《概率统计》公式符号汇总表
概率统计公式大全
(3) 重复排列和非重复排列(有序)
一 些 常 见 对立事件(至少有一个)
排列
顺序问题
(4) 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,
随 机 试 验 但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试
和 随 机 事 验。
件
试验的可能结果称为随机事件。
在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有
P(X x) P(x X x dx) f (x)dx
积分元 f (x)dx 在连续型随机变量理论中所起的作用与 P( X xk) pk 在离
散型随机变量理论中所起的作用相类似。
设 X 为随机变量, x 是任意实数,则函数
F(x) P(X x)
称为随机变量 X 的分布函数,本质上是一个累积函数。
P(B | A) P( AB) P( A)P(B) P(B)
P( A)
P( A)
(14) 独立性
(15) 全概率公 式
若事件 A ,B 相互独立,则可得到 A 与 B , A 与 B , A 与 B 也都相互独
立。
必然事件 和不可能事件Φ 与任何事件都相互独立。
Φ 与任何事件都互斥。
概率论与数理统计 公式(全)
2011-1-1
第 1 章 随机事件及其概率
(1) 排列组合 公式
Pmn
m! (m n)!
从 m 个人中挑出 n 个人进行排列的可能数。
Cmn
m! n!(m n)!
从 m 个人中挑出 n 个人进行组合的可能数。
加法原理(两种方法均能完成此事):m+n
概率论与数理统计公式大全
概率论与数理统计公式大全概率论和数理统计作为数学的两个重要分支,被广泛应用于各个领域。
无论是在学术研究还是实际应用中,熟悉并掌握相关的公式是非常重要的。
本文将为您提供概率论与数理统计公式的大全,帮助您更好地理解和应用这两门学科。
一、概率论公式1. 概率公式- 概率的定义:P(A) = N(A) / N(S),其中P(A)表示事件A发生的概率,N(A)代表事件A的样本点个数,N(S)表示样本空间中的样本点总数。
- 加法法则:P(A∪B) = P(A) + P(B) - P(A∩B),其中P(A∪B)表示事件A或事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。
- 乘法法则:P(A∩B) = P(A) × P(B|A),其中P(B|A)表示在事件A 发生的条件下,事件B发生的概率。
2. 条件概率公式- 条件概率的定义:P(A|B) = P(A∩B) / P(B),其中P(A|B)表示在事件B发生的条件下,事件A发生的概率。
- 全概率公式:P(A) = ∑[P(Bi) × P(A|Bi)],其中Bi为样本空间的一个划分,P(Bi)表示事件Bi发生的概率,P(A|Bi)表示在事件Bi发生的条件下,事件A发生的概率。
3. 事件独立性公式- 事件A和事件B独立的定义:P(A∩B) = P(A) × P(B),即事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。
- 事件的相互独立:若对于任意的事件A1,A2,...,An,有P(A1∩A2∩...∩An) = P(A1) × P(A2) × ... × P(An),则称事件A1,A2,...,An相互独立。
4. 随机变量- 随机变量的定义:随机变量X是样本空间到实数集的映射。
- 随机变量的分布函数:F(x) = P(X≤x),表示随机变量X小于等于x的概率。
- 随机变量的概率密度函数(连续型随机变量):f(x)是非负函数,且对于任意实数区间[a, b],有P(a≤X≤b) = ∫[a, b]f(x)dx。
概率论与数理统计核心公式汇总
概率论与数理统计核心公式汇总本文将介绍概率论与数理统计中的核心公式,这些公式在统计学和数据分析中起到至关重要的作用,帮助我们理解和处理各种随机现象和数据集。
通过掌握这些公式,我们可以更好地进行数据分析、推断和预测。
概率论核心公式1. 事件的概率计算公式事件的概率定义为:$P(A)=\\frac{n(A)}{n(S)}$,其中P(A)表示事件A发生的概率,n(A)表示事件A发生的次数,n(S)表示样本空间S中的总次数。
2. 条件概率公式条件概率的计算公式为:$P(A|B)=\\frac{P(A \\cap B)}{P(B)}$,表示事件B发生的条件下事件A发生的概率。
3. 贝叶斯定理贝叶斯定理表示为:$P(A|B)=\\frac{P(B|A)P(A)}{P(B)}$,用于在给定相关事件的条件下计算其余事件的概率。
数理统计核心公式1. 样本均值和总体均值的关系样本均值$\\bar{X}=\\frac{\\sum_{i=1}^{n}X_i}{n}$,总体均值$\\mu=\\frac{\\sum_{i=1}^{N}X_i}{N}$。
当样本容量足够大时,样本均值接近于总体均值。
2. 样本方差和总体方差的关系样本方差$s^2=\\frac{\\sum_{i=1}^{n}(X_i-\\bar{X})^2}{n-1}$,总体方差$\\sigma^2=\\frac{\\sum_{i=1}^{N}(X_i-\\mu)^2}{N}$。
样本方差用于估计总体方差。
3. 中心极限定理中心极限定理表明,样本容量足够大时,样本均值的分布近似服从正态分布,不论总体分布是什么形式。
总结概率论与数理统计中的核心公式为我们提供了处理和分析数据的重要工具。
通过合理运用这些公式,我们可以更准确地理解数据背后的规律并做出有效的决策。
希望本文所介绍的核心公式对您有所帮助。
概率统计公式大全(复习重点)
第一章随机事件和概率(1 )排列 组合公式 m! (m -n)!从m 个人中挑出n 个人进行排列的可能数。
c mm! n!(m _n)!从m 个人中挑出n 个人进行组合的可能数。
(2)加法 和乘法原 理 (3) 一些 常见排列 (4)随机 试验和随 机事件 (5) 事件、 空间 件 基本 样本 和事 (6)事件 的关系与 运算加法原理(两种方法均能完成此事) :m+n某件事由两种方法来完成, 第一种方法可由 m 种方法完成,第二种方法可由n 种 方法来完成,则这件事可由 m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事) :mx n某件事由两个步骤来完成, 第一个步骤可由 m 种方法完成,第二个步骤可由n 种 方法来完成,则这件事可由 mx n 种方法来完成。
重复排列和非重复排列(有序) 对立事件(至少有一个) 顺序问题如果一个试验在相同条件下可以重复进行, 而每次试验的可能结果不止一个, 但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件, 它具有如下性质:① 每进行一次试验,必须发生且只能发生这一组中的一个事件; ② 任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用 ■来表示。
基本事件的全体,称为试验的样本空间,用 门表示。
一个事件就是由 门中的部分点(基本事件 ■)组成的集合。
通常用大写字母A,B, C,…表示事件,它们是 门的子集。
11为必然事件,?为不可能事件。
不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Q )的概率为1,而概率为1的事件也不一定是必然事件。
①关系:如果事件A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生):A B如果同时有 A 二B , B -: A ,则称事件A 与事件B 等价,或称A 等于B : A=B A 、B 中至少有一个发生的事件:A B,或者A +Bo属于A 而不属于B 的部分所构成的事件,称为 A 与B 的差,记为A-B ,也可表 示为A-AB 或者AB ,它表示A 发生而B 不发生的事件。
概率统计公式大全汇总
概率统计公式大全汇总概率统计是一门研究随机现象的理论和方法的学科,它包含了许多重要的公式和定理。
在这篇文章中,我将给出一些概率统计的重要公式的概览,以便复习和总结。
1.概率的基本公式概率是指事件发生的可能性,可以通过以下公式计算:P(A)=n(A)/n(S)其中,P(A)是事件A发生的概率,n(A)是事件A的样本空间中有利结果的个数,n(S)是样本空间中所有可能结果的个数。
2.加法准则当事件A和事件B不相容时,其和事件的概率可以通过以下公式计算:P(A∪B)=P(A)+P(B)如果事件A和事件B是相容的,则有:P(A∪B)=P(A)+P(B)-P(A∩B)3.乘法准则当事件A和事件B是相互独立的时,其交事件的概率可以通过以下公式计算:P(A∩B)=P(A)*P(B)如果事件A和事件B不是相互独立的,则有:P(A∩B)=P(A)*P(B,A)4.条件概率条件概率是指在已知一些事件发生的条件下,另一个事件发生的概率。
条件概率可以通过以下公式计算:P(A,B)=P(A∩B)/P(B)5.全概率公式全概率公式用于计算在多个事件的情况下一些事件的概率。
根据全概率公式,可以将一些事件划分为几个互不相容的子事件,然后分别计算每个子事件的概率,并将其加权求和。
全概率公式如下:P(A)=P(A∩B1)+P(A∩B2)+...+P(A∩Bn)其中,B1、B2、..、Bn表示将样本空间划分的互不相容的子事件。
6.贝叶斯公式贝叶斯公式描述了在已知B发生的条件下,事件A发生的概率。
根据贝叶斯公式,可以通过条件概率、全概率和边际概率来计算后验概率。
贝叶斯公式如下:P(A,B)=P(B,A)*P(A)/P(B)7.期望值期望值是随机变量的平均值,表示随机变量在每个可能取值上的发生概率乘以对应的取值,并将其加权求和。
期望值可以通过以下公式计算:E(X)=Σ(x*P(X=x))其中,x表示随机变量的取值,P(X=x)表示随机变量取值x的概率。
概率统计公式大全复习重点)
第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。
)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用ω来表示。
基本事件的全体,称为试验的样本空间,用Ω表示。
一个事件就是由Ω中的部分点(基本事件ω)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是Ω的子集。
Ω为必然事件,?为不可能事件。
不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A 等于B:A=B。
A、B中至少有一个发生的事件:A B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。
概率统计公式大全复习重点
概率统计公式大全复习重点在学习概率统计这门学科时,掌握各种公式是至关重要的。
这些公式不仅是解决问题的工具,更是理解概率统计概念的关键。
本文将为您梳理概率统计中的重点公式,帮助您更好地复习和掌握这部分知识。
一、随机事件与概率1、古典概型概率公式如果一个随机试验所包含的基本事件总数为 n,事件 A 所包含的基本事件数为 m,则事件 A 发生的概率为:P(A) = m / n2、几何概型概率公式设样本空间为几何区域Ω,事件 A 对应的区域为ω,则事件 A 发生的概率为:P(A) =ω 的测度/Ω 的测度3、条件概率公式设 A、B 是两个事件,且 P(B) > 0,则在事件 B 发生的条件下,事件 A 发生的条件概率为:P(A|B) = P(AB) / P(B)4、乘法公式P(AB) = P(A|B)P(B) 或 P(AB) = P(B|A)P(A)5、全概率公式设 B₁, B₂,, Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i = 1, 2,, n),A 是Ω 中的任意一个事件,则有:P(A) =∑ P(Bᵢ)P(A|Bᵢ)(i从 1 到 n)6、贝叶斯公式设 B₁, B₂,, Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i = 1, 2,, n),A 是Ω 中的任意一个事件,在事件 A 已经发生的条件下,事件 Bᵢ发生的概率为:P(Bᵢ|A) = P(Bᵢ)P(A|Bᵢ) /∑ P(Bₙ)P(A|Bₙ) (i从 1 到 n,k 从 1 到 n)二、随机变量及其分布1、离散型随机变量的概率分布设离散型随机变量 X 的可能取值为 x₁, x₂,, xₙ,对应的概率为p₁, p₂,, pₙ,则概率分布为:P(X = xᵢ) = pᵢ(i = 1, 2,, n),且∑pᵢ= 12、二项分布如果随机变量 X 服从参数为 n 和 p 的二项分布,记为 X ~ B(n, p),则概率质量函数为:P(X = k) = C(n, k) p^k (1 p)^(n k) (k = 0, 1, 2,, n)3、泊松分布如果随机变量 X 服从参数为λ 的泊松分布,记为 X ~P(λ),则概率质量函数为:P(X = k) =(e^(λ) λ^k) / k! (k = 0, 1, 2,)4、连续型随机变量的概率密度函数设连续型随机变量 X 的概率密度函数为 f(x),则分布函数为:F(x)=∫∞, x f(t) dt5、正态分布如果随机变量 X 服从参数为μ 和σ² 的正态分布,记为 X ~N(μ, σ²),则概率密度函数为:f(x) =(1 /(σ√(2π))) e^((x μ)² /(2σ²))三、随机变量的数字特征1、数学期望离散型随机变量 X 的数学期望为:E(X) =∑ xᵢ pᵢ(i 从 1 到 n)连续型随机变量 X 的数学期望为:E(X) =∫∞,+∞ x f(x) dx2、方差离散型随机变量 X 的方差为:D(X) =∑ (xᵢ E(X))² pᵢ(i 从 1 到n)连续型随机变量 X 的方差为:D(X) =∫∞,+∞ (x E(X))² f(x) dx3、标准差随机变量 X 的标准差为:σ(X) =√D(X)4、协方差设随机变量 X 和 Y,其协方差为:Cov(X, Y) = E((X E(X))(Y E(Y)))5、相关系数随机变量 X 和 Y 的相关系数为:ρ(X, Y) = Cov(X, Y) /(σ(X)σ(Y))四、大数定律和中心极限定理1、大数定律当 n 足够大时,样本均值X依概率收敛于总体均值μ,即:P(|Xμ| >ε) → 0 (n → ∞)2、中心极限定理设随机变量 X₁, X₂,, Xₙ 相互独立,且具有相同的分布和有限的数学期望μ 和方差σ²。
概率统计公式大全复习重点
第一章随机事件和概率1排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数;)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数;2加法和乘法原理加法原理两种方法均能完成此事:m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成;乘法原理两个步骤分别不能完成这件事:m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成;3一些常见排列重复排列和非重复排列有序对立事件至少有一个顺序问题4随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验;试验的可能结果称为随机事件;5基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的;这样一组事件中的每一个事件称为基本事件,用ω来表示;基本事件的全体,称为试验的样本空间,用Ω表示;一个事件就是由Ω中的部分点基本事件ω组成的集合;通常用大写字母A,B,C,…表示事件,它们是Ω的子集;Ω为必然事件,为不可能事件;不可能事件的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件Ω的概率为1,而概率为1的事件也不一定是必然事件;6事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,A发生必有事件B发生:BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B;A、B中至少有一个发生的事件:A B,或者A+B;属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件;A、B同时发生:A B,或者AB;A B=,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥;基本事件是互不相容的;Ω-A称为事件A的逆事件,或称A的对立事件,记为A;它表示A 不发生的事件;互斥未必对立;②运算:结合率:ABC=ABC A∪B∪C=A∪B∪C分配率:AB∪C=A∪C∩B∪C A∪B∩C=AC∪BC德摩根率:∞=∞==11iiii AABABA=,BABA=7概率的公理化定义设Ω为样本空间,A为事件,对每一个事件A都有一个实数PA,若满足下列三个条件:1° 0≤PA≤1,2° PΩ =13° 对于两两互不相容的事件1A,2A,…有常称为可列完全可加性;则称PA为事件A的概率;8古典概型1°{}nωωω21,=Ω,2°nPPPn1)()()(21===ωωω ;设任一事件A,它是由mωωω21,组成的,则有PA={})()()(21mωωω=)()()(21mPPPωωω+++9几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型;对任一事件A,)()()(Ω=LALAP;其中L为几何度量长度、面积、体积;10加法公式PA+B=PA+PB-PAB当PAB=0时,PA+B=PA+PB11减法公式PA-B=PA-PAB当B⊂A时,PA-B=PA-PB 当A=Ω时,P B=1- PB12条件概率定义设A、B是两个事件,且PA>0,则称)()(APABP为事件A发生条件下,事件B发生的条件概率,记为=)/(ABP)()(APABP;条件概率是概率的一种,所有概率的性质都适合于条件概率;例如PΩ/B=1⇒P B/A=1-PB/A13乘法公式乘法公式:)/()()(ABPAPABP=更一般地,对事件A1,A2,…An,若PA1A2…An-1>0,则有21(AAP…)n A)|()|()(213121AAAPAAPAP= (2)1|(AAAP n…)1-n A;14独立性①两个事件的独立性设事件A、B满足)()()(BPAPABP=,则称事件A、B是相互独立的;若事件A、B相互独立,且0)(>AP,则有若事件A、B相互独立,则可得到A与B、A与B、A与B也都相互独立;必然事件Ω和不可能事件与任何事件都相互独立;与任何事件都互斥;②多个事件的独立性设ABC是三个事件,如果满足两两独立的条件,PAB=PAPB;PBC=PBPC;PCA=PCPA并且同时满足PABC=PAPBPC那么A、B、C相互独立;对于n个事件类似;15全概公式设事件n BBB,,,21 满足1°n BBB,,,21 两两互不相容,),,2,1(0)(niBP i=>, 2°niiBA1=⊂,则有)|()()|()()|()()(2211nn BAPBPBAPBPBAPBPAP+++= ;16贝叶斯公式设事件1B,2B,…,n B及A满足1°1B,2B,…,n B两两互不相容,)(BiP>0,=i1,2,…,n, 2°niiBA1=⊂,0)(>AP,则∑==njjjiiiBAPBPBAPBPABP1)/()()/()()/(,i=1,2,…n;此公式即为贝叶斯公式;)(i B P ,1=i ,2,…,n ,通常叫先验概率;)/(A B P i ,1=i ,2,…,n ,通常称为后验概率;贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断;17伯努利概型我们作了n 次试验,且满足每次试验只有两种可能结果,A 发生或A 不发生; n 次试验是重复进行的,即A 发生的概率每次均一样;每次试验是独立的,即每次试验A 发生与否与其他次试验A 发生与否是互不影响的;这种试验称为伯努利概型,或称为n 重伯努利试验;用p 表示每次试验A 发生的概率,则A 发生的概率为q p =-1,用)(k P n 表示n 重伯努利试验中A 出现)0(n k k ≤≤次的概率,k n k kn n q p k P C -=)(,n k ,,2,1,0 =;第二章 随机变量及其分布第三章二维随机变量及其分布第四章随机变量的数字特征第五章大数定律和中心极限定理第六章样本及抽样分布第七章参数估计第八章假设检验单正态总体均值和方差的假设检验。
概率统计公式大全
概率统计公式大全概率统计是研究随机现象及其规律性的一门学科,其核心就是用数学方法来描述和分析随机现象。
在概率统计的理论体系中,有很多重要的公式和定理,下面对一些常用的公式进行介绍。
1.概率公式:(1)加法规则:P(A∪B)=P(A)+P(B)-P(A∩B),其中A和B为事件,P(A)和P(B)分别是事件A和事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。
(2)乘法规则:P(A∩B)=P(A)×P(B,A),其中P(A∩B)表示事件A和事件B同时发生的概率,P(A)表示事件A发生的概率,P(B,A)表示在事件A发生的条件下事件B发生的概率。
2.条件概率公式:(1)贝叶斯定理:P(A,B)=P(B,A)×P(A)/P(B),其中P(A,B)表示在事件B发生的条件下事件A发生的概率,P(B,A)表示在事件A发生的条件下事件B发生的概率,P(A)和P(B)分别是事件A和事件B发生的概率。
(2)全概率公式:P(B)=ΣP(Ai)×P(B,Ai),其中B是一个事件,Ai是样本空间的一个划分,即Ai是互不相容且并集为样本空间的一组事件。
3.期望公式:(1) 离散型随机变量的期望:E(X) = ΣxiP(X=xi),其中X是一个离散型随机变量,xi是X的取值,P(X=xi)是X取值为xi的概率。
(2) 连续型随机变量的期望:E(X) = ∫xf(x)dx,其中X是一个连续型随机变量,f(x)是X的概率密度函数。
4.方差公式:(1) 离散型随机变量的方差:Var(X) = Σ(xi-E(X))^2P(X=xi),其中Var(X)表示随机变量X的方差,xi是X的取值,E(X)是X的期望,P(X=xi)是X取值为xi的概率。
(2) 连续型随机变量的方差:Var(X) = ∫(x-E(X))^2f(x)dx,其中Var(X)表示随机变量X的方差,E(X)是X的期望,f(x)是X的概率密度函数。
概率论与数理统计公式大全
概率论与数理统计公式大全一、概率论公式1.概率的基本性质:-非负性:对于任意事件A,有P(A)>=0;-规范性:对于必然事件S,有P(S)=1;-可列可加性:对于互不相容的事件Ai(i=1,2,...),有P(A1∪A2∪...)=P(A1)+P(A2)+...。
2.条件概率:-事件B发生的条件下,事件A发生的概率:P(A,B)=P(A∩B)/P(B);-乘法公式:P(A∩B)=P(A,B)*P(B)。
3.全概率公式:-事件A的概率:P(A)=ΣP(A,Bi)*P(Bi),其中Bi为样本空间的一个划分。
4.贝叶斯公式:-事件Bi发生的条件下,事件A发生的概率:P(Bi,A)=P(A,Bi)*P(Bi)/ΣP(A,Bj)*P(Bj),其中Bj为样本空间的一个划分。
5.独立性:-事件A与事件B相互独立的充要条件是P(A∩B)=P(A)*P(B)。
二、数理统计公式1.随机变量的概率分布:-离散型随机变量的概率分布函数:P(X=x);-连续型随机变量的概率密度函数:f(x)。
2.数理统计的基本概念:-样本均值:X̄=ΣXi/n;-样本方差:s^2=Σ(Xi-X̄)^2/(n-1);-样本标准差:s=√s^2;- 样本协方差:sxy = Σ(Xi-X̄)(Yi-Ȳ) / (n-1)。
3.大数定律:-样本均值的大数定律:当样本容量n趋向于无穷大时,样本均值X̄趋向于总体均值μ。
4.中心极限定理:-样本均值的中心极限定理:当样本容量n足够大时,样本均值X̄服从近似正态分布。
5.参数估计:-点估计:用样本统计量对总体参数进行估计;-置信区间估计:用样本统计量构造一个区间,以估计总体参数的范围。
6.假设检验:-假设检验的基本步骤:提出原假设H0和备择假设H1,选择适当的检验统计量,计算拒绝域,进行假设检验。
以上只是概率论与数理统计中的一些重要公式和定理,还有很多其他的公式和定理没有一一列举。
掌握这些公式和定理,可以帮助我们更好地理解和应用概率论与数理统计的知识。
概率统计公式大全复习重点汇总
第一章随机事件和概率〔1〕排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进展排列的可能数。
)!(!!nmnmC nm-=从m个人中挑出n个人进展组合的可能数。
〔2〕加法和乘法原理加法原理〔两种方法均能完成此事〕:某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,那么这件事可由种方法来完成。
乘法原理〔两个步骤分别不能完成这件事〕:m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,那么这件事可由m×n 种方法来完成。
〔3〕一些常见排列重复排列和非重复排列〔有序〕对立事件〔至少有一个〕顺序问题〔4〕随机试验和随机事件如果一个试验在一样条件下可以重复进展,而每次试验的可能结果不止一个,但在进展一次试验之前却不能断言它出现哪个结果,那么称这种试验为随机试验。
试验的可能结果称为随机事件。
〔5〕根在一个试验下,不管事件有多少个,总可以从其中找出本领件、样本空间和事件这样一组事件,它具有如下性质:①每进展一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的局部事件组成的。
这样一组事件中的每一个事件称为根本领件,用ω来表示。
根本领件的全体,称为试验的样本空间,用Ω表示。
一个事件就是由Ω中的局部点〔根本领件ω〕组成的集合。
通常用大写字母A,B,C,…表示事件,它们是Ω的子集。
Ω为必然事件,Ø为不可能事件。
不可能事件〔Ø〕的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件〔Ω〕的概率为1,而概率为1的事件也不一定是必然事件。
〔6〕事件的关系及运算①关系:如果事件A的组成局部也是事件B的组成局部,〔A发生必有事件B发生〕:BA⊂如果同时有BA⊂,AB⊃,那么称事件A及事件B等价,或称A等于B:。
A、B中至少有一个发生的事件: ,或者。
属于A而不属于B的局部所构成的事件,称为A及B 的差,记为,也可表示为或者BA,它表示A发生而B 不发生的事件。
概率统计公式大全复习重点
第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。
)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这机事件种试验为随机试验。
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用ω来表示。
基本事件的全体,称为试验的样本空间,用Ω表示。
一个事件就是由Ω中的部分点(基本事件ω)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是Ω的子集。
Ω为必然事件,?为不可能事件。
不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B运算发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。
概率统计公式大全
Z=max,min(X1,X2,…Xn)
若 相互独立,其分布函数分别为 ,则Z=max,min(X1,X2,…Xn)的分布函数为:
分布
设n个随机变量 相互独立,且服从标准正态分布,可以证明它们的平方和
的分布密度为
我们称随机变量W服从自由度为n的 分布,记为W~ ,其中
所谓自由度是指独立正态随机变量的个数,它是随机变量分布中的一个重要参数。
分布函数具有如下性质:
1° ;
2° 是单调不减的函数,即 时,有 ;
3° , ;
4° ,即 是右连续的;
5° 。
对于离散型随机变量, ;
对于连续型随机变量, 。
(5)
八大分布
0-1分布
即B(1,p)
P(X=1)=p, P(X=0)=q
二项分布
即B(n,p)
在 重贝努里试验中,设事件 发生的概率为 。事件 发生的次数是随机变量,设为 ,则 可能取值为 。
(1)
(2)F(x,y)分别对x和y是非减的,即
当x2>x1时,有F(x2,y)≥F(x1,y);当y2>y1时,有F(x,y2)≥F(x,y1);
(3)ห้องสมุดไป่ตู้(x,y)分别对x和y是右连续的,即
(4)
(5)对于
.
(4)
离散型与连续型的关系
(5)
边缘分布密度
离散型
X的边缘分布为
;
Y的边缘分布为
。
连续型
X的边缘分布密度为
分布函数为
a≤x≤b
0,x<a,
1,x>b。
当a≤x1<x2≤b时,X落在区间( )内的概率为
。
指数分布
,
概率统计公式大全
概率统计公式大全第1章随机事件及其概率行,而每次试验的可能结果不止一个, 但在进行一次试验之前却不能断言它出 现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
在一个试验下,不管事件有多少个,总 可以从其中找出这样一组事件,它具有 如下性质:① 每进行一次试验,必须发生且只能发 生这一组中的一个事件;② 任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本 事件,用”来表示。
基本事件的全体,称为试验的样本空间, 用°表示。
一个事件就是由"中的部分点(基本事 件小 组成的集合。
通常用大写字母儿 B,C,…表示事件,它们是©的子集。
为必然事件,0为不可能事件。
不可能事件(0)的概率为零,而概率为 零的事件不一定是不可能事件;同理, 必然事件(Q )的概率为1,而概率为1随机试 验和随 机事件 (5)基本事件、样本空间和事件第二章随机变量及其分布设离散型随机变量X 的可能取值为 X(k=1,2,…)且取各个值的概率,即事件 (X=X<)的概率为P(X=x<)=p k , k=1,2,…,则称上式为离散型随机变量X 的概率 分布或分布律。
有时也用分布列的形式给出: x | X —X 2, ,x k ,P(X x k ) p 1, p 2, , p k,。
显然分布律应满足下列条件:p k 1(1) p k 0,k 1,2,, (2)k1。
1) 离型 机 量 分 律散 随 变 的 布对于离散型随机变量,F(x) pxk Xx对于连续型随机变量 ,F (x) f (x) dx4)分布 函数设X 为随机变量,x 是任意实数,则函 数F(x) P(X x)称为随机变量X 的分布函数,本质上是一 个累积函数。
P(a X b) F(b) F(a)可以得到X 落入区 间(a,b ]的概率。
分布函数F(x)表示随机变量 落入区间(-R, x ]的概率。
概率论与数理统计常用公式整理
概率论与数理统计常用公式整理1. 概率论公式(1)概率定义:对于随机事件A,概率P(A)的定义为:P(A) = N(A) / N,其中N(A)为事件A发生的次数,N为试验总次数。
(2)加法定理:对于两个事件A和B,有:P(A ∪B) = P(A) + P(B) - P(A∩B)。
(3)乘法定理:对于两个独立事件A和B,有:P(A ∩B) = P(A) ×P(B)。
(4)条件概率:对于事件A和B,且P(A) > 0,条件概率P(B|A)定义为:P(B|A) = P(A ∩B) / P(A)。
(5)全概率公式:对于一组互斥事件A1, A2, ..., An,且它们的并集构成了样本空间,有:P(B) = Σ[P(B|Ai) ×P(Ai)],其中Σ表示求和。
(6)贝叶斯公式:对于一组互斥事件A1, A2, ..., An,且它们的并集构成了样本空间,有:P(Ai|B) = [P(B|Ai) ×P(Ai)] / P(B)。
2. 数理统计公式(1)样本均值:对于样本x1, x2, ..., xn,样本均值定义为:x̄= (x1 + x2 + ...+ xn) / n。
(2)样本方差:对于样本x1, x2, ..., xn,样本方差定义为:s^2 = [(x1 - x̄)^2+ (x2 - x̄)^2 + ... + (xn - x̄)^2] / (n - 1)。
(3)样本标准差:对于样本x1, x2, ..., xn,样本标准差定义为:s = √[s^2]。
(4)期望值:对于随机变量X,其期望值定义为:E(X) = Σ[x ×P(X =x)],其中Σ表示求和。
(5)方差:对于随机变量X,其方差定义为:Var(X) = E[(X - E(X))^2]。
(6)协方差:对于两个随机变量X和Y,其协方差定义为:Cov(X, Y) = E[(X- E(X))(Y - E(Y))]。
《概率论与数理统计》公式汇总(全)
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空 间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何 概型。对任一事件 A,
P( A) L( A) 。其中 L 为几何度量(长度、面积、体积)。 L()
(10)加法 公式
(11)减法 公式
P(A+B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A+B)=P(A)+P(B) P(A-B)=P(A)-P(AB)
如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生):
A B 如果同时有 A B , B A ,则称事件 A 与事件 B 等价,或称 A 等于 B:
A=B。 A、B 中至少有一个发生的事件:A B,或者 A+B。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可
并且同时满足 P(ABC)=P(A)P(B)P(C)
那么 A、B、C 相互独立。
对于 n 个事件类似。
设事件 B1, B2,, Bn 满足 1° B1, B2,, Bn 两两互不相容, P(Bi) 0(i 1,2,, n) ,
n
A Bi
2°
i1 ,
则有
P(A) P(B1)P(A | B1) P(B2)P(A | B2) P(Bn)P(A | Bn) 。
C Pn(k)
k n
pk qnk
,
k
0,1,2,, n
。
第二章 随机变量及其分布
(1)离散 型随机变 量的分布 律
设离散型随机变量 X 的可能取值为 Xk(k=1,2,…)且取各个值的概率,即事
概率论与数理统计公式整理(超全版)
P(A+B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A+B)=P(A)+P(B) P(A-B)=P(A)-P(AB) 当 B A 时,P(A-B)=P(A)-P(B) 当 A=Ω 时,P( B )=1- P(B) 定义 设 A、B 是两个事件,且 P(A)>0,则称 P( AB) 为事件 A 发生条件下,事件 B 发生的条件概率,记为 P( A)
1 , 2 n ,
P(1 ) P( 2 ) P( n ) 1 。 n
A 的概率。
(8)古典概型
设任一事件
P(A)=
(1 ) ( 2 ) ( m ) = P(1 ) P( 2 ) P( m )
A ,它是由 1 , 2 m 组成的,则有
A B ,它
A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同时发生,称事件 A 与事件 B 互不相
(6)事件的关系与运算 容或者互斥。基本事件是互不相容的。
-A 称为事件 A 的逆事件,或称 A 的对立事件,记为 A 。它表示 A 不发生的事件。互斥未必对立。
f ( x)dx 1
。
P( X x) P( x X x dx) f ( x)dx
积分元 似。
f ( x)dx 在连续型随机变量理论中所起的作用与 P( X xk ) pk 在离散型随机变量理论中所起的作用相类
(4) 分布函 数
设 X 为随机变量, x 是任意实数,则函数
来表示。
A,B,C,„表示事件,它
基本事件的全体,称为试验的样本空间,用 表示。
)组成的集合。通常用大写字母
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率统计》公式、符号汇总表及各章要点 (共3页)
第一章 第二、三章
一维随机变量及分布:X , i P , )(x f X , )(x F X 二维随机变量及分布:),(Y X , ij P , ),(y x f , ),(y x F
*注意分布的非负性、规范性 (1)边缘分布:∑=j
ij i
p P ,⎰+∞
∞
-=dy y x f x f X ),()(
(2)独立关系:J I IJ P P P Y X =⇔独立与 或)()()(y f x f y x f Y X =,
),,(11n X X 与),,(21n Y Y 独立),,(11n X X f ⇒与),,(21n Y Y g 独立
(3)随机变量函数的分布(离散型用列表法)
一维问题:已知X 的分布以及)(X g Y =,求Y 的分布-------连续型用分布函数法 二维问题:已知),(Y X 的分布,求Y X Z +=、{}Y X M ,m ax =、{}Y X N ,m in =的分布-
M 、N 的分布---------连续型用分布函数法
第四章
(1)期望定义:离散:∑=
i
i
i p
x X E )(
连续:⎰
⎰
⎰
+∞∞-+∞
∞
-+∞
∞
-==
dxdy y x xf dx x xf X E ),()()(
方差定义:)()(]))([()(2
2
2
X E X E X E X E X D -=-=
离散:∑-=
i
i i
p X E x
X D 2))(()(
连续:⎰+∞
∞
--=dx x f X E x X D X )())(()(2
协方差定义:)()()())]())(([(),(Y E X E XY E Y E Y X E X E V X COV -=--= 相关系数定义:)
()(),(Y D X D Y X COV XY
=
ρ
K 阶原点矩定义:)( K
k X E ∆μ K 阶中心矩定义:]))([( K k X E X E -∆σ
(2)性质:
C C E =)( ;)()(X CE CX E = ;)()()(Y E X E Y X E ±=±;)()( )(Y E X E Y X XY E 独立与 0)(=C
D ;)()(2X D C CX D = ;
1≤XY ρ ; {}11=+=⇔=b aX Y p XY ρ
X 与Y 独立 0=⇒XY ρ 即X 与Y 线性无关,但反之不然 。
第五章
(1)设μ=)(X E ,2)(σ=X D ,则:{}2
2
1ε
σεμ-≥≤-X p ,亦即:{}2
2
ε
σεμ≤≥-X p
(2)设n X X ,,1 独立同分布则)(n X −→−P )()()(i n X E X E = ;
n
n A −→−P
)(A p (3)若X ~),(p n B 则:当n 足够大时
npq
np X - 近似服从 )1,0(N ;
(4) 设n X X ,,1 独立同分布,并设μ=)(i X E ,2)(σ=i X D
则:当n 足够大时
n
X n σ
μ
-)( 近似服从 )1,0(N
第六章
(1)设n X X ,,1 是来自总体X 的样本,μ=)(X E ,2)(σ=X D
样本均值:∑==n
i i n X n X 1)
(1 ,μ=)()(n X E ,n
X D n 2)()(σ= 样本方差:][11)(111
2)(212
)(2
∑∑==--=--=n i n i n i n i X n X n X X n S ,22)(σ=S E )(n X −→−
P μ ,2B −→−P 2σ ,2S −→−P
2σ 样本K 阶原点矩∑==n i k i k X n A 1
1−→−
P
总体K 阶原点矩)( k k X E =μ (2)2
212
n X X ++= χ
(i X 是来自)1,0(N 的简单样本)
n
Y X t =
(X ~)1,0(N ,Y ~)(2
n χ,X 与Y 独立)
2
1//n Y n X F =
(X ~)(12n χ,Y ~)(22
n χ,X 与Y 独立)
(3)设n X X ,,1 是来自),(2
σμN 的简单样本
则 :n X n σμ
-)( ~ )1,0(N ,n
S X n μ-)(~ )1(-n t ,2
2)1(σS n -~)1(2
-n χ
第七章
参数估计的问题:),(θx F X 的形式为已知,θ未知待估 参数θ的置信度为1—α的置信区间概念 参数估计方法:(1)矩估计 (2)最大似然估计
似然函数:离散:{}{}n x X P x X P L === 1)(θ
连续:)()()(1n X X x f x f L =θ
(3)单正态总体μ、2
σ的区间估计(见课本P 137页表7—1) 点估计评选标准:无偏性,有效性,一致性 。
( )(n X 、2S 分别是μ、2σ的无偏估计量 )
第八章
参数假设检验的问题:),(θx F X 的形式为已知,θ未知待检
假设检验的
I 类(弃真)错误 、∏类(取伪)错误的概念
显着性水平为α的显着性检验概念
单正态总体μ、2
σ显着性检验方法:(见课本P 151页表8—2,P 154页表8—3) *七个常用分布(见课本P 82页表4—1 补充超几何分布) 正态分布),(2
σμN 的性质: (1)
σ
μ
-X ~ )1,0(N ,
b aX +~),(22σμa b a N + ,3σ原则
(2)i X ~
),(2
i i N σμ,i X 之间相互独立, 则:i n
i i X c ∑=1
~ ),(2
1
21
i n
i i i n
i i c c N σμ∑∑==。