,其值越大,所以也称为流体 的粘性系数(粘度,动力粘度,绝对粘 度)。
❖对于常压下气体混合物,可采用下式估算,即
m
yii Mi12
yi Mi12
m ──常压下混合气体的粘度;
y i ──混合气体中i 组分的摩尔分率;
i ──与气体混合物同温度下的i 组分的粘度;
M i ──气体混合物中i 组分的相对分子质量。
问题: 1)液体的密度随温度变化趋势? 2)气体随温度变化规律?
❖粘度的物理意义d:y 它是促使流体流动产生单位速度
梯度的剪切力,也就是说粘度是速度梯度为1时,在
单位面积上由于流体粘性所产生的内摩擦力大小。
❖粘度的单位可通过上式导出,即
duNmms2
Ns m2
pa
s kg ms
dy m
❖查到的的粘度数据常用物理单位制(CGS)表示,而 本课程主要采有国际单位制(即SI制),有些计算中 也可能还用到工程单位制。因此,要注意不同单位 制单位的换算。在CGS制中,粘度单位为:
流体流动中的作用力
体积力
❖特点:作用于流体的每一个质点上,并与流体的质 量成正比。
❖典型力:重力、离心力
表面力
❖特点:与表面积成正比。 ❖压力与剪力 ❖单位面积上的压力:压强 ❖单位面积上的剪力:剪应力
流体的粘度
❖流体在流动时产生内摩擦力的这种性质,称为流体 粘性。
❖实验证明,对一定的流体,内摩擦力 F 与两流体层 的速度差 ∆u 成正比,与两流体层间的垂直距离 ∆y 成反比,与两流体层间的接触面积 S 成正比,即
fp,T
❖液体为不可压缩性流体,液体的密度随压力的变化 很小,可忽略不计(除极高压力外)。温度对液体的 密度会有一定的影响,故在手册或有关资料中,对 液体的密度都注明了相应的温度条件。
❖气体是可压缩性流体,其密度随温度和压力的变化 较大,通常在温度不太低,压力不太高的情况下, 气体的密度可近似地用理想气体状态方程进行计算, 即
p1 2 p zd d z x d p y 1 2 p zd d z x d g zd yx d0ydz
经整理,则得
p z
gz
0
相关文档
最新文档