混凝土本构关系模型

合集下载

混凝土本构模型

混凝土本构模型

混凝土本构关系模型 一、线弹性本构模型1、 线弹性均质的本构模型当混凝土无裂缝时,可以将混凝土看成线弹性均质材料,用广义胡克定律来表达本构关 系:kl ijkl ij C εσ=式中,ijklC 为材料常数,为一四阶张量,一般有81个常数,如果材料为正交异性时,常数可减少至9个,如材料为各向均质时,可用两个常数λ、μ来表达,λ、μ称为Lame 常数。

ijkk ij ij δλεμεσ+=2当j i =,μλσε23+=kkkk ,代入上式()kk ijij ij σμμλλσσε2232/+-=E 、ν、λ、μ之间的关系如下:()ν213-=E K ,()ν+=12EG GK KGE +=39,()G K G K +-=3223ν 在工程计算中采用下列形式⎪⎭⎫ ⎝⎛+-=E EE 33221111σσνσε 同样可写出22ε、33ε的表达式。

()12121112τντγEG+==同样可写出22γ、33γ的表达式。

如上述各式用张量表示可写成:ij kk ij ij EE δσνσνε-+=1,()()ij kk ij ij E E δενννενσ2111-+-+=用矩阵形式表达时,可写成张量描述用矩阵形式表达,可写成:3、正交异性本构模型 矩阵描述分块矩阵描述1.3横观各向同性弹性体本构模型其中[]D 表达式为kl ijkl ij C εσ=1、Cauchy 模型Cauchy 模型建立的各向同性一一对应的应力应变关系为()kl ij ij F εσ=可展开为:+++=jk ik ij ij ij εεαεαδασ210根据Caley-Hamilton 定理有:jkik ij ij ij εεϕεϕδϕσ210++=但Cauchy 模型在)2,1,0(=i i ϕ时,一般不能满足ij kk ij ij δλεμεσ+=2。

因而,Cauchy 模型在不同加载途径下得到的应变能和余能表达式不是唯一的或者不存在,不能满足弹性体能量守恒定律,但在单调比例加载途径下还是适用的。

混凝土cdp本构

混凝土cdp本构

混凝土cdp本构混凝土是一种常见的建筑材料,具有良好的强度和耐久性。

在设计和分析混凝土结构时,混凝土的本构模型是非常重要的。

本文将介绍混凝土的本构模型之一——混凝土弹塑性本构模型(Concrete Damaged Plasticity Model,简称CDP)。

一、混凝土弹塑性本构模型的基本原理混凝土弹塑性本构模型是基于弹塑性力学理论开发的一种模型,用于描述混凝土在受力过程中的弹性和塑性行为。

该模型考虑了混凝土的弹性、损伤和塑性三个阶段,并能够准确地模拟混凝土在不同受力状态下的力学行为。

混凝土的弹性本构行为可以通过胡克定律来描述,即应力与应变之间的线性关系。

而混凝土的塑性本构行为则需要引入一些额外的参数来描述,如损伤变量、塑性应变等。

二、混凝土弹塑性本构模型的特点1. 考虑非线性行为:混凝土在受力过程中会出现非线性行为,如应力-应变曲线的非线性、弹塑性转变等。

CDP模型能够准确地描述这些非线性行为。

2. 考虑损伤效应:混凝土在受力过程中会发生损伤,即出现裂缝或破坏。

CDP模型通过引入损伤变量来描述混凝土的损伤过程,并能够准确地模拟混凝土的裂缝扩展和破坏。

3. 考虑三轴应力状态:混凝土在实际工程中往往会受到多向应力的作用,如拉压、剪切等。

CDP模型考虑了三轴应力状态下混凝土的力学行为,能够准确地模拟混凝土在不同应力状态下的响应。

4. 考虑温度效应:混凝土在受力过程中的温度变化也会对其力学性能产生影响。

CDP模型可以考虑温度效应,并通过引入温度参数来描述混凝土的热力学行为。

三、混凝土弹塑性本构模型的应用混凝土弹塑性本构模型在工程实践中应用广泛,特别是在大型混凝土结构的设计和分析中起到了重要的作用。

例如,在水坝工程中,为了准确地评估混凝土坝体的稳定性和安全性,需要使用CDP模型来模拟混凝土在洪水冲击和地震作用下的力学行为。

在桥梁、隧道、建筑物等混凝土结构的设计中,CDP模型也可以用于预测混凝土的变形和破坏,从而指导结构的设计和施工。

混凝土本构关系曲线公式

混凝土本构关系曲线公式

混凝土本构关系曲线公式
混凝土本构关系曲线公式是描述混凝土材料的力学行为的数学表达式。

本构关系曲线公式用于描述混凝土在受力过程中的应力-应变关系,从而提供了设计工程结构和进行力学分析的基础。

在混凝土力学中,常用的本构关系曲线公式是指数函数模型(也称作Ramberg-Osgood模型),其数学表达式如下:
σ = Eε + σy[(ε/εy)^n]
其中,σ表示混凝土的应力,ε表示混凝土的应变,E是混凝土的弹性模量,σy是混凝土的屈服强度,εy是混凝土的屈服应变,n是指数函数模型中的形状参数。

通过该公式,可以将混凝土在不同应力和应变条件下的力学行为进行模拟和分析。

具体而言,当混凝土受到载荷时,其应力会随着应变的增加而线性增加,直到达到屈服应变为止,之后应力将开始非线性增长。

需要注意的是,混凝土的力学行为受到多种因素的影响,如材料的配比、龄期、温度等。

因此,在实际工程中,根据具体情况和需要,可以选择不同的本构关系曲线公式进行分析和设计。

混凝土本构关系曲线公式提供了描述混凝土力学行为的数学模型。

通过该公式,我们可以对混凝土在受力过程中的应力-应变关系进行分析,为工程结构设计和力学分析提供基础。

abaquscdp本构原理

abaquscdp本构原理

abaquscdp本构原理
ABAQUS的CDP(Concrete Damaged Plasticity)模型是一种混凝土本
构关系模型,用于描述混凝土的非弹性行为。

该模型通过将各向同性下损伤弹性与拉伸和压缩塑性相结合的方式来描述混凝土的非弹性行为,适用于模拟混凝土在任意荷载作用下的受力情况。

CDP模型考虑了由于拉、压塑性
应变导致的弹性刚度的退化以及循环荷载作用下刚度的恢复,具有较好的收敛性。

CDP模型采用混凝土在单轴受力状态下的应力和非弹性应变,这里的非弹
性应变是根据混凝土的单轴应力-应变关系(混凝土本构关系)换算出来的。

混凝土本构关系有3种:GB《混凝土结构设计规范》欧洲规范、Kent-Park 模型。

CDP模型中,混凝土材料的弹性模量E c 可通过结构试验进行实测,也可以查表,也可以根据下式进行计算:E c = 10^5 × + ( / f cu , k)。

其中,fcu,k为混凝土的峰值抗压强度。

此外,CDP模型本构曲线末尾段的选取,对滞回曲线下降段的影响较大。

为了验证所编子程序的合理性与正确性,可以选用具体的有限元模型进行验证。

以上内容仅供参考,如需更多信息,建议查阅ABAQUS软件相关书籍或咨询软件专家。

钢筋混凝土结构的本构关系及有限元模式共3篇

钢筋混凝土结构的本构关系及有限元模式共3篇

钢筋混凝土结构的本构关系及有限元模式共3篇钢筋混凝土结构的本构关系及有限元模式1钢筋混凝土结构的本构关系及有限元模式钢筋混凝土是建筑结构中广泛使用的材料之一。

在结构设计与分析过程中,了解钢筋混凝土的本构关系和有限元模式是十分重要的。

本文将从理论和实践两个层面介绍钢筋混凝土结构的本构关系及有限元模式。

一、理论基础1.1 本构关系本构关系是描述材料应力和应变之间关系的数学模型。

对于钢筋混凝土结构来说,其本构关系可以分为弹性和塑性两个阶段。

如图1所示,该曲线表现了材料的应变和应力之间的关系。

在开始阶段,钢筋混凝土材料表现出弹性行为,即在一定范围内,应变和应力呈线性关系,在这个范围内,应力的变化只取决于外力的变化。

当荷载增加时,材料进入塑性阶段,即出现残余变形,弹性不再适用。

此时,应变和应力的关系呈现非线性态势,应力会逐渐增大,直至材料失效。

图1 钢筋混凝土的本构关系曲线1.2 有限元分析有限元分析是一种近似解微分方程的数值分析方法。

该方法将问题分解成一个有限数量的小区域,在每个小区域内建立数学模型,通过连接小区域,组成总体的数学模型。

对于钢筋混凝土结构的有限元分析,可以采用三维有限元模型或二维\轴对称有限元模型等。

二、实践操作2.1 有限元模型的建立在进行有限元分析前,需要建立合适的有限元模型。

在钢筋混凝土结构的有限元分析中,通常采用ABAQUS、ANSYS软件进行模拟。

有限元模型的建立需要考虑结构的几何形状、材料特性、加载条件等,在模型建立的过程中需要进行模型分析和后处理,如应力监测、应变监测、变形量分析等。

2.2 本构关系的采用在建立有限元模型时需要设置材料弹性模量、泊松比、破坏应力等本构关系参数,这些参数可以通过试验数据和经验公式进行估算。

同时,基于实际结构的材料本身的特性和结构内力状态等影响因素,还需要考虑材料的非线性效应,包括弹塑性分析和的动力分析等。

三、应用现状在实际的建筑结构设计和分析中,钢筋混凝土结构的有限元分析被广泛采用,可以帮助工程师更加准确地预测材料的行为,并定位结构的破坏点及应急防御措施。

混凝土的本构关系简介及各受压应力应变全曲线比较

混凝土的本构关系简介及各受压应力应变全曲线比较

混凝土的本构关系简介及各受压应力应变全曲线比较一:学术风格正文:一、混凝土的本构关系简介混凝土是一种常用的结构材料,其力学性能的研究对于结构设计具有重要意义。

混凝土的本构关系是指材料的应力应变关系,描述了材料在受力作用下的变形行为。

混凝土的本构关系的研究有助于理解混凝土的力学性能,指导结构的设计与施工。

二、混凝土的受压应力应变全曲线比较1. 弹性阶段:混凝土在受力初期表现出线弹性行为,即应力与应变成正比关系。

这个阶段称为弹性阶段,其应力应变关系呈线性。

2. 塑性阶段:当混凝土受力达到一定程度时,开始出现非线性变形,应变的增加速度逐渐减缓。

这是由于混凝土内部的微观结构发生破坏,颗粒间的强度开始减小,导致整体应变增加。

3. 屈服阶段:当应力进一步增加,混凝土达到一定的应变时,开始出现明显的应力下降。

这个阶段称为屈服阶段,将塑性应变较小的一部分与显著的应力下降相连系。

此时,混凝土内部产生裂缝,并且裂缝的增长加速。

4. 破坏阶段:当应力继续增加,混凝土出现明显的破坏现象。

一般表现为裂缝的扩展、混凝土的脱层或破碎等。

此时,混凝土已经失去了承载能力。

附件:本文档涉及的附件包括混凝土本构关系的实验数据、各受压应力应变全曲线的比较图表等。

法律名词及注释:1. 本构关系:材料力学中,描述材料应力应变关系的数学模型。

2. 弹性阶段:材料在受力初期表现出线弹性行为,即应力与应变成正比关系的阶段。

3. 塑性阶段:材料在经历弹性阶段后出现非线性变形,应变的增加速度逐渐减缓的阶段。

4. 屈服阶段:材料在达到一定应变时出现明显的应力下降的阶段。

5. 破坏阶段:材料在经历屈服阶段后出现明显的破坏现象,失去承载能力的阶段。

二:商务风格正文:一、混凝土的本构关系简介混凝土是一种广泛应用于建筑工程中的材料,对于了解混凝土的力学性能具有重要意义。

混凝土的本构关系是指材料在受力作用下的应力应变关系,是研究混凝土力学性能的基础。

二、混凝土的受压应力应变全曲线比较1. 弹性阶段:在混凝土的受力初期,材料表现出弹性行为,即应力与应变成正比关系。

混凝土的本构关系

混凝土的本构关系

以主应力和主应变表示
则为:
式中切线弹性模量 和 ,泊松比 随应力状态和数值的变 化按下述方法确定。
§7.1.4 混凝土的本构关系
2、混凝土非线弹性本构模型____Darwin-Pecknold 本构模型
材料在双轴受压
应变为:
• 等效单轴应力-应变关系
§7.1.4 混凝土的本构关系
2、混凝土非线弹性本构模型____Darwin-Pecknold 本构模型
2、混凝土非线弹性本构模型____Ottosen本构模型
定义一非线性指标 ,表示当前应力状态
至混凝土
破坏(包络面)的距离,也即塑性变形发展的程度。假定
保持不变,压应力 增大至 时混凝土破坏,则
混凝土的多轴应力应变关系采用Sargin的单轴受压方程,即
§7.1.4 混凝土的本构关系
2、混凝土非线弹性本构模型____Ottosen本构模型
式中参数以多轴应力状态的相应值代替:
代入得一元二次方程,解之得到割线模量:
§7.1.4 混凝土的本构关系
2、混凝土非线弹性本构模型____Ottosen本构模型
混凝土的泊松比很难从试验中精确测定。Ottosen本构模型取割 线泊松比 随 的变化如图,计算式为:
式中可取:
§7.1.4 混凝土的本构关系
2、混凝土非线弹性本构模型____Ottosen本构模型
单轴受压应力-应变
多轴应力-应变
Ottosen本构模型
泊松比
§7.1.4 混凝土的本构关系
2、混凝土非线弹性本构模型____Ottosen本构模型 非线性指标
• 根据非线性指标 的定义, 值计算要通过破坏包络
面先求 ,在一般情况下需要经过多次迭代方能求出;

混凝土本构模型

混凝土本构模型

混凝土本构模型混凝土是一种常用的结构材料,具有很强的抗压强度和耐久性。

为了有效地分析和设计混凝土结构,人们提出了混凝土本构模型,用于描述混凝土材料的力学性能。

本文将介绍混凝土本构模型的基本概念、常用模型以及模型选择的几个关键因素。

1. 混凝土本构模型的基本概念混凝土的本构模型是一种数学模型,用于描述混凝土在力学加载下的应力-应变关系。

它基于实验数据和理论分析,通过一组公式或曲线来模拟混凝土的弹性和塑性行为。

常见的本构模型包括弹性模型、线性本构模型、非线性本构模型等。

2. 常用的2.1 弹性模型弹性模型是最简单的混凝土本构模型之一,它假设混凝土在加载过程中具有线性弹性行为。

根据胡克定律,混凝土的应力和应变之间存在着线性关系。

在小应变范围内,弹性模型能够较好地描述混凝土的力学性能,但它无法考虑材料的非线性行为。

2.2 线性本构模型线性本构模型相比于弹性模型更为复杂,它考虑了混凝土的非线性行为。

其中最为常用的是双曲线模型和抛物线模型。

双曲线模型通过将应力-应变曲线分为上升段和下降段,分别使用线性和非线性公式描述,能够较好地模拟混凝土在受压和受拉状态下的应力-应变关系。

抛物线模型则是通过二次方程来拟合混凝土的应力-应变曲线,在一定程度上考虑了混凝土的非线性特性。

2.3 非线性本构模型非线性本构模型较为复杂,但能够更准确地描述混凝土在大变形情况下的力学性能。

常见的非线性本构模型包括双参数本构模型、Drucker-Prager本构模型、Mohr-Coulomb本构模型等。

这些模型能够考虑混凝土在各向异性和多轴加载条件下的非线性行为,适用于复杂的结构分析和设计。

3. 模型选择的关键因素选择适合的混凝土本构模型是结构分析和设计的关键一步,需要考虑以下因素:3.1 加载条件不同的加载条件会对混凝土的力学性能产生不同的影响,例如受压、受拉、剪切等。

在选择本构模型时,需要根据具体的加载条件确定模型的参数和表达形式。

3.2 大应变效应部分混凝土结构在强震等极端加载条件下可能发生较大应变,此时需要考虑混凝土的非线性行为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、混凝土本构关系模型
1.混凝土单轴受压应力-应变关系 (1)Saenz 等人的表达式
Saenz 等人(1964年)所提出的应力-应变关系为:
])()()(
/[30
200εεεεεεεσd c b a E +++= (2)Hognestad 的表达式
Hognestad 建议模型,其上升段为二次抛物线,下降段为斜直线。

所提出的应力-应变关系为:
cu
cu εεεσσεεσσεεεεεεεε≤≤-=≤-=--000
02,)](
15.01[,])(2[0
00
(3)我国《混凝土结构设计规范》(GB50010-2010)中的混凝土受压应力-应变曲线,其表达式为:
1,)1(1
,)1(2>+-=≤+-=
x x x x
y x x n nx
y c n α
r
c x ,εε=
,r c f y ,σ=
,r c r c c r c c f E E n ,,,-=εε c α是混凝土单轴受压时的应力应变曲线在下降段的参数值,r c f ,是混凝土单轴抗压的
强度代表值,r c ,ε是与单轴抗压强度r c f ,相对应的混凝土峰值压应变。

2.混凝土单轴受拉应力-应变关系
清华大学过镇海等根据实验结果得出混凝土轴心受拉应力-应变曲线:
1
],)1(/[)/(1
,])(2.0)(2.1[7
.16≥+-⨯=≤-=t
t
t
t
t
t
t t t t εε
εεεεεεεεεεασεεσσσ
3.混凝土线弹性应力-应变关系
张量表达式,对于未开裂混凝土,其线弹性应力应变关系可用不同材料常数表达,其中用材料弹性模量E 和泊松比v 表达的应力应变关系为:
ij
kk E ij E ij ij
kk E ij E
ij δσσεδεεσν
ν
νννν-=+=+-++1)21)(1(1
用材料体积模量K 和剪变模量G 表达的应力应变关系为:
ij
K ij G
ij ij kk ij ij kk
s K Ge δεδεσσ9212+=
+= 4.混凝土非线弹性全量型本构模型 5.混凝土非线弹性增量型本构模型
各向同性增量本构模型: (1)在式
2
220])()2(1[])(1[000
0εεεεεεεσ+-+-==
S
E E E d d E
中,假定泊松比ν为不随应力状态变化的常数,而用随应力状态变化的变切线模量t E 取代弹性常数E ,并采用应力和和应变增量,则可得含一个可变模量Et 的各向同性模型,增量应力应变模型关系为:
ij
kk E ij E ij d d d t t
δεεσνννν)21)(1(1-+++= (2)在式
ν
εεσσνK K Ge e E
s kk kk m ij ij ij ====+=
31
21 中,如用随应力状态变化的变切线体积模量Kt 和切线剪变模量Gt 取代K 和G,并采用偏应力和偏应变增量,则可得含两个可变模量Kt 和Gt 的各向同性模型,采用偏应力和偏应变增量,则可得以下应力应变关系:
kk
t m ij t ij d K d de G ds εσ==2
双轴正交各向异性增量本构模型:
混凝土在开裂,尤其是接近破坏时,不再表现出各向同性性质,而呈现出明显的各向异性性质。

因此,用各向异性描述混凝土开裂后的性能更为合理。

混凝土双轴受压时,由于泊松效应及混凝土内部裂缝受到约束,其强度和刚度均可提高。

该模式假定,混凝土为正交各向异性材料,且各级荷载增量內应力-应变呈线弹性关系,其关系式为:
⎪⎭⎪⎬

⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧12212122112121321)1(000011γεεννννννσσσd d d G E E E E d d d
6.混凝土弹塑性本构模型
弹塑性增量理论需要对屈服准则、流动法则和硬化法则作出假定。

设屈服条件用下式表示:
0),(=K f ij σ
材料进入塑形阶段后的应变增量由弹性应变增量和塑形应变增量组成,即:
{}{}{}p
e d d d εεε+=
采用与屈服条件相关联的流动法则确定,即
{}{}
σλ
ε∂∂=f d p
增量理论的弹塑性本构矩阵一般表达式为
{}[]{}{}{}{}{}εσσσσσd f D f A D f f D D d T T ⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡∂∂∂∂+∂∂∂∂-=]][[][][]][][[ 混凝土弹塑性全量理论基本假设
(1)假设体积的改变是弹性的,且与平均应力成正比,而塑形变形时体积不可压缩,即
0,213=-=
=
p
m m m
e m E
K
εσνσε (2)假设应变增量ij e 和应力偏量ij s 相似且同轴。


ij ij s e η=
(3)单一曲线假设:对于同一种材料,无论应力状态如何,其等效应力与等效应变之间有确定的关系,即
i i i E εεσ)(=
弹塑性应力应变关系采用下式: 弹性阶段 G
s e ij ij 2=
塑性阶段 '
2G
s e ij ij =
二、钢筋本构关系模型
1.单向加载下钢筋的应力-应变关系模型
硬钢钢筋的应力应变曲线可以分为三段:弹性段、软化段、后续段,根据试验资料得到的应力应变关系式为:εεεσσεεεεεσεσσ)()
(a b b a b a a
b a
a b b ----+=。

2.反复加载下钢筋的应力-应变关系模型 (1)加藤模型
该模型对软化段曲线取局部坐标εσ-,原点为加载或反向加载的起点,软化段试验曲线的方程为:
s s x y a x ax y εεεσ/,/),1/(==-+=
初始斜率与割线斜率之比为:
∑∆=-==
=
-=i
i
res res E B E E a a x dx dy
s E B
εε),10lg(,|61
(2)Kent-Park 模型
该模型采用Ramberg-Osgood 应力应变曲线的一般表达式r ch
ch ch )(σσσσεε+=
r=1时,为反映弹性材料的直线;r=∞时,为理想弹塑性材料的二折线;∞<<r 1时为逐渐过渡的曲线。

经变换后可得:])(1[1-+=r ch
E σσσε,取决于此前应力循环产生的塑性变形,经验计算公式
为:
]241.01071
.0)10001ln(774.0[
1000+--+=ip
e
f ip y ch εεσ 三、钢筋与混凝土的粘结-滑移本构模型
(1)锚固粘结强度计算模型
这种计算模型用于确定钢筋的锚固长度、搭接长度和保护层厚度,所用的试验资料为拔出试验或梁式试验结果。

给出了适合于我国月牙纹钢筋的微滑移粘结强度、劈裂粘结强度、极限粘结强度及残余粘结强度计算公式,
t
r t sv a u t a cr a t s f f d c l d f d c l d d l f 98.0)20/7.06.1)(/9.082.0()/7.06.1)(/9.082.0()
5(99.0=+++=++===τρτττ
(2)反复荷载下粘结-滑移本构模型
清华大学腾智明等提出的计算模型上升段为曲线,下降段为双直线,其数学模型为:
re
re s s mm N s s s s s k s s s s >=≤<--=≤=,/5.1),(,)(2003max 0
4.00
max τττττ。

相关文档
最新文档