弹塑性力学 弹塑性本构关系

合集下载

弹塑性本构关系简介

弹塑性本构关系简介

松比)。
塑性材料受外部作用的反应和变形的历史有关(可称为历 史相关性或路径相关性),本构关系应写成增量关系。
应力空间表述的弹塑性本构关系
韧性(塑性)金属材料单向拉伸试验曲线如下 图示意
强度极限
b
屈服上限
L y
U y
e
屈服下限
弹性极限
强化段
软化段 卸载
残余变形
弹性变形
y
y
卸载、反向加载 包辛格效应
屈服面随内变量改变的规律称强化规律。由 材料试验的资料可建立各种强化模型,目前广 泛采用的有:等向强化;随动强化两种模型。
等 向 强
初始屈服面
2
B
f 0(ij ) 0 B
2
C A o1

o A 1
o
1
C
D

弹性

f 0 (ij ) 0
强 化
后继屈服面
f
( ij
,
p ij
,
k)
0
等向强化认为屈服面形状不变,只是作均匀
称后继屈服面,f
(
ij
,
p ij
,
k
)
0

如果一点应力的 f (ij ,ipj,,则k)此 点0 处于弹性状态,如

f (,ij则,处ipj ,于k)塑 0性状态。
式变张中形量的为i量j间应。存ip力j在张如和ip量j 下k,关统系称为ipj为塑内性变应量ip力j 。张其D量i中j,klkkp与l为塑标ipj 性志应永变久
d ij
Dt ijkl
d
kl
式中 Ditjk为l 切线弹性张量,形式上仍可表为
Dt ijkl

第四章 弹塑性体的本构理论

第四章 弹塑性体的本构理论

第二部分弹塑性问题的有限元法第四章弹塑性体的本构理论第五章弹塑性体的有限元法第四章弹塑性体的本构理论4-1塑性力学的基本内容和地位塑性力学是有三大部分组成的:1) 塑性本构理论,研究弹塑性体的应力和应变之间的关系;2) 极限分析,研究刚塑性体的应力变形场,包括滑移线理论和上下限法;3) 安定分析,研究弹塑性体在低周交变载荷作用下结构的安定性问题。

塑性力学虽然是建立在实验和假设基础之上的,但其理论本身是优美的,甚至能够以公理化的方法来建立整个塑性力学体系。

塑性力学是最简单的材料非线性学科,有很多其它更复杂的学科,如损伤力学、粘塑性力学等,都是借用塑性本构理论体系而发展起来的。

4-2关于材料性质和变形特性的假定材料性质的假定1)材料是连续介质,即材料内部无细观缺陷;2)非粘性的,即在本构关系中,没有时间效应;3)材料具有无限韧性,即具有无限变形的可能,不会出现断裂。

常常根据材料在单向应力状态下的σ-ε曲线,将弹塑性材料作以下分类:硬化弹塑性材料理想弹塑性材料弹塑性本构理论研究的是前三种类型的材料,但要注意对于应变软化材料,经典弹塑性理论尚存在不少问题。

变形行为假定 1)应力空间中存在一初始屈服面,当应力点位于屈服面以内时,应力和应变增量的是线性的;只有当应力点达到屈服面时,材料才可能开始出现屈服,即开始产生塑性变形。

因此初始屈服面界定了首次屈服的应力组合,可表示为()00=σf(1)2) 随着塑性变形的产生和积累,屈服面可能在应力空间中发生变化而产生后继屈服面,也称作加载面。

对于硬化材料加载面随着塑性变形的积累将不断扩张,对于理想弹塑性材料加载面就是初始屈服面,它始终保持不变,对于软化材料随着塑性变形的积累加载面将不断收缩。

因此加载面实际上界定了曾经发生过屈服的物质点的弹性范围,当该点的应力位于加载面之内变化时,不会产生新的塑性变形,应力增量与应变增量的关系是线性的。

只有当应力点再次达到该加载面时,才可能产生新的塑性变形。

清华大学研究生弹塑性力学讲义 8弹塑性_塑性力学基本方程和解法

清华大学研究生弹塑性力学讲义 8弹塑性_塑性力学基本方程和解法

弹塑性力学第七章塑性力学的基本方程与解法一、非弹性本构关系的实验基础拿一根工程上最常用的低碳钢的试件,在拉伸试验机上就可得到如图7.1所示的应力应变曲线。

图中A为比例极限,当变形状态未超过A点时材料处于线弹性状态;B为弹性极限,AB段的变形虽然还是弹性的,即卸载时能按原来的加载曲线返回,但应力应变之间不再是线性关系。

C,D分别为上、下屈服极限,超过C点后材料进入塑性变形状态,卸载时不再按原来的加载曲线返回,而且当载荷完全卸除后还有残余变形。

由C到D是突然发生的,由于材料屈服引起应力突然下降,而应变继续增加。

由D到H是一接近水平的线段,称为塑性流动段。

对同一种材料D点的测量值比较稳定,而C点受试件截面尺寸、加载速率等影响较大。

如果载荷在使材料屈服之后还继续增加,则进入图中曲线右部的强化段。

即虽然材料已经屈服,但只有当应力继续增加时,应变才能继续增大。

在图中b点之后,试件产生颈缩现象,最后试件被拉断。

如果在塑性流动段的D′点,或强化段的H′点卸载,将能观测到沿着与OA平行的直线返回,当载荷为零是到达O′点或O′′点,即产生残余变形。

图7.1 低碳钢单向拉伸应力应变曲线有些高强度的合金钢并没有象低碳钢那样的屈服段,其单向拉伸的应力应变曲线如图7.2所示。

这种情况下屈服极限规定用产生0.2%塑性应变所对应的应力来表示,σ。

记为0.2图7.2 高强度合金钢单向拉伸应力应变曲线第七章 塑性力学的基本方程与解法如果以超过屈服极限的载荷循环加载,所得试验结果则象图7.3所示。

在实验中还发现,对于某些材料(图7.4),如果在加载(拉伸)屈服后完全卸载到O ′′点,然后接着反向加载(压缩),则其反向屈服点对应的应力绝对值s σ′′不仅小于s σ′,而且小于初始屈服应力的绝对值σ′。

这是德国的包辛格(Bauschinger, J.)最早发现的,称为包辛格效应。

图7.3 循环加载曲线示意图 图7.4 包辛格效应 当材料进入塑性状态后,如果不是单调加载,则应力和应变之间不仅不是单值函数的关系,而且当时的应变不仅和当时的应力有关,还和整个加载的历史有关。

弹塑性力学第一章弹塑性力学绪论资料

弹塑性力学第一章弹塑性力学绪论资料
弹塑性力学的主要内容包括以下两部分。
1、弹塑性本构关系
本构关系是指材料内任意一点的应力-应变之间的关 系,是材料本身的物理特性所决定的。弹性本构关系 是广义胡克定律,而塑性本构关系远比弹性本构关系 复杂。在不同的加载条件下要服从不同的塑性本构关 系。塑性本构关系有增量理论和全量理论。
6
2.研究荷载作用下物体内任意一点的应力和变形 在荷载作用下,物体内会产生内力,因此通常
广泛地探讨了许多复杂的问题,出现了许多边缘分支:
各向异性和非均匀体的理论,非线性板壳理论和非线性
弹性力学,考虑温度影响的热弹性力学,研究固体同气
体和液体相互作用的气动弹性力学和水弹性理论以及粘
弹性理论等。磁弹性和微结构弹性理论也开始建立起来。
此外,还建立了弹性力学广义变分原理。这些新领域的
发展,丰富了弹性力学的内容,促进了有关工程技术的
弹塑性力学
1
第一章 绪 论
§1-1 弹塑性力学基本概念和主要任务 §1-2 弹塑性力学的发展史
§1-3 基本假设及试验资料 §1-4 简化模型
2
1.1 弹塑性力学基本概念和主要任务
一、弹性(塑性)变形,弹性(塑性)阶段
可变形固体在外力作用下将发生变形。根据变形 的特点,固体在受力过程中的力学行为可分为两个明 显不同的阶段:当外力小于某一极限值(通常称为弹 性极限荷载)时,在引起变形的外力卸除后,固体能 完全恢复原来的形状,这种能恢复的变形称为弹性变 形,固体只产生弹性变形的阶段称为弹性阶段;外力 超过弹性极限荷载,这时再卸除荷载,固体将不能恢 复原状,其中有一部分不能消失的变形被保留下来, 这种保留下来的永久变形就称为塑性变形,这一阶段 称为塑性阶段。
10
在这个时期,弹性力学的一般理论也有很大的发展。

弹塑性力学第5章—塑性本构关系

弹塑性力学第5章—塑性本构关系

3 2
sij

Cdε
p ij
sij −
Cdε
p ij
−σs = 0
C表征材料强化的大小,来自单向拉伸
5.3 后继屈服条件
1、等向强化模型
单向拉伸实验曲线中三个方向的塑性主应变为
ε1p
= ε p,
ε
p 2
=
ε
p 3
= − 1ε p
2
其中ε p为单向拉伸方向的塑性应变,由此得到等效塑性应变
( ) ( ) ( ) ε p =
4 3
J

2
=
2 9
⎡ ⎢⎣
ε1p

ε
p 2
2+
ε
p 2

ε
p 3
2+
ε
p 3
最大畸变能是材料屈服的原因
J2 = k2
J 2反映了材料的畸变能( U0d
=
J2 2G

( ) J2
=
1 2
sij sij
=
1 6
(σ1 − σ2 )2 + (σ2 − σ3 )2 + (σ3 − σ1)2
k 由实验确定,根据简单拉伸实验,在材料屈服时
[ ] J2
=1 6
(σ 0 − 0)2 + 0 + (0 −σ 0 )2
−0.8
屈服条件类似,主要区别是
−1.0
混凝土的抗压强度比抗拉强
−1.2
度高得多。
5.2 常用的屈服条件
5.2.3 混凝土的莫尔-库仑屈服条件
在实验基础上,提出线性化的莫尔-库仑屈服条件,σ

0
,
σ

弹塑性力学第四章弹性本构关系资料

弹塑性力学第四章弹性本构关系资料
产生的x方向应变:
产生的x方向应变:
叠加
产生的x方向应变:
同理:
剪应变:
物理方程:
说明:
1.方程表示了各向同性材料的应力与应 变的关系,称为广义Hooke定义。也称 为本构关系或物理方程。
2.方程组在线弹性条件下成立。
. 体积应变与体积弹性模量
令: 则: 令:
sm称为平均应力; q 称为体积应变
eij
1 2G
sij
(4.40)
因为 J1 0, J1' 0 ,所以以上六个式子中独立变量只有5个
因此应力偏张量形式的广义虎克定律,即
eij
1 2G
sij
em
1 3K
sm
(4.41)
用应变表示应力:
或: ✓ 各种弹性常数之间的关系
§4-2 线弹性体本构方程的一般表达式
弹性条件下,应力与应变有唯一确定的对应关系,三维 应力状态下,一点的应力取决于该点的应变状态,应力是应 变的函数(或应变是应力的函数) 6个应力分量可表述为6个应变分量的函数。
式(2)中的系数 有36个.
称为弹性常数,共
由均匀性假设,弹性体各点作用同样应力 时,必产生同样的应变,反之亦然.因此 为 常数,其数值由弹性体材料的性质而定.
式(2)推导过程未引用各向同性假设, 故可适用于极端各向异性体、正交各向异性体、 二维各向同性体以及各向同性体等.
式(2)可用矩阵表示
式(3)可用简写为 称为弹性矩阵.
三、. 弹性常数
1. 极端各向异性体:
物体内的任一点, 沿各个方向的性能都不相 同, 则称为极端各向异性体. (这种物体的材料极 少见)
即使在极端各向异性条件下, 式(2)中的36个 弹性常数也不是全部独立.

弹塑性力学弹性与塑性应力应变关系详解

弹塑性力学弹性与塑性应力应变关系详解

➢ 各向同性材料的胡克(Hooke)定律(一维问题,
1678)
单向拉压
E——拉压弹性模量;
纯剪切
G——剪切弹性模量;
——泊松比
横向与纵向变形关系
➢ 广义胡克定律——对复杂应力状态,在弹性力学 假设条件下,应用叠加原理:
考虑x方向的正应变:
产生的x方向应变:
产生的x方向应变:
叠加后得
产生的x方向应变:
屈服下限
强化阶段 软化阶段 卸载
低碳钢在单向拉伸时的典型应力应变曲线
包辛格(Bauschinger)效应
➢ 具当有应强力化超性 质 着过 后 (的 塑或屈,材 性压服拉料变缩点伸随形) 的应增力加的,硬屈 服化极将限引在起一 个反方向向加上载提
高时,压而在缩相
反(方或向拉降伸低) 屈服应力 的弱化
2 2 1 3 1 3 2 2 1 3 1 3
说明, =,=
3-4 特雷斯卡和米泽斯屈服条件
➢ 塑性变形——当作用在物体上的外力卸去 后,物体中没有完全恢复的那部分永久变 形称为塑性变形。
➢ 塑性力学——研究塑性变形和作用力之间 的关系以及在塑性变形后物体内部应力分 布规律的学科称为塑性力学。
如果s+s =2s,则称为理想包辛格效应
名义应力与真实应力
➢ 在体积不可压缩的假设前提下
荷载
➢ 拉伸(压缩)时的名义应力 P
A0
初始截面积
➢ 拉伸时的真实应力
➢ 压缩时的真实应力
T
P A
(1 )
变形后截面积
T
P A
(1 )
3-2 弹塑性力学中常用的简化力学 模型
➢理想弹塑性
模型:
➢ 屈服条件——屈服条件又称塑性条件,它 是判断材料处于弹性阶段还是处于塑性阶 段的准则。

弹塑性本构关系简介

弹塑性本构关系简介

2) 势能原理的数学表达
应变能
总势能
Ve=Vε+VP =1/2∫VσijεijdV 外力势能
-∫VFbiuidV- ∫SσFsiuidS = min
2 虚力原理
1)虚力原理的表述
给定位移状态协调的充分必要条件为:对 一切自平衡的虚应力,恒有如下虚功方程成 立(矩阵)
∫V[ε]Tδ[σ]dV=∫Su([L]δ[σ])T [u ]0dS
收敛准则
1、位移模式必须包含单元的刚体位移
2、位移模式必须能包含单元的常应变
3、位移模式在单元内要连续、并使相邻单元间的位移必须协调
满足条件1、2的单元为完备单元
满足条件3的单元为协调单元 多项式位移模式阶次的选择——按照帕斯卡三角形选
几何各向同性:位移模式应与局部坐标系的方位无关
多项式应有偏惠的坐标方向,多项式项数等于单元边界结点的自由度总
变间关系为 octσoct
GKtt
oct 3K s oct oct Gs oct
并有
Gs G
1
a
oct
B c
m
KGss
εoct
oct
K G e s
s (c oct ) p
KG
其中G、K分别为初始切线剪切和体积模量,
B c
为混凝土单轴抗压强度,a、m、c和p为由试验
确定的常数。
POCT
弹性张量Dijkl
ij
Dijkl kl
( 2G 1 2
ij kl
2Giklj ) kl
i 1, j 2, k 1,l 2
12
D1212 12
( 2G 1 2
1212
2G1122 )12
11 1 12 0 22 1

弹塑性力学-弹塑性本构关系

弹塑性力学-弹塑性本构关系
此式限制了屈服面的形状: 对于任意应力状态,应力增量方向
与塑性应变向量之间所成的夹角不应 该大于90°
稳定材料的屈服面必须是凸的.
(a)满足稳定材 料的屈服面
ij
0 ij
(b) 不满足稳定 材料的屈服面
/2
2 塑性应变增量向量与屈服面法向平行
d 必p 与加载面的外法线
重合,否则总可以找到A0 使A0A·dεp≥0不成立(如右 图)。
的真实功与ij0起点无关;
Ñ d ipj ij ij 0
(2)附加应力功不符合功的 定义,并非真实功
i0j ij i0jdij0
-
应力循环中外载所作真实功 与附加应力功
(3)非真实物理功不能引用热力学定律;
(4)德鲁克公设的适用条件:
①ij0在塑性势面与屈服面
之内时,德鲁克公设成立;
d
p ij
d
ij
由应力空间中的屈服与应变空间中屈服面的转换关系,可得:
结合
-
D
ij
ij
dipj Ddipj
d
p ij
d
ij
可得:
d d
3.1.4 塑性位势理论与流动法则
与弹性位势理论相类似,Mises于1928年提出塑性
位势理论。他假设经过应力空间的任何一点M,必有
一塑性位势等势面存在,其数学表达式称为塑性位势
残余应力增量与塑性 应变增量存在关系:
dipj Ddipj
式中,D为弹性矩阵。 根据依留申公设,在 完成上述应变循环中, 外部功不为负,即
Ñ WI ijdij 0 i0j
只有在弹性应变时,上述WI=0。
根据Druker塑性公设
当 i0 jij时 (iji0 j)dijp 0

弹塑性力学-弹塑性本构关系ppt课件

弹塑性力学-弹塑性本构关系ppt课件

d
p
|
cos
0
此式限制了屈服面的形状: 对于任意应力状态,应力增量方向
与塑性应变向量之间所成的夹角不应 该大于90°
稳定材料的屈服面必须是凸的.
(a)满足稳定材 料的屈服面
ij
0 ij
(b) 不满足稳定 材料的屈服面
/2
工程弹塑性力学·塑性位势理论
2 塑性应变增量向量与屈服面法向平行
d 必p 与加载面的外法线
p
ij
0
0 ij
WD
(ij
adij
0 ij
)d
p
ij
0
1 a 1 2

0 ij
时,略去无穷小量
ij
( ij
0 ij
)d
p ij
0

0 ij
ij时,
d
ij
d
p ij
0
屈服面的外凸性
塑性应变增量方向 与加载曲面正交
工程弹塑性力学·塑性位势理论
1 屈服曲面的外凸性
( ij
0 ij
)dijp
|
A0 A||
不小于零,即附加应力的塑性功不出现负值, 则这种材料就是稳定的,这就是德鲁克公设。
工程弹塑性力学·塑性位势理论
在应力循环中,外载所作的 功为:
Ñ W
0 ij
ij
d ij
0
不论材料是不是稳定,上述 总功不可能是负的,不然, 我们可通过应力循环不断从 材料中吸取能量,这是不可 能的。要判断材料稳定必须 依据德鲁克公设,即附加应 力所作的塑性功不小零得出
弹塑性力学本构关系
1
工程弹塑性力学·塑性位势理论
(1) 稳定材料与非稳定材料

塑性力学--第四章 塑性本构关系

塑性力学--第四章 塑性本构关系

向都保持不变.
• 但是物体内的内力是不能事先确定的, 那么如何判断加载过 程是简单加载? Il’yushin指出, 在符合下列三个条件时, 可以 证明物体内所有各点是处于简单加载过程:
(1) 荷载(包括体力)按比例增长.如有位移边界条件应为零.
(2) 材料是不可压缩的.
(3)应力强度和应变强度之间幂指数关系,
3i 2 i
(3)应力强度是应变强度的函数 i i , 即按单一曲线假
定的硬化条件.
综上所述, 全量型塑性本构方程为
ii
1 2
E
ii
eij
3i 2 i
Sij
i i
注意的是上式只是描述了加载过程中的弹塑性变形规律. 加
载的标志是应力强度 i 成单调增长. i 下降时为卸载过
程, 它时服从增量Hooke定律.
y
些基本未知量的基本方程有
x
Su : ui
平衡方程 ij, j Fi 0
几何方程
ij
1 2
ui. j u j,i
本构方程
ii
1 2
E
ii
eij
3i 2 i
Sij
i i
其中
i
3 2
Sij Sij
i
2 3
eij eij
这就是对于全量 理论的塑性力学
边界条件 S : ijl j pi , Su : ui ui
(1)全量理论, 又称为形变理论, 它认为在塑性状态下仍有应力 和应变全量之间的关系. 有Hencky(亨奇)理论和Il’yushin (伊柳 辛)理论.
(2)增量理论, 又称为流动理论, 它认为在塑性状态下是塑性应 变增量和应力及应力增量之间有关系.有Levy-Mises(莱维-米泽 斯)理论和Prandtl-Reuss(普朗特-罗伊斯)理论.

15第10章经典弹塑性本构关系、第11章岩土本构关系和第12章 弹塑性力学边值问题分析(第15讲)

15第10章经典弹塑性本构关系、第11章岩土本构关系和第12章 弹塑性力学边值问题分析(第15讲)

A+
∂f ∂σ ij
Dijkl
∂g ∂σ kl
dσ ij
= Dijkl dε kl − Dijkl
∂g ∂σ kl
∂f ∂σ ij
Dijkl
A+
∂f ∂σ ij
Dijkl
∂g ∂σ kl
d ε kl
=
( Dijkl

Dijkl A+
∂g ∂σ kl ∂f ∂σ ij
∂f ∂σ ij
Dijkl
Dijkl
¾塑性应变εijp硬化定律: ¾塑性功Wp硬化定律: ¾ 塑性体应变εvp 硬化定律
2
¾塑性应变εijp硬化定律:
ξβ
=
ξβ

p ij
)


= ∂Φ ∂σ ij
d σ ij
+ ∂Φ ∂ξβ
d ξβ
=
∂Φ ∂σ ij
d σ ij
+ ∂Φ ∂ξβ
∂ξβ
∂ε
p ij

p ij
=0
得:
∂Φ ∂σ ij
=
dsij
/
2G,

p ij
= deipj ,
dεm
=
1 3K

m
∂f / ∂sij = sij ,

p ij
=
dλsij
展开为

p x
=

p y
=

p z
=

p xy
=

p yz
=

p zx
=

sx
sy

弹塑性力学第四章 弹性本构关系

弹塑性力学第四章 弹性本构关系
E K 3(1 2 )
(4.36) (4.37) (4.38)
K称为体积弹性模量,简称体积模量。
因此
q
sm
K
,em
sm
3K
1 3 1 1 ex e x e m ( sx sm) sm sx E E 3K 2G
1 ey e y e m sy 2G
1 eij sij 2G
(4.40)
1 eij sij 2G 1 em sm 3K
(4.41)
用应变表示应力:
或:
各种弹性常数之间的关系
§4-2 线弹性体本构方程的一般表达式
弹性条件下,应力与应变有唯一确定的对应关系,三维 应力状态下,一点的应力取决于该点的应变状态,应力是应 变的函数(或应变是应力的函数) 6个应力分量可表述为6个应变分量的函数。
• 材料的应力与应变关系需通过实验确定的。 • 本构方程实际是应力与应变关系实验结果的数学 描述。 • 由于实验的局限性,通常由简单载荷实验获得应 力与应变关系结果,建立描述相应的数学模型, 再将数学模型用于复杂载荷情况的分析。(用一 定实验验证结果)
• 例如:材料单轴拉伸应力-应变z e m sz 2G
1 1 1 1 yz s yz exy e xy xy sxy eyz e yz 2G 2G 2G 2G
1 1 exz e xz xz sxz 2G 2G
整理以上六个式子,得 整理以上六个式子,得
因为 J1 0, J1' 0 ,所以以上六个式子中独立变量只有5个 因此应力偏张量形式的广义虎克定律,即
物理方程:
s ij 3 1 3 e ij s ij s m ij s m ij E E 2G E

塑性力学-塑性本构关系

塑性力学-塑性本构关系

第三章塑性本构关系全量和增量理论•全量理论(形变理论):在塑性状态下仍有应力和应变之间的关系。

Il’yushin(伊柳辛)理论。

•增量理论(流动理论):在塑性状态下是塑性应变增量和应力及应力增量之间的关系。

Levy-Mises理论和Prandtl-Reuss理论。

3-5 全量理论的适用范围简单加载定律变形:小变形加载:简单加载适用范围:物体内每一点应力的各个应力分量,在加载过程中成比例增长简单加载:()0ij ijt σασ=0ijσ非零的参考应力状态()t α随着加载单调增长加载时物体内应力和应变特点:应力和应变的主方向都保持不变应力和应变的主分量成比例增长应力Lode参数和应力Lode角保持常数应力点的轨迹在应力空间是直线小变形前提下,判断简单加载的条件:荷载按比例增长(包括体力);零位移边界材料不可压缩应力强度和应变强度幂函数关系m i iA σε=实际应用:满足荷载比例增长和零位移边界条件3-6 卸载定律卸载:按照单一曲线假设,应力强度减小•外载荷减小,应力水平降低•塑性变形发展,应力重分布,局部应力强度降低简单卸载定律:•各点的应力分量按比例减少•不发生新的塑性变形¾以卸载时的荷载改变量为假想荷载,按弹性计算得到应力和应变的改变量¾卸载前的应力和应变减去卸载过程中的改变量塑性本构关系的基本要素•初始屈服条件–判断弹性或者塑性区•后继屈服条件–描述材料硬化特性,内变量演化•流动法则–应变增量和应力以及应力增量之间的关系,包括方向和分配关系Saint-Venant(1870):应变增量和应力张量主轴重合•继承这个方向关系•提出分配关系()0ij ij d d S d ελλ=≥应变增量分量和应力偏量分量成比例Levy-Mises 流动法则(M. Levy,1871 & Von Mises,1913)适用范围:刚塑性材料3-7 流动法则--Levy-Mises & Prandtl-Reuss。

武汉大学弹塑性力学简答题以及答案

武汉大学弹塑性力学简答题以及答案

弹塑性力学简答题2002年1 什么是偏应力状态?什么是静水压力状态?举例说明?P24静水压力状态时指微六面体的每个面只有正应力作用,应力大小均为平均应力。

偏应力状态是从应力状态中扣除静水压力后剩下的部分。

2 从数学和物理的不同角度,阐述相容方程的意义。

P48从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。

从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。

3 两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么?相同。

应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。

4 虚位移原理等价于哪两组方程?推导原理时是否涉及到物理方程?该原理是否适用于塑性力学问题?P156平衡微分方程和静力边界条件。

不涉及物理本构方程。

适用于塑性力学问题。

5 应力状态是否可以位于加载面外?为什么?P239当应力状态从加载面上向加载面外变化时,将产生新的塑性变形,引起内变量增加,这时,加载面会随之改变,使得更新的应力状态处在更新的加载面上。

6 什么是加载?什么是卸载?什么是中性变载?中性变载是否会产生塑性变形?P250加载:随着应力的增加,应变不断增加,材料在产生弹性变形的同时,还会产生新的塑性变形,这个过程称之为加载。

卸载:当减少应力时,应力与应变将不会沿着原来的路径返回,而是沿接近于直线的路径回到零应力,弹性变形被恢复,塑性变形保留,这个过程称之为卸载。

中性变载:应力增量沿着加载面,即与加载面相切。

应力在同一个加载面上变化,内变量将保持不变,不会产生新的塑性变形,但因为应力改变,会产生弹性应变。

7 用应力作为未知数求解弹性力学问题时,应力除应满足平衡方程外还需要满足哪些方程?P93协调方程和边界条件。

8 薄板弯曲中,哪些应力和应变分量较大?哪些应力和应变分量较小?P121 平面内应力分量(x y xy σστ、、)最大,最主要的是应力,横向剪应力(z y xz ττ、)较小,是次要的应力;z 方向的挤压应力z σ最小,是更次要的应力。

塑性力学第四章塑性本构关系

塑性力学第四章塑性本构关系

ii

1 2
E
ii
eij

1 2G
Sij
第二个式子是六个方程,但因为有 Sii 0, 所以有5个是独立的. 从第二式可以看到在弹性范围内应力主轴和应变主轴是一致 的. 应变偏量的分量和相应的应力偏量的分量成正比.
第二式也可以写成 Sij 2Geij ,把它代入应力强度的表达式
就可以得到下面的第二式, 然后有 G i / 3i 再代回上面第
(1) 荷载(包括体力)按比例增长.如有位移边界条件应为零.
(2) 材料是不可压缩的.
(3)应力强度和应变强度之间幂指数关系,

i

A
m i
这就是Il’yushin简单加载定律.有人认为只有第(1)条就可以了.
塑性成形力学基础--韩志仁
4-6 卸载定律

• 从单向拉伸实验的应力应变曲线
A
看:加载至过弹性极限达到A点,然后
ij

1 E
1
ij
ij kk

• 也可以表示为:
ii

1 2
E
ii
eij

1 2G
Sij
我们来证明一下:
由应力和应变的分解式,即 ij Sij ij m , ij eij ijm
代入上面广义Hooke定律的公式,考虑到 G E / 21
法则就得到弹塑性硬化材料的增量型本构方程:
dii

1 2
E
d ii
deij
在线性强化时 H 时常数.由把Levy-Mises流动法则代入塑性
应变增量强度
d
p i
的公式得到

最新7.弹塑性力学--塑性本构关系汇总

最新7.弹塑性力学--塑性本构关系汇总

f g J2 k
Cep ijkl
ij kl
ik jl
il jk
k2
sij skl
d ij
C d ep ijkl kl
d x
d
y
d
d z d xy
d
yz
d zx
d x
d y
d
d d
z xy
d
yz
d zx
C ep ijkl
Ce ijkl
Cp ijkl
6
1.理想塑性材料的增量本构关系
f g 相关联流动
塑性应变大小 塑性应变方向
对于强化材料
f
ij
d ij
0
d ij 在
f
ij
方向上的投影,反映了塑性应变增量的大小。
可假设:
d
1 h
f
ij
d ij
d
p ij
1 h
f
ij
f
kl
d kl
如何确定?
f
ij d ij
f ij k
16
2. 硬化材料的增量塑性本构关系
f ij ,ij , k 0
sx2 sysx
Cp ijkl
G k2
szsx
sxy sx
s
yz
sx
szxsx
sxsy
s
2 y
szsy
sxy sy
syz sy
szx sy
sxsz
sysz
s
2 z
sxy sz
syz sz
szx sz
sx sxy sy sxy sz sxy sx2y syz sxy szx sxy
sx syz

结构静力弹塑性分析的原理和计算实例

结构静力弹塑性分析的原理和计算实例

结构静力弹塑性分析的原理和计算实例一、本文概述结构静力弹塑性分析是一种重要的工程分析方法,用于评估结构在静力作用下的弹塑性行为。

该方法结合了弹性力学、塑性力学和有限元分析技术,能够有效地预测结构在静力加载过程中的变形、应力分布以及破坏模式。

本文将对结构静力弹塑性分析的基本原理进行详细介绍,并通过计算实例来展示其在实际工程中的应用。

通过本文的阅读,读者可以深入了解结构静力弹塑性分析的基本概念、分析流程和方法,掌握其在工程实践中的应用技巧,为解决实际工程问题提供有力支持。

二、弹塑性理论基础弹塑性分析是结构力学的一个重要分支,它主要关注材料在受力过程中同时发生弹性变形和塑性变形的情况。

在弹塑性分析中,材料的应力-应变关系不再是线性的,而是呈现出非线性特性。

当材料受到的应力超过其弹性极限时,材料将发生塑性变形,这种变形在卸载后不能完全恢复,从而导致结构的永久变形。

弹塑性分析的理论基础主要包括塑性力学、塑性理论和弹塑性本构关系。

塑性力学主要研究塑性变形的产生、发展和终止的规律,它涉及到塑性流动、塑性硬化和塑性屈服等概念。

塑性理论则通过引入屈服函数、硬化法则和流动法则等,描述了材料在塑性变形过程中的应力-应变关系。

弹塑性本构关系则综合考虑了材料的弹性和塑性变形行为,建立了应力、应变和应变率之间的关系。

在结构静力弹塑性分析中,通常需要先确定材料的弹塑性本构模型,然后结合结构的边界条件和受力情况,建立结构的弹塑性平衡方程。

通过求解这个平衡方程,可以得到结构在静力作用下的弹塑性变形和应力分布。

弹塑性分析在结构工程中有着广泛的应用,特别是在评估结构的承载能力、变形性能和抗震性能等方面。

通过弹塑性分析,可以更加准确地预测结构在极端荷载作用下的响应,为结构设计和加固提供科学依据。

以上即为弹塑性理论基础的主要内容,它为我们提供了分析结构在弹塑性阶段行为的理论框架和工具。

在接下来的计算实例中,我们将具体展示如何应用这些理论和方法进行结构静力弹塑性分析。

塑性力学第五章本构关系ppt课件

塑性力学第五章本构关系ppt课件

(5-2)
将三个正应变相加,得:
kk
kk
2G
3
E
mkk
1 2
E
kk
记:平均正应变
m
1 3
kk
体积弹性模量 K E / 3(1 2 )
则平均正应力与平均正应变的关系:
m 3K m
(5-4)
(5-2)式用可用应力偏量 sij 和应变偏量 eij 表示为
1 eij 2G sij
(5-5)
包含5个独立方程
利用Mises屈服条件
J 2
2 s
2 s
3,
可以得到
本构关系
d dijdij d 3d
2 J 2
2 s 2 s
将(5-41)式代回(5-39)式,可求出
(5-41)
sij
d ij d
2 sdij d
2 sdij 3d
(5-44)
在(5-39)式中,给定 sij 后不能确定 dij ,但反之却可由 dij
确定 sij 如下:
J 2
1 2
sij sij
1
2(d)2
dijdij ,
将(5-38)式与(5-41)式加以比较就发现:
dW p s d s d
(5-45)
对于刚塑性材料 dW dW p
3、实验验证
本构关系
理想塑性材料与Mises条件相关连的流动法则:
d
p ij
d sij
对应于π平面上,d与p 二S 向量在由坐标原点发出的同一条射线上。
sij
(5-5)
We
1 2G
J 2
1
2
1 G 2
2
1
2
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

?p ij
?
0
可将Druker塑性公设改写成:
WD
?
(?ij
?
?0 ij
)d?
p ij
?
0
由图(a)可知,对于弹性性质不随加载面改变的非耦合情况,外 部作用在应变循环内做功WI和应力循环所作的外部功之间仅差 一个正的附加项: 1 d? p d ? p
2
因此可将应变循环所作的外部功,写成
WI
?
WD
?
(4)德鲁克公设的适用条件:
①? ij0在塑性势面与屈服面
之内时,德鲁克公设成立;
②? ij0在塑性势面与屈服面
之间时,德鲁克公设不成立;
屈服面 势面线
(5)金属材料的塑性势面与 屈服面基本一致。
附加应力功为非负的条件
3.1.3 依留申塑性公设的表述
依留申塑性公设:在弹塑性材料的一个应变循环内, 外部作用做功是非负的,如果做功是正的,表示有塑性变 形,如果做功为零,只有弹性变形发生。
设材料单元体经历任意应力历史后, 在应力σij0下处于平衡,即开始应力σij0在加 载面内,然后在单元体上缓慢地施加一个附 加力,使σij0达到σij,刚好在屈服面上,再继
续应加变载dε到ijpσ,ij+最dσ后ij,应在力这又一卸阶回段到,σij将0。产若生整塑个性
应力循环过程中,附加应力dσij所作的塑性 功不小于零,即附加应力的塑性功不出现负 值,则这种材料就是稳定的,这就是德鲁克 公设。
1 2
d
?ij
ห้องสมุดไป่ตู้d?
p
ij
?
(?ij
?
?
0 ij
?
1 2
d?ij
)d?
p
ij
?
0
上式表明,如果德鲁克塑性公设成立,WD≥0,则依留申塑性公 设也一定成立,反之,依留申塑性公设成立,并不要求WD≥0, 也就是说,德鲁克塑性公设是依留申塑性公设的充分条件,而
不是必要条件。 当应力点由A到B时,
?
d? ? 0
弹塑性力学本构关系
(1) 稳定材料与非稳定材料
德鲁克公设和依留申公设是传统塑性力学的基础,它把塑性势函 数与屈服函数紧密联系在一起。德鲁克公设只适用于稳定材料, 而依留申既适用于稳定材料,又适用于不稳定材料。
稳定材料
附加应力对附加应变做功 为非负,即有 ? ?? ? ? 0
(应变硬化和理想塑性材料)
非稳定材料
附加应力对附加应变负做 功,即 ? ?? ? ? 0
(应变软化材料)
(2) 德鲁克塑性公设的表述
德鲁克公设可陈述为:对于处在某一状态下的稳定材 料的质点(试件),借助于一个外部作用在其原有应力状态 之上,缓慢地施加并卸除一组附加压力,在附加应力的施 加和卸除循环内,外部作用所作之功是非负的。
d? 必p 与加载面的外法线
重合,否则总可以找到A0 使A0A·dεp≥0不成立(如右 图)。
标量dλ,称
为塑性因子
d?ipj
?
d?
??
?? ij
切平面 加载面
表明,塑性应变分量 σij之间的比例可由在 加载面上 Φ的位置确定。
?
d? ijd?ijp ? 0 ?
? dσ
?n?
?
0
加载准则
意义:只有当应力增量指向加载面的外部时才能产生塑性变形。
?|
A0 A|| d? p
| cos?
?
0
此式限制了屈服面的形状: 对于任意应力状态,应力增量方向
与塑性应变向量之间所成的夹角不应 该大于90°
稳定材料的屈服面必须是凸的.
(a)满足稳定材 料的屈服面
? ij
?0 ij
(b) 不满足稳定 材料的屈服面
? ?? /2
2 塑性应变增量向量与屈服面法向平行
残余应力增量与塑性 应变增量存在关系:
d?
p ij
?
D
d
?p ij
式中,D为弹性矩阵。
根据依留申公设,在 完成上述应变循环中, 外部功不为负,即
? WI ? ? ij d?ij ? 0 ?i0j
只有在弹性应变时,上述 WI=0。
根据Druker塑性公设
当?
0 ij
?
?
ij时
(?
ij
?
?
0 ij
)d
d ?ij ? 0
由于弹性应变 εije在应力循 环中是可逆的,因而
? (?
ij
??
? )d 0
e
ij
ij
?
0
?
0 ij
于是有:
? WD ? WDp ?
(?
ij
??
? )d 0
p
ij
ij
?
0
?
0 ij
(3) 德鲁克塑性公设的重要推论
? WD ? WDp ?
(?
ij
?
?
? )d 0
p
ij
ij
?
0
?
0 ij
在应力循环中,外载所作的 功为:
? W ?
?
?
0 ij
ij
d ?ij
?
0
不论材料是不是稳定,上述 总功不可能是负的,不然, 我们可通过应力循环不断从 材料中吸取能量,这是不可 能的。要判断材料稳定必须 依据德鲁克公设,即附加应 力所作的塑性功不小零得出
? ? ? W ?
?
0 ij
?
ij
?
?
0 ij
d?
p ij
?
0
应变空间加 载面外凸
2


塑性势面与屈服面相同
?0 ij
?
?ij时,
d?ij
d?
p ij
?
0
加载准则(取大于号表示 有新的塑性变形发生)
根据
d?
p ij
关于?
?0
的正交法则,可得:
d?
p ij
?
d?
?? ??ij
由应力空间中的屈服与应变空间中屈服面的转换关系,可得:
d? ? 0
CD
AB
dσ<0,但dσp>0,塑性变形
dεp>0,总变形dε>0
d? d?p ? 0 d? d? p ? 0
d? ? 0
?
d? ? 0
?
WI
?
(?ij
?
?
0 ij
?
1
d?ij )d?
p
ij
2
?
WD
?
1
d ? ij d?
p
ij
?
WD
?
0

?ij
?
?0 ij
?
0时,
(?ij
?
?0 ij
)
3德鲁克塑性公设的评述
?德鲁克公设的适用条件:
(1)应力循环中外载所作
的真实功与? ij0起点无关;
??
?
p ij
ij d ?ij
?
0
(2)附加应力功不符合功的 定义,并非真实功
? ? ? ?
0 ij
?
ij
?
?
0 ij
d? ij
?
0
应力循环中外载所作真实功 与附加应力功
(3)非真实物理功不能引用热力学定律;
设材料单元体经历任意应力
历即史初后始,的在应应变力εσij0ij在0下加处载于面平内衡,,然
后在单元体上缓慢地施加荷载,使
ε应变原i变d先j达ε点的到ijp应ε屈。变ij服+然状d面后ε态,卸ij,ε再载此ij继0使,时续应并产加变产生载又生塑达回了性到到与应
塑性变量所对应的残余应力增量 dσijp。
WD
?
(?
ij
?
ad ? ij
?
?
0 ij
)d
?p ij
?
0
1? a ? 1 2
当?
0 ij
?
?
ij时,略去无穷小量
(?
ij
??
0 ij
)d
?p ij
?
0
当?
0 ij
?
?
ij时,
d?
?d p
ij ij
?
0
屈服面的外凸性
塑性应变增量方向 与加载曲面正交
1 屈服曲面的外凸性
(?
ij
??
0 ij
)d?ipj
相关文档
最新文档