专题三 大跨径桥梁计算理论——悬索桥
第八章悬索桥的计算
第八章悬索桥的计算悬索桥是一种通过悬挂在主塔上的主梁和悬挂索来支撑桥面的桥梁结构。
悬索桥因其高大雄伟的造型和良好的承载能力而备受推崇,被广泛应用于各种交通工程中。
在计算悬索桥的设计方案时,需要考虑到多个因素,如主梁的形状和尺寸、悬挂索的长度和数量、主塔的高度和稳定性等。
接下来,将详细介绍悬索桥的计算方法。
首先,需要确定悬索桥的主梁形状和尺寸。
主梁的形状有直线型和曲线型两种。
在一般情况下,直线型主梁更容易计算和设计。
主梁的尺寸需要根据交通载荷和桥梁长度来确定。
通常情况下,主梁的高度应为桥梁长的1/10到1/20,宽度为主梁高度的1/5到1/10。
其次,需要计算悬挂索的长度和数量。
悬挂索的长度取决于主梁的跨度和主塔的高度。
悬挂索的数量则取决于主梁的宽度和设计要求。
通常情况下,悬挂索的长度应为主梁跨度的1/3到1/5,而悬挂索的数量应为主梁宽度的1/3到1/5然后,需要计算主梁和悬挂索的受力情况。
主梁的受力主要包括弯矩和剪力,而悬挂索的受力主要包括拉力和压力。
在计算弯矩和剪力时,需要考虑到交通载荷、自重和风荷载等因素。
在计算拉力和压力时,需要根据悬挂索的位置和受力情况来确定。
最后,需要计算主塔的高度和稳定性。
主塔的高度需要根据主梁的跨度和设计要求来确定。
主塔的稳定性则需要考虑到地震和风荷载等因素。
在计算主塔的高度和稳定性时,需要使用结构力学和土木工程的知识。
总之,悬索桥的计算是一个复杂的过程,需要考虑到多个因素。
以上只是悬索桥计算中的一些基本内容,实际的计算应根据具体的设计要求和实际情况来进行。
悬索桥的设计和计算需要借助于专业的工程师和相关的计算软件,以确保桥梁的安全和稳定。
悬索桥的计算方法及其历程1
悬索桥的计算方法及其发展悬索桥是一种古老的桥梁结构形式,也是目前大跨度桥梁的主要结构型式之一。
悬索桥主要是由缆索、吊杆、加劲梁、主塔、锚碇等构成。
从结构形式上看,它是一种由索和梁所构成的组合体系,在受力本质上它是一种以柔性索为主要承重构件的悬挂结构。
悬索桥随着跨度的增大,柔性加大,在荷载作用下会呈现出较强的非线性,所以悬索桥宜采用非线性方法来进行结构分析。
考虑悬索桥非线性因素的结构分析方法主要有挠度理论和有限位移理论。
挠度理论考虑了悬索桥几何非线性的主要因素,可用比较简便的数值方法来分析,又有影响线可资利用,故很适用于初步设计阶段的结构设计计算。
有限位移理论则全面地考虑了悬索桥几何非线性因素,计算结果较挠度理论精确,但计算过程复杂,直接用于设计计算有诸多不便和困难。
悬索桥挠度理论是一种古典的悬索桥结构分析理论。
这种理论主要考虑悬索和加劲梁变形对结构内力的影响,在中小跨度范围内其计算结果比较接近结构的实际受力情况,具有较好的精度。
悬索桥挠度理论主要分为多塔悬索桥挠度理论和自锚式悬索桥挠度理论。
最初的悬索桥分析理论是弹性理论。
弹性理论认为缆索完全柔性,缆索曲线形状及坐标取决于满跨均布荷载而不随外荷载的加载而变化,吊杆受力后也不伸长,加劲梁在无活载时处于无应力状态。
弹性理论用普通结构力学方法即可求解,计算简便,至今仍在跨径小于200米的悬索桥设计中应用[1]。
但弹性理论假定缆索形状在加载前后不发生变化,显然与悬索桥的可挠性不符,因此发展出计入变形影响的悬索桥挠度理论。
古典的挠度理论称为“膜理论”。
它是将悬索桥的全部近视看成是一种连续的不变形的膜,当缆索产生挠度时,加劲梁也随之产生相同的挠度。
由于根据作用于缆索单元上吊杆力与缆索拉力的垂直分力平衡以及作用于加劲梁单元上的外荷载及吊杆力与加劲梁弹性抗力平衡的条件建立力的平衡微分方程而求解。
挠度理论和弹性理论的最大区别是摒弃了弹性理论中关于缆索形状不因外荷载介入而改变的假设,相应建立缆索在恒载下取得平衡的几何形状将因外荷载介入而改变及同时计入缆索因外荷载所增索力引起的伸长量的假设,极大的接近悬索桥主索的实际工作状态,对悬索桥的发展起到了很大的推动作用。
悬索桥结构计算理论
悬索桥结构计算理论悬索桥结构计算理论主要内容☞概述☻悬索桥的近似分析☞悬索桥主塔的计算☞悬索桥成桥状态和施工状态的精确计算1.概述1.1悬索桥的受力特征悬索桥是由主缆、加劲梁、主塔、鞍座、锚碇、吊索等构件构成的柔性悬吊体系,其主要构成如下图所示。
成桥时,主要由主缆和主塔承受结构自重,加劲梁受力由施工方法决定。
成桥后,结构共同承受外荷作用,受力按刚度分配。
悬索桥各部分的作用主缆是结构体系中的主要承重构件,受拉为主;主塔是悬索桥抵抗竖向荷载的主要承重构件,受压为主;加劲梁是悬索桥保证车辆行驶、提供结构刚度的二次结构,主要承受弯曲内力;吊索是将加劲梁自重、外荷载传递到主缆的传力构件,是连系加劲梁和主缆的纽带,受拉。
锚碇是锚固主缆的结构,它将主缆中的拉力传递给地基。
1.概述(续)✶悬索桥计算理论的发展与悬索桥自身的发展有着密切联系早期,结构分析采用线弹性理论(由于桥跨小,索自重较轻,结构刚度主要由加劲梁提供。
中期(1877), 随着跨度的增加,梁的刚度相对降低,采用考虑位移影响的挠度理论。
现代悬索桥分析采用有限位移理论的矩阵位移法。
✹跨度不断增大的同时,加劲梁相对刚度不断减小,线性挠度理论引起的误差已不容忽略。
因此,基于矩阵位移理论的有限元方法应运而生。
应用有限位移理论的矩阵位移法,可综合考虑体系节点位移影响、轴力效应,把悬索桥结构非线性分析方法统一到一般非线性有限元法中,是目前普遍采用的方法。
▪弹性理论(1)悬索为完全柔性,吊索沿跨密布;(2)悬索线性及座标受载后不变;(3)加劲梁悬挂于主缆,截面特点不变;仅有二期恒载、活载、温度、风力等引起的内力。
计算结果:悬索内力及加劲梁弯距随跨经的增大而增大。
▪挠度理论与弹性理论不同之处仅在于:考虑悬索竖向变形对内力的影响(不考虑剪力变形、吊杆倾斜及伸缩变形,影响较小)。
线性挠度理论:忽略挠度理论中活载引起的主缆水平分力与竖向位移之间的非线性关系。
计算结果:加劲梁弯距铰弹性理论结果要小。
国内外大跨径桥梁建设之悬索桥
国内外大跨径桥梁建设之悬索桥悬索桥是一种古老的桥型,起源于中国,革新于英国,发展于美国,广泛应用于日本。
它因具有跨度大、美观、架设方便等特点而得到广泛的应用。
随着高强钢丝和优质材料的出现,架设工艺的改进以及计算理论和手段的不断完善,悬索桥正朝长、大方向发展,并因其在大跨度方面具有较大的优势而成为现代大跨径桥梁家族中的重要成员。
从1816 年,英国建成了第一座具有现代意义的悬索桥——跨径为124m、以钢丝做主索的人行吊桥起,工程界开始重视对悬索桥的理论研究。
1823年纳维尔发表了加劲梁悬索桥理论,认识到竖向挠度随着恒载的增加而减少。
到19 世纪末,悬索桥的跨度达到200~300m 。
1883 年列特和1886 年列维分别发表了弹性理论,这使悬索桥的跨径达到了500m 以上。
1888 年米兰提出了挠度理论,利用该理论分析的第一座桥是曼哈顿(Manhattan )大桥(主跨径为448m )。
到1931 年,挠度理论使悬索桥的跨度增大了一倍,且突破了l000m ,这就是跨越哈得孙河的乔治•华盛顿(George •Washington ) 大桥(主跨1067m )和旧金山金门(Golden Gate )大桥(主跨1280m )。
悬索桥的发展至今已有近200 年的历史,它是大跨径(尤其是1000m 以上的特大跨径)桥梁的主要形式之一,其优美的造型和宏伟的规模,常被人们称为“桥梁皇后”。
1966 年英国塞文(Severn )桥的加劲梁首先采用流线型扁平钢箱梁,增大了桥梁抗风性能和抗扭刚度,且用钢量少、维护方便。
1970 年丹麦小贝尔特(Small Belt )桥的钢箱梁首先采用箱内空气干燥装置,增强了防腐性能。
跨径为世界第一的明石海峡大桥悬索桥的抗震设计成功地经受了1995 年日本神户大地震考验。
我国虽然很早就开始修建悬索桥,但是其跨径和规模远不能同国外现代悬索桥相比。
我国悬索桥发源甚早,已有3000 余年历史。
悬索桥
性能
性能
矮寨特大悬索桥(16张)按照桥面系的刚度大小,悬索桥可分为柔性悬索桥和刚性悬索桥。柔性悬索桥的桥面 系一般不设加劲梁,因而刚度较小,在车辆荷载作用下,桥面将随悬索形状的改变而产生S形的变形,对行车不利, 但它的构造简单,一般用作临时性桥梁。刚性悬索桥的桥面用加劲梁加强,刚度较大。加劲梁能同桥梁整体结构 承受竖向荷载。除以上形式外,为增强悬索桥刚度,还可采用双链式悬索桥和斜吊杆式悬索桥等形式,但构造较 复杂。
2、鞍部施工
检查钢板顶面标高,符合设计要求后清理表面和四周的销孔,吊装就位,对齐销孔使底座与钢板销接。在底 座表面进行涂油处理,安装索鞍主体。索鞍由索座、底板、索盖部分组成,索鞍整体吊装和就位困难;可用吊车 或卷扬设备分块吊运组装。索鞍安装误差控制在横向轴线误差最大值3mm标高误差最大值3mm。吊装入座后,穿入 销钉定位,要求鞍体底面与底座密贴,四周缝隙用黄油填实。
桥面支承在悬索(通常称大揽)上的桥称为悬索桥。英文为Suspension Bridge,是“悬挂的桥梁”之意, 故也有译作“吊桥”的。“吊桥”的悬挂系统大部分情况下用“索”做成,故译作“悬索桥”,但个别情况下, “索”也有用刚性杆或键杆做成的,故译作“悬索桥”不能涵盖这一类用桥。和拱肋相反,悬索的截面只承受拉 力。简陋的只供人、畜行走用的悬索桥常把桥面直接铺在悬索上。通行现代交通工具的悬索桥则不行,为了保持 桥面具有一定的平直度,是将桥面用吊索挂在悬索上。与拱桥用刚性的拱肋作为承重结构不同,其采用的是柔性 的悬索作为承重结构。为了避免在车辆驶过时,桥面随着悬索一起变形,现代悬索桥一般均设有刚性梁(又称加 劲梁)。桥面铺在刚性梁上,刚性梁吊在悬索上。现代悬索桥的悬索一般均支承在两个塔柱上。塔顶设有支承悬 索的鞍形支座。承受很大拉力的悬索的端部通过锚碇固定在地基中,也有个别固定在刚性梁的端部者,称为自锚 式悬索桥。
悬索桥的计算方法及其历程1
悬索桥的计算方法及其发展悬索桥是一种古老的桥梁结构形式,也是目前大跨度桥梁的主要结构型式之一。
悬索桥主要是由缆索、吊杆、加劲梁、主塔、锚碇等构成。
从结构形式上看,它是一种由索和梁所构成的组合体系在受力本质上它是一种以柔性索为主要承重构件的悬挂结构。
悬索桥随着跨度的增大,柔性加大,在荷载作用下会呈现出较强的非线性,所以悬索桥宜采用非线性方法来进行结构分析。
考虑悬索桥非线性因素的结构分析方法主要有挠度理论和有限位移理论。
挠度理论考虑了悬索桥几何非线性的主要因素,可用比较简便的数值方法来分析,又有影响线可资利用,故很适用于初步设计阶段的结构设计计算。
有限位移理论则全面地考虑了悬索桥几何非线性因素,计算结果较挠度理论精确,但计算过程复杂,直接用于设计计算有诸多不便和困难。
悬索桥挠度理论是一种古典的悬索桥结构分析理论。
这种理论主要考虑悬索和加劲梁变形对结构内力的影响,在中小跨度范围内其计算结果比较接近结构的实际受力情况,具有较好的精度。
悬索桥挠度理论主要分为多塔悬索桥挠度理论和自锚式悬索桥挠度理论最初的悬索桥分析理论是弹性理论。
弹性理论认为缆索完全柔性,缆索曲线形状及坐标取决于满跨均布荷载而不随外荷载的加载而变化,吊杆受力后也不伸长,加劲梁在无活载时处于无应力状态弹性理论用普通结构力学方法即可求解,计算简便,至今仍在跨径小于200米的悬索桥设计中应用[1]。
但弹性理论假定缆索形状在加载前后不发生变化,显然与悬索桥的可挠性不符,因此发展出计入变形影响的悬索桥挠度理论。
古典的挠度理论称为“膜理论”。
它是将悬索桥的全部近视看成是一种连续的不变形的膜,当缆索产生挠度时,加劲梁也随之产生相同的挠度。
由于根据作用于缆索单元上吊杆力与缆索拉力的垂直分力平衡以及作用于加劲梁单元上的外荷载及吊杆力与加劲梁弹性抗力平衡的条件建立力的平衡微分方程而求解。
挠度理论和弹性理论的最大区别是摒弃了弹性理论中关于缆索形状不因外荷载介入而改变的假设,相应建立缆索在恒载下取得平衡的几何形状将因外荷载介入而改变及同时计入缆索因外荷载所增索力引起的伸长量的假设,极大的接近悬索桥主索的实际工作状态,对悬索桥的发展起到了很大的推动作用。
缆索承重桥梁之悬索桥构造及设计计算
缆索承重桥梁之悬索桥构造及设计计算悬索桥是一种常见的缆索承重桥梁,由主悬索、次悬索、桥面和塔构成。
其特点是悬挑距离长、塔高、桥塔之间跨度大,能够满足交通需要,同时其结构也相对稳定。
悬索桥的设计计算主要包括塔的高度、主悬索和次悬索的设计、桥面荷载的计算等。
首先,塔的高度需要满足一定的要求,一般要高于悬索桥的主悬索距离。
塔的高度设计不仅需要考虑桥面的拱度,还需要考虑塔之间的跨度,以保证结构稳定性和桥梁的安全性。
主悬索和次悬索的设计是悬索桥中最重要的部分,它们负责承受桥面的荷载。
悬索桥的主悬索是从塔顶到桥面中央的一条曲线,而次悬索则是从塔顶到桥面两侧的曲线。
主悬索和次悬索一般采用钢缆或预应力混凝土。
设计时需要考虑主悬索和次悬索的自重、荷载以及悬索桥的自重等因素,进行应力和变形的计算,以确保结构的稳定和安全。
在设计过程中,还需要考虑悬索桥的动态响应,防止因为振动而对桥梁产生不良影响。
另外,桥面荷载的计算也是悬索桥设计的重要一环。
桥面荷载一般包括活载荷载和恒载荷载两部分。
活载荷载是指交通载荷,包括车辆和行人的荷载。
恒载荷载是指悬索桥本身的自重和设备荷载等。
在计算过程中,需要考虑桥梁的应力分布、变形和挠度,以确保桥梁的安全和稳定。
最后,设计时还需要考虑材料的选取、施工方案等因素。
悬索桥的设计需要结合实际情况,综合考虑各种因素,以确保悬索桥的安全性、稳定性和经济性。
总之,悬索桥的构造和设计计算是一项复杂且系统的工程,需要考虑各种因素和条件,以保证悬索桥的安全和稳定。
设计师需要结合实际情况,采用科学的方法进行设计和计算,以实现悬索桥的目标。
悬索桥计算理论和计算内容简介
• 动力计算模型建立
桩基础模拟
主梁模拟(刚度和质量模拟)
22
润扬长江公路大桥
23
• 动力计算模型
为了真实地模拟桥梁结构的力学特性,所建立的计算模型必须如实地反 映结构构件的几何、材料特性,以及各构件的边界连接条件。在悬索桥的 动力性能分析中,桥梁结构的离散和模拟分成四部分进行:a.桥面系的模拟; b.主塔的模拟;c.缆索系统的模拟;d.边界连接条件的模拟 。具体计算模型 见下图:
3
➢ 悬索桥计算理论简介
柔性主缆的几何形状是由其在外力作用之下的平衡条件决定的,外力 包括恒载和活载。如果恒载相当大,则其由恒载所决定的几何形状就不会 因相对较小的活载上桥而有多大改变。于是,对活载讲,桥就有了刚度, 这叫重力刚度(即:原本是柔性的大缆因承受(巨大恒载所生)重力而产 生的抵抗(活载所致)变形的刚度)。相对于梁桥刚度主要由截面尺寸决 定而言,悬索桥的刚度由初始悬索拉力及形状决定,因此称为重力刚度。
4)悬索桥空间结构分析方法的发展是以计算机技术的发展为基础的。 1964年岛田静雄首先将三维空间分析理论应用于悬索桥计算,他在加劲 梁断面周边不变形的假定下导出了考虑竖向位移、横向位移及扭转耦合的 基础微分方程,使用影响函数法进行求解,并给出了适合编制程序的计算 流程图。
15
悬索桥动力计算
动力计算包括振动特性分析、地震响应计算和风致振动效应分析等。 悬索桥的动力特性,与其它桥梁相比,悬索桥基本上可分为由主缆、加 劲梁,以及把它们联结起来的吊索构成一个振动体系;以及由桥塔、墩 及基础构成另一个振动体系。前者的振动问题是一个上部结构体系的振 动,后者的振动问题可以说是塔和基础工程体系的振动。
6
• 弹性理论(续)
恒载作用下的主缆线形
悬索桥结构精确计算理论
端点力与座标之间的函数关系为:
H 1 V 1 V qs x (s) [sh ( ) sh ( ) ] q H H
V qs 2 H V 2 y (s) [ 1 ( ) 1 ( ) ] q H H
(48)
(49)
真实索形的迭代计算
公式准备 2 :吊杆间任一索段都必须满足式 (48) 、 (49) ,令 Vi =V,Hi =H,于是: Hi 1 V i 1 V i qsi l [sh ( ) sh ( )] i q Hi Hi
(60)
当
T ( s) EA0
<<1时 (61)
T ( s) H S S0 ( )ds [cl sh(2cl c1 ) sh(2c1 )] s0 EA0 2 EA0 c
根据公式(71)和(72)可以完成以下计算:
a )从锚碇到转索鞍索段的索长,根据悬链线索长计算公式可计算 有应力索长,扣除成桥索力引起的伸长量便是无应力索长;这一区 段内主缆的长度计算比较复杂。因为主缆每一层离开转索鞍的离开 点都是不一样的。在计算中先计算出该索段的中心索长,再根据不 同层和离开点位置对每一层索长进行修正。
i 1
m
e y hi y
i 1
n+1
(54)
实际的H,V可通过影响矩阵法迭代计算按如下步骤迭代求解:
悬索桥施工状态的计算
悬索桥施工状态是指从挂主缆开始到成桥各阶段悬索桥的构 形和受力状态。确定施工状态主要解决三方面问题:
1) 主缆各索段无应力索长
2) 挂索初始状态 3) 吊梁阶段的结构状态
真实索形的迭代计算(续)
根据IP点处实际的H和V,可计算边跨主缆的成桥索形;根 据主索鞍、转索鞍的设计半径,可计算主缆与鞍座的切点座 标;根据吊杆在主缆和桥面上的 y座标,可计算吊索在成桥 态的长度。至此,整个悬吊部分的受力与几何形态都被唯一 确定。 否则设误差向量为:
斜拉桥与悬索桥计算理论简析
斜拉桥与悬索桥计算理论简析斜拉桥与悬索桥是桥梁结构中跨越能力最大的两种桥型,随着桥梁建造向大跨径方向发展,它们越来越成为人们研究的热点。
通过大跨径桥梁理论的学习,我对斜拉桥与悬索桥的计算理论有了较为系统的了解。
在本文中,我想从一个设计者的角度,在概念层次上,对斜拉桥与悬索桥的计算理论做个总结,以加深自己对这些计算理论的理解。
一、斜拉桥的计算理论斜拉桥诞生于十七世纪,在最近的五十年间,斜拉桥有了飞速的发展,成为200米到800米跨径范围内最具竞争力的桥梁结构形式之一。
有理由相信,在大江河口的软土地基上或不适合建造悬索桥的地区,有可能修建超过1200米的斜拉桥。
斜拉桥是塔、梁、索三种基本结构组成的缆索承重结构体系,一般表现为柔性的受力特性。
(一)、斜拉桥的静力设计过程1、方案设计阶段此阶段也称为概念设计。
本阶段的主要任务是凭借设计者的经验,参考别的斜拉桥的设计,结合自己的分析计算,来完成结构的总体布置,初拟构件尺寸。
根据此设计文件,设计者或甲方(有些地方领导说了算)进行方案比选。
2、初步设计阶段本阶段在前一阶段工作的基础上进一步细化。
主要任务是:通过反复计算比较以确定恒活载集度、恒载分析、调索初定恒载索力、修正斜拉索截面积、活载及附加荷载计算、荷载组合及梁体配索、索力优化以及强度刚度验算等。
3、施工图设计阶段此阶段要对斜拉桥的每一部位以及每一施工阶段进行计算,确保结构安全。
主要计算内容有:构件无应力尺寸计算、对施工阶段循环倒退分析、计算斜拉索初张力、预拱度计算、强度刚度稳定性验算以及前进分析验算等。
(二)、斜拉桥的计算模式1、平面杆系加横分系数此模式用在概念设计阶段研究结构的设计参数,以求获得理想的结构布置。
还可用于技术设计阶段,仅仅计算恒载作用下的内力。
2、空间杆系计算模式此模式用在空间荷载(风载、地震荷载以及局部温差等)作用下的静力响应分析。
此模式按照主梁可分为三种:“鱼骨”模式、双梁式模式与三梁式模型。
大跨径桥梁理论悬索桥概要课件
桥塔施工通常采用滑模施工法或爬模施工法。在施工过程中 ,需先进行基础施工,然后进行桥塔柱的施工。施工过程中 需严格控制桥塔的垂直度、偏位和截面尺寸,确保桥塔的稳 定性和承载能力。
悬索桥的加劲梁构造与施工
要点一
加劲梁构造
要点二
加劲梁施工
悬索桥的加劲梁是连接主缆和桥面系的重要构件,通常采 用钢结构。加劲梁的形状和截面尺寸需根据桥梁跨度、荷 载等条件进行优化设计,同时需考虑加劲梁在荷载作用下 的刚度和稳定性。
施工经验
总结该桥的施工经验,如 施工组织设计、现场管理 措施、安全生产保障等方 面的成功做法。
实例三:某跨海悬索桥的运营维护与问题对策
运营维护
阐述某跨海悬索桥的运营维护 工作内容,包括日常检查、定
期维修、特殊检测等。
对策措施
介绍针对上述问题采取的对策 措施,如防腐涂层维护、桥面 修复技术、排水系统清理等。
施工图设计:根据优化后的设计方案,进行详细的施工图 设计,包括各构件的尺寸、配筋、材料等方面的详细规定 。
03
CATALOGUE
悬索桥的构造与施工技术
悬索桥的主缆构造与施工
主缆构造
悬索桥的主缆是承受桥梁荷载的主要构件,通常由高强度钢丝或钢绞线组成。主缆的截面形状一般为圆形或扁平 形,其截面面积和形状需根据桥梁跨度、荷载等条件进行优化设计。
扭转振动:悬索桥在横向风荷载作用 下可能产生扭转振动,设计中需采取 措施减小其振幅和频率。
风致振动:大跨度悬索桥对风荷载敏 感,可能发生涡激共振、颤振等风致 振动现象,需进行风洞试验以评估桥 梁抗风性能。
悬索桥的设计方法与流程
悬索桥设计方法与流程涉及桥梁设计的整个过程,包括初 步设计、详细设计和施工图设计等阶段。以下是主要步骤
悬索桥基本理论知识
悬索桥基本理论知识:1)众所周知,悬索桥是由主缆、加劲梁、主塔、鞍座、锚碇、吊索等构件组成的柔性悬吊组合体系。
主缆是结构体系中的主要承重构件,是几何可变体系,主要靠恒载产生的初始拉力以及几何形状的改变来获得结构刚度,以抵抗荷载产生的变形’因而使得大跨度悬索桥在施工阶段具有强烈的几何非线性。
2)在以往的地震反应分析中,惯用的方法是对几何非线性进行近似考虑,即只考虑缆索的弹性模量的修正和恒载静力平衡时的重力刚度Fleming和Eqesli 15】早在1982年就采用线性分析方法和考虑结构几何非线性的分析方法对跨度200m左右的斜拉桥进行了地震反应分析。
Fleming研究的几何非线性分析计算理论对斜拉桥、悬索桥的非线性研究工作是一个巨大的贡献,其分析方法至今被人借鉴。
他们研究的结论是:线性分析方法和非线性分析方法所得到的斜拉桥地震反应结果非常相近。
结构几何非线性的影响对地震反应并不显著,但随着跨度增大,非线性影响将会增大,其趋势是减小结构的反1LJ.Tuladhar和W.H.Dilg盯18J分别采用等效弹性模量、几何刚度矩阵、u.L.列式考虑结构的几何非线性建立了动力增量方程,分析了跨度从300m到450m的四座斜拉桥的几何非线性对其静力和地震反应的影响。
他们指出对于大跨度斜拉桥考虑几何非线性后,结构的静力和地震反应都有比较明显的增加。
朱稀和王克海H采用有限位移理论,考虑斜拉索的垂度、结构的梁柱效应和结构的大位移引起的结构几何非线性,研究大跨度斜拉桥在自重和拉索的初张力作用下的平面和空间静力、动力分析方法。
分析了主跨分别为335m和671m的三跨斜拉桥,认为斜拉桥结构考虑几何非线性后结构的整体刚度有所提高。
邓育林【”J利用ANSYS软件对主跨460m的重庆市奉节长江公路大桥(斜拉桥)进行了线性和几何非线性地震时程分析,认为非线性对大跨度斜拉桥动力反应影响很大,考虑几何非线性后地震反应结果增大。
文献11lI报道林同炎国际咨询公司考虑应力和位移对刚度的影响,利用牛顿一拉夫森切线刚度迭代法求解结构变形后的平衡方程组,对金门大桥(悬索桥)的非线性研究结论是:非线性分析计算预计的位移大约比传统的线性结果小18 倍。
专题三 大跨径桥梁计算理论——悬索桥
挠度理论
基本假定
➢ 恒载沿桥梁的纵向是均匀分布的; ➢ 在恒载作用下,在无活载状态下,主缆线形为抛物线,加劲
梁内无应力; ➢ 吊索是竖向的,且是密布的,在活载作用下,只考虑吊索有
拉力,而不考虑吊索的拉伸和倾斜; ➢ 在每一跨内加劲梁为等直截面梁,即截面惯性矩在一跨内为
常量; ➢ 主缆及加劲梁都只有竖向位移,不考虑其在纵向的位移。
的风毁引起人们对悬索桥抗风的反思。
1964年-建成韦拉扎诺(Verrazano Narrows Br.)桥(双层, 主跨1298m)的记录一直保持至上世纪80年代初。
1966年建成主跨988m的塞文(Severn)桥。
3
布鲁克林桥(Brooklyn ,1883,486m ),美国,纽约 4
5
金门大桥,1280m,美国,1937年
螺栓紧固。 (6)鞍座采用大型铸钢件。 (7)桥面板采用RC构件。
11
欧洲风格悬索桥主要特点
首次采用钢箱梁与斜吊索闻名于世的塞文桥的 建成,标志着又一建桥强国——英国的掘起,代表 了欧洲风格,其主要特点
(1)采用流线型扁平钢箱梁作为加劲梁。 (2)早期采用铰接斜吊索,经塞文桥、博斯普鲁
斯桥以及恒伯尔桥的实践之后,在博斯普鲁 斯二桥改回到垂直吊索。 (3)索夹分为上下两半,在其两侧采用垂直于主 缆的高强螺栓紧固。 (4)桥塔采用焊接钢结构或钢筋混凝土结构。 (5)钢桥面板采用沥青混合料铺装。
中国悬索桥的历史与发展
2009年,舟山连岛工程中的西侯门大桥以1650米跨径 排中国第一,世界第二。
悬索桥
安澜桥,中国四川成都,中国现存最早的悬索桥
悬索桥
藤桥,西藏林芝
悬索桥
汕头海湾桥(1995年),中国汕头,425米,中国第一座现代化悬索桥
悬索桥—计算
后结构的变形对平衡的影响并不大,应用弹性理论已能满足要求。
1、基本假定
(1)悬索为完全柔性,吊索沿跨密布;
(2)悬索线型及座标受载后不变;
目录
(3)加劲梁悬挂于主缆,截面特点不变;仅有二期恒载、活载、
温度、风力等引起的内力。
计算结果:悬索内力及加劲梁弯距随跨经的增大而增大。
上页
2、适用:桥跨小,索自重较轻,结构刚度主要由加劲梁提供
吊索是将加劲梁自重、外荷载传递到主缆的传力构件,是 连系加劲梁和主缆的纽带,受拉;
锚碇是锚固主缆的结构,它将主缆中的拉力传递给地基。
(二)计算理论的发展 线弹性理论
目录
挠度理论
上页
有限位移理论
下页
(三)弹性理论
1823年法国人纳维(Navier)发表了悬索桥的弹性理论,认为主缆
目录
承受自重及全部桥面恒载,它的几何形状为二次抛物线,这一线形不因 后来作用于桥面上的外荷载而变化。并假定吊索长度不因活载而伸长,
目录
上页
悬 索 桥
下页
内容提要
本章主要介绍悬索桥的结构类型及构造,悬索桥的计算及
目录
施工简介。 本章的教学重点悬索桥的结构类型及构造; 教学难点为悬索桥的计算及施工。
上页
能力要求
下页
通过本章的学习,学生应达到掌握各类悬索桥的结构类型 及构造,熟悉悬索桥的计算及施工简介。
X.1 悬索桥的概述 X.2 悬索桥的构造 X.3 悬索桥的计算 习题与思考题
上页
沿主缆各点的竖向挠度和加劲梁各相应点的挠度一样。这样悬索桥就 是主缆和加劲梁的简单组合体系,具有线弹性性质,叠加原理对它适
下页
用,加劲梁是承重结构体系中的重要组成部分,而结构在活载作用下 的挠度则同加劲梁的抗弯刚度密切相关。悬索桥应用早期,由于跨度 小,梁有足够的刚度,而且恒载相对活载来说较大,因此作用上活载
桥梁工程课件-悬索桥
◆ 悬索桥构造简桥
◆ 概述 ◆ 悬索桥的基本类型 ◆ 悬索桥的总体布置 ◆ 悬索桥构造简介 ◆ 悬索桥静力计算理论
◆ 概述
◆ 悬索桥的基本类型
◆ 悬索桥的总体布置
1.悬索桥的边跨与主跨度比 从总体受力角度要求边跨与主跨的主缆水平分力在塔顶处互相
平衡,这要通过边跨与主跨的主缆在塔顶两侧的夹角尽量相近来保 证。但在实际设计中往往受锚碇远近及锚固点高低等客观条件限制, 因此,世界上已建悬索桥的实例中,边跨与中跨的比例多在0.250.50之间取值。
2.悬索桥主缆的垂跨比 垂跨比指主缆在主孔的垂度f与主孔的跨度L之比。垂跨比的大
小一方面直接影响主缆的拉力,从而也就在很大程度上决定了主缆 的用钢量。另一方面还对悬索桥的整体刚度有明显的影响,垂跨比 越小,刚度越大。因此,在实桥设计中,应结合对刚度的要求和主 缆用钢量来选取合适的垂跨比,通常取值为1/9~1/12。
第五讲 悬索桥的理论计算、设计
1 0 [ Bi ] = 0 0 0
li 1 0
cos ki li − 1 sin ki li − ki li ki2 EI ki3 EI i − sin ki li ki EI cos ki li − 1 ki2 EI sin ki li ki cos ki li 0
第4章 悬索桥的设计
第3节 主缆、吊索和索夹的设计
3.2 吊索设计 1)吊索布置形式:多维平行索,斜吊索受力不合理 2)连接方式 与主缆连接:骑跨式、销接 与加劲梁连接:据加劲梁截面形式确定 3)吊索截面 抗拉强度分项系数:骑跨式2.95,销接式2.20
第4章 悬索桥的设计
第3节 主缆、吊索和索夹的设计
第3章 悬索桥的计算理论
第5节 桥塔计算
5.2 塔的内力
{U ( l )} = [ B ]{u (0)} = [ B ] F [ B ] [U (0) ]
1 1 2 2 2 1 1 1
{U ( l )} = [ B ] ⋅ [ F ] ⋅ [ B ]LL[ F ] ⋅ [ B ] ⋅ {U (0)}
第4章 悬索桥的设计
第3节 主缆、吊索和索夹的设计
3.3 索夹设计 2)螺栓预拉力损失 影响因素 3)降低索夹连接螺栓预拉力损失的设计措施 提高螺栓初施拧 的应力和螺栓握距 4)索夹抗滑安全度的设计措施——安全系数
第4章 悬索桥的设计
第4节 加劲梁的设计
4.1 设计计算及考虑因素 4.2 钢桁加劲梁设计 4.3 流线型钢箱式加劲梁设计
第3章 悬索桥的计算理论
第4节 横向荷载作用下简化计算理论
4.3 矩阵分析法—力法与位移法
第3章 悬索桥的计算理论
第9讲 悬索桥计算
ql 2 HL = 8f
l 1 ql 2 H L 1 HD + LE = ∫ ( w + q )ηdx 0 2 8 f AC EC 2
l l2 HL LE ∫ ηdx 0 8 f AC EC
LE 8f HL = 2 AC EC l
∫ ηdx
0
l
3,公式推导 ,
3.2, 活载应力分析 ,
l l 2
1 HL = HD + HL 2 AC AC
l 2
1 ds HL ∫0 dx dx = H D + 2 H L AC AC LE
l
2
3 f ds 1 5 2 2 0.5 2 0.5 LE = ∫ dx = l ( + 16a )(1 + 16a ) + ln(4a + (1 + 16a ) ) 其中 a = 0 dx 32a l 4 2
二,弹性理论
3,公式推导 ,
以一主缆跨度为l的单跨加劲式悬索桥的设计计算, 以一主缆跨度为 的单跨加劲式悬索桥的设计计算, 的单跨加劲式悬索桥的设计计算 作出对弹性理论做悬索桥分析的阐述. 作出对弹性理论做悬索桥分析的阐述.计算的基本原 则是:主缆担负全部横载w; 则是:主缆担负全部横载 ;主缆与加劲梁共同承受 车辆活载p,人群活载, 车辆活载 ,人群活载,风力及温度变化等附加外荷 载
l l 2
4,悬索桥实例 ,
4.4 活载作用下主缆轴力及其影响线 设单位荷载P= 在离左支点 的位置, 在离左支点Kl的位置 设单位荷载 =1在离左支点 的位置,则加劲梁简支弯距为
M 0 = (1 K ) x M 0 = K(l x)
Kl以左 Kl以右
l
1 EI
第三讲 悬索桥的计算理论
dz0 2 ) dx dx
2 2 2 2
du du dz du dz ds = (dx + du ) 2 + dz 2 = 1 + + dx = 1 + 2 + + dx dx dx dx dx dx
∆H ds0 ds ∆T ∆s = ∫ + α∆t ds0 = ∫ ⋅ + α∆t 0 ⋅ dx s0 EA l EA dx dx ds0 ∆H ds0 = dx dx + α∆t ∫l ∫ l EA dx dx ∆H = EA
第3篇 悬索桥的计算理论
第2节 悬索桥计算的挠度理论
2. 主缆特性及加劲梁挠度方程的推导 2)当有外荷载作用于加劲梁时,外荷载作用于加劲 梁后通过吊索变为分布力传给主缆,此时对主缆有
d 2 y d 2v = − g − s ( x) H + 2 2 dx dx
d2y d 2v d2y +H =H − s( x) H 0 2 2 2 dx dx dx d2y d 2v +H = − s ( x) (H − H ) 0 2 2 dx dx
第3篇 悬索桥的计算理论
第2节 悬索桥计算的挠度理论
2. 主缆特性及加劲梁挠度方程的推导
挠度理论计算的力学模型图
第3篇 悬索桥的计算理论
第2节 悬索桥计算的挠度理论
2. 主缆特性及加劲梁挠度方程的推导 1) 恒载作用下,已设缆索的形状为抛物线,可得 中跨: y = 4 f x 1 − x w = 8H 0 fc
悬索桥的计算方法
悬索桥的计算方法悬索桥是一种常见的桥梁结构,其特点是悬挂在两个或多个支柱之间,中间通过悬索支撑整个桥面。
悬索桥的计算方法是指在设计和建造悬索桥时所需的相关计算和分析方法。
本文将介绍悬索桥的计算方法,包括悬索力的计算、桥面的设计和悬索索力的平衡等内容。
1. 悬索力的计算悬索桥的悬索力是指悬挂在支柱上的各个悬索所受的拉力。
悬索力的计算涉及到桥面的自重、行车荷载和风荷载等因素。
在计算中,需要考虑桥面的几何形状、悬索的长度和倾角、支柱的位置和高度等参数。
通过合理的计算方法,可以确定每个悬索所受的拉力,从而保证桥梁的结构安全和稳定。
2. 桥面的设计悬索桥的桥面是行车和行人通行的部分,其设计需要考虑桥面的宽度、坡度和曲线半径等因素。
在设计中,需要满足行车和行人的通行需求,并考虑到桥面的自重和荷载等因素。
通过合理的桥面设计,可以保证悬索桥的通行安全和舒适性。
3. 悬索索力的平衡悬索桥的悬索索力是维持桥面平衡的关键因素,其大小和方向直接影响到桥梁的稳定性。
在悬索桥的设计中,需要通过计算和分析来确定悬索索力的大小和方向。
通常,悬索索力的平衡是通过调整支柱的高度和位置来实现的。
通过合理的计算方法和结构设计,可以保证悬索桥的稳定性和安全性。
悬索桥的计算方法是设计和建造悬索桥所必需的关键内容。
通过合理的计算和分析,可以确定悬索力的大小、桥面的设计和悬索索力的平衡等参数,从而保证悬索桥的结构安全和稳定。
悬索桥是一种重要的桥梁结构,其计算方法的正确性和准确性对保障桥梁的使用和运行具有重要意义。
希望本文的介绍能对读者理解悬索桥的计算方法有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
欧洲风格悬索桥主要特点
首次采用钢箱梁与斜吊索闻名于世的塞文桥的 建成,标志着又一建桥强国——英国的掘起,代表 了欧洲风格,其主要特点
(1)采用流线型扁平钢箱梁作为加劲梁。 (2)早期采用铰接斜吊索,经塞文桥、博斯普鲁
斯桥以及恒伯尔桥的实践之后,在博斯普鲁 斯二桥改回到垂直吊索。 (3)索夹分为上下两半,在其两侧采用垂直于主 缆的高强螺栓紧固。 (4)桥塔采用焊接钢结构或钢筋混凝土结构。 (5)钢桥面板采用沥青混合料铺装。
பைடு நூலகம்
吊
索:将加劲梁自重、外荷载传递到主缆的传力构件
,是连系加劲梁和主缆的纽带,承受轴向拉力
锚
碇:锚固主缆的结构,它将主缆中的拉力传递给地基
,通常采用重力式锚和隧道式锚
10
美国风格悬索桥主要特点
(1)主缆采用AS(Air Spinning)法架设。 (2)加劲梁采用非连续的钢桁梁,适应双层桥面,
并在桥塔处设有伸缩缝。 (3)桥塔采用铆接或栓接钢结构。 (4)吊索采用竖直的4股骑跨式。 (5)索夹分为左右两半,在其上下采用水平高强
专题三 大跨径桥梁计算理论
悬索桥
悬索桥
跨越能力最强的桥型之一
2
历史
悬索桥的起源——起源于中国,藤桥、索桥等。 跨度500m:1880年至1920年-纽约,布鲁克林(Brooklyn , 1883 , 486m ) 桥 , 威 廉 斯 堡 桥 ( Williamsboarg , 1930 , 488m )桥,曼哈顿(Manhattan,1909,448m )桥。 跨度1000m :1931年-乔治、华盛顿(George Washington, 1066m )桥;1937年金门(Golden Gate, 1280m )大桥。 1940年-美国华盛顿州的塔可马(Tacoma,主跨853m)大桥
的风毁引起人们对悬索桥抗风的反思。
1964年-建成韦拉扎诺(Verrazano Narrows Br.)桥(双层, 主跨1298m)的记录一直保持至上世纪80年代初。
1966年建成主跨988m的塞文(Severn)桥。
3
布鲁克林桥(Brooklyn ,1883,486m ),美国,纽约 4
5
金门大桥,1280m,美国,1937年
12
日本风格悬索桥主要特点
作为后起之秀—日本,其悬索桥技术具有随时代进步的特色, 主要特点:
(1)采用预制平行钢丝索股架设主缆(PWS法)。 (2)加劲梁主要沿袭美国流派的钢桁梁型式,但近
年来对非双层桥面的梁体已转向采用流线型扁 平钢箱梁。 (3)吊索沿袭美国流派的竖直4股骑跨式,未接受 英国早期的斜吊索。 (4)桥塔采用钢结构,主要采用焊接方式。 (5)鞍座采用铸焊混合方式。 (6)采用钢桥面板沥青混合料铺装桥面。 (7)主缆索股与锚碇内钢构架采用预应力工艺锚固
8
构成及特征
构成:主缆、加劲梁、主塔、鞍座、锚碇、吊索 特征:柔性悬吊组合体系。
成桥时,主要由主缆和主塔承受结构自重, 加劲梁受力由施工方法决定。
成桥后,结构共同承受外荷载作用,受力按 刚度分配。
9
构件作用
主
缆:结构体系中主要承重构件,是几何可变体,主要
承受拉力作用。主缆在恒载作用下具有很大的初始张拉力,对
13
广泛采用的悬索桥结构及工艺特点
目前,国际上广泛采用的悬索桥结构及工艺特点: (1)主缆架设方法采用AS法(英国、美国)和
PWS法(日本、中国)。 (2)加劲梁采用流线型扁平钢箱梁型式。 (3)吊索为竖直形式。 (4)锚固方法偏向采用铸焊混合结构与预应力锚
固工艺。
14
现代悬索桥的发展
(1)跨径越来越大,从几十米发展到近2000m; (2)加劲梁高跨比越来越小,从1/40下降到1/300; (3)主缆等主要承重构件的安全系数取值越来越低, 从4.0下降到2.0。
中国悬索桥的历史与发展
1995年,中国第一座现代大跨径悬索桥广东省汕头海 湾大桥建成,它以452米的跨径吹响了中国大跨径悬索 桥建设的号角。
1996年,西陵长江大桥就将这一纪录提高到900米。 1997年,又建成了跨径888米的虎门大桥。同年,香港
青马大桥又实现了新的跨越,以1377米的跨径雄居中 国桥梁跨径之首。 1999年江阴长江大桥又以1385米的跨径傲视桥林。中 国悬索桥4年实现3次飞跃,每次飞跃都是450米的惊人 数字,这在世界桥梁史上也绝无仅有。
在中国,1995年建成了西陵长江大桥(主跨900m)、1997 年建成了虎门大桥(主跨888m)。
1998年的香港青马大桥(主跨1377m)和1999年江阴长江 大桥(主跨1385m)分别列入世界大跨度桥梁序列中的第四位 与第五位。
主跨452m的汕头海湾大桥采用预应力混凝土加劲梁,在世 界同类桥中跨径排名第一。
15
中国悬索桥历史与发展
16
中国悬索桥的历史与发展
中国吊桥(索桥)历史悠久,但多为人行桥,跨径小, 适应性较差。
现代悬索桥虽然源于古代吊桥,但现代悬索桥的规模、 材料、技术含量已和古代吊桥不可同日而语,它集中了 当代建筑学最尖端的理论、工艺、材料,以无与伦比的 跨径雄霸桥林,即便是桥林新秀斜拉桥在跨径上也无力 与其争锋。
后续结构形状提供强大的“重力刚度”,这是悬索桥跨径得以
不断增大、加劲梁高跨比得以减小的根本原因
主
塔:抵抗竖向荷载的主要承重构件,在恒载作用下,
以轴向受压为主;在活载作用下,以压弯为主,呈梁柱构件特
征
加 劲 梁:促证车辆行驶、提供结构刚度的二次结构,主要 承受弯曲内力。弯曲内力主要来自结构二期恒载和活载
新塔可马(Tacoma,主跨853m)大桥 7
历史
1981年英国的恒伯尔(Humber)桥(主跨1410m)的建成, 将保持记录17年之久的韦拉扎诺桥打破。
在亚洲,1962年福冈的若户桥,主跨367m,至1988年建成 的南备赞大桥(主跨1100m)结束了亚州无千米跨大桥历史, 1998年,明石海峡大桥(主跨1990m)的建成,标志着大跨悬 索桥修建重心转移到了亚州。
中国悬索桥的历史与发展
2009年,舟山连岛工程中的西侯门大桥以1650米跨径 排中国第一,世界第二。