弹塑性理论习题

合集下载

弹塑性力学习题解答

弹塑性力学习题解答

第一、二章作业一、选择题:1.弹性力学的研究对象是 B 。

A.刚体;B.可变形固体;C.一维构件; D.连续介质;2.弹性力学的研究对象是 C几何尺寸和形状。

A.受到…限制的物体; B.可能受到…限制的物体;C.不受…限制的物体; D.只能是…受限制的任何连续介质;3.判断一个张量的阶数是根据该张量的C确定的。

A.下标的数量; B.哑标的数量; C.自由标的数量; D.字母的数量。

4.展开一个张量时,对于自由下标操作的原则是按其变程C。

A.一一罗列; B.先罗列再求和; C.只罗列不求和; D.一一求和。

5.展开一个张量时,对于哑脚标操作的原则是按其变程B。

A.一一罗列; B.先罗列再求和; C.只罗列不求和; D.一一求和。

6.在弹性力学中,对于固体材料(即研究对象)物性组成的均匀性以及结构上的连续性等问题,提出了基本假设。

这些基本假设中最基本的一条是 A。

A.连续性假设; B.均匀性假设;C.各向同性的假设; D.几何假设——小变形条件;7.从一点应力状态的概念上讲,当我们谈及应力,必须表明的是D。

A.该应力的大小和指向,是正应力还是剪应力;B.该应力是哪一点处的正应力和剪应力,还是全应力;C.该应力是哪一点处的应力D.该应力是哪一点处哪一微截面上的应力,是正应力还是剪应力。

8.表征受力物体内一点处的应力状态一般需要__B_应力分量,其中独立的应力分量有_C__。

A. 18个; B. 9个; C. 6个; D. 2个。

9.一点应力状态的主应力作用截面上,剪应力的大小必定等于___D_________。

A.主应力值; B.极大值; C.极小值; D.零。

10.一点应力状态的最大(最小)剪应力作用截面上的正应力,其大小_____D_______。

A.一般不等于零; B.等于极大值; C.等于极小值; D.必定等于零。

11.平衡微分方程是 C 间的关系。

A .体力分量和面力分量;B .应力分量和面力分量;C .体力分量和应力分量;D .体力分量、面力分量和应力分量;12.静力边界条件是 B 间的关系。

弹塑性理论考试题及答案

弹塑性理论考试题及答案

弹塑性理论考试题及答案一、单项选择题(每题2分,共10分)1. 弹塑性理论中,材料的屈服准则通常用以下哪个参数表示?A. 应力B. 应变C. 弹性模量D. 屈服应力答案:D2. 弹塑性材料在循环加载下,其行为主要受哪个参数的影响?A. 最大应力B. 最大应变C. 应力幅值D. 应变幅值答案:C3. 根据弹塑性理论,材料的硬化指数n通常用来描述什么?A. 材料的弹性B. 材料的塑性C. 材料的断裂特性D. 材料的疲劳特性答案:B4. 在弹塑性理论中,哪个参数用来描述材料在塑性变形后能否恢复原状?A. 弹性模量B. 屈服应力C. 塑性应变D. 弹性应变答案:D5. 弹塑性材料在受到拉伸应力作用时,其应力-应变曲线通常呈现哪种形状?A. 线性B. 非线性C. 抛物线D. 指数曲线答案:B二、多项选择题(每题3分,共15分)6. 弹塑性理论中,材料的屈服准则可以由以下哪些因素确定?A. 应力状态B. 应变状态C. 温度D. 材料的微观结构答案:A|B|C|D7. 弹塑性材料在循环加载下,其疲劳寿命主要受哪些因素的影响?A. 应力幅值B. 材料的屈服应力C. 循环加载频率D. 材料的微观缺陷答案:A|B|C|D8. 在弹塑性理论中,材料的硬化行为可以通过以下哪些方式来描述?A. 硬化指数B. 硬化模量C. 应力-应变曲线D. 屈服应力答案:A|B|C9. 弹塑性材料在受到压缩应力作用时,其应力-应变曲线通常呈现以下哪些特点?A. 初始阶段为弹性B. 达到屈服点后进入塑性变形C. 塑性变形后材料体积不变D. 卸载后材料能够完全恢复原状答案:A|B|C10. 弹塑性理论中,材料的断裂特性可以通过以下哪些参数来描述?A. 断裂韧性B. 应力集中系数C. 材料的硬度D. 材料的塑性应变答案:A|B|C|D三、简答题(每题5分,共20分)11. 简述弹塑性理论中材料的屈服现象。

答:在弹塑性理论中,材料的屈服现象是指材料在受到一定的应力作用后,从弹性变形转变为塑性变形的过程。

工程弹塑性力学题库及答案(修订)

工程弹塑性力学题库及答案(修订)

,再求应力偏张量






由此求得:
然后求得:

,解出
然后按大小次序排列得到


1.9 已知应力分量中
,求三个主应力
,以及每个
主应力所对应的方向余弦

解:特征方程为
记, , 应满足下列关系
由(a),(b)式,·11得
(a) (b) (c)
, ,由此求得
,代入(c)式,得
解:的定义、物理意义:

1) 表征 Sij 的形式;2) 相等,应力莫尔圆相似,Sij 形式相同;3) 由可确定 S1:S2:S3。
1.4设某点应力张量 的分量值已知,求作用在过此点平面
力矢量
,并求该应力矢量的法向分量 。
解:该平面的法线方向的方向余弦为
上的应
而应力矢量的三个分量满足关系
曲线基本上和简单拉伸时的
曲线一样。
7.4 比较两种塑性本构理论的特点: 解:增量理论和全量理论。增量理论将整个加载历史看成是一系列的微小增量加 载过程所组成,研究每个微小增量加载过程中应变增量与应力增量之间的关系, 再沿加载路径依次积分应变增量得最终的应变。全量理论不去考虑应力路径的影 响,直接建立应变全量与应力全量直接的关系。
z
且 利用平衡方程

时, 为(e)式。
(3)塑性阶段 平衡方程和几何方程同上。
本构方程 与(2)弹塑性阶段同样步骤:可得
(e) (f) (g)
5.9 如图所示等截面直杆,截面积为 ,且 。在 处作用一个逐渐增加 的力 。该杆材料为理想弹塑性,拉伸和压缩时性能相同。按加载过程分析
结构所处不同状态,并求力 作用截面的位移 与 的关系。 解:基本方程为

弹塑性力学习题及答案

弹塑性力学习题及答案

.本教材习题和参考答案及部分习题解答第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。

答案 (1)pi iq qj jkpk δδδδδ=;答案 (2)pqi ijk jk pq qp e e A A A =-;解:(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。

2.2证明:若ijji a a =,则0ijk jk e a =。

(需证明)2.3设a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:因为123111123222123333i i i i i i i i i i i i i ii i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以123111123222123333123111123222123333det det()i ii i i i i ii i i i i ii ii i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即得 1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。

弹塑性力学习题集_很全有答案_

弹塑性力学习题集_很全有答案_

题 2 —4 图
2—5* 如题 2—5 图,刚架 ABC 在拐角 B 点处受 P 力,已知刚架的 EJ,求 B、C 点的 转角和位移。 (E 为弹性模量、J 为惯性矩) 2—6 悬挂的等直杆在自重 W 的作用下如题 2—6 图所示。材料比重为 γ ,弹性模量为 E,横截面积为 A。试求离固定端 z 处一点 c 的应变 ε z 与杆的总伸长 ∆l 。 2—7* 试按材料力学方法推证各向同性材料三个弹性常数:弹性模量 E、剪切弹性模 量 G、泊松比 v 之间的关系:
1 1 1 , n y = , nz = 的微斜面上的全应力 Pα ,正 2 2 2
试求外法线 n 的方向余弦为: n x = 应力 σ α 和剪应力 τ α 。
2—10 已知物体的应力张量为: 30 − 80 50 σ ij = 0 − 30 MPa 110 (对称)
2—39* 若位移分量 u i 和 u i′ 所对应的应变相同,试说明这两组位移有何差别? 2—40* 试导出平面问题的平面应变状态( ε x = γ zx = γ zy = 0 )的应变分量的不变量及
主应变的表达式。 2—41* 已知如题 2—41 图所示的棱柱形杆在自重作用下的应变分量为: γz νγz εz = , εx =εy = − ; γ xy = γ yz = γ zx = 0; E E 试求位移分量,式中 γ 为杆件单位体积重量,E、ν 为材料的弹性常数。
试确定外法线的三个方向余弦相等时的微斜面上的总应力 Pα ,正应力 σ α 和剪应力 τ α 。 2—11 试求以主应力表示与三个应力主轴成等倾斜面(八面体截面)上的应力分量, 并证明当坐标变换时它们是不变量。 2—12 试写出下列情况的应力边界条件。
题 2—12 图

弹塑性理论历年考题

弹塑性理论历年考题

2.9已知应力分量中0x y xy σστ===,求三个主应力123σσσ≥≥。

解 在0x y xy σστ===时容易求得三个应力不变量为1z J σ=,2222yz zx J τττ=+=,30J =特征方程变为32222()0z z σσστσσσσστ--=--=求出三个根,如记1τ=112312,0,2z z σστσσστ=+==-记123σσσ≥≥4.10有一长度为l 的简支梁,在x a =处受集中力P 作用,见题图4.6,试用瑞兹法和伽辽金法求梁中点的挠度。

题图4-6解一:用瑞兹法求解设满足梁端部位移边界条件0,0x l w ==的挠度函数为sinm mm xw B lπ=∑ (1) 梁的变形能U 及总势能∏为2224423001224llmmM EI d w EI U dx dx m BEI dx l π⎛⎫=== ⎪⎝⎭∑⎰⎰443sin 4m mm m EI m a m B P B l l ππ∏=-∑∑ 由0mB ∂∏=∂得 3442sin m m a Pl l B EI mππ=344sinsin 2mm a m xPl l l w EI mπππ=∑(2)以上级数的收敛性很好,取很少几项就能得到满意的近似解,如P 作用于中点(2a l =)时,跨中挠度为(只取一项)3342248.7x l Pl Pl w EI EIπ=== 这个解与材料力学的解(348Pl EI)相比,仅相差1.5%。

解二:用伽辽金法求解1.当对式(1)求二阶导数后知,它满足220,0x ld wdx==,亦即满足支承处弯矩为零的静力边界条件,因此,可采用伽辽金求解。

将式(1)代入伽辽金方程,注意到qdx P =,且作用在x a =处,可得420sin sin 0lm m m x m a EIB dx P l l l πππ⎡⎤⎛⎫⎛⎫-=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⎰ 3442sinm m aPl l B EI mππ= 求出的挠度表达式与(2)一致。

弹塑性力学试卷及弹性力学教材习题及解答

弹塑性力学试卷及弹性力学教材习题及解答

二、填空题:(每空2分,共8分)1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。

(参照oxyz直角坐标系)。

2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。

三、选择题(每小题有四个答案,请选择一个正确的结果。

每小题4分,共16分。

)1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。

裂纹展布的方向是:_________。

A、沿圆柱纵向(轴向)B、沿圆柱横向(环向)C、与纵向呈45°角D、与纵向呈30°角2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。

该板危险点的最大拉应力是无孔板最大拉应力__________倍。

A、2B、3C、4D、53、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。

)则在该点处的应变_________。

A、一定不为零B、一定为零C、可能为零D、不能确定4、以下________表示一个二阶张量。

A、B、C、D、四、试根据下标记号法和求和约定展开下列各式:(共8分)1、;(i ,j = 1,2,3 );2、;五、计算题(共计64分。

)1、试说明下列应变状态是否可能存在:;()上式中c为已知常数,且。

2、已知一受力物体中某点的应力状态为:式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量之和。

为平均应力。

并说明这样分解的物理意义。

3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。

若选取=ay2做应力函数。

试求该物体的应力解、应变解和位移解。

(提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。

)题五、3图4、已知一半径为R=50mm,厚度为t=3mm的薄壁圆管,承受轴向拉伸和扭转的联合作用。

(完整版)弹塑性力学习题题库加答案

(完整版)弹塑性力学习题题库加答案

第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。

己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。

解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。

解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。

弹塑性力学部分习题及答案

弹塑性力学部分习题及答案

厚壁筒应力问题
要点一
总结词
厚壁筒应力问题主要考察了弹塑性力学中厚壁筒结构的应 力分析和变形计算。
要点二
详细描述
厚壁筒应力问题涉及到厚壁筒结构在受到内压、外压或其 他复杂载荷作用时的应力分布和变形情况。在解题过程中 ,需要运用弹塑性力学的相关理论,如应力分析、应变分 析等,来求解结构的应力分布和变形情况。同时,还需要 考虑厚壁筒结构的特殊性,如不同材料的组合、多层结构 等,对结构应力和变形的影响。
02
弹塑性力学基础知识
应力和应变
基本概念
详细描述:应力和应变是弹塑性力学中的基本概念。应力表示物体内部相邻部分之间的相互作用力,而应变则表示物体在应 力作用下的变形程度。
屈服条件与应力-应变关系
屈服准则与流动法则
详细描述:屈服条件决定了材料在应力作用下的屈服点,是判断材料是否进入塑性状态的重要依据。 应力-应变关系则描述了材料在受力过程中应力与应变的变化规律。
弹塑性力学特点
弹塑性力学具有广泛的应用背景,涉及到众多工程领域,如结构工程、机械工 程、航空航天等。它既适用于脆性材料,也适用于塑性材料,并考虑了材料的 非线性特性。
弹塑性力学的基本假设
连续性假设
小变形假设
假设固体内部是连续的,没有空隙或 裂纹。
假设物体在外力作用下发生的变形是 微小的,不会影响物体内部应力分布。
弹塑性力学部分习题及答 案
• 弹塑性力学概述 • 弹塑性力学基础知识 • 弹塑性力学典型习题解析 • 弹塑性力学部分习题的定义与特点
弹塑性力学的定义
弹塑性力学是一门研究固体在受到外力作用时,其内部应力、应变和位移之间 关系的学科。它主要关注材料在受力过程中发生的弹性变形和塑性变形。

弹塑性力学习题集

弹塑性力学习题集

第二章应力例2如图所示的楔形体受水压力作用,水的容垂为丫,试写岀边界条件.解:在x=0上,/= -1 f m =0,X =y)?Y =0(q 畑(-1)+(5)"0 =" (T J.3 (-D+(Q v)t=0 0 = 0(aj^-yy (%)”=()•在斜边上1= cosa, m = -sindo t cosa一T yx sina = 0Tcosd- O v sina = 0例1如图所示,试写出其边界条件。

宀"色=0 •空=0 v\ =0 6办/ = L/?r = 0x=o.F=0(2) A = u.・解T| =/a H+wa2i-na)i —T •丄-2迈•V- 2 T] =S + 〃52 + 〃®2 =尹0—;;<3+善xO = _+Tj=/cr B + p,(723 + n<753=5X•^*",T X®+"77 X5 = -2-r^-^<r v = T)/ r T,ni+T s n = -y x- 2if2)-J ■4r =(T汁Tf+Tf-贰=1 V*27+48V2s.、+〃%),=$;n(a v)x+/(r AV)r =f严-订―1 x = o. y = q(6),・o+Wj(-1)=0心)•(-l) + SJjO = g(6)J0+(G J、(+I)=0G・(+l) + CJ.0 = 0(1)管的两端是自由的)应力状応为,a:=0, %=pRf 二去严=丄(2(pR/“q= [ (pR/t)* 16 35~=毎=网〃对于'Ikes屈服餐件:J2=弋=V => p = 4"R对于Tim屈服条件:s-q比=2q n p = 2XJ/R面上的法向正应力和切向舅应力q例.一种材料左二维主应力空间中进行试验,所得屈肥时的应力状态为2“ G2M3/,小假定此材料为各向同性.与静水压力无关且拉压屈服应力相等.(1)由上述条件推虧在円一巴空间中的各屈肥点应力.(2)证明Mises屈展条件在G,-G2空间中的曲线通过5)中所有点.解:由于静水质力无关的条件得出压服在以下各点会发生:(Gp G>, G J=(3几G 0)+ (-3/, -3/, -3r)= (0. -2/, -3/>(G P a2» bj = (3匚z f 0)+ (-/, t, w>=(2/, 0, -6苒由于各向間性的条件.很容易右出0,-0:空间中的以下五个JS力点也是屈服点A,: (Gp G,, = 3r, 0)B|: 2[, Q2« 6)= (—3f, —2r, 0)B2:oj = (—2f, —3f, 0)C1: (Q p c2, ®)=⑵,0)C,: <G P Q:, G3)=(-/,2I9 0)还有.由于拉压屈服症力相等.因而可得到6一6空间中的另外六个J2力屈服点A3X (Op 匹,Q3)=(-3/, F 0)A4:(Q J, G" ^3>=<"G -3f, 0)Bj: (Op o,, a3) = (3r, 2f, 0) B4: (a p o,, 6)=⑵.3f, 0) C3: (a p G,, a3)=(-2r, z, 0) C4: (Op o,, 6)=匕-2/, 0)容易证明⑷心屈服条件氏+& y:6 =于=7r2通过以上所有屈嚴点平衡方程为:P = N、+ 2N2COS30°=(5+吊2)几何关系为:靳=叫斫=万y[3? 3 V 3© =宁,6=乔=訐本构方程为:当a < aX,(7 = 0; +£[(£-£$)=目£ + 6(1-¥)(2)管段的两端是封闭的;应力状态为,U.= P/?/2G Q^pRlt a r=0 1^=1^=:8,=0A= |(Q -Q,)2+(Q z-<y e>2+(Q0-Q.)2+6( + &)J=L AGj-G, = Gg = pR/[对于Mises屈服条件s P = 2x s t/R对于Trcscii屈服条件:p = 2T JR因此.根据这些点的数据. 可以作出在①空间中的屈服面.讨论:设已知三杆桁架如图1.18所示,三根杆的戡面枳邮相咼并有FU 杆件是由弹塑性线性强化材料所制成的。

弹塑性力学试题集锦(很全,有答案)

弹塑性力学试题集锦(很全,有答案)

1 / 218弹塑性力学2008级试题一 简述题(60分) 1)弹性与塑性弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。

塑性:物体在引起形变的外力被除去以后有部分变形不能恢复残留下来的这一性质。

2)应力和应力状态应力:受力物体某一截面上一点处的内力集度。

应力状态:某点处的9个应力分量组成的新的二阶张量∑。

3)球张量和偏量球张量:球形应力张量,即σ=000000m m m σσσ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,其中()13m x y z σσσσ=++ 偏量:偏斜应力张量,即x m xy xz ij yx y m yz zx zy z m S σστττσστττσσ⎡⎤-⎢⎥=-⎢⎥⎢⎥-⎣⎦,其中2 / 218()13m x y z σσσσ=++5)转动张量:表示刚体位移部分,即110221102211022u v u w y x z x v u v w ij x y z y w u w v x z y z W ⎡⎤⎛⎫⎛⎫∂∂∂∂--⎢⎥ ⎪ ⎪ ⎪∂∂∂∂⎢⎥⎝⎭⎝⎭⎢⎥⎛⎫⎛⎫∂∂∂∂⎢⎥=-- ⎪⎪⎢⎥ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎢⎥⎢⎥⎛⎫⎛⎫∂∂∂∂⎢⎥-- ⎪ ⎪ ⎪⎢⎥∂∂∂∂⎝⎭⎝⎭⎣⎦6)应变张量:表示纯变形部分,即112211221122uu v u w x y x z x v u vv w ij x y yz y w u w v wx z y z zε⎡⎤⎛⎫⎛⎫∂∂∂∂∂++⎢⎥ ⎪ ⎪ ⎪∂∂∂∂∂⎢⎥⎝⎭⎝⎭⎢⎥⎛⎫⎛⎫∂∂∂∂∂⎢⎥=++ ⎪⎪⎢⎥ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭⎢⎥⎢⎥⎛⎫⎛⎫∂∂∂∂∂⎢⎥++ ⎪ ⎪ ⎪⎢⎥∂∂∂∂∂⎝⎭⎝⎭⎣⎦7)应变协调条件:物体变形后必须仍保持其整体性和连续性,因此各应变分量之间,必须要有一定得关3 / 218系,即应变协调条件。

22222y xyx y x x yεγε∂∂∂+=∂∂∂∂。

8)圣维南原理:如作用在弹性体表面上某一不大的局部面积上的力系,为作用在同一局部面积上的另一静力等效力所代替,则荷载的这种重新分布,只造离荷载作用处很近的地方,才使应力的分布发生显著变化,在离荷载较远处只有极小的影响。

(完整版)弹塑性力学习题题库加答案

(完整版)弹塑性力学习题题库加答案

第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。

己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。

解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。

解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。

弹塑性力学习题集_很全有答案_

弹塑性力学习题集_很全有答案_

σ y = cx + dy − γy , τ xy = − dx − ay ,其它应力分量为零。试根据
直边及斜边上的边界条件,确定常数 a、b、c、d。 2—16* 已知矩形截面高为 h, 宽为 b 的梁受弯曲时的正 My 12 M 应力 σ z = = y, 试求当非纯弯时横截面上的剪应力公 J bh 3 式。 (利用弹塑性力学平衡微分方程)
题 2—15 图
12 6 0 2—17 已知一点处的应力张量为: σ ij = 6 10 0 MPa ,试求该点的最大主应力及 0 0 0 其主方向。 2—18* 在物体中某一点 σ x = σ y = σ z = τ xy = 0 ,试以 τ yz 和 τ zx 表示主应力。
3—1
为 ε 1 = 1.7 × 10 −4 , ε 2 = 0.4 × 10 −4 。已知ν = 0.3,试求主应变 ε 3 。
3—9 如题 4—9 图示尺寸为 1×1×1cm 的铝方块,无间隙地嵌入——有槽的钢块中。 设钢块不变形,试求:在压力 P = 6KN 的作用下铝块内一点应力状态的三个主应力及主应 变,铝的弹性常数 E=70Gpa,ν = 0.33。 3—10* 直径 D = 40mm 的铝圆柱体, 无间隙地放入厚度为 δ = 2mm 的钢套中, 圆柱受
v = b0 + b1 x + b2 y + b3 z w = c 0 + c1 x + c 2 y + c3 z
式中 a 0 L , a1 L , a 2 L 为常数,试证各点的应变分量为常数。 2—29 设已知下列位移,试求指定点的应变状态。
(1) u = (3x 2 + 20) × 10 −2 , v = (4 yx) × 10 −2 ,在(0,2)点处。 (2) u = (6 x 2 + 15) × 10 −2 , v = (8 zy ) × 10 −2 , w = (3z 2 − 2 xy) × 10 −2 ,在(1,3,4)点处。 2—30 试证在平面问题中下式成立: εx + εy =ε′ x + ε′ y

(完整版)弹塑性力学习题题库加答案.docx

(完整版)弹塑性力学习题题库加答案.docx

第二章 应力理论和应变理论2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。

己求得 力解 :σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ;根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。

解:首先列出OA 、 OB 两 的 力 界条件:OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0σx =-γ1y ; τxy =0代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0得 : b=- γ1; a=0;OB : l 1=cos β ; l 2=-sin β, T x =T y =0:x cosxy sin0 yx cosy sin⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( a )将己知条件: σ x=1xy=-dxyγ y-γ y ; τ; σ =cx+dy-代入( a )式得:1 y cos dx sin0L L L L L L L L L bdx coscxdyy sin L L L L L L L L L化 ( b )式得: d = γ12β;ctgT4n2τ 30° δ 30°30°化 ( c )式得: c =γctg β -2γ 13y10x10Ox12 6τxy103 Pa2— 17.己知一点 的 力 量6 10 00 0δ y求 点的最大主 力及其主方向。

x题1-3 图解:由 意知 点 于平面 力状 ,且知:σx =12×O103σ y =10× 103 τ xy =6× 103,且 点的主 力可由下式求得:β212 101221.2xyxy21023n 22xy22610βγ 1y113710311 6.0828 10317.083 10 3 Paγ34.91724 10BA然:y117.083 10 3Pa2 4.917 10 3Pa30σ 1 与 x 正向的 角 : (按材力公式 算)c2 xy2 6 12 sin 2tg 2121026xycos2然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °则:θ=+40.2688 B 40° 16'或(-139° 44')2— 19.己知应力分量为:σx=σy=σz=τxy=0,τzy=a,τzx=b,试计算出主应力σ1、σ2、σ3 并求出σ2 的主方向。

弹塑性力学部分习题及答案

弹塑性力学部分习题及答案


根据梁的弯曲变形公式,y = Fx/L(L - x),其中y为挠度,F 为力,L为梁的长度。代入题目给定的数据,得y = (frac{300 times (4 - x)}{8})。当x = 2时,y = (frac{300 times (4 - 2)}{8}) = 75mm。
习题三答案及解析
解析
和变形情况。
04
弹塑性力学弹塑性力学的基本假设。
答案
弹塑性力学的基本假设包括连续性假设、均匀性假设、各向同性假设和非线性假设。连 续性假设认为物质是连续的,没有空隙;均匀性假设认为物质的性质在各个位置都是相 同的;各向同性假设认为物质的性质在不同方向上都是相同的;非线性假设认为弹塑性
习题二答案及解析
01 02 03 04
解析
选择题主要考察基本概念的理解,如能量守恒定律、牛顿第二定律等 。
填空题涉及简单的力学计算,如力的合成与分解、牛顿第二定律的应 用等。
计算题要求应用能量守恒定律和牛顿第二定律进行计算,需要掌握基 本的力学原理和公式。
习题三答案及解析
01
答案
02
选择题
03
1. A
2. 解
根据牛顿第二定律,F = ma,其中F为力,m为质量,a 为加速度。代入题目给定的数据,得a = (frac{400}{5}) = 80m/s(}^{2})。再根据运动学公式s = ut + (frac{1}{2})at(}^{2}),得s = 10 × 2 + (frac{1}{2} times 80 times (2)^2) = 108m。
04
计算题要求应用胡克定律和动量守恒定律进行计算,需要掌握基本的 力学原理和公式。
习题二答案及解析

弹塑性理论习题

弹塑性理论习题

习题2受拉的平板,一边上有一凸出的尖齿,如图 2.1。

试证明齿尖上完全没 P方向余弦为(l,m, n ),试求斜截面上切应力v 的表达式2-1有应2-2物体中某点的应力状态为(6,j )= 00 -1-1 0 ,求三个不变量和三个 0 1」主应力的大小。

2- 3 有两个坐标系,试证明 二x 「二八二z 「;「x 卞y =不变量。

2 2 2 ” _2- 4 M 点的主应力为-1 =75N/cm ,6 =50N/cm ,匚3 =-50N/cm 。

一斜截面的法线v 与三个主轴成等角,求P V 、二v 及v'0 T T2-5已知某点的应力状态为 (W )= T 0 1,求该点主应力的大小和主 芒T 0轴方向。

2-6已知某点的应力状态为(5j )= ▽cr 'b ,求该主应力的大小和主轴方向。

xyxz2-7已知某点的应力状态为(J,j )xyE yz 过该点斜截面法线图2.1yzs 02-8物体中某点的应力状态为(0i,j)= 0 0 T y Z求该点主应力的大小和主轴方向。

2-9已知物体中某点的应力状态为匚j ,斜截面法线的方向余弦为」_、1_、1二,试求斜截面上切应力的大小。

、3、32-10半径为a的球,以常速度v在粘性流体中沿X x轴方向运动。

球面上点__ . X 3 V - y - zA(X, y,z)受到的表面力为P x P o ,P y P o,P z P o,式中P o 为流体的静水压力。

试求球所受的总力量。

2-11已知物体中某点的应力状态为二ij,斜截面法线的方向余弦为一、二、二,试证明斜截面上的正应力 J及剪应力8分别为二* J i、、3 、3 、、3 3习题33- 1若位移u 、v 、w 是坐标的一次函数,则在整个物体中各点的应变都是 一样的,这种变形叫均匀变形。

设有以 0为中心的曲面,在均匀变形后成为球 面,2 2 2 2x' +y +z = r问原来的曲面f(x,y,z)=o 是怎样的一种曲面? 3-2 证明 x 二 k(x y ),= k(y z ), xy = k'xyz ,上二yz = zx = 0 (其中k 和k'是微小的常数),不是一个可能的应变状态。

弹塑性力学大题

弹塑性力学大题

已知某材料在纯剪作用下应力—应变关系如图所示,弹性剪切模量为G ,Poisson 比为ν,剪切屈服极限为s τ,进入强化后满足const G d d ==,/γτ。

若采用Mises 等向硬化模型,试求 (1)材料的塑性模量(2)材料单轴拉伸下的应力应变关系。

解:(1)因为τττγ221232*123121J d J h d p⎥⎥⎦⎤⎢⎢⎣⎡= 所以 τγd hd p *3*1=,3*3G d d h p==γτ (2) 弹性阶段。

因为)1(2υ+=EG ,所以)1(2υ+=G E 由于是单轴拉伸,所以εσE = 塑性阶段。

ijp ij fd d σλε∂∂= 1111)1(σσσε∂∂∂∂=fd f h d kl kl p解:在板的固定端,挠度和转角为零。

显然:()0)(b y ==±=±=ωωa x 满足0)(2)(2)(222221=-⋅-=∂∂±=b y x a x C xa x ω故222222111)()(b y a x C w C w --==满足所有的边界条件。

02))((2)y(222221=⋅--=∂∂±=y b y a x C b y ω2、用Ritz 法求解简支梁在均布荷载作用下的挠度(位移变分原理)步骤:(1)设挠度的试验函数 w (x ) = c 1x (l -x )+c 2x 2(l 2-x 2)+…显然,该挠度函数满足位移边界w (0) =0,w (l ) = 0。

(2)求总势能()⎰⎰-''=+=∏l 002qwdx dx w EI 21lV U 仅取位移函数第一项代入,得()()⎰⎥⎦⎤⎢⎣⎡---=∏l 0121dxx l qx c c 2EI 21(3)求总势能的极值EI24ql c 0c 211==∂∏∂ 代入挠度函数即可1.假定矩形板支承与承受荷载如图所示, 试写出挠度表示的各边边界条件: 解:简支边OC 的边界条件是:()00==y ω()0022220)(M xy D M y y y -=∂∂+∂∂-===ωνω自由边AB 的边界条件是:()0)(2222=∂∂+∂∂===b x by y x y M ωνω,()()q y x yD V b y b y y -=⎪⎪⎭⎫ ⎝⎛∂∂∂-+∂∂-===23332ωνω两自由边的交点B :()0,===b y a x ω()B by a x xy R M ===,2是B 点支座的被动反力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5-9如已知材料的屈服极限按如下规律变化 ,试求此等厚度自由旋转圆盘在极限状态下的转速 以及径向和环向的应力表达式。
5-10已知理想均质弹塑性材料制成的圆盘,此材料服从特雷斯卡屈服条件,如 为极限状态时的转速,而 为盘中某一点进入塑性时的转速,试分别求出带中心圆孔圆盘和不带中心圆孔圆盘的 / 值各为多少?
图5-18
5-5试求外半径为b,内半径为a的圆管(如图5-19所示)。在扭矩的作用下,塑性极限扭矩和弹性极限扭矩之比为多大?如为薄壁管,则扭矩之比又为多大?
5-6已知理想弹塑性材料制成的空心圆轴(如图5-20所示),内半径为a,外半径为b,若内外半径之比为 ,即,试求使截面最外层屈服时的 和使截面达到完全屈服时的扭矩 的值各为多少?并写出使塑性区扩展到 时所需的扭矩 的表达式。
图5-19图5-20
5-7在题5-6中,当 时,试给出卸载后,在弹性区和塑性区应力的表达式。
5-8已知内半径为a,外半径为b的自由旋转环盘(如图5-21所示),材料的屈服极限为,试用特雷斯卡屈服条件求出此旋转环盘在极限状态时的表达式,并求出的最大值。给出a趋近于零或趋近于b(薄环情况)的的最大值。
图5-21
8-7试从密切尔—贝尔特拉米方程推导平面应变问题的协调方程。
习题9
9-1尖劈顶角2,受轴向力P的作用,求应力分布,见图9-22。
9-2尖劈顶角2,受水平横向力P的作用,求应力分布,见图9-23。
9-3尖劈顶角2,受力偶矩M的作用,求应力分布,见图9-24。
图9-22图9-23图9-24
9-4半无限平面,边界上某切点受切力P的作用,求应力分布,见图9-25。
5-13已知理想弹塑性材料制成的厚壁圆筒,内半径为a,外半径为b,承受内压 的作用,若 为厚壁圆筒中弹塑性分界半径,试求 和内压 之间的关系,已知 为材料的剪切屈服极限。
5-14已知理想弹塑性材料制成的厚壁圆筒,内半径为a,外半径为b,材料的屈服极限为 ,试求筒内壁进入塑性状态时内压的值 为多大?
(a)两端为封闭;(b)两端为自由,即 ;(c)两端受刚性约束,即 。
3-3将一个实体非均匀加热到温度T,而T是 、 、 的函数。如果假设每一单元体的热膨胀都不受约束,那么各应变分量为 , ,其中 是热膨胀系数,是常数。试证明,这种情况只有当T是 、 、 的线性函数时才会发生。
3-4参照下图,
设 , ,而 ,试证:
3-5已知欧拉应变 的6个分量,证明小变形的线应变和剪应变为
习题5
5-1已知理想弹塑性材料的受弯杆件,设计截面为:(a)正方形,(b)圆形,(c)内外径比为 的圆环,(d)正方形沿对角线受弯,(e)工字型;其尺寸如图5-17所示。试求塑性极限弯矩与弹性极限弯矩之比 各为多少?
图5-17
5-2设有理想弹塑性材料的矩形截面杆件的高度为 ,宽度为 受外力作用,当弹性核 时,试求此时弯矩值为多少?
3-12将橡皮方块放在与它同样体积的铁盒内,在上面用铁盖封闭,使铁盖上面承受均匀压力 的作用,如图3-12所示。假设铁盒与铁盖可以看作为刚体,在橡皮与铁之间没有摩擦力,试求铁盒内侧面所受到的压力以及橡皮块的体积应变。若将橡皮块换成刚体或不可压缩体时,其体积应变将有什么变化?
图3-11图3-12
3-13设 为主应力偏量,试证明用主应力偏量表示米泽斯屈服条件,其形式为
3-14已知两端封闭的薄壁圆筒,半径为r,厚度为t,承受内压及轴向拉应力的作用,试求此时圆管的屈服条件,并画出屈服条件的图。
3-15已知半径为r,厚度为t的薄壁圆筒,承受轴向拉伸和扭转的联合作用,设在加载过程中,保持 ,试求此圆管在按米泽斯屈服条件屈服时,轴向拉伸力P和扭矩M的表达式。
3-16在如下两种情况下,试给出塑性应变增量的比值。
图8-9
8-2悬臂梁(0≤x≤1,-c≤y≤c),左端固定,沿下边界受均匀分布剪力,而上边界和右端不受载荷时,可用应力函数 得出解答。这个解答在哪些方面是不完善的?将应力表达式与由拉伸和弯曲的初等公式得到的表达式作一比较,见图8-10。
图8-10
8-3悬臂梁受均布荷重 的作用,梁长 ,高2c,求应力分布。见图8-11。
2-11已知物体中某点的应力状态为 ,斜截面法线的方向余弦为 ,试证明斜截面上的正应力 及剪应力 分别为 、 。
习题3
3-1若位移 是坐标的一次函数,则在整个物体中各点的应变都是一样的,这种变形叫均匀变形。设有以O为中心的曲面,在均匀变形后成为球面,
问原来的曲面 是怎样的一种曲面?
3-2证明 , , , (其中 和 是微小的常数),不是一个可能的应变状态。
4-2设体积力为常量,试证明:

式中 , 。
4-3设体积力为常量,试证明:

4-4试推导,用应力法把有体积力问题化成无体积力问题的基本方程和边界条件。
4-5用应力法解释弹性力学问题,基本方程为什么也是9个而不6个?
4-6推导密切尔——贝尔特拉米方程的过程中,曾用过平衡方程,为什么解题时,用应力法,基本方程中还有平衡方程?

3-6已知: , , ,求: .
3-7试证: .
3-8设某点的拉格朗日应变为
试求:(a)主应变;
(b)最大主应变对应的主轴方向;
(c)最大剪应变分量 .
3-9刚性位移与刚体位移有什么区别?
3-10试用应力分量写出轴对称极坐标平面应变状态条件下的协调方程。
3-11如图3-11所示,试用正方体(a×a×a)证明不可压缩物体的泊松比 。
提示:边界条件中出现 项时,应设 。
图8-11图8-12
8-4有简支梁长 ,高 ,受均布荷重 的作用,求应力分布,见图8-12。
8-5简支梁长 ,高 ,试证由于自重 所产生的应力分布为



式中 。
提示: , , 是方程组的一组特解,然后把有体积力的问题变为无体积力的问题求解。
8-6悬臂梁长 ,高 ,求由于自重 所产生的应力。
5-3已知矩形截面的简支梁,其高为 ,宽为 ,在梁上 范围内承受均
布载荷的作用如图5-18所示。试求此梁中间截面开始进入塑型时的外载荷 以及极限载荷 的值,分别求出 和 两种情况时的弹塑性分界线的表达式。
5-4若已知理想弹塑性材料的剪切屈服极限为 ,如用此材料支撑半径为R的受扭圆轴,试求当 和 时,扭矩M值的大小。 为弹塑性分解半径。
9-8试从应力函数 导出应力分布
并证明这是半无限大平板,原点右边无载荷,原点左边均匀压强P伸向无穷远问题的解,见图9-29。
图平板,一边上有一凸出的尖齿,如图2.1。试证明齿尖上完全没有应力。
图2.1
2-2物体中某点的应力状态为 ,求三个不变量和三个主应力的大小。
2-3有两个坐标系,试证明 。
2-4M点的主应力为 。一斜截面的法线v与三个主轴成等角,求 、 及 。
2-5已知某点的应力状态为 ,求该点主应力的大小和主轴方向。
9-5很大的矩形板,中央有一半径为的小圆孔,左右边界受均匀法向压力p,上下边界受均匀法向拉力p,见图9-26,求小圆孔引起的应力集中。
9-6有曲杆,内半径为r,外半径为R,一端固定,另一端面上收切力P作用,求杆中应力分布,见图9-27。
图9-25图9-26图9-27
9-7开口圆环,内半径为a,外半径为b,内边界上有均匀法相压力P作用,求应力分布,见图9-28。
5-11已知半径为b的等厚度的实心旋转圆盘,由不可压缩材料制成,材料服从特雷斯卡屈服条件,如盘中所有点都同时进入塑性状态,则屈服条件的表达式应取何形式?此时极限转速 应为多大?
5-12设有理想弹塑性材料制成的厚壁圆筒,内半径为a,外半径为b,承受内压 的作用,试求此后圆筒开始进入塑性状态时和完全进入塑性状态时的压力比值为多少?
2-6已知某点的应力状态为 ,求该主应力的大小和主轴方向。
2-7已知某点的应力状态为 过该点斜截面法线 的方向余弦为 ,试求斜截面上切应力 的表达式。
2-8物体中某点的应力状态为 求该点主应力的大小和主轴方向。
2-9已知物体中某点的应力状态为 ,斜截面法线的方向余弦为 ,试求斜截面上切应力的大小。
2-10半径为 的球,以常速度 在粘性流体中沿 轴方向运动。球面上点A( )受到的表面力为 , , ,式中 为流体的静水压力。试求球所受的总力量。
习题6
6-1在薄中心O,加一对反向力Q,测得板两端A、B二点的伸长为 ,如在A、B二点作用一对拉力P,求板中心的厚度将减小多少。见图6-4
图6-4
习题8
8-1轴线水平的圆柱,由于自重产生的应力为 圆柱的两端被限制在两个光滑的固定刚性平面之间,以维持平面应变状态。试用草图表明作用于它表面(包括两端)的力。见图8-9。
(a)单向受力状态, ,
(b)纯剪受力状态, 。
3-17已知薄壁圆筒承受拉应力 及扭矩的作用,若使用米泽斯屈服条件,试求薄壁圆筒屈服时扭转应力应为多大?并给出此时塑性应变增量的比值。
3-18若有两向应力状态 ,试求各应变分量的值。
习题4
4-1设已知对各向同性材料的应力应变关系为 ,试证其应力主轴与应变主轴是一致的。
相关文档
最新文档