正弦与余弦定理练习题及答案40121

合集下载

正弦与余弦定理练习题及答案

正弦与余弦定理练习题及答案

- -正弦定理练习题1.在△ABC 中,∠A =45°,∠B =60°,a =2,那么b 等于( )A.6B.2 C.3D .2 62.在△ABC 中,a =8,B =60°,C =75°,那么b 等于( )A .4 2B .4 3C .4 6 D.3233.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,那么角B 为( )A .45°或135° B.135° C.45° D.以上答案都不对4.在△ABC 中,a ∶b ∶c =1∶5∶6,那么sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C.6∶1∶5 D.不确定5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,假设A =105°,B =45°,b =2,那么c =( )A .1 B.12C .2D.146.在△ABC 中,假设cos A cos B =ba,那么△ABC 是( )--A.等腰三角形B.等边三角形C.直角三角形D.等腰三角形或直角三角形7.△ABC中,AB=3,AC=1,∠B=30°,那么△ABC的面积为( )A.32B.34C.32或3D.34或328.△ABC的内角A、B、C的对边分别为a、b、c.假设c=2,b =6,B=120°,那么a等于( )A.6B.2C.3D. 29.在△ABC中,角A、B、C所对的边分别为a、b、c,假设a=1,c=3,C=π3,那么A=________.10.在△ABC中,a=433,b=4,A=30°,那么sin B=________.11.在△ABC中,∠A=30°,∠B=120°,b=12,那么a+c=________.12.在△ABC中,a=2b cos C,那么△ABC的形状为________.13.在△ABC中,A=60°,a=63,b=12,S△ABC=183,那么a+b+csin A+sin B+sin C=________,c=________.- -14.在△ABC 中,a =32,cos C =13,S △ABC =43,那么b =________.15.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,假设a =23,sin C 2cos C 2=14,sin B sin C =cos 2A 2,求A 、B 及b 、c . 16.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.余弦定理练习题1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于()A .6B .26C .36D .4 62.在△ABC 中,a =2,b =3-1,C =30°,那么c 等于()A. 3B.2C. 5 D .23.在△ABC 中,a 2=b 2+c 2+3bc ,那么∠A 等于()A .60° B.45°C.120° D.150°4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,假设(a 2+c 2-b 2)tan B =3ac ,那么∠B 的值为()A.π6B.π3C.π6或5π6D.π3或2π3- -5.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,那么a cos B +b cos A 等于()A .aB .bC .cD .以上均不对6.锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,那么AB→·AC →的值为() A .2 B .-2C .4 D .-47.在△ABC 中,b =3,c =3,B =30°,那么a 为()A.3B .23C.3或23D .28.△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,那么边BC 上的中线AD 的长为________.9.a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,假设a =4,b =5,S =53,那么边c 的值为________.10.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,那么cos A ∶cos B ∶cos C =________.11.在△ABC 中,a =32,cos C =13,S △ABC =43,那么b =________.12.△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,那么角C =________.13.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.14.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π4)的值.正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,那么b 等于( )A. 6B. 2C. 3 D .2 6解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin Bsin A = 6.2.在△ABC 中,a =8,B =60°,C =75°,那么b 等于( )A .4 2B .4 3C .4 6 D.323解析:选C.A =45°,由正弦定理得b =a sin Bsin A=4 6. 3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,那么角B 为( )A .45°或135° B.135° C.45° D.以上答案都不对解析:选C.由正弦定理asin A =b sin B 得:sin B =b sin A a =22,又∵a >b ,∴B <60°,∴B=45°.4.在△ABC 中,a ∶b ∶c =1∶5∶6,那么sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,假设A =105°,B =45°,b =2,那么c =( )A .1 B.12C .2 D.14解析:选A.C =180°-105°-45°=30°,由b sin B =csin C 得c =2×sin 30°sin45°=1.6.在△ABC 中,假设cos A cos B =ba,那么△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin Bsin A ,sin A cos A =sin B cos B ,∴sin2A =sin2B即2A =2B 或2A +2B =π,即A =B ,或A +B =π2.7.△ABC 中,AB =3,AC =1,∠B =30°,那么△ABC 的面积为( )A.32B.34C.32或 3 D.34或32解析:选D.AB sin C =AC sin B ,求出sin C =32,∵AB >AC ,∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =12AB ·AC sin A 可求面积.8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .假设c =2,b =6,B =120°,那么a 等于( )A. 6 B .2 C. 3D. 2解析:选D.由正弦定理得6sin120°=2sin C ,∴sin C =12.又∵C 为锐角,那么C =30°,∴A =30°, △ABC 为等腰三角形,a =c = 2.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,假设a =1,c =3,C =π3,那么A =________.解析:由正弦定理得:a sin A =csin C ,所以sin A =a ·sin C c =12. 又∵a <c ,∴A <C =π3,∴A =π6.答案:π610.在△ABC 中,a =433,b =4,A =30°,那么sin B =________.解析:由正弦定理得asin A =bsin B⇒sin B =b sin A a =4×12433=32.答案:3211.在△ABC 中,∠A =30°,∠B =120°,b =12,那么a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×sin30°sin120°=43, ∴a +c =8 3.答案:8 312.在△ABC 中,a =2b cos C ,那么△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B , 代入式子a =2b cos C ,得2R sin A =2·2R ·sin B ·cos C ,- -所以sin A =2sin B ·cos C ,即sin B ·cos C +cos B ·sin C =2sin B ·cos C , 化简,整理,得sin(B -C )=0.∵0°<B <180°,0°<C <180°, ∴-180°<B -C <180°, ∴B -C =0°,B =C . 答案:等腰三角形13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,那么a +b +csin A +sin B +sin C=________,c =________.解析:由正弦定理得a +b +c sin A +sin B +sin C =a sin A =63sin60°=12,又S △ABC =12bc sin A ,∴12×12×sin60°×c =183,∴c =6.答案:12 614.在△ABC 中,a =32,cos C =13,S △ABC =43,那么b =________.解析:依题意,sin C =223,S △ABC =12ab sin C =43,解得b =2 3. 答案:2 315.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,假设a =23,sin C 2cos C 2=14,sin B sinC =cos 2A2,求A 、B 及b 、c .解:由sin C 2cos C 2=14,得sin C =12,又C ∈(0,π),所以C =π6或C =5π6.由sin B sin C =cos 2A2,得 sin B sin C =12[1-cos(B +C )],即2sin B sin C =1-cos(B +C ),即2sin B sin C +cos(B +C )=1,变形得- -cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =π6,B =C =5π6(舍去),A =π-(B +C )=2π3.由正弦定理a sin A =b sin B =csin C,得b =c =a sin Bsin A =23×1232=2.故A =2π3,B =π6,b =c =2.=255×31010-55×1010=22.又0<A +B <π,∴A +B =π4.(2)由(1)知,C =3π4,∴sin C =22.由正弦定理:a sin A =b sin B =csin C 得 5a =10b =2c ,即a =2b ,c =5b . ∵a -b =2-1,∴2b -b =2-1,∴b =1. ∴a =2,c = 5.16.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.解:由S =12ab sin C 得,153=12×603×sin C ,∴sin C =12,∴∠C =30°或150°.又sin B =sin C ,故∠B =∠C .当∠C =30°时,∠B =30°,∠A =120°. 又∵ab =603,a sin A =bsin B ,∴b =215.当∠C =150°时,∠B =150°(舍去). 故边b 的长为215.余弦定理- -1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于()A .6B .2 6C .3 6D .4 6解析:选A.由余弦定理,得AC =AB 2+BC 2-2AB ·BC cos B=42+62-2×4×6×13=6.2.在△ABC 中,a =2,b =3-1,C =30°,那么c 等于() A. 3B. 2C. 5 D .2解析:选B.由余弦定理,得c 2=a 2+b 2-2ab cos C =22+(3-1)2-2×2×(3-1)cos30° =2, ∴c = 2.3.在△ABC 中,a 2=b 2+c 2+3bc ,那么∠A 等于() A .60° B .45° C .120° D .150°解析:选D.cos∠A =b 2+c 2-a 22bc =-3bc 2bc =-32,∵0°<∠A <180°,∴∠A =150°.4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,假设(a 2+c 2-b 2)tan B =3ac ,那么∠B 的值为()A.π6B.π3C.π6或5π6D.π3或2π3解析:选D.由(a 2+c 2-b 2)tan B =3ac ,联想到余弦定理,代入得cos B =a 2+c 2-b 22ac =32·1tan B =32·cos B sin B.显然∠B ≠π2,∴sin B =32.∴∠B =π3或2π3.5.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,那么a cos B +b cos A 等于()A .aB .bC .cD .以上均不对- -解析:选C.a ·a 2+c 2-b 22ac +b ·b 2+c 2-a 22bc =2c 22c =c . 6.锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,那么AB →·AC →的值为()A .2B .-2C .4D .-4解析:选A.S △ABC =3=12|AB →|·|AC →|·sin A =12×4×1×sin A , ∴sin A =32,又∵△ABC 为锐角三角形, ∴cos A =12, ∴AB →·AC →=4×1×12=2. 7.在△ABC 中,b =3,c =3,B =30°,那么a 为() A. 3B .2 3 C.3或2 3 D .2解析:选C.在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac cos B ,即3=a 2+9-33a , ∴a 2-33a +6=0,解得a =3或2 3.8.△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,那么边BC 上的中线AD 的长为________.解析:∵2B =A +C ,A +B +C =π,∴B =π3. 在△ABD 中, AD =AB 2+BD 2-2AB ·BD cos B=1+4-2×1×2×12= 3. 答案: 39.a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,假设a =4,b =5,S =53,那么边c 的值为________.解析:S =12ab sin C ,sin C =32,∴C =60°或120°. ∴cos C =±12,又∵c 2=a 2+b 2-2ab cos C ,--∴c 2=21或61,∴c =21或61. 答案:21或6110.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,那么cos A ∶cos B ∶cos C =________. 解析:由正弦定理a ∶b ∶c =sin A ∶sin B ∶sin C =2∶3∶4,设a =2k (k >0),那么b =3k ,c =4k ,cos B =a 2+c 2-b 22ac =2k 2+4k 2-3k 22×2k ×4k =1116, 同理可得:cos A =78,cos C =-14, ∴cos A ∶cos B ∶cos C =14∶11∶(-4).答案:14∶11∶(-4)11.在△ABC 中,a =32,cos C =13,S △ABC =43,那么b =________. 解析:∵cos C =13,∴sin C =223. 又S △ABC =12ab sin C =43, 即12·b ·32·223=43, ∴b =2 3.答案:2 312.△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,那么角C =________.解析:12ab sin C =S =a 2+b 2-c 24=a 2+b 2-c 22ab ·ab 2=12ab cos C ,∴sin C =cos C ,∴tan C =1,∴C =45°. 答案:45°13.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.解:∵A +B +C =π且2cos(A +B )=1,∴cos(π-C )=12,即cos C =-12. 又∵a ,b 是方程x 2-23x +2=0的两根,∴a +b =23,ab =2.- -∴AB 2=AC 2+BC 2-2AC ·BC ·cos C=a 2+b 2-2ab (-12) =a 2+b 2+ab =(a +b )2-ab=(23)2-2=10, ∴AB =10. 14.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π4)的值. 解:(1)在△ABC 中,由正弦定理AB sin C =BCsin A, 得AB =sin C sin ABC =2BC =2 5. (2)在△ABC 中,根据余弦定理,得 cos A =AB 2+AC 2-BC 22AB ·AC =255, 于是sin A =1-cos 2A =55. 从而sin 2A =2sin A cos A =45, cos 2A =cos 2A -sin 2A =35.所以sin(2A -π4)=sin 2A cos π4-cos 2A sin π4=210.。

高考正弦定理和余弦定理练习题及答案演示教学

高考正弦定理和余弦定理练习题及答案演示教学

解: 由 cos∠ ADC =35>0 知 B<π2,
由已知得 cosB=12, sin ∠ADC =4,
13
5
精品文档
精品文档
从而 sin∠ BAD= sin( ∠ADC - B) = sin∠ ADC cosB- cos∠ ADCsinB
= 45×1123- 35× 153=3635.
由正弦定理得 sAinDB=sin∠BDBAD,
答案: 60°
解析:
S△
ADC

1× 2
2×DC ×
3= 3- 2
3,
解得 DC = 2( 3-1) ,
∴ BD= 3- 1, BC= 3( 3-1).
在△ ABD 中, AB2= 4+ ( 3- 1)2- 2× 2× ( 3-1) ×cos120°= 6,
∴ AB= 6.
精品文档
精品文档
在△ ACD 中, AC2= 4+ [2( 3- 1)] 2- 2× 2×2( 3- 1)×cos60°= 24- 12 3,
∴腰长为 2a,由余弦定理知
cosα=
2a 2+ 2× 2
2a a×
2- 2a
a2 =
7 8
.
方法二:如图,过点 A 作 AD⊥ BC 于点 D,
则 AC= 2a, CD = a,∴ sinα= 1,
2
24

cosα=
1

2sin2α 2

1-

116=
7 8.
6. (2010 泉·州模拟 )△ ABC 中, AB= 3,AC= 1,∠ B= 30°,则△ ABC 的面积等于 ( )
B . 60° D .150 °

数学必修5解三角形-正弦-余弦知识点和练习题(含答案)

数学必修5解三角形-正弦-余弦知识点和练习题(含答案)

数学必修5解三角形-正弦-余弦知识点和练习题(含答案)解三角形1.正弦定理:2sin sin sin a b cR A B C===或变形:::sin :sin :sin a b c A B C=.2.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩或222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.3.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角.2、已知两角和其中一边的对角,求其他边角.(2)两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角.4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.5.解题中利用ABC ∆中A B C π++=,以及由此推得的一些基本关系式进行三角变换的运算,如:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-sin cos ,cos sin ,tan cot 222222A B C A B C A B C +++===.、已知条件定理应用一般解法一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时有一解。

两边和夹角(如a、b、c)余弦定理由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180˙求出另一角,在有解时有一解。

三边(如a、b、c)余弦定理由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C在有解时只有一解。

1、ΔABC中,a=1,b=3, ∠A=30°,则∠B等于()A.60°B.60°或120°C.30°或150°D.120°2、符合下列条件的三角形有且只有一个的是()A.a=1,b=2 ,c=3 B.a=1,b=2,∠A=30°8、A 为ΔABC 的一个内角,且sinA+cosA=127, 则ΔABC 是______三角形.9、在ΔABC 中,若S ΔABC =41 (a 2+b 2-c 2),那么角∠C=______.10、在ΔABC 中,a =5,b = 4,cos(A -B)=3231,则cosC=_______.11、在ΔABC 中,求分别满足下列条件的三角形形状: ①B=60°,b 2=ac ; ②b 2tanA=a 2tanB ;③sinC=BA B A cos cos sin sin ++④ (a 2-b 2)sin(A+B)=(a 2+b 2)sin(A -B).12. 在ABC △中,已知内角A π=3,边3BC =B x =,周长为y .(1)求函数()y f x =的解析式和定义域;(2)求y 的最大值. 13. 在ABC中,角,,A B C 对应的边分别是,,a b c ,若1sin ,2A =3sin 2B =,求::a b c14. 在ABC中,,a b c分别为,,A B C∠∠∠的对边,若2sin (cos cos )3(sin sin )A B C B C +=+,(1)求A 的大小;(2)若61,9a b c =+=,求b 和c 的值。

正弦与余弦定理练习题及答案【范本模板】

正弦与余弦定理练习题及答案【范本模板】

正弦定理练习题1.在△ABC中,∠A=45°,∠B=60°,a=2,则b等于()A。

错误!B。

错误!C。

错误! D.2错误!2.在△ABC中,已知a=8,B=60°,C=75°,则b等于()A.4错误!B.4错误!C.4错误!D.错误!3.在△ABC中,角A、B、C的对边分别为a、b、c,A=60°,a =4错误!,b=4错误!,则角B为()A.45°或135°B.135°C.45°D.以上答案都不对4.在△ABC中,a∶b∶c=1∶5∶6,则sin A∶sin B∶sin C等于()A.1∶5∶6B.6∶5∶1 C.6∶1∶5 D.不确定5.在△ABC中,a,b,c分别是角A,B,C所对的边,若A=105°,B =45°,b=2,则c=()A.1 B.错误!C.2 D.错误!6.在△ABC中,若错误!=错误!,则△ABC是()A.等腰三角形B.等边三角形C.直角三角形D.等腰三角形或直角三角形7.已知△ABC中,AB=错误!,AC=1,∠B=30°,则△ABC的面积为()A.错误!B。

错误! C.错误!或错误! D.错误!或错误!8.△ABC的内角A、B、C的对边分别为a、b、c.若c=2,b=6,B=120°,则a等于()A.错误!B.2 C.错误!D。

错误!9.在△ABC中,角A、B、C所对的边分别为a、b、c,若a=1,c =错误!,C=错误!,则A=________。

10.在△ABC中,已知a=错误!,b=4,A=30°,则sin B=________。

11.在△ABC中,已知∠A=30°,∠B=120°,b=12,则a+c=________.12.在△ABC中,a=2b cos C,则△ABC的形状为________.13.在△ABC中,A=60°,a=6错误!,b=12,S△ABC=18错误!,则错误!=________,c=________.14.在△ABC中,已知a=3错误!,cos C=错误!,S△ABC=4错误!,则b =________.15.在△ABC中,a、b、c分别为角A、B、C的对边,若a=2错误!,sin错误!cos错误!=错误!,sin B sin C=cos2错误!,求A、B及b、c. 16.△ABC中,ab=603,sin B=sin C,△ABC的面积为15错误!,求边b的长.余弦定理练习题1.在△ABC中,如果BC=6,AB=4,cos B=错误!,那么AC等于()A.6B.2 6 C.3错误!D.4错误!2.在△ABC中,a=2,b=错误!-1,C=30°,则c等于()A.错误!B。

(2021年整理)正弦与余弦定理练习题及答案(2)

(2021年整理)正弦与余弦定理练习题及答案(2)

(完整)正弦与余弦定理练习题及答案(2)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)正弦与余弦定理练习题及答案(2))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)正弦与余弦定理练习题及答案(2)的全部内容。

正弦定理练习题1.在△ABC中,∠A=45°,∠B=60°,a=2,则b等于()A.错误!B.错误! C。

错误! D.2错误!2.在△ABC中,已知a=8,B=60°,C=75°,则b等于()A.4错误! B.4错误! C.4错误! D。

错误!3.在△ABC中,角A、B、C的对边分别为a、b、c,A=60°,a=4错误!,b=4错误!,则角B为( )A.45°或135° B.135° C.45° D.以上答案都不对4.在△ABC中,a∶b∶c=1∶5∶6,则sin A∶sin B∶sin C等于()A.1∶5∶6B.6∶5∶1 C.6∶1∶5 D.不确定5.在△ABC中,a,b,c分别是角A,B,C所对的边,若A=105°,B=45°,b=2,则c=()A.1 B。

错误! C.2 D.错误!6.在△ABC中,若错误!=错误!,则△ABC是()A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰三角形或直角三角形7.已知△ABC中,AB=3,AC=1,∠B=30°,则△ABC的面积为( )A.错误! B。

错误! C。

错误!或错误! D.错误!或错误!8.△ABC的内角A、B、C的对边分别为a、b、c.若c=错误!,b=错误!,B =120°,则a等于( )A.错误! B.2 C.错误! D.错误!9.在△ABC中,角A、B、C所对的边分别为a、b、c,若a=1,c=错误!,C=错误!,则A=________。

正弦定理和余弦定理习题及答案

正弦定理和余弦定理习题及答案

正弦定理和余弦定理测试题一、选择题:1.在△ABC中,a=15,b=10,A=60°,则 cos B=() 22226 A.-3 B.3C.-3D.6 32.在△ABC中,内角A,B,C的对边分别是a,b,c.若 a2-b2=3bc,sin C=23sin B,则A=()A.30°B.60°C.120°D.150°3.E,F是等腰直角△ABC斜边AB上的三平分点,则tan ∠ECF =()16233A. 27B. 3C.3D.4.△中,若-lg c ==-lg 2且∈ 0,π,则△ABC4ABC lg a lgsin B B2的形状是 ()A.等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形5.△ABC中,a、b、c分别为∠A、∠B、∠C的对边,假如a、b、c 成等差数列,∠ B=30°,△ ABC的面积为,那么 b 为()A.1+ 3B.3+ 3 C.3+ 3D.2+ 3 36.已知锐角A是△ABC的一个内角,a、b、c是三角形中各内角的对应边,若 sin2-cos2=1,则 ()A A2A.b+c=2a B .b+c<2a C.b+c≤2a D.b+c≥2a7、若ABC的内角A知足sin 2A 2,则 sin A cos A 3A.153 B.153C.5D.5338、假如A1 B1C1的三个内角的余弦值分别等于A2 B2C2的三个内角的正弦值,则A.A1B1C1和A2B2C2都是锐角三角形B.A1B1C1和A2 B2C2都是钝角三角形C.A1 B1C1是钝角三角形,A2 B2C2是锐角三角形D.A1B1C1是锐角三角形,A2 B2C 2是钝角三角形9、VABC的三内角A,B,C所对边的长分别为 a, b, c 设向量ur r ur rp (a c, b) , q (b a, c a) ,若 p // q ,则角C的大小为(A)(B)(C)(D)233 6210、已知等腰△ABC的腰为底的 2 倍,则顶角A的正切值是()A.3B. 3C.15D.15 28711、ABC的内角 A、B、C的对边分别为a、b、c,若 a、b、c 成等比数列,且 c2a ,则 cosBA .1B.3C .24 44D.2312、在△ABC中,角A、B、C的对边分别为a、b、c, A=, a= 3 , b=1,3则 c=(A)1(B)2(C)3—1(D)3二、填空题:13 、在ABC中,若sin A:sin B :sin C5:7:8 ,则B的大小是___________.14、在 ABC中,已知a 3 3,=,=°,则=.b 4 A30sinB415、在△ ABC中,已知 BC=12,A=60°, B=45°,则 AC=16、已知△ABC的三个内角A、B、C成等差数列,且AB=1,BC=4,则边 BC上的中线 AD的长为.三、解答题:11 17。

正弦定理与余弦定理【参考答案】

正弦定理与余弦定理【参考答案】

正弦定理、余弦定理《参考答案》【1】 a = b = c = 2Rsinsin C sin A B【2】 2 2 - 2bc cos Ab + c【3】 b 2 + c 2 - a 22bc【4】 sin C 【5】 -cos C 【6】 - tan C【7】 cosC2【8】 sinC2【9】 60︒ 【10】 tan A ⋅ tan B ⋅ tan C 【11】c【12】 1ab sin C2 【13】 1xv - yu2【14】一解 【15】正弦定理 【16】一解 【17】余弦定理 【18】讨论 【19】正、余弦定理 【20】一解或无解 【21】余弦定理 【22】无解 【23】无解 【24】一解 【25】无解 【26】无解 【27】一解 【28】两解 【29】一解 【30】无解 【31】一解 【32】一解 【33】相等 【34】相反数 【35】边角互换 【第 1 题】【答案】D【解析】5∵tanA =-12<0,A 是△ABC 的内角,π∴2<A <π.∴cosA <0.∵sin A =tanA =- 5 ,cos A12 且 sin 2A +cos 2A =1,12∴cosA =-13. 【第 2 题】【答案】B【解析】∵C >90°,∴A +B <90°, ∴tan (A +B )>0,tanA +tanB >0, ∴1-tanAtanB >0,即 tanA ·tanB <1. 【第 3 题】【答案】B【解析】∵a 、b 、c 成等比数列,∴b 2=ac . 又 c =2a , ∴b 2=2a 2.a 2+c 2-b2∴cosB =2aca 2+4a 2-2a2=4a23=4.【第 4 题】【答案】C【解析】若 a 为最大边,则 b 2+c 2-a 2>0,即a 2<5, ∴a < 5,若 c 为最大边,则 a 2+b 2-c 2>0,即 a 2>3, ∴a > 3,故3<a < 5.另法:【第 5 题】【答案】C 【解析】由正弦定理得a =b ,sin B sin 30° 3∴sinB = 2 , 又∵B 为锐角, ∴B =60°, ∴C =90°,即 C >B > A .【第 6 题】【答案】C 【解析】由 sinB ·sinC =cos 2A2,得2sinB ·sinC =2cos 2A2=1+cosA ,即 2sinB ·sinC =1-cos (B +C )=1-cosBcosC +sinBsinC ,∴sinB ·sinC +cosBcosC =1,即 cos (B -C )=1,又-π<B -C <π. ∴B -C =0,即 B =C .∴△ABC 为等腰三角形.【第 7 题】【答案】A【解析】正弦定理sin A sin 750sin(3045 )sin 30 0cos 45 0cos 30 0sin 451 2 3 2 2 2 2 226 .4由a c ,得C A 75 0 .∴ B30 0 , sin B1 .2又a 6 2 ,由正弦定理得basin Bsin A6212 .26 24故选 A .另法:余弦定理另法:射影定理b a cos Cc cos A .另法:作高,简单【第 8 题】π【答案】3【解析】由已知得(b +c )2-a 2=3bc ,∴b 2+c 2-a 2=bc . b 2+c 2-a 2 1∴2bc=2,1 ∴cosA =2, π∴A =3.【第 9 题】【答案】5 2【解析】1S △ABC =2ac ·sinB1·c ·sin 45°= 2 c , =2 4又因为 S △ABC =2,所以 c =4 2,由余弦定理得b 2=a 2+c 2-2accosB2=1+32-2×1×4 2× 2=25,∴b =5,b所以△ABC 外接圆的直径 2R =sin B=5 2.【第 10 题】【答案】1【解析】由 A C 2B 及 A B C 180 ,得 B 60 .由正弦定理,得13 sin A ,即sin 60sin A1 .2由a b ,得 A B ,∴ A30 , C180 A B180 306090 ,sin Csin 901.【第 11 题】【答案】2【解析】解:(余弦定理) 由b 2 a 2 c 22ac cos B ,得6 a 22 2 2a cos120 , a 22a4 0 .12 2 1 2∴a 2 .另法:(正弦定理)b c, sin Bsin C sin Cc sin Bb2 sin1206 12∵c b ,∴C B , ∴C 是锐角, C 30 , A 30a c2 .【第 12 题】【答案】 2113【解析】 ∵ cos A = 4 ,cos C = 5,且 A , C 为三角形内角,5 13 ∴ sin A = 3 , sin C = 12, 5 13∴ sin B = sin ( A + C )= sin A cos C + cos A sin C= 6563,由正弦定理得, sin b B = sin aA解得 b 21.13【第 13 题】【答案】【解析】证:a 2b 2c 2 a ∵cos C , cos C ,2b2aba 2b 2c 2 a∴.2ab 2b化简后得b 2 2.c∴b c .∴△ABC 是等腰三角形.另证:∵a2b cos C,由正弦定理,得2R sin A22R sin B cos C∴ 2 sin B cos C sin Asin B Csin B cos C cos B sin C.∴ sin B cos C cos B sin C 0 ,即sin B C 0 ,∴ B C k k Z.∵ B,C 是三角形的内角,∴ B C ,即三角形为等腰三角形. 另证:根据射影定理,有a b cos C c cos B ,又∵a 2b cos C,∴ 2b cos C b cos C c cos B ,∴b cos C c cos B ,即b cos B .c cos C又∵b sin B,c sin C∴sin B cos B ,即sin C cos Ctan B tan C,∴ B C k k Z .∵ B,C 是三角形的内角,∴ B C ,即三角形为等腰三角形.欲证△ABC 为等腰三角形,可证明其中有两角相等,因而在已知条件中化去边元素,使只含角的三角函数.【第 14 题】【答案】【解析】解:∵ cos A3,50 A 180 ,∴ sin A4.5∵ sin B5 4sin A ,13 5A, B 为三角形的内角,∴ B A ,∴ B 为锐角,∴ cos B12.13∴ cos A Bcos A cos B sin A sin B3 124 55 13 5 131665.又 cos C cos 180 A B∴cos C cos A B16.65点评:此题要求在利用同角的正、余弦平方关系时,应根据已知的三角函数值确定角的范围,以便对正负进行取舍.【第 15 题】【答案】【解析】解:(1)∵cos C cos 180 A B∴ cos C cos A B 1 . 2∴C 120 .(2)由题设,得a b 2 3 ab 2∴c 2 a 2 b 2 2ab cos 120a 2b 2 ab(a2ab b )(222 3)10 ,即AB 10 .(3)S1ab sin C ABC 221ab sin 1201 322 23.2【第 16 题】【答案】【解析】解:(1)由题设及 A+B+C=π得sin B= 8 sin 2B2= 8 ⋅1 - cos B= 4(1 - cos B) .2上式两边平方,得16(1 - cos B )2 2B= sin2 2B =1 ,又 sin B +cos∴16(1 - cos B )2 2B =1 ,+ cos∴(17 cos B- 15)(cos B- 1) = 0 ,∴cos B= 15 ,或 cos B=1(舍去). 17(2)由(1)可知sin B=8.17∵S△ABC=2,∴1 ac sin B =2,2∴1 ac ⋅ 8 = 2,2 17∴ac =17,2∵cos B=15 ,17∴a 2+ c 2- b2 = 15,2 ac 17∴a 2+ c 2- b2=15,∴( a+c ) 2- 2 ac-b2=15 ,又a + c =6,∴36 - 17 -b2=15 ,∴b =2.。

《正弦定理和余弦定理》试题(新人教必修)

《正弦定理和余弦定理》试题(新人教必修)
第8
题.如图,已知△ABC中,AD为
BAC
的均分线,利用正弦定理证明
AB
BD
AC

DC
A
B
π
C
D
AB
BD
答案:证明:由正弦定理得
sin
AC
sin
AB
BD.
DC
AC
DC
sin
π
sin
第9题.在△ABC中,已知sin2
A
sin2B
sin2C,求证:△ABC为直角三角形.
答案:证明:设
a
b
c
k 0,
sin B
x的范围.
cos A
0,
答案:解:
△ABC为锐角三角形,
cos B

x 5,
0且1
cosC
0
2
2
x
2


2
3
0
x
2
2
2
2

13
即3
x
2
0
x
2

x
2
2
2

5
2
3
0
1
x 5.
1
x 5.
5x13.
4 / 7
第14题.在△ABC中.为何说sin A sin B是A
B的充要条件?
答案:因为sin A
sin B
,A
B2180,所以所求B160或
B2
120.
第21题.已知△ABC中,
A
60

B
45,且三角形一边的长为
m,解这个三角
形.
答案:依题意,有

正弦定理与余弦定理测试题及答案

正弦定理与余弦定理测试题及答案

正弦定理与余弦定理练习题1.已知△ABC中,A:B:C=1:1:4,则a:b:c等于()A.1:1:4 B.1:1:2 C.1:1:D.2:2:2.(2015•浙江)任给△ABC,设角A,B,C所对的边分别为a,b,c,则下列等式成立的是()A.c2=a2+b2+2abcosC B.c2=a2+b2﹣2abcosC C.c2=a2+b2+2absinC D.c2=a2+b2﹣2absinC3.在三角形ABC中,A=120°,AB=5,BC=7,则的值为()A.B.C.D.4.在△ABC中,A=60°,a=4,b=4,则B等于()A.B=45°或135°B.B=135°C.B=45°D.以上答案都不对5.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,a=2,,则b的值为()A.B. C. D.6.在△ABC中,内角A,B,C所对应的边分别为a,b,c,若bsinA﹣acosB=0,且b2=ac,则的值为()A.B.C.2 D.47.△ABC中,AB=,AC=1,∠B=30°,则∠C等于()A.60°B.90°C.120°D.60°或120°8.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若,则sinC=()A.0 B.2 C.1 D.﹣19.已知a,b,c分别为△ABC的三个内角A,B,C的对边,若a=2,b=2,A=60°,则角B等于()DA.45°或135°B.135°C.60°D.45°10.在△ABC中,tan=2sinC,若AB=1,求△ABC周长的取值范围()A.(2,3] B.[1,3] C.(0,2] D.(2,5]11.在△ABC中,内角A,B,C的对边分别为a,b,c,且b2+c2+bc﹣a2=0,则=()A.﹣B.C.﹣D.12.在△ABC中,已知C=,b=4,△ABC的面积为,则c=()A.B. C. D.13.在△ABC中,三内角A,B,C的对边分别为a,b,c,面积为S,若S+a2=(b+c)2,则cosA等于()A.B.﹣C.D.﹣14.在三角形A BC中,∠C=60°,AC+BC=6,A B=4,则AB边上的高为()A. B.C. D.15.在△ABC中,三个内角A,B,C所对的边为a,b,c,若S△ABC=2,a+b=6,=2cosC,则c=()A.2 B.4 C.2D.316.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知A=45°,a=6,b=,则B的大小为(A )A.30°B.60°C.30°或150°D.60°或120°17在△ABC中,B=,c=150,b=50,则△ABC为()A.直角三角形B.等腰三角形或直角三角形C.等边三角形D.等腰三角形18.在△ABC中,如果a+c=2b,B=30°,△ABC的面积为,那么b等于()A.B.C.D.19.若(a+b+c)(b+c﹣a)=3bc且sinA=2sinBcosC,则△ABC是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形20.(2015•安徽)在△ABC中,AB=,∠A=75°,∠B=45°,则AC=.21.(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b=.22.(2015•北京)在△ABC中,a=4,b=5,c=6,则=.23..(2015•重庆)在△ABC中,B=120°,AB=,A的角平分线AD=,则AC=.24.在△ABC中,角A、B、C的对边分别为a,b,c,若S表示△ABC的面积,若acosB+bcosA=csinC,,则∠B=.25.在△ABC中,已知A=45°,b=1,且△ABC仅有一个解,则a的取值范围是.26.已知△ABC的三边a,b,c和其面积S满足S=c2﹣(a﹣b)2,则tanC=.27.设△ABC的三边长分别为a、b、c,面积为S,且满足S=a2﹣(b﹣c)2,b+c=8,则S的最大值为.28.在△ABC中,角A,B,C所对的边长分别为a,b,c,若,则角B的值为29(2015•山东)△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值.30.(2015•陕西)△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.31.已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC﹣ccosA.(1)求角A;(2)若a=2,△ABC的面积为,求b,c.32.在锐角△ABC中,a,b,c分别为角A、B、C所对的边,且a=2csinA.(Ⅰ)确定角C的大小;(Ⅱ)若c=,且△ABC的面积为,求a+b的值.33.在△ABC中,a,b,c分别是角A,B,C的对边,且2cosAcosC+1=2sinAsinC.(Ⅰ)求B的大小;(Ⅱ)若,,求△ABC的面积.34.△ABC中,角A,B,C所对的边之长依次为a,b,c,且cosA=,5(a2+b2﹣c2)=3ab.(Ⅰ)求cos2C和角B的值;(Ⅱ)若a﹣c=﹣1,求△ABC的面积.35.在△ABC中,角A、B、C所对的边分别为a、b、c,已知sin(A+)+2cos(B+C)=0,(1)求A的大小;(2)若a=6,求b+c的取值范围.36.在锐角△ABC中,a、b、c分别为内角A、B、C所对的边长,且满足.(1)求∠B的大小;(2)若b=,△ABC的面积S△ABC=,求a+c的值.37.如图,在△ABC中,D为边AB上一点,DA=DC.已知B=,BC=1.(Ⅰ)若DC=,求角A的大小;(Ⅱ)若△BCD面积为,求边AB的长.答案1-5CBDCA 6-10CDCDA 11-15BCDAC 16-19ABBD286420.221.122.123.624.4525.126.27.28.601201517a a ︒≥=︒︒或或29.解:①因为△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 已知cosB=,sin (A+B )=,ac=2,所以sinB=,sinAcosB+cosAsinB=,所以sinA+cosA=,结合平方关系sin 2A+cos 2A=1, 得27sin 2A ﹣6sinA ﹣16=0,解得sinA=或者sinA=﹣(舍去);②由正弦定理,由①可知sin (A+B )=sinC=,sinA=,所以a=2c ,又ac=2,所以c=1.30.解:(Ⅰ)因为向量=(a ,b )与=(cosA ,sinB )平行,所以asinB ﹣=0,由正弦定理可知:sinAsinB ﹣sinBcosA=0,因为sinB ≠0,所以tanA=,可得A=;(Ⅱ)a=,b=2,由余弦定理可得:a 2=b 2+c 2﹣2bccosA ,可得7=4+c 2﹣2c ,解得c=3,△ABC 的面积为:=. 31.解:(1)由正弦定理==化简已知的等式得:sinC=sinAsinC ﹣sinCcosA ,∵C 为三角形的内角,∴sinC ≠0,∴sinA ﹣cosA=1,整理得:2sin (A ﹣)=1,即sin (A ﹣)=,∴A ﹣=或A ﹣=,解得:A=或A=π(舍去),则A=; (2)∵a=2,sinA=,cosA=,△ABC 的面积为,∴bcsinA=bc=,即bc=4①;∴由余弦定理a 2=b 2+c 2﹣2bccosA 得:4=b 2+c 2﹣bc=(b+c )2﹣3bc=(b+c )2﹣12,整理得:b+c=4②, 联立①②解得:b=c=2. 32.解:(I )∵a=2csinA .∴由正弦定理可得sinA , 又sinA ≠0,∴sinC=,∵A 为锐角,∴. (2)∵c=,,且△ABC 的面积为,∴=,化为ab=6,由余弦定理可得:==(a+b )2﹣3ab ,∴a+b=5.33.解:(Ⅰ)由2cosAcosC+1=2sinAsinC 得:∴2(cosAcosC ﹣sinAsinC )=﹣1,∴,∴,又0<B <π,∴.(Ⅱ)由余弦定理得:,∴,又,,∴,故,∴.34.解:(I )由∵cosA=,0<A <π,∴sinA==,∵5(a 2+b 2﹣c 2)=3ab ,∴cosC==,∵0<C <π,∴sinC==,∴cos2C=2cos 2C ﹣1=,∴cosB=﹣cos(A+C)=﹣cosAcosC+sinAsinC=﹣×+×=﹣∵0<B<π,∴B=.(II)∵=,∴a==c,∵a﹣c=﹣1,∴a=,c=1,∴S=acsinB=××1×=.35.解:(1)由条件结合诱导公式得,sinAcos+cosAsin=2cosA,整理得sinA=cosA,∵cosA≠0,∴tanA=,∵0<A<π,∴A=;(2)由正弦定理得:,∴,,∴==,∵,∴,即6<b+c≤12(当且仅当B=时,等号成立)36.解:(1)由正弦定理:=,得==,∴sinB=,又由B为锐角,得B=;(2)∵S△ABC=acsinB=,sinB=,∴ac=3,根据余弦定理:b2=a2+c2﹣2accosB=7+3=10,∴(a+c)2=a2+c2+2ac=16,则a+c=4.37.解:(1)在△BCD中,B=,BC=1,DC=,由正弦定理得到:,解得,则∠BDC=60°或120°.又由DA=DC,则∠A=30°或60°.(2)由于B=,BC=1,△BCD面积为,则,解得.再由余弦定理得到=,故,又由AB=AD+BD=CD+BD=,故边AB的长为:.。

正弦定理与余弦定理练习题共3套(附答案)

正弦定理与余弦定理练习题共3套(附答案)

正弦定理与余弦定理练习第一套正弦定理(一)●作业导航掌握正弦定理,会利用正弦定理求已知两角和任意一边或两边和一边对角的三角形问题.一、选择题(本大题共5小题,每小题3分,共15分)1.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于()A .30°B .30°或150°C .60°D .60°或120°2.已知△ABC 中,AB =6,∠A =30°,∠B =120°,则△ABC 的面积为()A .9B .18C .93D .1833.已知△ABC 中,a ∶b ∶c =1∶3∶2,则A ∶B ∶C 等于()A .1∶2∶3B .2∶3∶1C .1∶3∶2D .3∶1∶24.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k≠0),则k 的取值范围为()A .(2,+∞)B .(-∞,0)C .(-21,0)D .(21,+∞) 5.在△ABC 中,sin A >sin B 是A >B 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题(本大题共5小题,每小题3分,共15分)1.在△ABC 中,若∠B =30°,AB =23,AC =2,则△ABC 的面积是________.2.在△ABC 中,若b =2c sin B ,则∠C =________.3.设△ABC 的外接圆半径为R ,且已知AB =4,∠C =45°,则R =________.4.已知△ABC 的面积为23,且b =2,c =3,则∠A =________.5.在△ABC 中,∠B =45°,∠C =60°,a =2(3+1),那么△ABC 的面积为________.三、解答题(本大题共5小题,每小题6分,共30分)1.在△ABC 中,∠C =60°,BC =a ,AC =b ,a +b =16.(1)试写出△ABC 的面积S 与边长a 的函数关系式.(2)当a 等于多少时,S 有最大值?并求出这个最大值.2.在△ABC 中,已知a 2-a =2(b +c ),a +2b =2c -3,若sin C ∶sin A =4∶13,求a ,b ,c .3.在△ABC 中,求证2tan 2tanBA BA b a b a +-=+-.4.△ABC 中,A 、B 、C 成等差数列,b =1,求证:1<a +c ≤2.5.在一个三角形中,若有一个内角不小于120°,求证:最长边与最短边之比不小于3.参考答案一、选择题(本大题共5小题,每小题3分,共15分)1.D 分析:由正弦定理得,B bA a sin sin =,∴sin B =23sin =aA b ,∴∠B =60°或∠B =120°.2.C 分析:∵∠A =30°,∠B =120°,∴∠C =30°,∴BA =BC =6,∴S △ABC =21×BA ×BC ×sin B =21×6×6×23=93.3.A 分析:由正弦定理得,C cB b A a sin sin sin ==,∴sin A ∶sin B ∶sin C =1∶3∶2=21∶23∶1,∴A ∶B ∶C =30°∶60°∶90°=1∶2∶3.4.D 分析:利用正弦定理及三角形两边之和大于第三边.5.C 分析:A >B ⇔a >b ⇔2Rsin A >2Rsin B ⇔sin A >sin B .二、填空题(本大题共5小题,每小题3分,共15分)1.23或3分析:sin C =23230sin 32=︒,于是,∠C =60°或120°,故∠A =90°或30°,由S △ABC =21×AB ×AC ×sin A ,可得S △ABC =23或S △ABC =3.2.30°或150°分析:由b =2c sin B 及正弦定理C cB B c Cc B b sin sin sin 2sin sin ==得,∴sin C =21,∴∠C =30°或150°.3.22分析:∵c =2R sin C ,∴R =22sin 2=C c.4.60°或120°分析:∵S △ABC =21bc sin A ,∴23=21×2×3sin A ,∴sin A=23,∴∠A =60°或120°.5.6+23分析:∵B bA a sin sin =,∴︒=︒-︒-︒+45sin )6045180sin()13(2b,∴b =4.∴S △ABC =21ab sin C =6+23.三、解答题(本大题共5小题,每小题6分,共30分)1.解:(1)∵a +b =16,∴b =16-aS =21ab sin C =21a (16-a )sin60°=43(16a -a 2)=-43(a -8)2+163(0<a <16)(2)由(1)知,当a =8时,S 有最大值163.2.解:∵sin C ∶sin A =4∶13∴c ∶a =4∶13设c =4k ,a =13k ,则⎪⎩⎪⎨⎧-=++=-38213)4(213132k b k k b kk∵k =133时b <0,故舍去.∴k =1,此时a =13,b =2135-,c =4.3.证明:由正弦定理,知a =2R sin A ,b =2R sin B2tan2tan2cos 2sin 22cos 2sin 2)22sin(22sin()22sin()22sin(sin sin sin sin sin 2sin 2sin 2sin 2B A B A B A B A B A B A B A B A B A B A B A B A B A B A BA BA B R A R B R A R b a b a +-=-++-=--++-++--+--++=+-=+-=+-∴4.证明:∵A 、B 、C 成等差数列,∴2B =A +C ,又A +B +C =π,∴B =3π,A +C =32π.∵b =1,设△ABC 的外接圆半径为R ,∴b =2R sin 3π∴1=2R ·23,∴3R =1.∴a +c =2R sin A +2R sin C =2R (sin A +sin C )=2R [sin(32π-C )+sin C ]=2R (23cos C +23sin C )=23R (21cos C +23sin C )=23R sin(C +6π)=2sin(C +6π)∵A +C =32π,∴0<C <32π∴6π<C +6π<65π∴21<sin(C +6π)≤1∴1<2sin(C +6π)≤2 ∴1<a +c ≤2.5.证明:在△ABC 中,设C ≥120°,则c 最长,令最短边为a ,由正弦定理得A B A A C a c sin )sin(sin sin +==∵A ≤B∴2A ≤A +B ≤180°-C ≤60°∵正弦函数在(0,3π)上是增函数,∴sin(A +B )≥sin2A >0∴A B A a c sin )sin(+=≥A A A A A sin cos sin 2sin 2sin ==2cos A ∴a c≥2cos A ∵2A ≤60° ∴0°<A ≤30°∴cos A ≥cos30°=23∴a c ≥2·23∴a c≥3∴最长边与最短边之比不小于第二套正弦定理练习(二)1.在ABC ∆中,已知角04345,2,,3B c b ===则角A 的值是()A.15°B.75°C.105°D.75°或15°2.ABC ∆中,bsinA<a<b,则此三角形有()A.一解B.两解C.无解D.不确定3.若sin cos cos ,A B CABC a b c==∆则是()A.等边三角形B.有一内角是30°C.等腰直角三角形D.有一内角是30°的等腰三角形4.在ABC ∆中,已知0060,45,8,B C BC AD BC ===⊥于D,则AD 长为()A.4(31)- B.4(3+1)3+3)D.4(33)5.在ABC ∆中,A>B 是sinA>sinB 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.在ABC ∆中,060,6,14B b a ===,则A=7.在ABC ∆ABC ∆中,已知cos 2cos 21sin 2sin cos ,cos sin B C A B C C B +=+==求证:b=c 且A=900。

正弦定理与余弦定理练习题(5篇模版)

正弦定理与余弦定理练习题(5篇模版)

正弦定理与余弦定理练习题(5篇模版)第一篇:正弦定理与余弦定理练习题正弦定理与余弦定理1.△ABC的内角A、B、C的对边分别为a、b、c,若c=2,b=6,B=120°,则a等于2.在△ABC中,角A、B、C的对边分别为a、b、c,若(a+c-b)tanB=3ac,则角B的值为3.下列判断中正确的是A.△ABC中,a=7,b=14,A=30°,有两解B.△ABC中,a=30,b=25,A=150°,有一解C.△ABC中,a=6,b=9,A=45°,有两解D.△ABC中,b=9,c=10,B=60°,无解4.在△ABC中,若2cosBsinA=sinC,则△ABC一定是()()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形5.在△ABC中,A=120°,AB=5,BC=7,则A.85sinB的值为sinC5335()B.458C.D.()6.△ABC中,若a+b+c=2c(a+b),则∠C的度数是A.60°B.45°或135°C.120°D.30°7.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,b=7,c=3,则B=.8.在△ABC中,A=60°,AB=5,BC=7,则△ABC的面积为.9.在△ABC中,角A、B、C所对的边分别为a、b、c.若(b-c)cosA=acosC,则cosA10.在△ABC中,已知a=3,b=2,B=45°,求A、C和c.11.在△ABC中,a、b、c分别是角A,B,C的对边,且cosBb=-.cosC2a+c(1)求角B的大小;(2)若b=,a+c=4,求△ABC的面积.12.在△ABC中,a、b、c分别表示三个内角A、B、C的对边,如果(a+b)sin(A-B)=(a-b)sin(A+B),判断三角形的形状.2213.已知△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC 的面积为S,且2S=(a+b)-c,求tanC的值.14.已知△ABC的三个内角A、B、C的对边分别为a、b、c,若a、b、c成等差数列,且2cos2B-8cosB+5=0,求角B的大小并判断△ABC的形状.15.在△ABC中,角A、B、C的对边分别为a、b、c,已知a+b=5,c=7,且4sin(1)求角C的大小;(2)求△ABC的面积.7A+B-cos2C=.22第二篇:正弦定理和余弦定理练习题【正弦定理、余弦定理模拟试题】一.选择题:1.在∆ABC中,a=23,b=22,B=45︒,则A为()A.60︒或120︒B.60︒C.30︒或150︒D.30︒sinAcosB2.在∆AB C中,若=,则∠B=()abB.45︒C.60︒D.90︒A.30︒3.在∆ABC中,a2=b2+c2+bc,则A等于()B.45︒C.120︒D.30︒A.60︒→→→→→→→|AB|=1,|BC|=2,(AB+BC)⋅(AB+BC)=5+23,4.在∆ABC中,则边|AC|等于()A.5B.5-23C.5-23D.5+235.以4、5、6为边长的三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.锐角或钝角三角形6.在∆ABC中,bcosA=acosB,则三角形为()A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形7.在∆ABC中,cosAcosB>sinAsinB,则∆ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形8.三角形的两边分别为5和3,它们夹角的余弦是方程5x2-7x-6=0的根,则三角形的另一边长为()A.52B.213C.16 D.4二.填空题:9.在∆ABC中,a+b=12,A=60︒,B=45︒,则a=_______,b=________10.在∆ABC中,化简bcosC+ccosB=___________11.在∆ABC中,已知sinA:sinB:sinC=654::,则cosA=___________12.在∆ABC中,A、B均为锐角,且cosA>sinB,则∆ABC是_________三.解答题:13.已知在∆ABC中,∠A=45︒,a=2,c=6,解此三角形。

正弦定理余弦定理习题及答案

正弦定理余弦定理习题及答案

正弦定理余弦定理习题及答案Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】正 余 弦 定 理1.在ABC∆中,A B >是sin sin A B >的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 2、已知关于x 的方程22cos cos 2sin 02Cx x A B -⋅+=的两根之和等于两根之积的一半,则ABC ∆一定是 ( )(A )直角三角形(B )钝角三角形(C )等腰三角形(D )等边三角形. 3、 已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若a=1,b=3, A+C=2B,则sinC= .4、如图,在△ABC 中,若b = 1,c =3,23C π∠=,则a= 。

5、在ABC ∆中,角,,A B C 所对的边分别为a ,b ,c ,若2a =,2b =,sin cos 2B B +=,则角A 的大小为 .6、在∆ABC 中,,,a b c 分别为角,,A B C 的对边,且274sin cos 222B C A +-= (1)求A ∠的度数(2)若3a =,3b c +=,求b 和c 的值7、 在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.8、如图,在△ABC 中,已知3=a ,2=b ,B=45? 求A 、C 及c .AB323π1、解:在ABC A B ∆>中,2sin 2sin sin sin a b R A R B A B ⇔>⇔>⇔>,因此,选C .2、【答案】由题意可知:211cos cos cos 2sin 222C CA B -=⋅⋅=,从而2cos cos 1cos()1cos cos sin sin A B A B A B A B =++=+-cos cos sin sin 1A B A B +=,cos()1A B -=又因为A B ππ-<-<所以0A B -=,所以ABC ∆一定是等腰三角形选C3、【命题立意】本题考察正弦定理在解三角形中的应用.【思路点拨】由已知条件求出B 、A 的大小,求出C ,从而求出sin .C 【规范解答】由A+C=2B 及180A B C ++=得60B =,由正弦定理得1sin sin 60A =得1sin 2A =,由a b <知60AB <=,所以30A =,180C A B =--90=,所以sin sin 90 1.C ==4、【命题立意】本题考查解三角形中的余弦定理。

正弦定理余弦定理习题及答案

正弦定理余弦定理习题及答案

正 余 弦 定 理1.在ABC ∆中,A B >是sin sin A B >的 ( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 2、已知关于x 的方程22cos cos 2sin02Cx x A B -⋅+=的两根之和等于两根之积的一半,则ABC ∆一定是 ( ) (A )直角三角形(B )钝角三角形(C )等腰三角形(D )等边三角形.3、 已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若a=1,b=3, A+C=2B,则sinC= .4、如图,在△ABC 中,若b = 1,c =3,23C π∠=,则a= 。

5、在ABC ∆中,角,,A B C 所对的边分别为a ,b ,c ,若2a =,2b =,sin cos 2B B +=,则角A 的大小为 .6、在∆ABC 中,,,a b c 分别为角,,A B C 的对边,且274sin cos 222B C A +-= (1)求A ∠的度数(2)若3a =,3b c +=,求b 和c 的值7、 在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.8、如图,在△ABC 中,已知3=a ,2=b ,B=45︒ 求A 、C 及c .1、解:在ABC A B ∆>中,2sin 2sin sin sin a b R A R B A B ⇔>⇔>⇔>,因此,选C .2、【答案】由题意可知:211cos cos cos 2sin 222C CA B -=⋅⋅=,从而2cos cos 1cos()1cos cos sin sin A B A B A B A B =++=+-AB323πcos cos sin sin 1A B A B +=,cos()1A B -=又因为A B ππ-<-<所以0A B -=,所以ABC ∆一定是等腰三角形选C3、【命题立意】本题考察正弦定理在解三角形中的应用.【思路点拨】由已知条件求出B 、A 的大小,求出C ,从而求出sin .C【规范解答】由A+C=2B 及180A B C ++=得60B =,由正弦定理得1sin 60A =得1sin 2A =,由a b <知60A B <=,所以30A =,180C A B =-- 90=,所以sin sin 90 1.C ==4、【命题立意】本题考查解三角形中的余弦定理。

正弦定理、余弦定理练习题及答案

正弦定理、余弦定理练习题及答案

正弦定理、余弦定理练习题及答案正弦定理、余弦定理练习题年级__________ 班级_________ 学号_________ 姓名__________ 分数____一、选择题(共20题,题分合计100分)1.已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为A.-B.C.-D.2.在△ABC中,a=λ,b=λ,A=45°,则满足此条件的三角形的个数是A.0B.1C.2D.无数个3.在△ABC中,b cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形4.已知三角形的三边长分别为x2+x+1,x2-1和2x+1(x>1),则最大角为A.150°B.120°C.60°D.75°5.在△ABC中,=1,=2,(+)·(+)=5+2则边||等于A.B.5-2 C. D.6.在△ABC中,已知B=30°,b=50,c=150,那么这个三角形是A.等边三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形7.在△ABC中,若b2sin2C+c2sin2B=2bc cos B cos C,则此三角形为A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形8.正弦定理适应的范围是A.Rt△B.锐角△C.钝角△D.任意△9.已知△ABC中,a=10,B=60°,C=45°,则c=A.10+B.10(-1)C.(+1)D.1010.在△ABC中,b sin A<a<b,则此三角形有A.一解B.两解C.无解D.不确定11.三角形的两边分别为5和3,它们夹角的余弦是方程5x2-7x-6=0的根,则三角形的另一边长为A.52B.2C.16D.412.在△ABC中,a2=b2+c2+bc,则A等于A.60°B.45°C.120D.30°13.在△ABC中,,则△ABC是A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形14.在△ABC中,a=2,A=30°,C=45°,则△ABC的面积S△ABC等于A. B.2 C.+1 D.(+1)15.已知三角形ABC的三边a、b、c成等比数列,它们的对角分别是A、B、C,则sin A sin C 等于A.cos2BB.1-cos2BC.1+cos2BD.1+sin2B16.在△ABC中,sin A>sin B是A>B的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.在△ABC中,b Cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形18.△ABC中,sin2A=sin2B+sin2C,则△ABC为A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形19.△ABC中,A=60°,b=1,这个三角形的面积为,则△ABC外接圆的直径为A. B. C. D.20.在△ABC中,,则k为A.2RB.RC.4RD.(R为△ABC外接圆半径)二、填空题(共18题,题分合计75分)1.在△ABC中,A=60°,C=45°,b=2,则此三角形的最小边长为.2.在△ABC中,= .3.在△ABC中,a∶b∶c=(+1)∶∶2,则△ABC的最小角的度数为.4.在△ABC中,已知sin A∶sin B∶sin C=6∶5∶4,则sec A= .5.△ABC中,,则三角形为_________.6.在△ABC中,角A、B均为锐角且cos A>sin B,则△ABC是___________.7.在△ABC中,若此三角形有一解,则a、b、A满足的条件为____________________.8.已知在△ABC中,a=10,b=5,A=45°,则B= .9.已知△ABC中,a=181,b=209,A=121°14′,此三角形解.10.在△ABC中,a=1,b=1,C=120°则c= .11.在△ABC中,若a2>b2+c2,则△ABC为;若a2=b2+c2,则△ABC为;若a2<b2+c2且b2<a2+c2且c2<a2+b2,则△ABC为.12.在△ABC中,sin A=2cos B sin C,则三角形为_____________.13.在△ABC中,BC=3,AB=2,且,A= .14.在△ABC中,B=,C=3,B=30°,则A= .15.在△ABC中,a+b=12,A=60°,B=45°,则a= ,b= .16.若2,3,x为三边组成一个锐角三角形,则x的范围为.17.在△ABC中,化简b cos C+c cos B= .18.钝角三角形的边长是三个连续自然数,则三边长为.三、解答题(共24题,题分合计244分)1.已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.2.已知△ABC的三边长a=3,b=4,c=,求三角形的最大内角.3.已知在△ABC中,∠A=45°,a=2,c=,解此三角形.4.在四边形ABCD中,BC=a,DC=2a,四个角A、B、C、D度数的比为3∶7∶4∶10,求AB的长.5.在△ABC中,A最大,C最小,且A=2C,A+C=2B,求此三角形三边之比.6.证明:在△ABC中,.(其中R为△ABC的外接圆的半径)7.在△ABC中,最大角A为最小角C的2倍,且三边a、b、c为三个连续整数,求a、b、c的值.8.如下图所示,半圆O的直径MN=2,OA=2,B为半圆上任意一点,以AB为一边作正三角形ABC,问B在什么位置时,四边形OACB面积最大?最大面积是多少?9.在△ABC中,若sin A∶sin B∶sin C=m∶n∶l,且a+b+c=S,求a.10.根据所给条件,判断△ABC的形状(1)a cos A=b cos B(2)11.△ABC中,a+b=10,而cos C是方程2x2-3x-2=0的一个根,求△ABC周长的最小值.12.在△ABC中,a、b、c分别是角A、B、C的对边,设a+c=2b,A-C=,求sin B的值.13.已知△ABC中,a=1,b=,A=30°,求B、C和c.14.在△ABC中,c=2,tan A=3,tan B=2,试求a、b及此三角形的面积.15.已知S△ABC=10,一个角为60°,这个角的两边之比为5∶2,求三角形内切圆的半径.16.已知△ABC中,,试判断△ABC的形状.17.已知△ABC的面积为1,tan B=,求△ABC的各边长.18.求值:19.已知△ABC的面积,解此三角形.20.在△ABC中,a=,b=2,c=+1,求A、B、C及S△.21.已知(a2+bc)x2+2=0是关于x的二次方程,其中a、b、c 是△ABC的三边,(1)若∠A为钝角,试判断方程根的情况.(2)若方程有两相等实根,求∠A的度数.22.在△ABC中,(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断△ABC的形状.23.在△ABC中,a>b,C=,且有tan A·tan B=6,试求a、b以及此三角形的面积.24.已知:k是整数,钝角△ABC的三内角A、B、C所对的边分别为a、b、c(1)若方程组有实数解,求k的值.(2)对于(1)中的k值,若且有关系式,试求A、B、C的度数.正弦定理、余弦定理答案一、选择题(共20题,合计100分)1 A 2A3C 4 B 5 C 6D 7A 8 D 9B 10 B 11 B 12C 13C 14C 15.B16. C 17:C 18A 19C 20. A二、填空题(共18题,合计75分)1. 2(-1)2 3. 45° 4. 8 5.等腰三角形 6.:钝角三角形7. a=b sin A或b<a8. 60°或120°9无10.11.钝角三角形直角三角形锐角三角形12.等腰三角形13. 120°14.或215. 36-1216.<x<17.a18. 2、3、4三、解答题(共24题,合计244分)1.a=B=105°b=2.∠C=120°3.∠B=75°或∠B=15°b=+1,∠C=60°,∠B=75°或b=-1,∠C=120°,∠B=15°4. AB的长为5.:此三角形三边之比为6∶5∶47.a=6,b=5,c=48.当θ=时,S四边形OACB最大,最大值为+29.10(1)△ABC是等腰三角形或直角三角形(2)△ABC为等边三角形11△ABC周长的最小值为12.13.B1=60°,B2=120°;C1=90°,C2=30°;c1=2, c2=114..15.16.等边三角形17.18.20. A=60°,B=45°,C=75°,S△=21. (1)没有实数根(2)60°22.等腰三角形或直角三角形23.24.(1)k=1,2,3 (2)C=45°,B=15°。

正弦定理余弦定理练习题及答案(供参考)

正弦定理余弦定理练习题及答案(供参考)

正弦定理、余弦定理练习题年级__________ 班级_________ 学号_________ 姓名__________ 分数____一、选择题(共20题,题分合计100分)1.已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为B.D.2.在△ABC中,a=λ,b=λ,A=45°,则满足此条件的三角形的个数是D.无数个3.在△ABC中,b cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形4.已知三角形的三边长分别为x2+x+1,x2-1和2x+1(x>1),则最大角为°°°°5.在△ABC中,=1,=2,(+)·(+)=5+2则边||等于A.C.D.6.在△ABC中,已知B=30°,b=50,c=150,那么这个三角形是A.等边三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形7.在△ABC中,若b2sin2C+c2sin2B=2bc cos B cos C,则此三角形为A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形8.正弦定理适应的范围是△B.锐角△ C.钝角△ D.任意△9.已知△ABC中,a=10,B=60°,C=45°,则c=+(-1) C.(+1)10.在△ABC中,b sin A<a<b,则此三角形有A.一解B.两解C.无解D.不确定11.三角形的两边分别为5和3,它们夹角的余弦是方程5x2-7x-6=0的根,则三角形的另一边长为12.在△ABC中,a2=b2+c2+bc,则A等于°°°13.在△ABC中,,则△ABC是A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形14.在△ABC中,a=2,A=30°,C=45°,则△ABC的面积S△ABC等于A.C.+1D.(+1)15.已知三角形ABC的三边a、b、c成等比数列,它们的对角分别是A、B、C,则sin A sin C 等于+cos2B+sin2B16.在△ABC中,sin A>sin B是A>B的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.在△ABC中,b Cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形18.△ABC中,sin2A=sin2B+sin2C,则△ABC为A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形19.△ABC中,A=60°,b=1,这个三角形的面积为,则△ABC外接圆的直径为A.B.C.D.20.在△ABC中,,则k为D.(R为△ABC外接圆半径)二、填空题(共18题,题分合计75分)1.在△ABC中,A=60°,C=45°,b=2,则此三角形的最小边长为.2.在△ABC中,= .3.在△ABC中,a∶b∶c=(+1)∶∶2,则△ABC的最小角的度数为.4.在△ABC中,已知sin A∶sin B∶sin C=6∶5∶4,则sec A= .5.△ABC中,,则三角形为_________.6.在△ABC中,角A、B均为锐角且cos A>sin B,则△ABC是___________.7.在△ABC中,若此三角形有一解,则a、b、A满足的条件为____________________.8.已知在△ABC中,a=10,b=5,A=45°,则B= .9.已知△ABC中,a=181,b=209,A=121°14′,此三角形解.10.在△ABC中,a=1,b=1,C=120°则c= .11.在△ABC中,若a2>b2+c2,则△ABC为;若a2=b2+c2,则△ABC为;若a2<b2+c2且b2<a2+c2且c2<a2+b2,则△ABC为.12.在△ABC中,sin A=2cos B sin C,则三角形为_____________.13.在△ABC中,BC=3,AB=2,且,A= .14.在△ABC中,B=,C=3,B=30°,则A= .15.在△ABC中,a+b=12,A=60°,B=45°,则a= ,b= .16.若2,3,x为三边组成一个锐角三角形,则x的范围为.17.在△ABC中,化简b cos C+c cos B= .18.钝角三角形的边长是三个连续自然数,则三边长为.三、解答题(共24题,题分合计244分)1.已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.2.已知△ABC的三边长a=3,b=4,c=,求三角形的最大内角.3.已知在△ABC中,∠A=45°,a=2,c=,解此三角形.4.在四边形ABCD中,BC=a,DC=2a,四个角A、B、C、D度数的比为3∶7∶4∶10,求AB的长.5.在△ABC中,A最大,C最小,且A=2C,A+C=2B,求此三角形三边之比.6.证明:在△ABC中,.(其中R为△ABC的外接圆的半径)7.在△ABC中,最大角A为最小角C的2倍,且三边a、b、c为三个连续整数,求a、b、c的值.8.如下图所示,半圆O的直径MN=2,OA=2,B为半圆上任意一点,以AB为一边作正三角形ABC,问B在什么位置时,四边形OACB面积最大?最大面积是多少?9.在△ABC中,若sin A∶sin B∶sin C=m∶n∶l,且a+b+c=S,求a.10.根据所给条件,判断△ABC的形状(1)a cos A=b cos B(2)11.△ABC中,a+b=10,而cos C是方程2x2-3x-2=0的一个根,求△ABC周长的最小值.12.在△ABC中,a、b、c分别是角A、B、C的对边,设a+c=2b,A-C=,求sin B的值.13.已知△ABC中,a=1,b=,A=30°,求B、C 和c.14.在△ABC中,c=2,tan A=3,tan B=2,试求a、b及此三角形的面积.15.已知S△ABC=10,一个角为60°,这个角的两边之比为5∶2,求三角形内切圆的半径.16.已知△ABC中,,试判断△ABC的形状.17.已知△ABC的面积为1,tan B=,求△ABC 的各边长.18.求值:19.已知△ABC的面积,解此三角形.20.在△ABC中,a=,b=2,c=+1,求A、B、C及S△.21.已知(a2+bc)x2+2=0是关于x的二次方程,其中a、b、c是△ABC的三边,(1)若∠A为钝角,试判断方程根的情况.(2)若方程有两相等实根,求∠A的度数.22.在△ABC中,(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断△ABC的形状.23.在△ABC中,a>b,C=,且有tan A·tan B=6,试求a、b以及此三角形的面积.24.已知:k是整数,钝角△ABC的三内角A、B、C所对的边分别为a、b、c(1)若方程组有实数解,求k的值.(2)对于(1)中的k值,若且有关系式,试求A、B、C的度数.正弦定理、余弦定理答案一、选择题(共20题,合计100分)1 A 2A3C 4 B 5 C 6D 7A 8 D 9B 10 B 11 B 12C 13C 14C 16. C 17:C 18A 19C 20. A二、填空题(共18题,合计75分)1.2(-1) 23. 45°4. 85.等腰三角形6.:钝角三角形7.a=b sin A或b<a8.60°或120°9无10.11.钝角三角形直角三角形锐角三角形12.等腰三角形13.120°14.或215. 36-1216.<x<17.a18. 2、3、4三、解答题(共24题,合计244分)=B=105°b=2.∠C=120°3.∠B=75°或∠B=15°b=+1,∠C=60°,∠B=75°或b=-1,∠C=120°,∠B=15°4. AB的长为5.:此三角形三边之比为6∶5∶4=6,b=5,c=48.当θ=时,S四边形OACB最大, 最大值为+29.10(1)△ABC是等腰三角形或直角三角形(2)△ABC为等边三角形11△ABC周长的最小值为12.=60°,B2=120°;C1=90°,C2=30°;c1=2,c2=114..15.16.等边三角形17.18.20. A=60°,B=45°,C=75°,S△=21. (1)没有实数根(2)60°22.等腰三角形或直角三角形23.24.(1)k=1,2,3 (2)C=45°,B=15°。

2021年正弦与余弦定理练习题及答案

2021年正弦与余弦定理练习题及答案

*欧阳光明*创编国庆作业(一)欧阳光明(2021.03.07)正弦定理和余弦定理练习题一.选择题1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A.6 B.2 C. 3D .262.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.3233.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sinA ∶sinB ∶sinC 等于( )*欧阳光明*创编A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12 C .2 D.146.在△ABC 中,若cos A cos B =b a ,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )A.32B.34C.32或 3D.34或328.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D.2二、填空题9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,*欧阳光明*创编若a =1,c =3,C =π3,则A =________.10.在△ABC 中,已知a =433,b =4,A =30°,则sinB=________.11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.12.在△ABC 中,a =2bcosC ,则△ABC 的形状为________.13.在△ABC 中,A =60°,a =63,b =12,S △ABC=183,则a +b +c sinA +sinB +sinC=________,c =________. 14.已知三角形ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C=________. 15.在△ABC 中,已知a =32,cosC =13,S △ABC =43,则b =________.16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小*欧阳光明*创编时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?(17题)三、简答题18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin Bsin C =cos2A 2,求A 、B及b 、c.19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.21.已知△ABC 的周长为2+1,且sin A +sin B =2sinC.(1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数.23.在△ABC 中,BC =5,AC =3,sin C =2sin A.(1)求AB 的值;(2)求sin(2A -π4)的值.余弦定理练习题*欧阳光明*创编1.在△ABC 中,如果BC =6,AB =4,cosB =13,那么AC 等于()A .6B .26C .36D .462.在△ABC 中,a =2,b =3-1,C =30°,则c 等于() A. 3 B.2C. 5 D .23.在△ABC 中,a2=b2+c2+3bc ,则∠A 等于()A .60°B .45°C .120°D .150°4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a2+c2-b2)tanB =3ac ,则∠B 的值为()A.π6B.π3C.π6或5π6D.π3或2π35.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则acosB +bcosA 等于()A .aB .bC .cD .以上均不对6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为()A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度决定*欧阳光明*创编7.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC→的值为() A .2 B .-2C .4 D .-48.在△ABC 中,b =3,c =3,B =30°,则a 为() A.3B .23C.3或23D .29.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________.10.△ABC 中,sinA ∶sinB ∶sinC =(3-1)∶(3+1)∶10,求最大角的度数.11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________.12.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________.13.在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________.14.已知△ABC 的三边长分别为AB =7,BC =5,AC=6,则AB →·BC→的值为________. 15.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a2+b2-c24,则角C =________.*欧阳光明*创编16.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________.17.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x2-23x +2=0的两根,且2cos(A +B)=1,求AB 的长.18.已知△ABC 的周长为2+1,且sin A +sin B =2sinC.(1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数.19.在△ABC 中,BC =5,AC =3,sin C =2sin A.(1)求AB 的值;(2)求sin(2A -π4)的值.20.在△ABC 中,已知(a +b +c)(a +b -c)=3ab ,且2cos Asin B =sinC ,确定△ABC 的形状.正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A.6 B.2 C. 3D .26解析:选A.应用正弦定理得:a sinA =b sinB ,求得b=asinB sinA = 6.2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323*欧阳光明*创编 解析:选C.A =45°,由正弦定理得b =asinB sinA =4 6.3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对解析:选C.由正弦定理a sinA =b sinB 得:sinB =bsinA a =22,又∵a>b ,∴B<60°,∴B =45°.4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sinA ∶sinB ∶sinC 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定解析:选 A.由正弦定理知sinA ∶sinB ∶sinC =a ∶b ∶c =1∶5∶6.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12C .2 D.14解析:选 A.C =180°-105°-45°=30°,由b sinB =c sinC 得c =2×sin 30°sin45°=1.6.在△ABC 中,若cos A cos B =b a ,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin B sin A ,sinAcosA =sinBcosB ,∴sin2A =sin2B*欧阳光明*创编 即2A =2B 或2A +2B =π,即A =B ,或A +B =π2.7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( ) A.32B.34C.32或3D.34或32解析:选D.AB sinC =AC sinB ,求出sinC =32,∵AB >AC ,∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =12AB·ACsinA 可求面积.8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.若c =2,b =6,B =120°,则a 等于( )A.6B .2C.3D.2解析:选D.由正弦定理得6sin120°=2sinC ,∴sinC =12.又∵C 为锐角,则C =30°,∴A =30°,△ABC 为等腰三角形,a =c = 2.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.解析:由正弦定理得:a sinA =c sinC ,*欧阳光明*创编 所以sinA =a·sinC c =12.又∵a <c ,∴A <C =π3,∴A =π6.答案:π610.在△ABC 中,已知a =433,b =4,A =30°,则sinB =________.解析:由正弦定理得a sinA =b sinB⇒sinB =bsinA a =4×12433=32. 答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由a sinA =b sinB 得,a =12×sin30°sin120°=43,∴a +c =8 3.答案:8312.在△ABC 中,a =2bcosC ,则△ABC 的形状为________.解析:由正弦定理,得a =2R·sinA ,b =2R·sinB , 代入式子a =2bcosC ,得2RsinA =2·2R·sinB·cosC ,所以sinA =2sinB·cosC ,即sinB·cosC +cosB·sinC =2sinB·cosC ,化简,整理,得sin(B-C)=0.∵0°<B<180°,0°<C<180°,∴-180°<B-C<180°,∴B-C=0°,B=C.答案:等腰三角形13.在△ABC中,A=60°,a=63,b=12,S△ABC=183,则a+b+csinA+sinB+sinC=________,c=________.解析:由正弦定理得a+b+csinA+sinB+sinC=asinA=63sin60°=12,又S△ABC=12bcsinA,∴12×12×sin60°×c=183,∴c=6.答案:12614.已知△ABC中,∠A∶∠B∶∠C=1∶2∶3,a=1,则a-2b+csin A-2sin B+sin C=________.解析:由∠A∶∠B∶∠C=1∶2∶3得,∠A=30°,∠B=60°,∠C=90°,∴2R=asinA=1sin30°=2,又∵a=2Rsin A,b=2Rsin B,c=2Rsin C,∴a-2b+csin A-2sin B+sin C=2R sin A-2sinB+sin Csin A-2sin B+sin C=2R=2.答案:215.在△ABC中,已知a=32,cosC=13,S△ABC=*欧阳光明*创编*欧阳光明*创编 43,则b =________. 解析:依题意,sinC =223,S △ABC =12absinC =43,解得b =2 3.答案:2316.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.解析:∵bsinC =43×12=23且c =2,∴c<bsinC ,∴此三角形无解.答案:017.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?解:在△ABC 中,BC =40×12=20,∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°,所以∠A =180°-(30°+105°)=45°,由正弦定理得AC =BC·sin ∠ABC sinA=20sin30°sin45°=102(km).即货轮到达C 点时,与灯塔A 的距离是10 2 km.18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,*欧阳光明*创编 若a =23,sin C 2cos C 2=14,sin Bsin C =cos2A 2,求A 、B及b 、c.解:由sin C 2cos C 2=14,得sinC =12,又C ∈(0,π),所以C =π6或C =5π6.由sin Bsin C =cos2A 2,得sin Bsin C =12[1-cos(B +C)],即2sin Bsin C =1-cos(B +C),即2sin Bsin C +cos(B +C)=1,变形得cos Bcos C +sin Bsin C =1,即cos(B -C)=1,所以B =C =π6,B =C =5π6(舍去),A =π-(B +C)=2π3.由正弦定理a sin A =b sin B =c sin C ,得b =c =a sin B sin A =23×1232=2. 故A =2π3,B =π6,b =c =2.19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.*欧阳光明*创编 解:(1)∵A 、B 为锐角,sin B =1010,∴cos B =1-sin2B =31010.又cos 2A =1-2sin2A =35,∴sinA =55,cos A =255,∴cos(A +B)=cos Acos B -sin Asin B =255×31010-55×1010=22.又0<A +B <π,∴A +B =π4.(2)由(1)知,C =3π4,∴sin C =22.由正弦定理:a sin A =b sin B =c sin C 得5a =10b =2c ,即a =2b ,c =5b.∵a -b =2-1,∴2b -b =2-1,∴b =1. ∴a =2,c = 5. 20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.解:由S =12absin C 得,153=12×603×sin C ,∴sin C =12,∴∠C =30°或150°.又sin B =sin C ,故∠B =∠C.当∠C =30°时,∠B =30°,∠A =120°. 又∵ab =603,a sin A =b sin B ,∴b =215.当∠C =150°时,∠B =150°(舍去).*欧阳光明*创编 故边b 的长为215.余弦定理1.在△ABC 中,如果BC =6,AB =4,cosB =13,那么AC 等于()A .6B .26C .36D .46解析:选A.由余弦定理,得AC =AB2+BC2-2AB·BCcosB=42+62-2×4×6×13=6.2.在△ABC 中,a =2,b =3-1,C =30°,则c 等于()A.3B.2C.5D .2解析:选B.由余弦定理,得c2=a2+b2-2abcosC =22+(3-1)2-2×2×(3-1)cos30°=2,∴c = 2.3.在△ABC 中,a2=b2+c2+3bc ,则∠A 等于()A .60°B .45°C .120°D .150°解析:选D.cos ∠A =b2+c2-a22bc=-3bc 2bc =-32, ∵0°<∠A <180°,∴∠A =150°.4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a2+c2-b2)tanB =3ac ,则∠B 的值为()A.π6B.π3*欧阳光明*创编 C.π6或5π6D.π3或2π3解析:选D.由(a2+c2-b2)tanB =3ac ,联想到余弦定理,代入得cosB =a2+c2-b22ac =32·1tanB =32·cosB sinB .显然∠B≠π2,∴sinB =32.∴∠B =π3或2π3.5.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则acosB +bcosA 等于()A .aB .bC .cD .以上均不对解析:选C.a·a2+c2-b22ac +b·b2+c2-a22bc =2c22c =c.6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为()A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度决定解析:选A.设三边长分别为a ,b ,c 且a2+b2=c2.设增加的长度为m ,则c +m >a +m ,c +m >b +m ,又(a +m)2+(b +m)2=a2+b2+2(a +b)m +2m2>c2+2cm +m2=(c +m)2,∴三角形各角均为锐角,即新三角形为锐角三角形.7.已知锐角三角形ABC 中,|AB→|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC→的值为() A .2 B .-2C .4D .-4*欧阳光明*创编 解析:选A.S △ABC =3=12|AB →|·|AC →|·sinA=12×4×1×sinA ,∴sinA =32,又∵△ABC 为锐角三角形,∴cosA =12,∴AB →·AC →=4×1×12=2.8.在△ABC 中,b =3,c =3,B =30°,则a 为() A.3B .23C.3或23D .2解析:选C.在△ABC 中,由余弦定理得b2=a2+c2-2accosB ,即3=a2+9-33a ,∴a2-33a +6=0,解得a =3或2 3.9.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________.解析:∵2B =A +C ,A +B +C =π,∴B =π3.在△ABD 中, AD =AB2+BD2-2AB·BDcosB=1+4-2×1×2×12= 3. 答案:310.△ABC 中,sinA ∶sinB ∶sinC =(3-1)∶(3+1)∶10,求最大角的度数.解:∵sinA ∶sinB ∶sinC =(3-1)∶(3+1)∶10,∴a ∶b ∶c =(3-1)∶(3+1)∶10.*欧阳光明*创编 设a =(3-1)k ,b =(3+1)k ,c =10k(k >0), ∴c 边最长,即角C 最大.由余弦定理,得cosC =a2+b2-c22ab =-12,又C ∈(0°,180°),∴C =120°.11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________.解析:S =12absinC ,sinC =32,∴C =60°或120°.∴cosC =±12,又∵c2=a2+b2-2abcosC ,∴c2=21或61,∴c =21或61.答案:21或6112.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________.解析:由正弦定理a ∶b ∶c =sin A ∶sin B ∶sin C =2∶3∶4,设a =2k(k >0),则b =3k ,c =4k ,cos B =a2+c2-b22ac =2k 2+4k 2-3k 22×2k×4k=1116,同理可得:cos A =78,cos C =-14,∴cos A ∶cos B ∶cos C =14∶11∶(-4).答案:14∶11∶(-4)13.在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________.解析:∵cos C =13,∴sin C =223.*欧阳光明*创编 又S △ABC =12absinC =43,即12·b·32·223=43,∴b =2 3.答案:2314.已知△ABC 的三边长分别为AB =7,BC =5,AC =6,则AB →·BC→的值为________. 解析:在△ABC 中,cosB =AB2+BC2-AC22AB·BC=49+25-362×7×5=1935,∴AB →·BC →=|AB →|·|BC→|·cos(π-B) =7×5×(-1935)=-19.答案:-1915.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a2+b2-c24,则角C =________. 解析:12absinC =S =a2+b2-c24=a2+b2-c22ab ·ab 2=12abcosC ,∴sinC =cosC ,∴tanC =1,∴C =45°. 答案:45°16.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________.解析:设三边长为k -1,k ,k +1(k≥2,k ∈N),*欧阳光明*创编 则⎩⎪⎨⎪⎧ k2+k -12-k +12<0k +k -1>k +1⇒2<k <4, ∴k =3,故三边长分别为2,3,4,∴最小角的余弦值为32+42-222×3×4=78.答案:7817.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x2-23x +2=0的两根,且2cos(A +B)=1,求AB 的长.解:∵A +B +C =π且2cos(A +B)=1,∴cos(π-C)=12,即cosC =-12.又∵a ,b 是方程x2-23x +2=0的两根,∴a +b =23,ab =2.∴AB2=AC2+BC2-2AC·BC·cosC=a2+b2-2ab(-12)=a2+b2+ab =(a +b)2-ab=(23)2-2=10,∴AB =10.18.已知△ABC 的周长为2+1,且sin A +sin B =2sinC.(1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数.解:(1)由题意及正弦定理得AB +BC +AC =2+1,BC +AC =2AB ,两式相减,得AB =1.(2)由△ABC 的面积12BC·AC·sin C =16sin C ,得*欧阳光明*创编 BC·AC =13, 由余弦定理得cos C =AC2+BC2-AB22AC·BC=AC +BC 2-2AC·BC -AB22AC·BC=12, 所以C =60°.19.在△ABC 中,BC =5,AC =3,sin C =2sin A.(1)求AB 的值;(2)求sin(2A -π4)的值.解:(1)在△ABC 中,由正弦定理AB sin C =BC sin A ,得AB =sinC sinA BC =2BC =2 5.(2)在△ABC 中,根据余弦定理,得cos A =AB2+AC2-BC22AB·AC=255, 于是sin A =1-cos2A =55.从而sin 2A =2sin Acos A =45,cos 2A =cos2A -sin2A =35.所以sin(2A -π4)=sin 2Acos π4-cos 2Asin π4=210.20.在△ABC 中,已知(a +b +c)(a +b -c)=3ab ,且2cos Asin B =sinC ,确定△ABC 的形状.解:由正弦定理,得sin C sin B =c b .由2cos Asin B=sin C,有cosA=sinC2sin B=c2b.又根据余弦定理,得cos A=b2+c2-a22bc,所以c2b=b2+c2-a22bc,即c2=b2+c2-a2,所以a=b.又因为(a+b+c)(a+b-c)=3ab,所以(a+b)2-c2=3ab,所以4b2-c2=3b2,所以b=c,所以a=b=c,因此△ABC为等边三角形.*欧阳光明*创编。

(完整word)正弦定理和余弦定理练习题

(完整word)正弦定理和余弦定理练习题

正弦定理和余弦定理练习题一选择题1。

已知8:7:5::=c b a ,则=B cos( )A .21B .72C .5641 D .2072。

在三角形ABC 中,如果内角C B A ,,成等差数列,SinB 则的值等于 ( ) A .21B .21-C .23D .23-3。

在ABC ∆中,c b a ,,分别为角C B A ,,的对边,若︒===120,6,2B b c ,则=a ( )A .6B .2C .3D .24. 在ABC ∆中,若ac B b c a 3tan )(222=⋅-+,则=B( )A . 6π或65πB .3πC . 6πD .3π或32π5。

在ABC ∆中,已知C B A sin cos sin 2=,那么ABC ∆一定是 ( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形6。

在ABC ∆中,若︒=∠60B ,32,4==AC AB ,则ABC ∆的面积是 ( )A .32B .52C .3D .5 7、设a ,b ,c 分别是ABC ∆中角A 、B 、C 所对边的边长,则直线sin 0A x ay c •++=与sin sin 0bx B y C -•+=的位置关系是( )A 、平行B 、重合C 、垂直D 、相交但不垂直8。

在ABC ∆中,若222a bc c b =-+,且31=b a ,则角C 的值为 ( ) A .︒45B .︒60C . ︒90D .︒1209.在ABC ∆中,若CcB b A a cos cos cos ==,则ABC ∆是 ( )A .等腰三角形B .等边三角形C .顶角为︒120的等腰三角形D .以上均不正确 二填空题9。

在ABC ∆中,若3=AB ,︒=∠75ABC ,︒=∠60ACB ,则=BC _____________。

10。

有一长为1千米的斜坡,它的坡度为20︒,现要将坡度改为10︒,则坡底要伸长( ) 11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正弦定理和余弦定理练习题1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )A.6B. 2C. 3 D .2 6 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323 3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12 C .2 D.14 6.在△ABC 中,若cos A cos B =ba ,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )A.32B.34C.32或 3D.34或328.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 2 9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.10.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________. 11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________. 13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.14.已知三角形ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________.15.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A 2,求A 、B 及b 、c .19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.余弦定理练习题1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( )A .6B .26C .3 6D .4 62.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( )A. 3B. 2C. 5 D .2 3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( )A .60°B .45°C .120°D .150° 4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π35.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( )A .aB .bC .cD .以上均不对6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度决定7.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC→的值为( ) A .2 B .-2 C .4 D .-4 8.在△ABC 中,b =3,c =3,B =30°,则a 为( )A. 3 B .2 3 C.3或2 3 D .2 9.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________.10.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数.11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________.12.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________.13.在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________. 14.已知△ABC 的三边长分别为AB =7,BC =5,AC =6,则AB →·BC →的值为________.15.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,则角C =________.16.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________.17.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.18.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数.19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π4)的值.20.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )A.6B. 2C. 3 D .2 6解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin Bsin A= 6.2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解析:选C.A =45°,由正弦定理得b =a sin Bsin A=4 6.3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对解析:选C.由正弦定理a sin A =b sin B 得:sin B =b sin A a =22,又∵a >b ,∴B <60°,∴B=45°.4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6. 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12 C .2 D.14解析:选A.C =180°-105°-45°=30°,由b sin B =c sin C 得c =2×sin 30°sin45°=1.6.在△ABC 中,若cos A cos B =ba,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin Bsin A,sin A cos A =sin B cos B ,∴sin2A =sin2B即2A =2B 或2A +2B =π,即A =B ,或A +B =π2.7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )A.32B.34C.32或 3D.34或32解析:选D.AB sin C =AC sin B ,求出sin C =32,∵AB >AC ,∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =12AB ·AC sin A 可求面积.8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 2解析:选D.由正弦定理得6sin120°=2sin C,∴sin C =12.又∵C 为锐角,则C =30°,∴A =30°, △ABC 为等腰三角形,a =c = 2.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A=________.解析:由正弦定理得:a sin A =csin C,所以sin A =a ·sin C c =12.又∵a <c ,∴A <C =π3,∴A =π6.答案:π610.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________.解析:由正弦定理得a sin A =bsin B?sin B =b sin A a =4×12433=32.答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×sin30°sin120°=43, ∴a +c =8 3. 答案:8 312.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B , 代入式子a =2b cos C ,得 2R sin A =2·2R ·sin B ·cos C , 所以sin A =2sin B ·cos C , 即sin B ·cos C +cos B ·sin C =2sin B ·cos C , 化简,整理,得sin(B -C )=0.∵0°<B <180°,0°<C <180°, ∴-180°<B -C <180°, ∴B -C =0°,B =C . 答案:等腰三角形13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.解析:由正弦定理得a +b +c sin A +sin B +sin C =a sin A =63sin60°=12,又S △ABC =12bc sin A ,∴12×12×sin60°×c =183,∴c =6.答案:12 614.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________.解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°,∴2R =a sin A =1sin30°=2,又∵a =2R sin A ,b =2R sin B ,c =2R sin C ,∴a -2b +c sin A -2sin B +sin C =2R ?sin A -2sin B +sin C ?sin A -2sin B +sin C =2R =2. 答案:215.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.解析:依题意,sin C =223,S △ABC =12ab sin C =43,解得b =2 3. 答案:2 316.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.解析:∵b sin C =43×12=23且c =2,∴c <b sin C ,∴此三角形无解. 答案:017.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?解:在△ABC 中,BC =40×12=20,∠ABC =140°-110°=30°, ∠ACB =(180°-140°)+65°=105°, 所以∠A =180°-(30°+105°)=45°, 由正弦定理得AC =BC ·sin ∠ABC sin A=20sin30°sin45°=102(km).即货轮到达C 点时,与灯塔A 的距离是10 2 km. 18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sinC =cos 2A2,求A 、B 及b 、c .解:由sin C 2cos C 2=14,得sin C =12,又C ∈(0,π),所以C =π6或C =5π6.由sin B sin C =cos 2A2,得sin B sin C =12[1-cos(B +C )],即2sin B sin C =1-cos(B +C ),即2sin B sin C +cos(B +C )=1,变形得 cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =π6,B =C =5π6(舍去),A =π-(B +C )=2π3.由正弦定理a sin A =b sin B =csin C,得b =c =a sin Bsin A =23×1232=2.故A =2π3,B =π6,b =c =2.19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.解:(1)∵A 、B 为锐角,sin B =1010,∴cos B =1-sin 2B =31010.又cos 2A =1-2sin 2A =35,∴sin A =55,cos A =255,∴cos(A +B )=cos A cos B -sin A sin B =255×31010-55×1010=22.又0<A +B <π,∴A +B =π4.(2)由(1)知,C =3π4,∴sin C =22.由正弦定理:a sin A =b sin B =csin C得5a =10b =2c ,即a =2b ,c =5b .∵a -b =2-1,∴2b -b =2-1,∴b =1. ∴a =2,c = 5.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.解:由S =12ab sin C 得,153=12×603×sin C ,∴sin C =12,∴∠C =30°或150°.又sin B =sin C ,故∠B =∠C . 当∠C =30°时,∠B =30°,∠A =120°.又∵ab =603,a sin A =bsin B,∴b =215.当∠C =150°时,∠B =150°(舍去). 故边b 的长为215.余弦定理1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( )A .6B .2 6C .3 6D .4 6 解析:选A.由余弦定理,得 AC =AB 2+BC 2-2AB ·BC cos B= 42+62-2×4×6×13=6.2.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( ) A. 3 B. 2 C. 5 D .2解析:选B.由余弦定理,得c 2=a 2+b 2-2ab cos C =22+(3-1)2-2×2×(3-1)cos30° =2, ∴c = 2.3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( ) A .60° B .45° C .120° D .150°解析:选D.cos ∠A =b 2+c 2-a 22bc =-3bc 2bc =-32,∵0°<∠A <180°,∴∠A =150°.4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π3解析:选D.由(a 2+c 2-b 2)tan B =3ac ,联想到余弦定理,代入得cos B =a 2+c 2-b 22ac =32·1tan B =32·cos B sin B. 显然∠B ≠π2,∴sin B =32.∴∠B =π3或2π3. 5.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( )A .aB .bC .cD .以上均不对解析:选C.a ·a 2+c 2-b 22ac +b ·b 2+c 2-a 22bc =2c 22c=c . 6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度决定解析:选A.设三边长分别为a ,b ,c 且a 2+b 2=c 2.设增加的长度为m ,则c +m >a +m ,c +m >b +m ,又(a +m )2+(b +m )2=a 2+b 2+2(a +b )m +2m 2>c 2+2cm +m 2=(c +m )2,∴三角形各角均为锐角,即新三角形为锐角三角形.7.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( )A .2B .-2C .4D .-4解析:选A.S △ABC =3=12|AB →|·|AC →|·sin A =12×4×1×sin A , ∴sin A =32,又∵△ABC 为锐角三角形, ∴cos A =12, ∴AB →·AC →=4×1×12=2. 8.在△ABC 中,b =3,c =3,B =30°,则a 为( )A. 3 B .2 3C.3或2 3 D .2解析:选C.在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac cos B ,即3=a 2+9-33a , ∴a 2-33a +6=0,解得a =3或2 3.9.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________.解析:∵2B =A +C ,A +B +C =π,∴B =π3. 在△ABD 中,AD =AB 2+BD 2-2AB ·BD cos B= 1+4-2×1×2×12= 3. 答案: 310.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数. 解:∵sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,∴a ∶b ∶c =(3-1)∶(3+1)∶10.设a =(3-1)k ,b =(3+1)k ,c =10k (k >0),∴c 边最长,即角C 最大.由余弦定理,得cos C =a 2+b 2-c 22ab =-12, 又C ∈(0°,180°),∴C =120°.11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________.解析:S =12ab sin C ,sin C =32,∴C =60°或120°. ∴cos C =±12,又∵c 2=a 2+b 2-2ab cos C , ∴c 2=21或61,∴c =21或61.答案:21或6112.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________. 解析:由正弦定理a ∶b ∶c =sin A ∶sin B ∶sin C =2∶3∶4,设a =2k (k >0),则b =3k ,c =4k ,cos B =a 2+c 2-b 22ac =?2k ?2+?4k ?2-?3k ?22×2k ×4k =1116, 同理可得:cos A =78,cos C =-14, ∴cos A ∶cos B ∶cos C =14∶11∶(-4).答案:14∶11∶(-4)13.在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________. 解析:∵cos C =13,∴sin C =223. 又S △ABC =12ab sin C =43, 即12·b ·32·223=43, ∴b =2 3.答案:2 314.已知△ABC 的三边长分别为AB =7,BC =5,AC =6,则AB →·BC →的值为________.解析:在△ABC 中,cos B =AB 2+BC 2-AC 22AB ·BC=49+25-362×7×5=1935, ∴AB →·BC →=|AB →|·|BC →|·cos(π-B )=7×5×(-1935) =-19.答案:-19 15.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,则角C =________. 解析:12ab sin C =S =a 2+b 2-c 24=a 2+b 2-c 22ab ·ab 2=12ab cos C ,∴sin C =cos C ,∴tan C =1,∴C =45°. 答案:45°16.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________.解析:设三边长为k -1,k ,k +1(k ≥2,k ∈N ),则⎩⎪⎨⎪⎧k 2+?k -1?2-?k +1?2<0k +k -1>k +1?2<k <4, ∴k =3,故三边长分别为2,3,4,∴最小角的余弦值为32+42-222×3×4=78. 答案:7817.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.解:∵A +B +C =π且2cos(A +B )=1,∴cos(π-C )=12,即cos C =-12. 又∵a ,b 是方程x 2-23x +2=0的两根,∴a +b =23,ab =2.∴AB 2=AC 2+BC 2-2AC ·BC ·cos C=a 2+b 2-2ab (-12) =a 2+b 2+ab =(a +b )2-ab=(23)2-2=10,∴AB =10.18.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数. 解:(1)由题意及正弦定理得AB +BC +AC =2+1,BC +AC =2AB ,两式相减,得AB =1.(2)由△ABC 的面积12BC ·AC ·sin C =16sin C ,得BC ·AC =13, 由余弦定理得cos C =AC 2+BC 2-AB 22AC ·BC=?AC +BC ?2-2AC ·BC -AB 22AC ·BC =12, 所以C =60°.19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π4)的值. 解:(1)在△ABC 中,由正弦定理AB sin C =BC sin A, 得AB =sin C sin ABC =2BC =2 5. (2)在△ABC 中,根据余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC =255, 于是sin A =1-cos 2A =55. 从而sin 2A =2sin A cos A =45, cos 2A =cos 2 A -sin 2 A =35. 所以sin(2A -π4)=sin 2A cos π4-cos 2A sin π4=210. 20.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.解:由正弦定理,得sin C sin B =c b. 由2cos A sin B =sin C ,有cos A =sin C 2sin B =c 2b. 又根据余弦定理,得cos A =b 2+c 2-a 22bc ,所以c 2b =b 2+c 2-a 22bc, 即c 2=b 2+c 2-a 2,所以a =b .又因为(a +b +c )(a +b -c )=3ab ,所以(a +b )2-c 2=3ab ,所以4b 2-c 2=3b 2,所以b =c ,所以a =b =c ,因此△ABC 为等边三角形.。

相关文档
最新文档