正弦余弦历年高考题及详细答案

合集下载

高考数学 考点17 正弦定理和余弦定理

高考数学 考点17 正弦定理和余弦定理

考点17 正弦定理和余弦定理一、选择题1.(2012·湖南高考理科·T7)在△ABC 中,AB=2 AC=3 AB ·BC =1,则BC=( )【解题指南】利用向量的数量积计算公式,和余弦定理组成方程组解出BC 的值。

【解析】选A.由1?u u u r u u u r,AB BC()1212p -==-uuu ruuu r cos ,cos .BC B B BC由余弦定理即2222=+-?cos .AC AB BC AB BC B 2944=+-cos BC BC B 21542=+?uuu r ,BC BCBC 故选A.23=\=,BC BC2.(2012·湖南高考文科·T8)在△ABC 中,,BC=2,B =60°,则BC 边上的高等于( )A.B.C.D.【解题指南】本题考查余弦定理、三角形面积公式,考查方程思想、运算能力,是历年常考内容.根据余弦定理和直角三角形中的三角函数定义,列出方程组,解出答案。

【解析】选B.设AB c =,在△ABC 中,由余弦定理知2222cos AC AB BC AB BC B =+-⋅⋅,即27422cos60c c =+-⨯⨯⨯,2230,(-3)(1)c c c c --=+即=0.又0, 3.c c >∴=设BC 边上的高等于h ,由三角形面积公式11sin 22ABCSAB BC B BC h ==,知1132sin 60222h ⨯⨯⨯=⨯⨯,解得h =.故选B. 3.(2012·广东高考文科·T6)在ABC 中,若A ∠=60°, ∠B=45°,AC=( )A .【解题指南】已知两角一边解三角形,显然适合采用正弦定理,但在由正弦值求角时,要注意解的个数的判断。

【解析】选B.在ABC 中,由正弦定理知sin ,sin sin sin AC BC BC BAC B A A=∴===4.(2012·湖北高考文科·T8)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若三边的长为连续的三个正整数,且A >B >C ,3b=20acosA ,则sinA ∶sinB ∶sinC 为( ) A.4∶3∶2 B.5∶6∶7 C.5∶4∶3 D.6∶5∶4【解题指南】本题考查正弦定理和余弦定理的应用,解答本题的关键是把边a,c 均用b 表示出来,再利用余弦定理把已知化简求值.【解析】选 D.由题意知: a=b+1,c=b-1, ∴3b=20a cos A =20(b+1)2222b c a bc +-= 20(b+1)222(1)(1)2(1)b b b b b +----,整理得:2727400b b --=,解之得:b=5,可知:a=6,c=4.结合正弦定理可知答案.二、填空题5.(2012·湖北高考理科·T11)设△ABC 的内角A ,B ,C ,所对的边分别是a ,b ,c.若(a+b-c )(a+b+c )=ab ,则角C=______________.【解题指南】本题考查余弦定理,把已知条件展开整理可得结果.【解析】 由(a+b-c )(a+b+c )=ab,可知222a b c ab +-=-.又2221cos 22a b c C ab +-==-,所以0120C =. 【答案】 0120.6.(2012·福建高考文科·T13)在△ABC 中,已知∠BAC=60°,∠ABC=45°,AC=_______ 【解题指南】本题知两角一对边,选用正弦定理求另一对边.【解析】选由正弦定理,sin sin AC BC B A =,即sin 2sin 2BC AC B A =⨯=⨯=7.(2012·安徽高考理科·T15)设ABC ∆的内角,,A B C 所对边的长分别为,,a b c ;则下列命题正确的是_____(写出所有正确命题的编号)①若2ab c >;则3C π<②若2a b c +>;则3C π<③若333a b c +=;则2C π<④若()2a b c ab +<;则2C π>⑤若22222()2a b c a b +<;则3C π>【解题指南】对于①②用余弦定理判断; ③用反证法; ④⑤举反例.【解析】①222221cos 2223a b c ab ab ab c C C ab ab π+-->⇒=>=⇒<②2222224()()12cos 2823a b c a b a b a b c C C ab ab π+-+-++>⇒=>≥⇒<③当2C π≥时,22232233c a b c a c b c a b ≥+⇒≥+>+与333a b c +=矛盾④取2,1a b c ===满足()2a b c ab +<得:2C π<⑤取2,1a b c ===满足22222()2a b c a b +<得:3C π<.【答案】①②③8.(2012·陕西高考文科·T13)在三角形ABC 中,角A,B,C 所对应的长分别为a ,b ,c ,若2a =,B=6π,b=【解题指南】已知两边及其夹角,用余弦定理可求第三边. 【解析】由余弦定理得:2222cos 412226b a c ac B π=+-=+-⨯⨯16124=-=,∴2b =.【答案】2.9.(2012·北京高考理科·T11)在△ABC 中,若a=2,b+c=7,1cos 4B =-,则b=【解题指南】对角B 利用余弦定理列式求解. 【解析】7,7b c c b +=∴=-由余弦定理得2222cos b a c ac B =+-,即2214(7)22(7)()4b b b =+--⨯⨯-⨯-,解得4b =.【答案】4.10.(2012·北京高考文科·T11)在△ABC 中,若a=3,3A π∠=,则C ∠的大小为_________.【解题指南】利用正弦定理求出B ,再利用内角和定理求C.【解析】在ABC ∆中,由正弦定理得3sin3π=,1sin 2B =,,,6a b A B B π>∴>∴=,362C ππππ∴=--=.【答案】2π.三、解答题11.(2012·江苏高考·T15)(本小题满分14分)在ABC ∆中,已知3AB AC BA BC =. (1)求证:tan 3tan B A =;(2)若cos C =求A 的值.【解题指南】(1)注意向量积公式的应用,和正弦定理的利用(边角转化)(2)先利用cos C =求出tan 2C =再利用两角和的正切公式构造与tan A 有关的方程.【解析】(1)由3AB AC BA BC =得||||cos 3||||cos AB AC A BA BC B = 即为cos 3cos cb A ca B =cos 3cos b A a B =由正弦定理得sin cos 3sin cos B A A B =两边同除cos cos A B 得tan 3tan B A = 即tan 3tan B A =成立.(2)因cos C =所以C 为锐角,所以tan 2C =由(1)tan 3tan B A =,且A B C π++= 得tan[()]3tan A C A π-+=即tan tan tan()3tan 3tan 1tan tan A CA C A AA C +-+=⇒-=-即tan 23tan 2tan 1A AA +=-所以tan 1A =或1tan 3A =-。

正余弦函数高考题集含答案

正余弦函数高考题集含答案

正、余弦定理高考练习题(1)1.(15北京理科)在中,,,,则.【答案】1试题分析:2.(15北京文科)在中,,,,则.【答案】试题分析:由正弦定理,得,即,所以,所以..3.(15年广东理科)设的内角,,的对边分别为,,,若,,则 【答案】.4.(15年广东文科)设的内角,,的对边分别为,,.若,,,且,则( )A .B .C .D .【答案】BABC △4a =5b =6c =sin 2sin AC=222sin 22sin cos 2sin sin 2A A A a b c a C C c bc+-==⋅2425361616256⨯+-=⋅=⨯⨯ABC ∆A B C a b c a =1sin 2B =6C =πb =1试题分析:由余弦定理得:,所以,即,解得:或,因为,所以,故选B .5.(15年安徽理科) 在中,,点D 在边上,,求的长?6.(15年安徽文科)在中,,,,则。

【答案】2试题分析:由正弦定理可知:7.(15年福建理科)若锐角的面积为 ,且 ,则 等于________. 【答案】试题分析:由已知得的面积为,所以,,所以.由余弦定理得 ABC∆,6,4A AB AC π===BC AD BD =AD ABC ∆6=AB 75=∠A 45=∠B =AC45sin )]4575(180sin[ACAB =+-245sin 60sin 6=⇒=⇒AC AC ABC∆5,8AB AC ==BC 7ABC ∆1sin 20sin 2AB AC A A ⋅==sin 2A =(0,)2A π∈3A π=,.8.(15年福建文科)若中,,,,则_______.【答案】试题分析:由题意得.由正弦定理得,则,所以.10.(15年新课标2理科)∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 是∆ADC 面积的2倍。

(Ⅰ)求;(Ⅱ) 若=1,=求和的长.11.(15年新课标2文科)△ABC 中D 是BC 上的点,AD 平分BAC ,BD =2DC .2222cos BC AB AC AB AC A =+-⋅=497BC =ABC∆AC =045A =075C =BC=0018060B A C =--=sin sin AC BCB A=sin sin AC ABC B=BC ==CB∠∠sin sin AD DC 22BDAC ∠(I )求;(II )若,求. 【答案】(I );.12.(15年陕西理科) 的内角,,所对的边分别为,,.向量与平行. (I )求; (II )若,求的面积. 【答案】(I );(II ).试题解析:(I )因为,所以,由正弦定理,得 又,从而,由于,所以sin sin BC∠∠60BAC ∠=B ∠1230C ∆AB A B C a b c (),3m a b =()cos ,sin n =A B A a =2b =C ∆AB 3π2//m n sin 3cos 0a B b A sinAsinB 3sinBcos A 0sin 0B ≠tan 3A 0A π<<3A π=(II)解法一:由余弦定理,得而得,即因为,所以.故ABC 的面积为.13.(15年陕西文科)的内角所对的边分别为,向量与平行.(I)求; (II)若求的面积.【答案】(I) ;(II). 2222cos a b c bcA 7b 2,a 3πA =2742c c 2230c c 0c 3c ∆133bcsinA 22ABC ∆,,A B C ,,a b c (,3)m a =(cos ,sin )n A B =A 2a b ==ABC ∆3A π=试题解析:(I)因为,所以 由正弦定理,得, 又,从而,由于 所以(II)解法一:由余弦定理,得,而,,得,即因为,所以, 故面积为. 解法二:由正弦定理,得从而 //m n sin 3cos 0a B b A -=sin sin cos 0A B B A -=sin 0B≠tan A =0A π<<3A π=2222cos a b c bc A =+-2a b ==3A π=2742c c =+-2230c c --=0c >3c =ABC∆1sin 22bc A=2sin sin3Bπ=sin B =又由知,所以 故, 所以面积为14.(15年天津理科)在 中,内角 所对的边分别为 ,已知的面积为 , 则的值为 .【答案】题分析:因为,所以, 又,解方程组得,由余弦定理得,所以.15.(15年天津文科)△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为, (I )求a 和sin C 的值; (II )求 的值. 【答案】(I )a =8,;(II )a b >A B >cos 7B =sin sin()sin()3C A B B π=+=+sin coscos sin33B B ππ=+=ABC ∆1sin 2ab C =ABC ∆,,A B C ,,a b c ABC ∆12,cos ,4b c A -==-a 80A π<<sin 4A ==1sin 2428ABC S bc A bc bc ∆===∴=224b c bc -=⎧⎨=⎩6,4b c ==2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭8a =12,cos ,4b c A -==-cos 26A π⎛⎫+⎪⎝⎭sin C =正、余弦定理高考题练习(2)一、选择题(每题5分)1.(2013·北京高考文科·T5)在△ABC 中,a=3,b=5,sinA=13,则sinB=( ) A.15 B.59D.1【解题指南】已知两边及一边的对角利用正弦定理求解。

正弦定理和余弦定理 高考数学真题详细解析 高考数学真题复习

正弦定理和余弦定理 高考数学真题详细解析 高考数学真题复习

4.6 正弦定理和余弦定理一、选择题1.在△ABC中,C=60°,AB=3,BC=2,那么A等于( ).A.135° B.105° C.45° D.75°解析由正弦定理知BCsin A=ABsin C,即2sin A=3sin 60°,所以sin A=22,又由题知,BC<AB,∴A=45°.答案 C2.已知a,b,c是△ABC三边之长,若满足等式(a+b-c)(a+b+c)=ab,则角C的大小为( ).A.60° B.90° C.120° D.150°解析由(a+b-c)(a+b+c)=ab,得(a+b)2-c2=ab,∴c2=a2+b2+ab=a2+b2-2ab cos C,∴cos C=-12,∴C=120°.答案 C3.在△ABC中,角A、B、C的对边分别为a、b、c,且a=λ,b=3λ(λ>0),A=45°,则满足此条件的三角形个数是( )A.0 B.1C.2 D.无数个解析:直接根据正弦定理可得asin A=bsin B,可得sin B=b sin Aa=3λsin 45°λ=62>1,没有意义,故满足条件的三角形的个数为0.答案:A4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a cos A =b sin B ,则sin A cos A +cos 2B 等于( ).A .-12 B.12C .-1D .1 解析 根据正弦定理,由a cos A =b sin B ,得sin A cos A =sin 2B ,∴sin A cosA +cos 2B =sin 2B +cos 2B =1.答案 D5. 在ABC ∆中,角,,A B C 所对边的长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )B. 2C. 12D. 12- 解析 2122cos 2222222=+-≥-+=b a c c ab c b a C ,故选C. 答案 C6.在△ABC 中,sin 2 A ≤sin 2 B +sin 2 C -sin B sin C ,则A 的取值范围是( ).A.⎝ ⎛⎦⎥⎤0,π6B.⎣⎢⎡⎭⎪⎫π6,πC.⎝ ⎛⎦⎥⎤0,π3D.⎣⎢⎡⎭⎪⎫π3,π 解析 由已知及正弦定理有a 2≤b 2+c 2-bc ,而由余弦定理可知a 2=b 2+c 2-2bc cos A ,于是可得b 2+c 2-2bc cos A ≤b 2+c 2-bc ,可得cos A ≥12,注意到在△ABC 中,0<A <π,故A ∈⎝⎛⎦⎥⎤0,π3. 答案 C7.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( ).A.43 B .8-4 3 C .1 D.23解析 依题意得⎩⎨⎧ a +b 2-c 2=4a 2+b 2-c 2=2ab cos 60°=ab ,两式相减得ab =43,选A. 答案 A二、填空题8.如图,△ABC 中,AB =AC =2,BC =23,点D 在BC 边上,∠ADC =45°,则AD 的长度等于________.解析 在△ABC 中,∵AB =AC =2,BC =23,∴cos C =32,∴sin C =12;在△ADC 中,由正弦定理得,AD sin C =AC sin ∠ADC , ∴AD =2sin 45°×12= 2. 答案 2 9. 在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,且3a =2c sin A ,角C =________.解析:根据正弦定理,asin A =csin C, 由3a =2c sin A ,得asin A =c32, ∴sin C =32,而角C 是锐角.∴角C =π3.答案:π310.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若三边的长为连续的三个正整数,且A >B >C ,3b=20acosA ,则sinA ∶sinB ∶sinC 为______.答案 6∶5∶411.若AB =2,AC =2BC ,则S △ABC 的最大值________.解析 (数形结合法)因为AB =2(定长),可以令AB 所在的直线为x 轴,其中垂线为y 轴建立直角坐标系,则A (-1,0),B (1,0),设C (x ,y ),由AC =2BC , 得 x +2+y 2= 2 x -2+y 2,化简得(x -3)2+y 2=8,即C 在以(3,0)为圆心,22为半径的圆上运动,所以S △ABC =12·|AB |·|y C |=|y C |≤22,故答案为2 2. 答案 2 212.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b a +a b =6cos C ,则tan C tan A+tan C tan B的值是________. 解析 法一 取a =b =1,则cos C =13,由余弦定理得c 2=a 2+b 2-2ab cos C =43,∴c =233,在如图所示的等腰三角形ABC 中,可得tan A =tan B =2,又sin C =223,tan C =22,∴tan C tan A +tan C tan B=4. 法二 由b a +a b =6cos C ,得a 2+b 2ab =6·a 2+b 2-c 22ab, 即a 2+b 2=32c 2,∴tan C tan A +tan C tan B =tan C ⎝ ⎛⎭⎪⎫cos A sin A +cos B sin B = sin 2C cos C sin A sin B =2c 2a 2+b 2-c 2=4. 答案 4三、解答题13.叙述并证明余弦定理.解析 余弦定理:三角形任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦之积的两倍.或:在△ABC 中,a ,b ,c 为A ,B ,C 的对边,有a 2=b 2+c 2-2bc cos A ,b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C , 法一 如图(1),图(1) a 2=BC →·BC →=(AC →-AB →)·(AC →-AB →)=AC →2-2AC →·AB →+AB →2=AC →2-2|AC →|·|AB →|cos A +AB →2=b 2-2bc cos A +c 2,即a 2=b 2+c 2-2bc cos A .同理可证b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C .法二图(2)已知△ABC 中A ,B ,C 所对边分别为a ,b ,c ,以A 为原点,AB 所在直线为x 轴建立直角坐标系,如图(2)则C (b cos A ,b sin A ),B (c,0),∴a 2=|BC |2=(b cos A -c )2+(b sin A )2=b 2cos 2A -2bc cos A +c 2+b 2sin 2A=b 2+c 2-2bc cos A .同理可证b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C .14.在△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,B =2π3,b =13,a +c =4,求a .解析:由余弦定理b 2=a 2+c 2-2ac cos B=a 2+c 2-2ac cos 2π3 =a 2+c 2+ac =(a +c )2-ac .又∵a +c =4,b =13,∴ac =3.联立⎩⎨⎧ a +c =4,ac =3,解得a =1或a =3.15.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且(1)求角B 的大小;(2)若b=3,sinC=2sinA ,求a ,c 的值.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -a b. (1)求sin C sin A的值; (2)若cos B =14,△ABC 的周长为5,求b 的长. 解析 (1)由正弦定理,设asin A =bsin B =csin C =k ,则2c -a b =2k sin C -k sin A k sin B =2sin C -sin A sin B, 所以cos A -2cos C cos B =2sin C -sin A sin B. 即(cos A -2cos C )sin B =(2sin C -sin A )cos B ,化简可得sin(A +B )=2sin(B +C ).又A +B +C =π,所以sin C =2sin A ,因此sin C sin A =2. (2)由sin C sin A =2得c =2a .由余弦定理及cos B=1 4得b2=a2+c2-2ac cos B=a2+4a2-4a2×14=4a2.所以b=2a.又a+b+c=5.从而a=1,因此b=2.。

正弦定理和余弦定理专题试题及答案

正弦定理和余弦定理专题试题及答案

正弦定理和余弦定理专题试题及答案1.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形2.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解 C .无解 D .有解但解的个数不确定3.已知△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,若ɑ2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( ) A.12 B .1 C.3 D .24.在△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,且bsin A =3ɑcos B .则B =( ) A.π6 B.π4 C.π3 D.π25.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c.若3a =2b ,则2sin 2B -sin 2Asin 2A的值为( )A .-19B .13C .1D .726.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,且满足c sin A =3a cos C ,则sin A +sin B 的最大值是( )A .1B . 2C . 3D .37.在△ABC 中,若A=,B=,BC=3,则AC=( )A. B. C.2D.48.在△ABC 中,若a 2+b 2<c 2,则△ABC 的形状是 ( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定9.已知△ABC 的内角A,B,C 的对边分别为a,b,c,且=,则B= ( ) A.B. C. D.10.在△ABC 中,角A,B,C 所对的边长分别为a,b,c.若C=120°,c=a,则 ( )A.a>bB.a<bC.a=bD.a 与b 的大小关系不能确定11.在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC =的面积为________.12.若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________.13.△ABC 中,点D 是BC 上的点,AD 平分∠BAC,BD=2DC. (1)求.(2)若∠BAC=60°,求B.14.在△ABC 中,角A,B,C 的对边分别为a,b,c,且bcosC=3acosB-ccosB. (1)求cosB 的值. (2)若·=2,且b=2,求a 和c 的值.15.如图,在△ABC 中,点P 在BC 边上,∠PAC =60°,PC =2,AP +AC =4.(1)求∠ACP ;(2)若△APB 的面积是332,求sin ∠BAP .16.在△ABC 中,角A ,B ,C 的对边分别是ɑ,b ,c ,且b 2=ɑc =ɑ2-c 2+bc. (1)求bsin Bc的值; (2)试判断△ABC 的形状,并说明理由.正弦定理和余弦定理专题试题及答案1.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形答案:C2.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解 C .无解 D .有解但解的个数不确定 解析:由正弦定理得b sin B =csin C,∴sin B =bsin Cc=40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在. 答案:C3.已知△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,若ɑ2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( ) A.12B .1 C. 3 D .2 解析:∵ɑ2=b 2+c 2-bc ,∴cos A =12,∴A =π3,又bc =4,∴△ABC 的面积为12bcsin A =3,故选C.答案:C4.在△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,且bsin A =3ɑcos B .则B =( ) A.π6 B.π4 C.π3 D.π2解析:根据题意结合正弦定理, 得sin Bsin A =3sin Acos B. 因为sin A ≠0,所以sin B =3cos B , 即sin B cos B =tan B =3,所以B =π3. 答案:C5.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c.若3a =2b ,则2sin 2B -sin 2A sin 2A的值为( )A .-19B .13C .1D .72解析:由正弦定理可得2sin 2B -sin 2A sin 2A =2⎝ ⎛⎭⎪⎫sinB sin A 2-1=2⎝ ⎛⎭⎪⎫b a 2-1,因为3a =2b ,所以b a =32,所以2sin 2B -sin 2A sin 2A =2×⎝ ⎛⎭⎪⎫322-1=72。

2024全国高考真题数学汇编:正弦定理与余弦定理

2024全国高考真题数学汇编:正弦定理与余弦定理

2024全国高考真题数学汇编正弦定理与余弦定理一、单选题1.(2024全国高考真题)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A B C D 二、解答题2.(2024天津高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ===,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -的值.3.(2024全国高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .4.(2024全国高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =.(1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长.5.(2024北京高考真题)在ABC 中,,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos B B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.参考答案1.C【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,由正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin 2A C +=.故选:C.2.(1)4(3)5764【分析】(1)2,3a t c t ==,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【详解】(1)设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,即229254922316t t t t =+-⨯⨯⨯,解得2t =(负舍);则4,6a c ==.(2)法一:因为B 为三角形内角,所以sin 16B =,再根据正弦定理得sin sin a b A B =,即4sin A =sin 4A =,法二:由余弦定理得2222225643cos 22564b c a A bc +-+-===⨯⨯,因为()0,πA ∈,则sin 4A ==(3)法一:因为9cos 016B =>,且()0,πB ∈,所以π0,2B ⎛⎫∈ ⎪⎝⎭,由(2)法一知sin B =因为a b <,则A B <,所以3cos 4A ==,则3sin 22sin cos 24A A A ===2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭()9157cos 2cos cos 2sin sin 216816864B A B A B A -=+=⨯+⨯=.法二:3sin 22sin cos 24A A A ===,则2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭,因为B 为三角形内角,所以sin 16B ===,所以()9157cos 2cos cos 2sin sin 216864B A B A B A -=+=⨯=3.(1)π3B =(2)【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B =得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【详解】(1)由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 2a b c C ab +-===因为()0,πC ∈,所以sin 0C >,从而sin 2C =,又因为sin C B =,即1cos 2B =,注意到()0,πB ∈,所以π3B =.(2)由(1)可得π3B =,cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ1sin sin sin 124622224A ⎛⎫⎛⎫==+⨯+⨯= ⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而,a b ===,由三角形面积公式可知,ABC的面积可表示为21113sin 222228ABC S ab C c c ==⋅= ,由已知ABC的面积为32338c =所以c =4.(1)π6A =(2)2+【分析】(1)根据辅助角公式对条件sin 2A A =进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【详解】(1)方法一:常规方法(辅助角公式)由sin 2A A =可得1sin 122A A +=,即sin()1π3A +=,由于ππ4π(0,π)(,)333A A ∈⇒+,故ππ32A +=,解得π6A =方法二:常规方法(同角三角函数的基本关系)由sin 2A A =,又22sin cos 1A A +=,消去sin A得到:224cos 30(2cos 0A A A -+=⇔=,解得cos 2A =,又(0,π)A ∈,故π6A =方法三:利用极值点求解设()sin (0π)f x x x x =<<,则π()2sin (0π)3f x x x ⎛⎫=+<< ⎪⎝⎭,显然π6x =时,max ()2f x =,注意到π()sin 22sin(3f A A A A =+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos sin f A A A '==,即tan 3A =,又(0,π)A ∈,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ==,由题意,sin 2a b A A ⋅==,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ⋅==,则2cos ,2cos ,1a b a b =⇔= ,此时,0a b =,即,a b 同向共线,根据向量共线条件,1cos sin tan 3A A A ⋅=⇔=,又(0,π)A ∈,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,2222)sin 211t t A A t t-+==+++,整理可得,2222(2(20((2t t t -+==-,解得tan22A t ==22tan 13t A t ==-,又(0,π)A ∈,故π6A =(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B =⇔=,又,(0,π)B C ∈,则sin sin 0B C ≠,进而cos B =π4B =,于是7ππ12C A B =--=,sin sin(π)sin()sin cos sin cos 4C A B A B A B B A =--=+=+=,由正弦定理可得,sin sin sin a b cA B C==,即2ππ7πsin sin sin 6412bc==,解得b c ==故ABC的周长为2+5.(1)2π3A =;(2)选择①无解;选择②和③△ABC【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得3B π=,结合(1)问答案即可排除;选择②,首先求出sin 14B =,再代入式子得3b =,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c =,再利用正弦定理得到sin 14C =,再利用两角和的正弦公式即可求出sin B ,最后利用三角形面积公式即可;【详解】(1)由题意得2sin cos cos B B B =,因为A 为钝角,则cos 0B ≠,则2sin 7B =,则7sin sin sin b a BA A ==,解得sin 2A =,因为A 为钝角,则2π3A =.(2)选择①7b =,则sin 7B ==2π3A =,则B 为锐角,则3B π=,此时πA B +=,不合题意,舍弃;选择②13cos 14B =,因为B为三角形内角,则sin B ,则代入2sin 7B =得2147⨯=,解得3b =,()2π2π2πsin sin sin sin cos cos sin 333C A B B B B⎛⎫=+=+=+ ⎪⎝⎭131142⎛⎫=+-⨯ ⎪⎝⎭,则11sin 7322ABC S ab C ==⨯⨯选择③sin c A =2c ⨯=5c =,则由正弦定理得sin sin a c A C =5sin C,解得sin 14C =,因为C为三角形内角,则11cos 14C ==,则()2π2π2πsin sin sin sin cos cos sin 333B A C C C C ⎛⎫=+=+=+⎪⎝⎭111142⎛⎫=+-⨯ ⎪⎝⎭,则11sin 7522ABC S ac B ==⨯⨯=△。

三角函数高考题及练习题(含答案)

三角函数高考题及练习题(含答案)

三角函数高考题及练习题(含答案)1. 掌握正弦函数、余弦函数、正切函数的图象与性质;会用“五点法”作出正弦函数及余弦函数的图象;掌握函数y =Asin (ωx +φ)的图象及性质.2. 高考试题中,三角函数题相对比较传统,位置靠前,通常是以简单题形式出现,因此在本讲复习中要注重三角知识的基础性,特别是要熟练掌握三角函数的定义、三角函数图象的识别及其简单的性质(周期、单调性、奇偶、最值、对称、图象平移及变换等).3. 三角函数是每年高考的必考内容,多数为基础题,难度属中档偏易.这几年的高考加强了对三角函数定义、图象和性质的考查.在这一讲复习中要重视解三角函数题的一些特殊方法,如函数法、待定系数法、数形结合法等.1. 函数y =2sin 2⎝⎛⎭⎫x -π4-1是最小正周期为________的________(填“奇”或“偶”)函数.答案:π 奇解析:y =-cos ⎝⎛⎭⎫2x -π2=-sin2x.2. 函数f(x)=lgx -sinx 的零点个数为________. 答案:3解析:在(0,+∞)内作出函数y =lgx 、y =sinx 的图象,即可得到答案.3. 函数y =2sin(3x +φ),⎝⎛⎭⎫|φ|<π2的一条对称轴为x =π12,则φ=________.答案:π4解析:由已知可得3×π12+φ=k π+π2,k ∈Z ,即φ=k π+π4,k ∈Z .因为|φ|<π2,所以φ=π4.4. 若f(x)=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上的最大值是2,则ω=________.答案:34解析:由0≤x ≤π3,得0≤ωx ≤ωπ3<π3,则f(x)在⎣⎡⎦⎤0,π3上单调递增,且在这个区间上的最大值是2,所以2sin ωπ3=2,且0<ωπ3<π3,所以ωπ3=π4,解得ω=34.题型二 三角函数定义及应用问题例1 设函数f(θ)=3sin θ+cos θ,其中角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P(x ,y),且0≤θ≤π.(1) 若点P 的坐标是⎝⎛⎭⎫12,32,求f(θ)的值;(2) 若点P(x ,y)为平面区域⎩⎪⎨⎪⎧x +y ≥1,x ≤1,y ≤1上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.解:(1) 根据三角函数定义得sin θ=32,cos θ=12,∴ f (θ)=2.(本题也可以根据定义及角的范围得角θ=π3,从而求出 f(θ)=2).(2) 在直角坐标系中画出可行域知0≤θ≤π2,又f(θ)=3sin θ+cos θ=2sin ⎝⎛⎭⎫θ+π6,∴ 当θ=0,f (θ)min =1;当θ=π3,f (θ)max =2.(注: 注意条件,使用三角函数的定义, 一般情况下,研究三角函数的周期、最值、单调性及有关计算等问题时,常可以先将函数化简变形为y =Asin (ωx +φ)的形式)如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α、β,它们的终边分别与单位圆相交于A 、B 两点,已知A 、B 的横坐标分别为210、255.求:(1) tan (α+β)的值; (2) α+2β的值.解:由题意得cos α=210,cos β=255,α、β∈⎝⎛⎭⎫0,π2,所以sin α=1-cos 2α=7210,sin β=1-cos 2β=55, 因此tan α=7,tan β=12.(1) tan (α+β)=tan α+tan β1-tan αtan β=7+121-7×12=-3.(2) tan (α+2β)=tan [(α+β)+β]=-3+121-(-3)×12=-1.又α+2β∈⎝⎛⎭⎫0,3π2,所以α+2β=3π4.题型二 三角函数的图象与解析式问题例2 函数f(x)=Asin (ωx +φ)(A 、ω、φ是常数,A>0,ω>0)的部分图象如图所示. (1) 求f(0)的值;(2) 若0<φ<π,求函数f(x)在区间⎣⎡⎦⎤0,π3上的取值范围.解:(1)由题图可知A =2,∵ T 4=7π12-π3=π4,∴ ω=2.又2×7π12+φ=2k π+3π2,∴ φ=2k π+π3(k ∈Z ),∴ f(0)=2sin ⎝⎛⎭⎫2k π+π3=62.(2) φ=π3,f(x)=2sin ⎝⎛⎭⎫2x +π3.因为0≤x ≤π3,所以π3≤2x +π3≤π,所以0≤sin ⎝⎛⎭⎫2x +π3≤1,即f(x)的取值范围为[0,2].(注:本题主要考查正弦、余弦、正切函数及y =Asin (ωx +φ)的图象与性质以及诱导公式,运用数形结合思想,属于中档题)已知函数f(x)=Asin ωx +Bcos ωx(A 、B 、ω是常数,ω>0)的最小正周期为2,并且当x =13时,f(x)max =2.(1) 求f(x)的解析式;(2) 在闭区间⎣⎡⎦⎤214,234上是否存在f(x)的对称轴?如果存在,求出其对称轴方程;如果不存在,请说明理由.解:(1) 因为f(x)=A 2+B 2sin (ωx +φ),由它的最小正周期为2,知2πω=2,ω=π.又当x =13时,f(x)max =2,知13π+φ=2k π+π2(k ∈Z ),即φ=2k π+π6(k ∈Z ),所以f(x)=2sin ⎝⎛⎭⎫πx +2k π+π6=2sin ⎝⎛⎭⎫πx +π6(k ∈Z ).故f(x)的解析式为f(x)=2sin ⎝⎛⎭⎫πx +π6.(2) 当垂直于x 轴的直线过正弦曲线的最高点或最低点时,该直线就是正弦曲线的对称轴,令πx +π6=k π+π2(k ∈Z ),解得x =k +13(k ∈Z ),由214≤k +13≤234,解得5912≤k ≤6512.又k ∈Z ,知k =5,由此可知在闭区间⎣⎡⎦⎤214,234上存在f(x)的对称轴,其方程为x =163. 题型三 三角函数的性质与图象的移动问题例3 把函数f(x)=sin 2x -2sinxcosx +3cos 2x 的图象沿x 轴向左平移m 个单位(m>0),所得函数的图象关于直线x =17π8对称.(1) 求m 的最小值;(2) 证明:当x ∈⎝⎛⎭⎫-17π8,-15π8时,经过函数f(x)图象上任意两点的直线的斜率恒为负数;(3) 设x 1,x 2∈(0,π),x 1≠x 2,且f(x 1)=f(x 2)=1,求x 1+x 2的值.(1) 解:f(x)=sin 2x -2sinxcosx +3cos 2x =1-cos2x 2-sin2x +3·1+cos2x2=cos2x -sin2x+2=2cos ⎝⎛⎭⎫2x +π4+2.因为将f(x)的图象沿x 轴向左平移m 个单位(m>0),得到g(x)=2⎣⎡⎦⎤2(x +m )+π4+2的图象,又g(x)的图象关于直线x =17π8对称,所以2⎝⎛⎭⎫17π8+m +π4=k π,即m =(2k -9)4π(k ∈Z ). 因为m>0,所以m 的最小值为π4.(2) 证明:因为x ∈⎝⎛⎭⎫-17π8,-15π8,所以-4π<2x +π4<-7π2,所以f(x)在⎝⎛⎭⎫-17π8,-15π8上是减函数.所以当x 1、x 2∈⎝⎛⎭⎫-17π8,-15π8,且x 1<x 2时,都有f(x 1)>f(x 2),从而经过任意两点(x 1,f(x 1))和(x 2,f(x 2))的直线的斜率k =f (x 1)-f (x 2)x 1-x 2<0.(3) 解:令f(x)=1,所以cos ⎝⎛⎭⎫2x +π4=-22.因为x ∈(0,π),所以2x +π4∈⎝⎛⎭⎫π4,9π4.所以2x +π4=3π4或2x +π4=5π4,即x =π4或x =π2.因为x 1、x 2∈(0,π),x 1≠x 2,且f(x 1)=f(x 2)=1,所以x 1+x 2=π4+π2=3π4已知函数f(x)=2sin ωx ,其中常数ω>0.(1) 若y =f(x)在⎣⎡⎦⎤-π4,2π3上单调递增,求ω的取值范围;(2) 令ω=2,将函数y =f(x)的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g(x)的图象,区间[a ,b](a ,b ∈R 且a<b)满足:y =g(x)在[a ,b]上至少含有30个零点,在所有满足上述条件的[a ,b]中,求b -a 的最小值.解:(1) 因为ω>0,根据题意有 ⎩⎨⎧-π4ω≥-π22π3ω≤π20<ω≤34.(2) f(x)=2sin2x ,g(x)=2sin2⎝⎛⎭⎫x +π6+1=2sin ⎝⎛⎭⎫2x +π3+1,g(x)=0sin ⎝⎛⎭⎫2x +π3=-12x =k π-π3或x =k π-712π,k ∈Z, 即g(x)的零点相邻间隔依次为π3和2π3,故若y =g(x)在[a ,b]上至少含有30个零点,则b -a 的最小值为14×2π3+15×π3=43π3.已知函数f(x)=3sin (ωx +φ)-cos (ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f(x)图象的两相邻对称轴间的距离为π2.(1) 求f ⎝⎛⎭⎫π8的值;(2) 将函数y =f(x)的图象向右平移π6个单位后,得到函数y =g(x)的图象,求函数g(x)的单调递减区间.解:(1) f(x)=3sin (ωx +φ)-cos (ωx +φ)=2⎣⎡⎦⎤32sin (ωx +φ)-12cos (ωx +φ)=2sin ⎝⎛⎭⎫ωx +φ-π6.因为f(x)为偶函数,所以对x ∈R ,f(-x)=f(x)恒成立,因此sin ⎝⎛⎭⎫-ωx +φ-π6=sin ⎝⎛⎭⎫ωx +φ-π6,即-sin ωxcos ⎝⎛⎭⎫φ-π6+cos ωxsin ⎝⎛⎭⎫φ-π6=sin ωxcos (φ-π6)+cos ωx sin ⎝⎛⎭⎫φ-π6,整理得sin ωxcos ⎝⎛⎭⎫φ-π6=0.因为ω>0,且x ∈R ,所以cos ⎝⎛⎭⎫φ-π6=0.又0<φ<π,故φ-π6=π2.所以f(x)=2sin ⎝⎛⎭⎫ωx +π2=2cos ωx.由题意得2πω=2×π2,所以ω=2,故f(x)=2cos2x ,因此f ⎝⎛⎭⎫π8=2cos π4= 2.(2) 将f(x)的图象向右平移π6个单位后,得到f ⎝⎛⎭⎫x -π6的图象,所以g(x)=f ⎝⎛⎭⎫x -π6=2cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6=2cos ⎝⎛⎭⎫2x -π3.当2k π≤2x -π3≤2k π+π(k ∈Z ),即k π+π6≤x ≤k π+2π3(k ∈Z )时,g(x)单调递减,因此g(x)的单调递减区间为⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z ). 题型四 三角函数图象及性质、三角公式综合运用例4 已知函数f(x)=2sin 2⎝⎛⎭⎫π4+x -3cos2x -1,x ∈R .(1) 求f(x)的最小正周期;(2) 若h(x)=f(x +t)的图象关于点⎝⎛⎭⎫-π6,0对称,且t ∈(0,π),求t 的值;(3) 当x ∈⎣⎡⎦⎤π4,π2时,不等式|f(x)-m|<3恒成立,求实数m 的取值范围.解:(1)因为f(x)=-cos ⎝⎛⎭⎫π2+2x -3cos2x =2sin ⎝⎛⎭⎫2x -π3,故f(x)的最小正周期为π.(2) h(x)=2sin ⎝⎛⎭⎫2x +2t -π3.令2×⎝⎛⎭⎫-π6+2t -π3=k π(k ∈Z ),又t ∈(0,π),故t =π3或5π6. (3) 当x ∈⎣⎡⎦⎤π4,π2时,2x -π3∈⎣⎡⎦⎤π6,2π3,∴ f(x)∈[1,2].又|f(x)-m|<3,即f(x)-3<m <f(x)+3, ∴ 2-3<m <1+3,即-1<m <4.已知函数f(x)=Asin (ωx +φ)(A>0,ω>0,|φ|<π),在同一周期内,当x =π12时,f(x)取得最大值3;当x =712π时,f(x)取得最小值-3.(1) 求函数f(x)的解析式;(2) 求函数f(x)的单调递减区间;(3) 若x ∈⎣⎡⎦⎤-π3,π6时,函数h(x)=2f(x)+1-m 有两个零点,求实数m 的取值范围.解:(1) 由题意,A =3,T =2⎝⎛⎭⎫712π-π12=π,ω=2πT =2.由2×π12+φ=π2+2k π得φ=π3+2k π,k ∈Z .又 -π<φ<π,∴ φ=π3,∴ f(x)=3sin ⎝⎛⎭⎫2x +π3.(2) 由π2+2k π≤2x +π3≤3π2+2k π,得π6+2k π≤2x ≤7π6+2k π,即π12+k π≤x ≤7π12+k π,k ∈Z . ∴ 函数f(x)的单调递减区间为⎣⎡⎦⎤π12+k π,7π12+k π,k ∈Z.(3) 由题意知,方程sin ⎝⎛⎭⎫2x +π3=m -16在⎣⎡⎦⎤-π3,π6上有两个根.∵ x ∈⎣⎡⎦⎤-π3,π6,∴ 2x +π3∈⎣⎡⎦⎤-π3,2π3.∴ m -16∈⎣⎡⎦⎤-32,1,∴ m ∈[1-33,7).1. (2013·江西卷)设f(x)=3sin3x +cos3x ,若对任意实数x 都有|f(x)|≤a ,则实数a 的取值范围是________.答案:a ≥2解析:f(x)=3sin3x +cos3x =2sin ⎝⎛⎭⎫3x +π6,|f(x)|≤2,所以a ≥2.2. (2013·天津卷)函数f(x)=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值是________.答案:-223. (2013·全国卷)函数y =cos(2x +φ)(-π≤φ<π)的图象向右平移π2个单位后,与函数y =sin ⎝⎛⎭⎫2x +π3的图象重合,则|φ|=________.答案:5π64. (2014·北京卷)设函数f(x)=Asin (ωx +φ)(A 、ω、φ是常数,A>0,ω>0).若f(x)在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f(x)的最小正周期为________. 答案:π解析:由f(x)在区间⎣⎡⎦⎤π6,π2上具有单调性,f ⎝⎛⎭⎫π2=-f ⎝⎛⎭⎫π6知,函数f(x)的对称中心为⎝⎛⎭⎫π3,0,函数f(x)的对称轴为直线x =12⎝⎛⎭⎫π2+2π3=7π12,设函数f(x)的最小正周期为T ,所以12T ≥π2-π6,即T ≥2π3,所以7π12-π3=T 4,解得T =π. 5. (2014·福建卷)已知函数f(x)=cosx(sinx +cosx)-12.(1) 若0<α<π2,且sin α=22,求f(α)的值;(2) 求函数f(x)的最小正周期及单调递增区间.解:(解法1)(1) 因为0<α<π2,sin α=22,所以cos α=22.所以f(α)=22⎝⎛⎭⎫22+22-12=12.(2) 因为f(x)=sinxcosx +cos 2x -12=12sin2x +1+cos2x 2-12=12sin2x +12cos2x =22sin ⎝⎛⎭⎫2x +π4,所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x≤k π+π8,k ∈Z .所以f(x)的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .(解法2)f(x)=sinxcosx +cos 2x -12=12sin2x +1+cos2x 2-12=12sin2x +12cos2x =22sin ⎝⎛⎭⎫2x +π4.(1) 因为0<α<π2,sin α=22,所以α=π4.从而f(α)=22sin ⎝⎛⎭⎫2α+π4=22sin 3π4=12.(2) T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f(x)的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .6. (2013·北京卷)已知函数f(x)=(2cos 2x -1)sin2x +12cos4x.(1) 求f(x)的最小正周期及最大值;(2) 若α∈⎝⎛⎭⎫π2,π,且f(α)=22,求α的值.解:(1) 因为f(x)=(2cos 2x -1)sin2x +12cos4x =cos2xsin2x +12cos4x =12(sin4x +cos4x)=22sin ⎝⎛⎭⎫4x +π4,所以f(x)的最小正周期为π2,最大值为22. (2) 因为f(α)=22,所以sin ⎝⎛⎭⎫4α+π4=1.因为α∈⎝⎛⎭⎫π2,π,所以4α+π4∈⎝⎛⎭⎫9π4,17π4,所以4α+π4=5π2,故α=9π16.(本题模拟高考评分标准,满分14分)设a>0,函数f(x)=asinxcosx -sinx -cosx ,x ∈⎣⎡⎦⎤0,π2的最大值为G(A).(1) 设t =sinx +cosx ,x ∈⎣⎡⎦⎤0,π2,求t 的取值范围,并把f(x)表示为t 的函数m(t);(2) 求G(A).解:(1) t =sinx +cosx =2sin ⎝⎛⎭⎫x +π4.∵ x ∈⎣⎡⎦⎤0,π2,∴ x +π4∈⎣⎡⎦⎤π4,3π4,∴ 22≤sin ⎝⎛⎭⎫x +π4≤1,∴ 1≤t ≤2,即t 的取值范围为[1,2].(3分)(另解:∵ x ∈⎣⎡⎦⎤0,π2,∴ t =sinx +cosx =1+sin2x.由2x ∈[0,π]得0≤sin2x ≤1,∴ 1≤t ≤2)∵ t =sinx +cosx ,∴ sinxcosx =t 2-12,(5分)∴ m(t)=a·t 2-12-t =12at 2-t -12a ,t ∈[1,2],a>0.(7分)(2) 由二次函数的图象与性质得:① 当1a <1+22,即a>2(2-1)时,G(A)=m(2)=12a -2; (10分)② 当1a ≥1+22,即0<a ≤2(2-1)时,G(A)=m(1)=- 2.(13分)∴ G(A)=⎩⎪⎨⎪⎧12a -2,a>2(2-1),-2,0<a ≤2(2-1).(14分)1. 若π4<x <π2,则函数y =tan2xtan 3x 的最大值为________.答案:-8解析:令tanx =t ∈(1,+∞),y =2t 41-t 2,y ′(t)=-4t 3(t +2)(t -2)(1-t 2)2,得t =2时y 取最大值-8.2. 已知函数f(x)=2cos2x +sin 2x ,求:(1) f ⎝⎛⎭⎫π3的值;(2) f(x)的最大值和最小值.解:(1) f ⎝⎛⎭⎫π3=2cos 2π3+sin 2π3=-1+34=-14.(2) f(x)=2(2cos 2x -1)+(1-cos 2x)=3cos 2x -1,x ∈R .因为cosx ∈[-1,1],所以当cosx =±1时,f(x)取最大值2;当cosx =0时,f(x)取最小值-1.3. 已知A 为△ABC 的内角,求y =cos 2A +cos 2⎝⎛⎭⎫2π3+A 的取值范围.解: y =cos 2A +cos 2⎝⎛⎭⎫2π3+A =1+cos2A 2+1+cos2⎝⎛⎭⎫2π3+A 2=1+cos2A 2+12⎝⎛⎭⎫cos 4π3cos2A -sin 4π3sin2A=1+12⎝⎛⎭⎫12cos2A +32sin2A =1+12cos ⎝⎛⎭⎫2A -π3.∵ A 为三角形内角,∴ 0<A <π,∴ -1≤cos ⎝⎛⎭⎫2A -π3≤1,∴ y =cos 2A +cos 2⎝⎛⎭⎫2π3+A 的取值范围是[12,32].4. 设函数f(x)=-cos 2x -4tsin x 2cos x2+4t 3+t 2-3t +4,x ∈R ,其中|t|≤1,将f(x)的最小值记为g(t).(1) 求g(t)的表达式;(2) 讨论g(t)在区间(-1,1)内的单调性并求极值.解:(1) f(x)=-cos 2x -4tsin x 2cos x2+4t 3+t 2-3t +4=sin 2x -2tsinx +4t 3+t 2-3t +3 =(sinx -t)2+4t 3-3t +3.由于(sinx -t)2≥0,|t|≤1,故当sinx =t 时,f(x)达到其最小值g(t),即g(t)=4t 3-3t +3. (2) g′(t)=12t 2-3=3(2t +1)(2t -1),-1<t <1. 由此可见,g(t)在区间⎝⎛⎭⎫-1,-12和⎝⎛⎭⎫12,1上单调增,在区间⎝⎛⎭⎫-12,12上单调减,极小值为g ⎝⎛⎭⎫12=2,极大值为g ⎝⎛⎭⎫-12=4.。

高考数学《正弦定理、余弦定理及解三角形》真题练习含答案

高考数学《正弦定理、余弦定理及解三角形》真题练习含答案

高考数学《正弦定理、余弦定理及解三角形》真题练习含答案一、选择题1.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若a =2 ,b =3 ,B =π3,则A =( )A .π6B .56 πC .π4D .π4 或34 π答案:C解析:由正弦定理得a sin A =b sin B ,∴sin A =a sin B b =2×323=22 ,又a <b ,∴A为锐角,∴A =π4.2.在△ABC 中,b =40,c =20,C =60°,则此三角形解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定 答案:C解析:由正弦定理b sin B =c sin C ,∴sin B =b sin Cc =40×3220 =3 >1,∴角B 不存在,即满足条件的三角形不存在.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =3,c =7 ,则角C =( )A .π6B .π4C .π3D .π2答案:C解析:由余弦定理得c 2=a 2+b 2-2ab cos C ,得cos C =a 2+b 2-c 22ab =4+9-72×2×3 =12,又C 为△ABC 内角,∴C =π3 .4.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A .12 B .1 C .3 D .2答案:C解析:由余弦定理得a 2=b 2+c 2-2bc cos A ,又a 2=b 2+c 2-bc ,∴2cos A =1,cos A =12 ,∴sin A =1-cos 2A =32 ,∴S △ABC =12 bc sin A =12 ×4×32=3 . 5.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23,则b =( )A.14 B .6 C .14 D .6 答案:D解析:∵b sin A =3c sin B ,由正弦定理得ab =3bc ,∴a =3c ,又a =3,∴c =1,由余弦定理得b 2=a 2+c 2-2ac ·cos B =9+1-2×3×23=6,∴b =6 .6.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定 答案:B解析:∵b cos C +c cos B =a sin A ,∴sin B cos C +sin C cos B =sin 2A ,∴sin A =1,又A 为△ABC 的内角,∴A =90°,∴△ABC 为直角三角形.7.钝角三角形ABC 的面积是12,AB =1,BC =2 ,则AC =( )A .5B .5C .2D .1 答案:B解析:∵S △ABC =12 AB ×BC ×sin B =22 sin B =12 ,∴sin B =22,若B =45°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos 45°=1+2-2×2 ×22 =1,则AC =1,则AB 2+AC 2=BC 2,△ABC 为直角三角形,不合题意;当B =135°时,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos 135°=1+2+2×2 ×22=5,∴AC =5 .8.如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .502 mB .503 mC .252 mD .2522m答案:A解析:由正弦定理得AC sin B =ABsin C,∴AB =AC ·sin Csin B =50×22sin (180°-45°-105°) =502 .9.[2024·全国甲卷(理)]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知B =60°,b 2=94ac ,则sin A +sin C =( )A .32 B .2C .72D .32答案:C解析:∵b 2=94 ac ,∴由正弦定理可得sin 2B =94sin A sin C .∵B =60°,∴sin B =32 ,∴34 =94 sin A sin C ,∴sin A sin C =13.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ,将b 2=94 ac 代入整理得,a 2+c 2=134ac ,∴由正弦定理得sin 2A +sin 2C =134 sin A sin C ,则(sin A +sin C )2=sin 2A +sin 2C +2sin A sin C =134 sin A sin C+2sin A sin C =214 sin A sin C =214 ×13 =74 ,∴sin A +sin C =72 或-72(舍).故选C.二、填空题10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若(a +b +c )(a -b +c )=ac ,则B =________.答案:23π解析:由(a +b +c )(a -b +c )=ac 得a 2+c 2-b 2+ac =0.由余弦定理得cos B =a 2+c 2-b 22ac =-12 ,又B 为△ABC 的内角,∴B =23π.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =a cos B ,①则A =________;②若sin C =13,则cos (π+B )=________.答案:①90° ②-13解析:①∵c =a ·cos B ,∴c =a ·a 2+c 2-b 22ac,得a 2=b 2+c 2,∴∠A =90°;②∵cos B =cos (π-A -C )=sin C =13 .∴cos (π+B )=-cos B =-sin C =-13 .12.[2023·全国甲卷(理)]在△ABC 中,∠BAC =60°,AB =2,BC =6 ,∠BAC 的角平分线交BC 于D ,则AD =________.答案:2 解析:方法一 由余弦定理得cos 60°=AC 2+4-62×2AC ,整理得AC 2-2AC -2=0,得AC=1+3 .又S △ABC =S △ABD +S △ACD ,所以12 ×2AC sin 60°=12 ×2AD sin 30°+12 AC ×AD sin30°,所以AD =23AC AC +2 =23×(1+3)3+3=2.方法二 由角平分线定理得BD AB =CD AC ,又BD +CD =6 ,所以BD =26AC +2,CD =6AC AC +2 .由角平分线长公式得AD 2=AB ×AC -BD ×CD =2AC -12AC(AC +2)2 ,又由方法一知AC =1+3 ,所以AD 2=2+23 -12×(1+3)(3+3)2=2+23 -(23 -2)=4,所以AD =2.[能力提升]13.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =8,b <4,c =7,且满足(2a -b )cos C =c ·cos B ,则下列结论正确的是( )A .C =60°B .△ABC 的面积为63 C .b =2D .△ABC 为锐角三角形 答案:AB解析:∵(2a -b )cos C =c cos B ,∴(2sin A -sin B )cos C =sin C cos B ,∴2sin A cos C =sin B cos C +cos B sin C ,即2sin A cos C =sin (B +C ),∴2sin A cos C =sin A .∵在△ABC 中,sin A ≠0,∴cos C =12 ,∴C =60°,A 正确.由余弦定理,得c 2=a 2+b 2-2ab cos C ,得49=64+b 2-2×8b cos 60°,即b 2-8b +15=0,解得b =3或b =5,又b <4,∴b =3,C 错误.∴△ABC 的面积S =12 ab sin C =12 ×8×3×32 =63 ,B 正确.又cos A =b 2+c 2-a 22bc=9+49-642×3×7<0,∴A 为钝角,△ABC 为钝角三角形,D 错误. 14.[2023·全国甲卷(理)]已知四棱锥P ­ABCD 的底面是边长为4的正方形,PC =PD =3,∠PCA =45°,则△PBC 面积为( )A .22B .32C .42D .62 答案:C解析:如图,过点P 作PO ⊥平面ABCD ,垂足为O ,取DC 的中点M ,AB 的中点N ,连接PM ,MN ,AO ,BO .由PC =PD ,得PM ⊥DC ,又PO ⊥DC ,PO ∩PM =P ,所以DC ⊥平面POM ,又OM ⊂平面POM ,所以DC ⊥OM .在正方形ABCD 中,DC ⊥NM ,所以M ,N ,O 三点共线,所以OA =OB ,所以Rt △P AO ≌Rt △PBO ,所以PB =P A .在△P AC 中,由余弦定理,得P A =PC 2+AC 2-2PC ·AC cos 45° =17 ,所以PB =17 .在△PBC 中,由余弦定理,得cos ∠PCB =PC 2+BC 2-BP 22PC ·BC =13 ,所以sin ∠PCB =223 ,所以S △PBC =12 PC ·BCsin ∠PCB =42 ,故选C.15.[2022·全国甲卷(理),16]已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB取得最小值时,BD =________.答案:3 -1解析:以D 为坐标原点,DC 所在的直线为x 轴,DC →的方向为x 轴的正方向,过点D 且垂直于DC 的直线为y 轴,建立平面直角坐标系(图略),易知点A 位于第一象限.由AD =2,∠ADB =120°,得A (1,3 ).因为CD =2BD ,所以设B (-x ,0),x >0,则C (2x ,0).所以AC=(2x -1)2+(0-3)2=4x 2-4x +4,AB =(-x -1)2+(0-3)2=x 2+2x +4 ,所以⎝⎛⎭⎫AC AB 2=4x 2-4x +4x 2+2x +4.令f (x )=4x 2-4x +4x 2+2x +4,x >0,则f ′(x )=(4x 2-4x +4)′(x 2+2x +4)-(4x 2-4x +4)(x 2+2x +4)′(x 2+2x +4)2=(8x -4)(x 2+2x +4)-(4x 2-4x +4)(2x +2)(x 2+2x +4)2=12(x 2+2x -2)(x 2+2x +4)2 .令x 2+2x -2=0,解得x =-1-3 (舍去)或x =3 -1.当0<x <3 -1时,f ′(x )<0,所以f (x )在(0,3 -1)上单调递减;当x >3 -1时,f ′(x )>0,所以f (x )在(3 -1,+∞)上单调递增.所以当x =3 -1时,f (x )取得最小值,即ACAB 取得最小值,此时BD =3 -1.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且6S =(a +b )2-c 2,则tan C =________.答案:125解析:由余弦定理得2ab cos C =a 2+b 2-c 2,又6S =(a +b )2-c 2,所以6×12 ab sin C =(a +b )2-c 2=a 2+b 2-c 2+2ab =2ab cos C +2ab ,化简得3sin C =2cos C +2,结合sin 2C +cos 2C =1,解得sin C =1213 ,cos C =513 ,所以tan C =125.。

高中三角函数历年高考真题_含答案

高中三角函数历年高考真题_含答案

历年高考三角函数专题一,选择题1.(08全国一6)2(sin cos )1y x x =--是 ( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数2.(08全国一9)为得到函数πcos 3y x ⎛⎫=+⎪⎝⎭的图象,只需将函数sin y x =的图像( ) A .向左平移π6个长度单位 B .向右平移π6个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位3.(08全国二1)若sin 0α<且tan 0α>是,则α是 ( ) A .第一象限角B . 第二象限角C . 第三象限角D . 第四象限角4.(08全国二10).函数x x x f cos sin )(-=的最大值为 ( ) A .1 B . 2 C .3 D .25.(08安徽卷8)函数sin(2)3y x π=+图像的对称轴方程可能是 ( )A .6x π=-B .12x π=-C .6x π=D .12x π=6.(08福建卷7)函数y =cos x (x ∈R)的图象向左平移2π个单位后,得到函数y=g(x )的图象,则g(x )的解析式为 ( ) A.-sin x B.sin x C.-cos x D.cos x7.(08广东卷5)已知函数2()(1cos2)sin ,f x x x x R =+∈,则()f x 是 ( )A 、最小正周期为π的奇函数B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数8.(08海南卷11)函数()cos 22sin f x x x =+的最小值和最大值分别为 ( )A. -3,1B. -2,2C. -3,32D. -2,329.(08湖北卷7)将函数sin()y x θ=-的图象F 向右平移3π个单位长度得到图象F ′,若F ′的一条对称轴是直线,1x π=则θ的一个可能取值是 ( )A.512π B.512π- C.1112π D.1112π-10.(08江西卷6)函数sin ()sin 2sin2x f x xx =+是 ( )A .以4π为周期的偶函数B .以2π为周期的奇函数C .以2π为周期的偶函数D .以4π为周期的奇函数11.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为 ( ) A .1BCD .212.(08山东卷10)已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( ) A. BC .45-D .4513.(08陕西卷1)sin 330︒等于 ( ) A.2-B .12-C .12D.214.(08四川卷4)()2tan cot cos x x x += ( ) A.tan x B.sin x C.cos x D.cot x 15.(08天津卷6)把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是 ( ) A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R , B .sin 26x y x π⎛⎫=+∈⎪⎝⎭R , C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R , D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R , 16.(08天津卷9)设5sin 7a π=,2cos 7b π=,2tan 7c π=,则 ( )A .a b c <<B .a c b <<C .b c a <<D .b a c <<17.(08浙江卷2)函数2(sin cos )1y x x =++的最小正周期是 ( ) A.2π B .π C.32πD.2π 18.(08浙江卷7)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是 ( )A.0B.1C.2D.4 二,填空题19.(08北京卷9)若角α的终边经过点(12)P -,,则tan 2α的值为 . 20.(08江苏卷1)()cos 6f x x πω⎛⎫=-⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= . 21.(08辽宁卷16)设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=的最小值为 .22.(08浙江卷12)若3sin()25πθ+=,则cos 2θ=_________。

(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案1. 在△ABC 中,角 A、B、C 所对的边分别是 a、b、c,且 a²+c²-b²=(1) 求 sin²(2A+C)+cos²B 的值;(2) 若 b=2,求△ABC 面积的最大值。

解:(1) 由余弦定理:cosB=(a²+ c²- b²)/(2ac)=4/√115,得sinB=√(1-cos²B)=3√(23)/23。

由正弦定理sin²(2A+C)+cos²B=4sin²B+cos²B=13/23。

2. 在△ABC 中,角 A、B、C 的对边分别为 a、b、c,且bcosC=3acosB-ccosB。

(I) 求 cosB 的值;(II) 若 BA·BC=2,且b=√2,求 a 和 c·b 的值。

解:(I) 由正弦定理得 a=2RsinA,b=2RsinB,c=2RsinC,则 2RsinBcosC=6RsinAcosB-2RsinCcosB,故sinBcosC=3sinAcosB-sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即 sin(B+C)=3sinAcosB,可得 sinA=3sinAcosB/sinB。

又sinA≠0,因此 cosB=1/3。

3. 已知向量 m=(sinB,1-cosB),向量 n=(2,k),且 m 与 n 所成角为π/3,其中 A、B、C 是△ABC 的内角。

(1) 求角 B 的大小;(2) 求 sinA+sinC 的取值范围。

解:(1) ∠m与∠n所成角为π/3,且 m·n=2sinB+ k(1-cosB)=2√3/2cosB+k√(1-cos²B),又 m·n=2cosB+k(1-cosB),解得 k=4/3。

正、余弦函数习题(带答案)

正、余弦函数习题(带答案)

正、余弦函数习题(带答案)1、函数y =2sin (π6−2x)为增函数的区间是()(A )[−π6,π3](B )[π12,7π12](C )[π3,5π6](D )[5π6,π]【答案】C2、函数f(x)=Asin(ωx+φ)(其中A >0,||<π2)的图象如图所示,为了得到g(x)=sin2x 的图像。

则只要将f(x)的图像()A.向右平移π6个单位长度B.向右平移π12个单位长度 C.向左平移π6个单位长度D.向左平移π12个单位长度【答案】A3、下列四种变换方式,其中能将y=sinx 的图象变为y =sin (2x +π4)的图象的是A.①和②B.①和③C.②和③D.②和④ 【答案】A4、函数y=xsinx 在[-π,π]上的图象是【答案】A5、将函数f(x)=sin(ωx+φ)的图像向左平移π/2个单位,若所得图象与原图12;π4,①向左平移,再将横坐标缩短为原来的②横坐标缩短为原来的12,再向左平移π/8;③横坐标缩短为1212,π4;π8,,再将横坐标缩短为原来的④向左平移原来的,再向左平移.象重合,则ω的值不可能等于A.6B.4C.12D.8【答案】A6、己知函数f(x)=2sin(ωx+)(ω⟩0,−π2<<π2)的图像关于直线x=2π3对称,它的周期为π,则A.f(x)的图像过(0,12)B.f(x)在[π12,2π3]上是减函数C.f(x)的一个对称中心是(5π12,0)D.将f(x)的图像向右平移|φ|个单位得到函数y=2sinωx的图像【答案】C7、函数y=2sin(2x+π3)的图象()A.关于原点对称B.关于点(−π6,0)对称C.关于y轴对称D.关于直线x=π6对称【答案】B8.函数y=f(x)的图象如图所示,则y=f(x)的解析式为()A.y=sin2x-2B.y=2cos3x-1C.y=sin(2x−π5)−1D.y=1−sin(2x−π5)【答案】D9、将函数y=cos(x−π3)的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移π6个单位,所得函数图象的一条对称轴为()A.x=π9B.x=π8C.x=π2D.x=π【答案】C10、要得到函数y =√2cosx 的图像,只要将函数y =√2sin (x +π4)的图像() A.向左平移π4个长度单位,B.向右平移π4个长度单位。

(完整版)正余弦定理习题加答案详解超级详细

(完整版)正余弦定理习题加答案详解超级详细

正余弦定理高中数学组卷一.选择题(共9小题)1.(2016•太原校级二模)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,a=2,,则b的值为()A.B. C. D.2.(2016•潍坊模拟)在△ABC中,sinA=sinB是△ABC为等腰三角形的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.(2016•岳阳校级模拟)在△ABC中,A:B:C=1:2:3,则a:b:c等于()A.1:2:3 B.3:2:1 C.1::2 D.2::14.(2016•大连一模)在△ABC中,a,b,c分别是角A,B,C的对边,且满足acosA=bcosB,那么△ABC的形状一定是()A.等腰三角形B.直角三角形C.等腰或直角三角形 D.等腰直角三角形5.(2016•河西区一模)已知△ABC的内角A,B,C的对边分别为a,b,c,且,则∠B=()A.B.C.D.6.(2016•宝鸡一模)在△ABC,a=,b=,B=,则A等于()A.B.C.D.或7.(2016•岳阳二模)△ABC的三个内角A、B、C所对的边分别为a,b,c,asinAsinB+bcos2A=a,则=()A.2 B.2C.D.8.(2016•新余二模)在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.角B的值为()A.B.C.D.9.(2016•江西模拟)在△ABC中,角A,B,C的对边分别是a,b,c,且A=2B,则等于()A.B.C.D.二.填空题(共7小题)10.(2016•上海二模)△ABC中,,BC=3,,则∠C=.11.(2016•丰台区一模)在锐角△ABC中,角A,B,C所对应的边分别为a,b,c,若b=2asinB,则角A等于.12.(2016•焦作一模)在△ABC中,已知a=8,∠B=60°,∠C=75°,则b等于.13.(2016•潍坊一模)已知△ABC中,a,b,c分别为内角A,B,C的对边,且a•cosB+b•cosA=3c•cosC,则cosC=.14.(2016•抚顺一模)已知△ABC的周长为+1,且sinA+sinB=sinC,则边AB的长为.15.(2016•长沙一模)△ABC的周长等于2(sinA+sinB+sinC),则其外接圆半径等于.16.(2016•湖南校级模拟)设△ABC的内角A,B,C的对边分别为a,b,c.若,,则b=.三.解答题(共4小题)17.(2016•白山一模)在△ABC中,角A,B,C所对的边分别为a,b,c,已知=(1)求角C的大小,(2)若c=2,求使△ABC面积最大时a,b的值.18.(2016•安徽校级一模)在△ABC中,角A,B,C的对边分别为a,b,c,且.(1)求角A的值;(2)若∠B=,BC边上中线AM=,求△ABC的面积.19.(2016•平果县模拟)已知在锐角△ABC中,a,b,c为角A,B,C所对的边,且(b ﹣2c)cosA=a﹣2acos2.(1)求角A的值;(2)若a=,则求b+c的取值范围.20.(2016•鹰潭一模)已知a,b,c分别为△ABC三个内角A,B,C的对边,2bcosc=2a ﹣c(Ⅰ)求B;(Ⅱ)若△ABC的面积为,求b的取值范围.正余弦定理高中数学组卷参考答案与试题解析一.选择题(共9小题)1.(2016•太原校级二模)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,a=2,,则b的值为()A.B. C. D.【解答】解:∵在锐角△ABC中,sinA=,S△ABC=,∴bcsinA=bc=,∴bc=3,①又a=2,A是锐角,∴cosA==,∴由余弦定理得:a2=b2+c2﹣2bccosA,即(b+c)2=a2+2bc(1+cosA)=4+6(1+)=12,∴b+c=2②由①②得:,解得b=c=.故选A.2.(2016•潍坊模拟)在△ABC中,sinA=sinB是△ABC为等腰三角形的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【解答】解:当sinA=sinB时,则有A=B,则△ABC为等腰三角形,故sinA=sinB是△ABC 为等腰三角形的充分条件,反之,当△ABC为等腰三角形时,不一定是A=B,若是A=C≠60时,则sinA≠sinB,故sinA=sinB是△ABC为等腰三角形的不必要条件.故选A.3.(2016•岳阳校级模拟)在△ABC中,A:B:C=1:2:3,则a:b:c等于()A.1:2:3 B.3:2:1 C.1::2 D.2::1【解答】解:在△ABC中,若∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=π所以∠A=,∠B=,∠C=.由正弦定理可知:a:b:c=sin∠A:sin∠B:sin∠C=sin:sin:sin=1::2.故选:C.4.(2016•大连一模)在△ABC中,a,b,c分别是角A,B,C的对边,且满足acosA=bcosB,那么△ABC的形状一定是()A.等腰三角形B.直角三角形C.等腰或直角三角形 D.等腰直角三角形【解答】解:根据正弦定理可知∵bcosB=acosA,∴sinBcosB=sinAcosA∴sin2A=sin2B∴A=B,或2A+2B=180°即A+B=90°,即有△ABC为等腰或直角三角形.故选C.5.(2016•河西区一模)已知△ABC的内角A,B,C的对边分别为a,b,c,且,则∠B=()A.B.C.D.【解答】解:已知等式利用正弦定理化简得:=,即c2﹣b2=ac﹣a2,∴a2+c2﹣b2=ac,∴cosB==,∵B为三角形的内角,∴B=.故选:C.6.(2016•宝鸡一模)在△ABC,a=,b=,B=,则A等于()A.B.C.D.或【解答】解:由正弦定理可得:sinA===∵a=<b=∴∴∠A=,故选:B.7.(2016•岳阳二模)△ABC的三个内角A、B、C所对的边分别为a,b,c,asinAsinB+bcos2A=a,则=()A.2 B.2C.D.【解答】解:∵△ABC中,asinAsinB+bcos2A=a,∴根据正弦定理,得sin2AsinB+sinBcos2A=sinA,可得sinB(sin2A+cos2A)=sinA,∵sin2A+cos2A=1,∴sinB=sinA,得b=,可得=.故选:C.8.(2016•新余二模)在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.角B的值为()A.B.C.D.【解答】解:由条件及正弦定理得sinBcosC+sinCcosB=﹣2sinAcosB.即sin(B+C)=﹣2sinAcosB.∵A+B+C=π,A>0∴sin(B+C)=sinA,又sinA≠0,∴cosB=﹣,而B∈(0,π),∴B=.故选:C.9.(2016•江西模拟)在△ABC中,角A,B,C的对边分别是a,b,c,且A=2B,则等于()A.B.C.D.【解答】解:∵A+B+C=π,A=2B,∴===.再结合正弦定理得:.故选:D.二.填空题(共7小题)10.(2016•上海二模)△ABC中,,BC=3,,则∠C=.【解答】解:由,a=BC=3,c=,根据正弦定理=得:sinC==,又C为三角形的内角,且c<a,∴0<∠C<,则∠C=.故答案为:11.(2016•丰台区一模)在锐角△ABC中,角A,B,C所对应的边分别为a,b,c,若b=2asinB,则角A等于30°.【解答】解:利用正弦定理化简b=2asinB得:sinB=2sinAsinB,∵sinB≠0,∴sinA=,∵A为锐角,∴A=30°.故答案为:30°12.(2016•焦作一模)在△ABC中,已知a=8,∠B=60°,∠C=75°,则b等于4.【解答】解:∵a=8,B=60°,C=75°,即A=45°,∴由正弦定理,得:b===4.故答案为:413.(2016•潍坊一模)已知△ABC中,a,b,c分别为内角A,B,C的对边,且a•cosB+b•cosA=3c•cosC,则cosC=.【解答】解:∵a•cosB+b•cosA=3c•cosC,∴利用余弦定理可得:a×+b×=3c×,整理可得:a2+b2﹣c2=,∴由余弦定理可得:cosC===.故答案为:.14.(2016•抚顺一模)已知△ABC的周长为+1,且sinA+sinB=sinC,则边AB的长为1.【解答】解:由题意及正弦定理,得:AB+BC+AC=+1.BC+AC=AB,两式相减,可得AB=1.故答案为:1.15.(2016•长沙一模)△ABC的周长等于2(sinA+sinB+sinC),则其外接圆半径等于1.【解答】解:设△ABC的三边分别为a,b,c,外接圆半径为R,由正弦定理得,∴a=2RsinA,b=2RsinB,c=2RsinC,∵a+b+c=2(sinA+sinB+sinC),∴2RsinA+2RsinB+2RsinC=2(sinA+sinB+sinnC),∴R=1.故答案为:1.16.(2016•湖南校级模拟)设△ABC的内角A,B,C的对边分别为a,b,c.若,,则b=2.【解答】解:B=π﹣A﹣C=,△ABC中,由正弦定理可得,∴b=2,故答案为:2.三.解答题(共4小题)17.(2016•白山一模)在△ABC中,角A,B,C所对的边分别为a,b,c,已知=(1)求角C的大小,(2)若c=2,求使△ABC面积最大时a,b的值.【解答】解:(1)∵A+C=π﹣B,即cos(A+C)=﹣cosB,∴由正弦定理化简已知等式得:=,整理得:2sinAcosC+sinBcosC=﹣sinCcosB,即﹣2sinAcosC=sinBcosC+cosBsinC=sin(B+C)=sinA,∵sinA≠0,∴cosC=﹣,∵C为三角形内角,∴C=;(Ⅱ)∵c=2,cosC=﹣,∴由余弦定理得:c2=a2+b2﹣2abcosC,即4=a2+b2+ab≥2ab+ab=3ab,∴ab≤,(当且仅当a=b时成立),∵S=absinC=ab≤,∴当a=b时,△ABC面积最大为,此时a=b=,则当a=b=时,△ABC的面积最大为.18.(2016•安徽校级一模)在△ABC中,角A,B,C的对边分别为a,b,c,且.(1)求角A的值;(2)若∠B=,BC边上中线AM=,求△ABC的面积.【解答】解:(1)∵.∴由正弦定理,得,化简得cosA=,∴A=;(2)∵∠B=,∴C=π﹣A﹣B=,可知△ABC为等腰三角形,在△AMC中,由余弦定理,得AM2=AC2+MC2﹣2AC•MCcos120°,即7=,解得b=2,∴△ABC的面积S=b2sinC==.19.(2016•平果县模拟)已知在锐角△ABC中,a,b,c为角A,B,C所对的边,且(b ﹣2c)cosA=a﹣2acos2.(1)求角A的值;(2)若a=,则求b+c的取值范围.【解答】解:(1)在锐角△ABC中,根据(b﹣2c)cosA=a﹣2acos2=a﹣2a•,利用正弦定理可得(sinB﹣2sinC)cosA=sinA(﹣cosB),即sinBcosA+cosBsinA=2sinCcosA,即sin(B+A)=2sinCcosA,即sinC=2sinCcosA,∴cosA=,∴A=.(2)若a=,则由正弦定理可得==2,∴b+c=2(sinB+sinC)=2[sinB+sin(﹣B)]=3sinB+cosB=2sin(B+).由于,求得<B<,∴<B+<.∴sin(B+)∈(,1],∴b+c∈(3,2].20.(2016•鹰潭一模)已知a,b,c分别为△ABC三个内角A,B,C的对边,2bcosc=2a ﹣c(Ⅰ)求B;(Ⅱ)若△ABC的面积为,求b的取值范围.【解答】解:(1)由正弦定理,得2sinBcosC=2sinA﹣sinC,﹣﹣﹣﹣(2分)在△ABC中,sinA=sin(B+C)=sinBcosC+cosBsinC,∴2cosBsinC=sinC,又∵C是三角形的内角,可得sinC>0,∴2cosB=1,可得cosB=,∵B是三角形的内角,B∈(0,π),∴B=.﹣﹣﹣﹣﹣(6分)(2)∵S△ABC==,B=∴,解之得ac=4,﹣﹣﹣﹣(8分)由余弦定理,得b2=a2+c2﹣2accosB=a2+c2﹣ac≥2ac﹣ac=ac=4,(当且仅当a=c=2时,“=”成立)∴当且仅当a=c=2时,b的最小值为2.﹣﹣﹣﹣(12分)综上所述,边b的取值范围为[2,+∞)﹣﹣﹣﹣(13分)。

高考三角函数经典解答题及答案

高考三角函数经典解答题及答案

31在△ ABC 中,角A 、B C 所对的边分别是 a, b, c,且a 2 + c 2 — b 2 =1ac. 2(1)求 sin 2——— + cos2 B 的值; 2 (2)若b=2,求△ ABC 面积的最大值.1解:(1)由余弦TE 理:conB=-41 +cos2B=- -4一, 1 1 (2)由 cosB = —,得 sin B48 ,S △AB =:acsinB & "15 (a=c 时取等号) 3 23故S AABC 的最大值为 ------32在^ABC 中,角 A, B, C 的对边分别为 a, b, c,且 bcosC = 3acosB -ccosB.(I)求cosB 的值;(II )若BA BC = 2 ,且b = 2/2 ,求a 和c b 的值.解:(I)由正弦定理得 a =2Rsin A,b =2Rsin B,c = 2RsinC , 贝U2Rsin BcosC = 6Rsin AcosB 一 2Rsin C cosB, 故sin B cosC = 3sin AcosB - sinC cosB, 可得 sin BcosC sinCcosB =3sin AcosB, 即sin(B C) =3sin AcosB,可得 sin A = 3sin AcosB.又 sin A = 0,…1因止匕cos B = —. 3(II )解:由 BA BC =2,可得acosB = 2,1 M 一又 cosB = 一,故 ac = 6,3由b 2=a 2c 2-2accosB, 可得 a 2c 2=12, 所以(a -c)2=0,即a =c,所以a= c= . 63已知向重m = (sin B, 1 - cosB ),向重n = ( 2, 0),且m 与n 所成角为—,sin2AB 21/口a 2 + c 2 =2ac+4 > 2ac,得4 已知向量 m=(1,2sinA), n =(sin A,1+cosA),满足 m//n,b+c = V3a. (I小;(II )求 sin( B +f)的值.解:(1)由 m//n 得 2 sin 2A -1 一 cos A = 0 ……2 分 即 2c os2A+8SA —1 =0, cos A 或 cos A = —12: A 是AABC 的内角,cosA=—1舍去. A 「3(2) : b +c =M 3a由正弦定理,sin B - sin C = 3sin A =32其中A 日C 是AABC 的内角。

高中数学高考总复习正弦定理与余弦定理应用举例习题及详解

高中数学高考总复习正弦定理与余弦定理应用举例习题及详解

高中数学高考总复习正弦定理与余弦定理应用举例习题及详解一、选择题1.(2010·广东六校)两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )km.( )A .a B.2a C .2aD.3a[答案] D[解析] 依题意得∠ACB =120°.由余弦定理cos120°=AC 2+BC 2-AB 22AC ·BC∴AB 2=AC 2+BC 2-2AC ·BC cos120° =a 2+a 2-2a 2⎝⎛⎭⎫-12=3a 2 ∴AB =3a .故选D.2.(文)(2010·广东佛山顺德区质检)在△ABC 中,“sin A >32”是“∠A >π3”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件[答案] A[解析] 在△ABC 中,若sin A >32,则∠A >π3,反之∠A >π3时,不一定有sin A >32,如A =5π6时,sin A =sin 5π6=sin π6=12. (理)在△ABC 中,角A 、B 所对的边长为a 、b ,则“a =b ”是“a cos A =b cos B ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A[解析] 当a =b 时,A =B , ∴a cos A =b cos B ; 当a cos A =b cos B 时, 由正弦定理得 sin A ·cos A =sin B ·cos B , ∴sin2A =sin2B , ∴2A =2B 或2A =π-2B , ∴A =B 或A +B =π2.则a =b 或a 2+b 2=c 2.所以“a =b ”⇒“a cos A =b cos B ”, “a cos A =b cos B ”⇒/ “a =b ”,故选A.3.已知A 、B 两地的距离为10km ,B 、C 两地的距离为20km ,观测得∠ABC =120°,则AC 两地的距离为( )A .10km B.3kmC .105kmD .107km[答案] D[解析] 如图,△ABC 中,AB =10,BC =20,∠B =120°,由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·cos120° =102+202-2×10×20×⎝⎛⎭⎫-12=700, ∴AC =107km.∴选D.4.(文)在△ABC 中,sin 2A 2=c -b2c (a 、b 、c 分别为角A 、B 、C 的对应边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形[答案] B[解析] sin 2A 2=1-cos A 2=c -b 2c ,∴cos A =bc ,∴b 2+c 2-a 22bc =bc,∴a 2+b 2=c 2,故选B.(理)(2010·河北邯郸)在△ABC 中,sin 2A +cos 2B =1,则cos A +cos B +cos C 的最大值为( )A.54B. 2 C .1D.32[答案] D[解析] ∵sin 2A +cos 2B =1,∴sin 2A =sin 2B , ∵0<A ,B <π,∴sin A =sin B ,∴A =B . 故cos A +cos B +cos C =2cos A -cos2A =-2cos 2A +2cos A +1=-2(cos A -12)2+32,∵0<A <π2,∴0<cos A <1,∴cos A =12时,取得最大值32.5.(文)(2010·广东汕头一中)已知△ABC 的外接圆半径为R ,角A 、B 、C 的对边分别为a 、b 、c ,且2R (sin 2A -sin 2C )=(2a -b )sin B ,那么角C 的大小为( )A.π3B.π2C.π4D.2π3[答案] C[解析] 由正弦定理得,a 2-c 2=2ab -b 2, ∴cos C =a 2+b 2-c 22ab =22,∵0<C <π,∴C =π4.(理)已知a 、b 、c 是△ABC 三内角A 、B 、C 的对边,且A 为锐角,若sin 2A -cos 2A =12,则( )A .b +c <2aB .b +c ≤2aC .b +c =2aD .b +c ≥2a[答案] B[解析] ∵sin 2A -cos 2A =12,∴cos2A =-12,又A 为锐角,∴A =60°,∴B +C =120°, ∴b +c 2a =sin B +sin C2sin A=2sinB +C 2cos B -C23=cos B -C 2≤1,∴b +c ≤2a .6.(2010·北京顺义一中月考)在△ABC 中,已知cos A =513,sin B =35,则cos C 的值为( )A.1665B.5665C.1665或5665D .-1665[答案] A[解析] ∵cos A =513,∴sin A =1213>35=sin B ,∴A >B ,∵sin B =35,∴cos B =45,∴cos C =cos[π-(A +B )]=-cos(A +B )=sin A sin B -cos A cos B =1665.[点评] 在△ABC 中,有sin A >sin B ⇔A >B .7.在地面上一点D 测得一电视塔尖的仰角为45°,再向塔底方向前进100m ,又测得塔尖的仰角为60°,则此电视塔高约为________m .( )A .237B .227C .247D .257[答案] A[解析] 如图,∠D =45°,∠ACB =60°,DC =100,∠DAC =15°, ∵AC =DC ·sin45°sin15°,∴AB =AC ·sin60° =100·sin45°·sin60°sin15°=100×22×326-24≈237.∴选A.8.(文)(2010·青岛市质检)在△ABC 中,∠B =π3,三边长a 、b 、c 成等差数列,且ac =6,则b 的值是( )A. 2B. 3C. 5D. 6[答案] D[解析] 由条件2b =a +c ,∴4b 2=a 2+c 2+2ac =a 2+c 2+12,又cos B =a 2+c 2-b 22ac ,∴12=a 2+c 2-b212,∴a 2+c 2=6+b 2, ∴4b 2=18+b 2,∴b = 6.(理)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若a 、b 、c 成等比数列,且c =2a ,则cos B =( )A.14B.34C.24D.23[答案] B[解析] ∵a 、b 、c 成等比数列,∴b 2=ac ,又∵c =2a , ∴b 2=2a 2,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ×2a=34.[点评] 在知识的交汇处命题是高考命题的基本原则.本题融数列与三角函数于一体,集中考查正弦定理、余弦定理、等比数列等基础知识.同时也体现了数列、三角函数等内容是高考中的热点问题,复习时要注意强化.9.如图所示的曲线是以锐角△ABC 的顶点B 、C 为焦点,且经过点A 的双曲线,若△ABC 的内角的对边分别为a 、b 、c ,且a =4,b =6,c sin A a =32,则此双曲线的离心率为( )A.3+72B.3-72C .3-7D .3+7[答案] D [解析]c sin A a =32⇒a sin A =c 32=c sin C⇒sin C =32,因为C 为锐角,所以C =π3, 由余弦定理知c 2=a 2+b 2-2ab cos C =42+62-2×4×6×12=28,∴c =27∴e =a b -c =66-27=3+7.10.(文)(2010·山东济南)设F 1、F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 在双曲线上,若PF 1→·PF 2→=0,|PF 1→|·|PF 2→|=2ac (c 为半焦距),则双曲线的离心率为( )A.3-12B.3+12 C .2D.5+12[答案] D[解析] 由条件知,|PF 1|2+|PF 2|2=|F 1F 2|2,根据双曲线定义得:4a 2=(|PF 1|-|PF 2|)2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=|F 1F 2|2-4ac =4c 2-4ac ,∴a 2+ac -c 2=0,∴1+e -e 2=0, ∵e >1,∴e =5+12. (理)(2010·安徽安庆联考)如图,在△ABC 中,tan C 2=12,AH →·BC →=0,AB →·(CA →+CB →)=0,经过点B 以A 、H 为两焦点的双曲线的离心率为( )A.5+12B.5-1C.5+1D.5-12[答案] A[解析] ∵AH →·BC →=0,∴AH ⊥BC , ∵tan C 2=12,∴tan C =2tanC21-tan 2C 2=43=AHCH,又∵AB →·(CA →+CB →)=0,∴CA =CB , ∴tan B =tan ⎝⎛⎭⎫180°-C 2=cot C 2=2=AHBH ,设BH =x ,则AH =2x ,∴CH =32x ,AB =5x ,由条件知双曲线中2C =AH =2x,2a =AB-BH =(5-1)x ,∴e =c a =25-1=5+12,故选A.二、填空题11.如图,为了测定河的宽度,在一岸边选定两点A ,B 和对岸标记物C ,测得∠CAB =30°,∠CBA =45°,AB =120米,则河的宽度为________米.[答案] 60(3-1)[解析] 过C 点作CD ⊥AB 于D ,设BD =x ,则CD =x ,AD =120-x ,又∵∠CAB =30°,∴x 120-x =33,解之得,x =60(3-1). 12.(2010·福建三明一中)如图,海岸线上有相距5海里的两座灯塔A ,B ,灯塔B 位于灯塔A 的正南方向.海上停泊着两艘轮船,甲船位于灯塔A 的北偏西75°方向,与A 相距32海里的D 处;乙船位于灯塔B 的北偏西60°方向,与B 相距5海里的C 处.则两艘轮船之间的距离为________海里.[答案]13[解析] 如图可知,∠ABC =60°,AB =BC ,∴AC =5,∠BAC =60°,从而∠DAC =45°, 又AD =32,∴由余弦定理得, CD =AD 2+AC 2-2AD ·AC ·cos45°=13.13.(文)(2010·山东日照模拟)在△ABC 中,三个内角A 、B 、C 所对的边分别是a 、b 、c ,已知c =2,C =π3,△ABC 的面积等于3,则a +b =________.[答案] 4[解析] 由条件知,12ab sin π3=3,∴ab =4,∵cos π3=a 2+b 2-42ab,∴a 2+b 2=8,∴(a +b )2=a 2+b 2+2ab =8+8=16, ∴a +b =4.(理)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,面积S =14(b 2+c 2-a 2),若a =10,则bc 的最大值是______.[答案] 100+50 2[解析] 由题意得,12bc sin A =14(b 2+c 2-a 2),∴a 2=b 2+c 2-2bc sin A ,结合余弦定理得,sin A =cos A ,∴∠A =π4,又根据余弦定理得100=b 2+c 2-2bc ≥2bc -2bc ,∴bc ≤1002-2=100+50 2.14.(文)(2010·山东日照)一船向正北匀速行驶,看见正西方两座相距10海里的灯塔恰好与该船在同一直线上,继续航行半小时后,看见其中一座灯塔在南偏西60°方向上,另一灯塔在南偏西75°方向上,则该船的速度是________海里/小时.[答案] 10[解析] 设该船的速度为v 海里/小时,如图由题意知,AD =v 2,AC =32v ,∵tan75°=tan45°+tan30°1-tan45°tan30°=2+3,又tan75°=ABAD,∴2+3=10+3v2v 2,解得v =10. (理)(2010·合肥质检)如图,一船在海上自西向东航行,在A 处测得某岛M 的方位角为北偏东α角,前进m km 后在B 处测得该岛的方位角为北偏东β角,已知该岛周围n km 范围内(包括边界)有暗礁,现该船继续东行.当α与β满足条件________时,该船没有触礁危险.[答案] m cos αcos β>n sin(α-β)[解析] ∠MAB =90°-α,∠MBC =90°-β=∠MAB +∠AMB =90°-α+∠AMB ,∴∠AMB =α-β,由题可知,在△ABM 中,根据正弦定理得BM sin (90°-α)=m sin (α-β),解得BM =m cos αsin (α-β),要使船没有触礁危险需要BM sin(90°-β)=m cos αcos βsin (α-β)>n ,所以α与β满足m cos αcos β>n sin(α-β)时船没有触礁危险.三、解答题15.(2010·河北唐山)在△ABC 中,a 、b 、c 分别是角A 、B 、C 所对的边,且a cos B +b cos A =1.(1)求c ;(2)若tan(A +B )=-3,求CA →·CB →的最大值. [解析] (1)由a cos B +b cos A =1及正弦定理得, c sin A sin C ·cos B +c sin Bsin C ·cos A =1, ∴c sin(A +B )=sin C ,又sin(A +B )=sin(π-C )=sin C ≠0, ∴c =1.(2)∵tan(A +B )=-3,0<A +B <π,∴A +B =2π3,∴C =π-(A +B )=π3.由余弦定理得,12=a 2+b 2-2ab cos C =a 2+b 2-ab ≥2ab -ab =ab =2CA →·CB →,∴CA →·CB →≤12,当且仅当a =b =1时取“=”号. 所以,CA →·CB →的最大值是12.16.(文)(2010·广东玉湖中学)如图,要计算西湖岸边两景点B 与C 的距离,由于地形的限制,需要在岸上选取A 和D 两点,现测得AD ⊥CD ,AD =10km ,AB =14km ,∠BAD =60°,∠BCD =135°,求两景点B 与C 的距离(精确到0.1km).参考数据:2=1.414,3=1.732,5=2.236.[解析] 在△ABD 中,设BD =x , 则BA 2=BD 2+AD 2-2BD ·AD ·cos ∠BDA , 即142=x 2+102-2·10x ·cos60°, 整理得:x 2-10x -96=0, 解之得,x 1=16,x 2=-6(舍去), 由正弦定理得, BC sin ∠CDB =BDsin ∠BCD,∴BC =16sin135°·sin30°=82≈11.3(km)答:两景点B 与C 的距离约为11.3km.(理)(2010·湖南十校联考)长沙市某棚户区改造建筑用地平面示意图如图所示.经规划调研确定,棚改规划建筑用地区域可近似为半径是R 的圆面.该圆的内接四边形ABCD 是原棚户建筑用地,测量可知边界AB =AD =4万米,BC =6万米,CD =2万米.(1)请计算原棚户区建筑用地ABCD 的面积及圆面的半径R 的值;(2)因地理条件的限制,边界AD 、CD 不能变更,而边界AB 、BC 可以调整.为了提高棚户区改造建筑用地的利用率,请在ABC 上设计一点P ,使得棚户区改造的新建筑用地APCD 的面积最大,并求出其最大值.[解析] (1)因为四边形ABCD 内接于圆,所以∠ABC +∠ADC =180°,连接AC ,由余弦定理:AC 2=42+62-2×4×6cos ∠ABC =42+22-2×2×4cos ∠ADC .∴cos ∠ABC =12.∵∠ABC ∈(0,π),∴∠ABC =60°.则S 四边形ABCD =12×4×6×sin60°+12×2×4×sin120°=83(万平方米). 在△ABC 中,由余弦定理: AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC =16+36-2×4×6×12=28,故AC =27.由正弦定理得,2R =AC sin ∠ABC =2732=4213,∴R =2213(万米).(2)S 四边形APCD =S △ADC +S △APC , S △ADC =12AD ·CD ·sin120°=2 3.设AP =x ,CP =y , 则S △APC =12xy ·sin60°=34xy .又由余弦定理:AC 2=x 2+y 2-2xy cos60°高考总复习含详解答案 =x 2+y 2-xy =28.∴x 2+y 2-xy ≥2xy -xy =xy .∴xy ≤28,当且仅当x =y 时取等号.∴S 四边形APCD =23+34xy ≤23+34×28=93,即当x =y 时面积最大,其最大面积为93万平方米.17.(2010·上海松江区模拟)如图所示,在一条海防警戒线上的点A 、B 、C 处各有一个水声监测点,B 、C 两点到点A 的距离分别为20千米和50千米.某时刻,B 收到发自静止目标P 的一个声波信号,8秒后A 、C 同时接收到该声波信号,已知声波在水中的传播速度是1.5千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B 、C 到P 的距离,并求x 的值.(2)求P 到海防警戒线AC 的距离(结果精确到0.01千米).[解析] (1)依题意,有P A =PC =x ,PB =x -1.5×8=x -12.在△P AB 中,AB =20cos ∠P AB =P A 2+AB 2-PB 22P A ·AB =x 2+202-(x -12)22x ·20=3x +325x同理,在△P AC 中,AC =50cos ∠P AC =P A 2+AC 2-PC 22P A ·AC =x 2+502-x 22x ·50=25x, ∵cos ∠P AB =cos ∠P AC ,∴3x +325x =25x,解之得,x =31. (2)作PD ⊥AC 于D ,在△ADP 中,由cos ∠P AD =2531得, sin ∠P AD =1-cos 2∠P AD =42131, ∴PD =P A sin ∠APD =31·42131=421≈18.33千米, 答:静止目标P 到海防警戒线AC 的距离为18.33千米.。

解三角形(正弦定理、余弦定理)知识点、例题解析、高考题汇总及答案

解三角形(正弦定理、余弦定理)知识点、例题解析、高考题汇总及答案

解三角形【考纲说明】1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题【知识梳理】一、正弦定理1、正弦定理:在△ABC 中,R CcB b A a 2sin sin sin ===(R 为△ABC 外接圆半径)。

2、变形公式:(1)化边为角:2sin ,2sin ,2sin ;a R A b R B c R C === (2)化角为边:sin ,sin ,sin ;222a b cA B C R R R=== (3)::sin :sin :sin a b c A B C = (4)2sin sin sin sin sin sin a b c a b c R A B C A B C++====++.3、三角形面积公式:21111sin sin sin 2sin sin sin 22224ABCabc S ah ab C ac B bc A R A B C R∆====== 4、正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(解唯一)(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. (解可能不唯一) 二、余弦定理1、余弦定理:A bc c b a cos 2222-+=⇔bcac b A 2cos 222-+=B ac a c b cos 2222-+=⇔cab ac B 2cos 222-+=C ab b a c cos 2222-+=⇔abc b a C 2cos 222-+=2、余弦定理可以解决的问题:α北东h i l=θ(1)已知三边,求三个角;(解唯一)(2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一):(3)两边和其中一边对角,求另一边,进而可求其它的边和角.(解可能不唯一) 三、正、余弦定理的应用 1、仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).图1 图2 图3 图42、方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图2). 3、方向角相对于某一正方向的水平角(如图3).4、坡角:坡面与水平面所成的锐二面角叫坡角(如图4). 坡度:坡面的铅直高度与水平宽度之比叫做坡度(或坡比)【经典例题】1、(2012天津理)在ABC ∆中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cos C =( )A .725B .725-C .725±D .2425【答案】A 【解析】85,b c =由正弦定理得8sin 5sin B C =,又2C B =,8sin 5sin 2B B ∴=,所以8sin 10sin cos B B B =,易知247sin 0,cos ,cos cos 22cos 1525B BC B B ≠∴===-=. 2、(2009广东文)已知ABC ∆中,C B A ∠∠∠,,的对边分别为,,a b c 若62a c ==75A ∠=,则b =α 北东南西 B目标lh( )A .2B .4+ C .4— D【答案】 A【解析】0sin sin 75sin(3045)sin 30cos 45sin 45cos304A ==+=+=由a c ==可知,075C ∠=,所以030B ∠=,1sin 2B =由正弦定理得1sin 2sin 2ab B A=⋅==,故选A3、(2011浙江)在ABC ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=( )A .-12 B .12C . -1D . 1 【答案】D【解析】∵B b A a sin cos =,∴B A A 2sin cos sin =,∴1cos sin cos cos sin 222=+=+B B B A A .4、(2012福建文)在ABC ∆中,已知60,45,BAC ABC BC ∠=︒∠=︒=则AC =_______.【解析】由正弦定理得sin 45AC AC =⇒=︒5、(2011北京)在ABC 中,若15,,sin 43b B A π=∠==,则a = . 【答案】325 【解析】:由正弦定理得sin sin a b A B =又15,,sin 43b B A π=∠==所以5,13sin 34a a π==6、(2012重庆理)设ABC ∆的内角,,A B C 的对边分别为,,abc ,且35cos ,cos ,3,513A B b ===则c =______ 【答案】145c =【解析】由35412cos ,cos sin ,sin 513513A B A B ==⇒==, 由正弦定理sin sin a b A B=得43sin 13512sin 513b A a B ⨯===, 由余弦定理2222142cos 25905605a cb bc A c c c =+-⇒-+=⇒=7、(2011全国)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.己知sin csin sin sin a A C C b B +=. (I )求B ; (Ⅱ)若075,2,A b ==a c 求,. 【解析】(I)由正弦定理得222a cb +=由余弦定理得2222cos b a c ac B =+-.故cos 2B =,因此45B = (II )sin sin(3045)A =+sin30cos 45cos30sin 45=+4=故sin 1sin A a b B =⨯==+ sin sin 6026sin sin 45C c b B =⨯=⨯=8、(2012江西文)△ABC 中,角A,B,C 的对边分别为a,b,c.已知3cos(B-C)-1=6cosBcosC.(1)求cosA;(2)若a=3,△ABC 的面积为求b,c.【解析】(1) 3(cos cos sin sin )16cos cos 3cos cos 3sin sin 13cos()11cos()3B C B C B C B C B C B C A π+-=⎧⎪-=-⎪⎪+=-⎨⎪⎪-=-⎪⎩则1cos 3A =. (2)由(1)得sin A =,由面积可得bc=6①,则根据余弦定理 2222291cos 2123b c a b c A bc +-+-===则2213b c +=②,①②两式联立可得32b a =⎧⎪⎨=⎪⎩或32a b =⎧⎪⎨=⎪⎩.9、(2011安徽)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a=3,b=2,12cos()0B C ++=,求边BC 上的高.【解析】:∵A +B +C =180°,所以B +C =A , 又12cos()0B C ++=,∴12cos(180)0A +-=, 即12cos 0A -=,1cos 2A =, 又0°<A<180°,所以A =60°.在△ABC 中,由正弦定理sin sin a b A B=得sin 2sin 602sin 3b A B a ===,又∵b a <,所以B <A ,B =45°,C =75°, ∴BC 边上的高AD =AC·sinC 2752sin(4530)=+2(sin 45cos30cos 45sin 30)=+2321312()2+==10、(2012辽宁理)在ABC ∆中,角A 、B 、C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列.(I )求cos B 的值;(Ⅱ)边a ,b ,c 成等比数列,求sin sin A C 的值. 【解析】(I )由已知12,,,cos 32B AC A B C B B ππ=+++=∴==(Ⅱ)解法一:2b ac =,由正弦定理得23sin sin sin 4A CB ==, 解法二:2222221,cos 222a c b a c ac b ac B ac ac+-+-====,由此得22a b ac ac +-=,得a c =所以3,sin sin 34A B C A C π====【课堂练习】1、(2012广东文)在ABC ∆中,若60A ∠=︒,45B ∠=︒,BC =,则AC =( )A .B .CD 2、(2011四川)在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )A .(0,]6πB .[,)6ππC .(0,]3πD .[,)3ππ3、(2012陕西理)在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )A B C .12 D .12- 4、(2012陕西)在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若2222c b a =+,则C cos 的最小值为( ) A .23B .22 C .21D .21-5、(2011天津)如图,在△ABC 中,D 是边AC 上的点,且,2,2AB CD AB BC BD ===则sin C 的值为( )A .3 B .6 C .3 D .66、(2011辽宁)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=ab( )A .B .CD 7、(2012湖北文)设ABC ∆的内角,,,A B C 所对的边分别为,,a b c ,若三边的长为连续的三个正整数,且A B C >>,320cos b a A =,则sin :sin :sin A B C 为( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶48、(2011上海)在相距2千米的A .B 两点处测量目标C ,若075,60CAB CBA ∠=∠=,则A C 两点之间的距离是 千米。

高考数学 正弦定理和余弦定理 专题

高考数学  正弦定理和余弦定理  专题

高考数学 正弦定理和余弦定理 专题一、选择题1.在△ABC 中,若∠A =60°,b =1,S △ABC =3,则a +b +csin A +sin B +sin C 的值为( )A.2633B.2393C.393D.1333解析:∵S △ABC =3,即12bc sin A =3,∴c =4.由余弦定理a 2=b 2+c 2-2bc cos A =13,∴a=13, ∴a +b +c sin A +sin B +sin C =a sin A =2133=2393.答案:B2.在△ABC 中,已知∠B =45°,c =22,b =433,则∠A 等于( )A .15°B .75°C .105°D .75°或15°解析:根据正弦定理c sin C =b sin B ,sin C =c sin B b =22×22433=32.∴C =60°或C =120°,因此A =75°或A =15°. 答案:D3.在△ABC 中,设命题p :a sin B =b sin C =c sin A,命题q :△ABC 是等边三角形,那么命题p是命题q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:若△ABC 是等边三角形,则a sin B =b sin C =c sin A ;若a sin B =b sin C =csin A ,又a sin A =b sin B =csin C,则⎩⎪⎨⎪⎧a 2=bc ,b 2=ac ,c 2=ab ,即a =b =c .∴p 是q 的充要条件. 答案:C4.若钝角三角形三内角成等差数列,且最大边长与最小边长的比值为m ,则m 的范围是( )A.(1,2) B.(2,+∞) C.=sin(B+C)=sin B cos C+cos B sin C=32cos C+12sin C,∴3+12sin C=32cos C+12sin C,即sin C=cos C.又0°<C<180°,∴C=45°,A=180°-(B+C)=75°.解法二:设最大边长为a,最小边长为c,则ac=3+12,由a2+c2-b22ac=12,则b2=a2+c2-ac.cos C=a2+b2-c22ab=2a2-ac2a a2+c2-ac=2·a2c2-ac2·aca2c2-ac+1=22.又0°<C<180°,∴C=45°,则A=180°-(B+C)=75°.1.在△ABC中,角A、B、C所对应的边分别为a、b、c,a=23,tanA+B2+tanC2=4,2sin B cos C=sin A,求A,B及b,c.解答:由tanA+B2+tanC2=4得cotC2+tanC2=4,∴cosC2sinC2+sinC2cosC2=4,∴1sinC2cosC2=4.∴sin C=12,又C∈(0,π),∴C=π6,或C=5π6,由2sin B cos C=sin A得2sin B cos C=sin(B+C),即sin(B-C)=0,∴B=C,B=C=π6,A=π-(B+C)=2π3,由正弦定理asin A=bsin B=csin C得b=c=asin Bsin A=23×1232=2.2.如下图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β.(1)证明sin α+cos 2β=0;(2)若AC=3DC,求β的值.解答:(1)证明:∵AB=AD,则∠ADB=β,∴∠C=β-α.又∠B+∠C=90°,即2β-α=90°,则2β=90°+α,cos 2β=-sin α,即cos 2β+sin α=0.①(2)在△ADC中,DCsin α=ACsin β,即sin β=3sin α.②①代入②整理得:23sin2β-sin β-3=0.解得sin β=32,或sin β=-33舍去,又β为锐角,则β=60°.。

(完整word)正弦余弦历年高考题及答案

(完整word)正弦余弦历年高考题及答案

正余弦定理1 在 ABC 中,A B 是 sin A sinB 的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件C2、 已知关于x 的方程x 2 xcosA cosB 2sin 2 0的两根之和等于两根之积的一半,2则 ABC - -定是()(A )直角三角形(B )钝角三角形(C )等腰三角形(D )等边三角形.3、 已知a,b,c 分别是△ ABC 的三个内角 A,B,C 所对的边,若 a=1,b^. 3, A+C=2B,则sinC=则角A 的大小为 _______________ . 6、在 ABC 中,a, b, c 分别为角A, B, C 的对边,且4sin 2 —C cos2A 72 2(1) 求 A 的度数(2)若a 3 , b c 3,求b 和c 的值7、 在厶ABC 中已知acosB=bcosA,试判断△ ABC 的形状.8、如图,在△ ABC 中,已知a , 3 , b . 2 , B=45求A C 及c .则a=5、在 ABC 中,角A,B,C 所对的边分别为 a ,b ,c ,若acosB.2,c J4、2 2 21、 解:在 ABC 中,A B a b 2Rsi nA 2Rsi nB si nA si nB ,因此,选 C .1 2 C 1 cosC "十2、 【答案】由题意可知: cos A cos B 2 sin ,从而 2 2 2ABC 一定是等腰三角形选3、【命题立意】 本题考察正弦定理在解三角形中的应用4、【命题立意】 本题考查解三角形中的余弦定理。

5、【命题立意】 本题考查了三角恒等变换、已知三角函数值求解以及正弦定理,考查了考生 的推理论证能力和运算求解能力。

【思路点拨】 先根据si nB cosB ,2求出B,再利用正弦定理求出 si nA ,最后求出A. 1解得 sin A ,又 a<b ,所以 A<B=45 o ,所以 A=30o .2cos A cos B 1 cos(AB) 1 cosAcosB sin Asin BcosAcosB sin Asin B 1 , cos(A B) 1 又因为A B 所以A B 0,所以【思路点拨】 由已知条件求出B 、A 的大小,求出C ,从而求出sinC.【规范解答】由 A+C=2B 及 A1B C 180o 得B 60o ,由正弦定理得」sin A1sin A -, 260o ,所以 A 30o , C 180o 90o ,所以 sinC sin 90o1.【思路点拨】 对 C 利用余弦定理,通过解方程可解出【规范解答】由余弦定理或2 (舍)。

高中数学高考总复习正弦定理与余弦定理习题及详解

高中数学高考总复习正弦定理与余弦定理习题及详解

高中数学高考总复习正弦定理与余弦定理习题及详解一、选择题1.(2010·聊城市、银川模拟)在△ABC 中,a 、b 、c 分别是三内角A 、B 、C 的对边,且sin 2A -sin 2C =(sin A -sin B )sin B ,则角C 等于( )A.π6B.π3C.5π6D.2π3 [答案] B[解析] 由正弦定理得a 2-c 2=(a -b )·b ,由余弦定理得cos C =a 2+b 2-c 22ab =12, ∵0<C <π,∴C =π3. 2.(文)(2010·泰安模拟)在△ABC 中,若A =60°,BC =43,AC =42,则角B 的大小为( )A .30°B .45°C .135°D .45°或135°[答案] B[解析] ∵AC ·sin60°=42×32=26<42<43,故△ABC 只有一解,由正弦定理得,42sin B =43sin60°, ∴sin B =22,∵42<43,∴B <A ,∴B =45°. (理)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,A =π3,a =3,b =1,则c =( ) A .1B .2 C.3-1D. 3[答案] B[解析] ∵b sin A =32<1<3,∴本题只有一解. ∵a =3,b =1,A =π3, ∴根据余弦定理,cos A =b 2+c 2-a 22bc =1+c 2-32c =12, 解之得,c =2或-1,∵c >0,∴c =2.故选B.3.在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若a =2,b =22,且三角形有两解,则角A 的取值范围是( )A.⎝⎛⎭⎫0,π4 B.⎝⎛⎭⎫π4,π2 C.⎝⎛⎭⎫π4,3π4D.⎝⎛⎭⎫π4,π3[答案] A[解析] 由条件知b sin A <a ,即22sin A <2,∴sin A <22, ∵a <b ,∴A <B ,∴A 为锐角,∴0<A <π4. [点评] 如图,AC =22,以C 为圆心2为半径作⊙C ,则⊙C上任一点(⊙C 与直线AC 交点除外)可为点B 构成△ABC ,当AB 与⊙C 相切时,AB =2,∠BAC =π4,当AB 与⊙C 相交时,∠BAC <π4,因为三角形有两解,所以直线AB 与⊙C 应相交,∴0<∠BAC <π4. 4.(2010·湖南理)在△ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c .若∠C =120°,c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定 [答案] A[解析] ∵∠C =120°,c =2a ,c 2=a 2+b 2-2ab cos C∴a 2-b 2=ab ,又∵a >0,b >0,∴a -b =ab a +b >0,所以a >b . 5.(文)(2010·天津理)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150°[答案] A[解析] 由余弦定理得:cos A =b 2+c 2-a 22bc, ∵sin C =23sin B ,∴c =23b ,∴c 2=23bc ,又∵b 2-a 2=-3bc ,∴cos A =32, 又A ∈(0°,180°),∴A =30°,故选A.(理)(2010·山东济南)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π3 [答案] D[解析] 由(a 2+c 2-b 2)tan B =3ac 得,a 2+c 2-b 2ac·tan B =3,再由余弦定理cos B =a 2+c 2-b 22ac 得,2cos B ·tan B =3,即sin B =32,∴角B 的值为π3或2π3,故应选D. 6.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为0.5,那么b 为( )A .1+ 3B .3+ 3 C.3+33D .2+ 3[答案] C[解析] 12ac sin B =12,∴ac =2, 又2b =a +c ,∴a 2+c 2=4b 2-4,由余弦定理b 2=a 2+c 2-2ac cos B 得,b =3+33. 7.(2010·厦门市检测)在△ABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,若角A 、B 、C 依次成等差数列,且a =1,b =3,则S △ABC 等于( )A. 2B. 3C.32 D .2 [答案] C[解析] ∵A 、B 、C 成等差数列,∴B =60°,∵b sin B =a sin A ,∴sin A =a sin B b =1×323=12, ∴A =30°或A =150°(舍去),∴C =90°,∴S △ABC =12ab =32. 8.(2010·山师大附中模考)在△ABC 中,cos 2B 2=a +c 2c(a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为( )A .直角三角形B .正三角形C .等腰三角形D .等腰三角形或直角三角形[答案] A [解析] ∵cos 2B 2=a +c 2c ,∴1+cos B 2=sin A +sin C 2sin C, ∴sin C cos B =sin A ,∴sin C cos B =sin(B +C ),∴sin B cos C =0,∵0<B ,C <π,∴sin B ≠0,cos C =0,∴C =π2,故选A. 9.(2010·四川双流县质检)在△ABC 中,tan A =12,cos B =31010,若最长边为1,则最短边的长为( ) A.455B.355C.255D.55[答案] D[解析] 由tan A >0,cos B >0知A 、B 均为锐角, ∵tan A =12<1,∴0<A <π4,cos B =31010>32, ∴0<B <π6,∴C 为最大角, 由cos B =31010知,tan B =13,∴B <A ,∴b 为最短边, 由条件知,sin A =15,cos A =25,sin B =110, ∴sin C =sin(A +B )=sin A cos B +cos A sin B=15×310+25×110=22, 由正弦定理b sin B =c sin C 知,b 110=122,∴b =55. 10.(2010·山东烟台)已知非零向量AB →,AC →和BC →满足⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AC →·BC →|AC →|·|BC →|=22,则△ABC 为( ) A .等边三角形B .等腰非直角三角形C .直角非等腰三角形D .等腰直角三角形[答案] D[解析] ∵AC →·BC →|AC →|·|BC →|=cos ∠ACB =22, ∴∠ACB =45°,又∵⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0, ∴∠A =90°,∴△ABC 为等腰直角三角形,故选D.二、填空题11.(文)判断下列三角形解的情况,有且仅有一解的是________.①a =1,b =2,B =45°;②a =5,b =15,A =30°;③a =6,b =20,A =30°;④a =5,B =60°,C =45°.[答案] ①④[解析] ①一解,a sin B =22<1<2,有一解. ②两解,b ·sin A =152<5<15,有两解; ③无解,b ·sin A =10>6,无解.④一解,已知两角和一边,三角形唯一确定.(理)在锐角△ABC 中,边长a =1,b =2,则边长c 的取值范围是________.[答案] 3<c < 5[解析] 边c 最长时:cos C =a 2+b 2-c 22ab =1+4-c 22×1×2>0, ∴c 2<5.∴0<c < 5.边b 最长时:cos B =a 2+c 2-b 22ac =1+c 2-42c>0, ∴c 2>3.∴c > 3.综上,3<c < 5.12.(2010·上海模拟)在直角坐标系xOy 中,已知△ABC 的顶点A (-1,0),C (1,0),顶点B 在椭圆x 24+y 23=1上,则sin A +sin C sin B的值为________.[答案] 2[解析] 由题意知△ABC 中,AC =2,BA +BC =4,由正弦定理得sin A +sin C sin B =BC +BA AC=2. 13.(文)(2010·沈阳模拟)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若b 2+c 2=a 2+bc ,且AC →·AB →=4,则△ABC 的面积等于________.[答案] 2 3[解析] ∵b 2+c 2=a 2+bc ,∴cos A =b 2+c 2-a 22bc =12, ∵AC →·AB →=4,∴b ·c ·cos A =4,∴bc =8,∴S =12AC ·AB sin A =12×bc ·sin A =2 3. (理)(2010·北京延庆县模考)在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =c=2b 且sin B =45,当△ABC 的面积为32时,b =________. [答案] 2[解析] ∵a +c =2b ,∴a 2+c 2+2ac =4b 2(1)∵S △ABC =12ac sin B =25ac =32,∴ac =154(2) ∵sin B =45,∴cos B =35(由a +c =2b 知B 为锐角), ∴a 2+c 2-b 22ac =35,∴a 2+c 2=92+b 2(3) 由(1)、(2)、(3)解得b =2.14.(2010·合肥市质检)在△ABC 中,sin A -sin B sin (A +B )=2sin A -sin C sin A +sin B,则角B =________. [答案] π4[解析] 依题意得sin 2A -sin 2B =sin(A +B )(2sin A -sin C )=2sin A sin C -sin 2C ,由正弦定理知:a 2-b 2=2ac -c 2, ∴a 2+c 2-b 2=2ac ,由余弦定理知:cos B =a 2+c 2-b 22ac =22, ∴B =π4. 三、解答题15.(文)(2010·广州六中)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足cos A 2=255,AB →·AC →=3. (1)求△ABC 的面积;(2)若b +c =6,求a 的值.[解析] (1)∵cos A 2=255, ∴cos A =2cos 2A 2-1=35,sin A =45. 又由AB →·AC →=3得,bc cos A =3,∴bc =5,∴S △ABC =12bc sin A =2. (2)∵bc =5,又b +c =6,∴b =5,c =1或b =1,c =5,由余弦定理得a 2=b 2+c 2-2bc cos A =20,∴a =2 5.(理)(2010·山东滨州)已知A 、B 、C 分别为△ABC 的三边a 、b 、c 所对的角,向量m =(sin A ,sin B ),n =(cos B ,cos A ),且m ·n =sin2C .(1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求边c 的长.[解析] (1)m ·n =sin A ·cos B +sin B ·cos A =sin(A +B ).在△ABC 中,由于sin(A +B )=sin C .∴m ·n =sin C .又∵m ·n =sin2C ,∴sin2C =sin C ,∴2sin C cos C =sin C .又sin C ≠0,所以cos C =12.而0<C <π,因此C =π3. (2)由sin A ,sin C ,sin B 成等差数列得,2sin C =sin A +sin B ,由正弦定理得,2c =a +b .∵CA →·(AB →-AC →)=18,∴CA →·CB →=18.即ab cos C =18,由(1)知,cos C =12,所以ab =36. 由余弦定理得,c 2=a 2+b 2-2ab cos C=(a +b )2-3ab .∴c 2=4c 2-3×36,∴c 2=36.∴c =6.16.(文)在△ABC 中,已知AB =3,BC =2.(1)若cos B =-36,求sin C 的值; (2)求角C 的取值范围.[解析] (1)在△ABC 中,由余弦定理知,AC 2=AB 2+BC 2-2AB ·BC ·cos B=3+4-2×23×⎝⎛⎭⎫-36=9. 所以AC =3.又因为sin B =1-cos 2B =1-⎝⎛⎭⎫-362=336, 由正弦定理得AB sin C =AC sin B. 所以sin C =AB AC sin B =116. (2)在△ABC 中,由余弦定理得,AB 2=AC 2+BC 2-2AC ·BC cos C ,∴3=AC 2+4-4AC ·cos C ,即AC 2-4cos C ·AC +1=0.由题意知,关于AC 的一元二次方程应该有解,令Δ=(4cos C )2-4≥0,得cos C ≥12,或cos C ≤-12(舍去,因为AB <BC ) 所以,0<C ≤π3,即角C 的取值范围是⎝⎛⎦⎤0,π3. [点评] 1.本题也可用图示法,如图:A 为⊙B 上不在直线BC 上的任一点,由于r =AB =3,故当CA 与⊙B 相切时∠C 最大为π3,故C ∈⎝⎛⎦⎤0,π3. 2.高考命题大题的第一题一般比较容易入手,大多在三角函数的图象与性质、正余弦定理、平面向量等内容上命制,这一部分要狠抓基本原理、公式、基本方法的落实.(理)(2010·东北师大附中、辽宁省实验中学联考)设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且a cos C +12c =b . (1)求角A 的大小;(2)若a =1,求△ABC 的周长l 的取值范围.[解析] (1)由a cos C +12c =b 得 sin A cos C +12sin C =sin B又sin B =sin(A +C )=sin A cos C +cos A sin C∴12sin C =cos A sin C , ∵sin C ≠0,∴cos A =12, 又∵0<A <π,∴A =π3. (2)解法1:由正弦定理得:b =a sin B sin A =23sin B ,c =23sin C l =a +b +c =1+23(sin B +sin C ) =1+23(sin B +sin(A +B )) =1+2⎝⎛⎭⎫32sin B +12cos B =1+2sin ⎝⎛⎭⎫B +π6 ∵A =π3,∴B ∈⎝⎛⎭⎫0,2π3,∴B +π6∈⎝⎛⎭⎫π6,5π6, ∴sin ⎝⎛⎭⎫B +π6∈⎝⎛⎦⎤12,1. 故△ABC 的周长l 的取值范围是(2,3].解法2:周长l =a +b +c =1+b +c由(1)及余弦定理a 2=b 2+c 2-2bc cos A ,∴b 2+c 2=bc +1,∴(b +c )2=1+3bc ≤1+3⎝⎛⎭⎫b +c 22,∴b +c ≤2,又b +c >a =1,∴l =a +b +c ∈(2,3],即△ABC 的周长l 的取值范围为(2,3].17.(文)△ABC 中内角A 、B 、C 的对边分别为a 、b 、c ,向量m =(2sin B ,-3),n =(cos2B,2cos 2B 2-1)且m ∥n . (1)求锐角B 的大小;(2)如果b =2,求△ABC 的面积S △ABC 的最大值.[分析] (1)问利用平行向量的坐标表示将向量知识转化为三角函数,利用三角恒等变换知识解决;(2)问利用余弦定理与基本不等式结合三角形面积公式解决.[解析] (1)∵m ∥n ,∴2sin B ⎝⎛⎭⎫2cos 2B 2-1=-3cos2B ∴sin2B =-3cos2B ,即tan2B =- 3又∵B 为锐角,∴2B ∈(0,π),∴2B =2π3,∴B =π3. (2)∵B =π3,b =2, ∴由余弦定理cos B =a 2+c 2-b 22ac得, a 2+c 2-ac -4=0又∵a 2+c 2≥2ac ,∴ac ≤4(当且仅当a =c =2时等号成立)S △ABC =12ac sin B =34ac ≤3(当且仅当a =c =2时等号成立), [点评] 本题将三角函数、向量与解三角形有机的结合在一起,题目新疑精巧,难度也不大,即符合在知识“交汇点”处构题,又能加强对双基的考查,特别是向量的坐标表示及运算,大大简化了向量的关系的运算,该类问题的解题思路通常是将向量的关系用坐标运算后转化为三角函数问题,然后用三角函数基本公式结合正、余弦定理求解.(理)(2010·山师大附中模考)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知sin B =513,且a 、b 、c 成等比数列. (1)求1tan A +1tan C的值; (2)若ac cos B =12,求a +c 的值.[解析] (1)依题意,b 2=ac由正弦定理及sin B =513得,sin A sin C =sin 2B =25169. 1tan A +1tan C =cos A sin A +cos C sin C =sin (A +C )sin A sin C =sin B sin A sin C =135. (2)由ac cos B =12知cos B >0,∵sin B =513,∴cos B =1213(b 不是最大边,舍去负值) 从而,b 2=ac =12cos B=13. 由余弦定理得,b 2=(a +c )2-2ac -2ac cos B .∴13=(a +c )2-2×13×⎝⎛⎭⎫1+1213. 解得:a +c =37.。

正弦、余弦定理及其应用(附答案)

正弦、余弦定理及其应用(附答案)

书航教育正弦、余弦定理及其应用正弦、余弦定理及其应用一、选择题(共12小题)1、线段AB外有一点C,∠ABC=60°,AB=200 km,汽车以80 km/h的速度由A向B行驶,同时摩托车以50 km/h的速度由B向C行驶,则运动开始____ h后,两车的距离最小.()A、B、1C、D、22、在△ABC中,角A,B,C的对边分别是a,b,c,下列命题:①•>0,则△ABC为钝角三角形.②若b=csinB,则C=45°.③若a2=b2+c2﹣bc,则A=60°.④若已知E为△ABC的边BC的中点,△ABC所在平面内有一点P,满足,设,则λ=2,其中正确命题的个数是()A、1B、2C、3D、43、△ABC中,若a=4,b=3,c=2,则△ABC的外接圆半径为()A、B、C、2D、4、在锐角△ABC中,若C=2B,则的范围()A、B、C、(0,2)D、5、△ABC,sinA+cosA=,AC=2,AB=3,则△ABC的面积为:()A、B、C、D、6、在△ABC中,a=x,b=2,B=45°,若此三角形有两解,则x的取值范围是()A、x>2B、x<2C、D、7、已知△ABC的三个角分别为A,B,C,满足sinA:sinB:sinC=2:3:4,则sinA的值为()A、B、C、D、8、已知△ABC中,角A、B、C所对的边分别为a,b,c,且BC边上的高为,则的最大值为()A、2B、C、2D、49、在平面直角坐标系xoy中,已知△ABC的顶点A(﹣6,0)和C(6,0),顶点B在双曲线的左支上,则等于()A、B、C、D、10、下面命题:①当x>0时,的最小值为2;②过定点P(2,3)的直线与两坐标轴围成的面积为13,这样的直线有四条;③将函数y=cos2x的图象向右平移个单位,可以得到函数y=sin(2x﹣)的图象;④已知△ABC,∠A=60°,a=4,则此三角形周长可以为12.其中正确的命题是()A、①②④B、②④C、②③D、③④11、北京2008年第29届奥运会开幕式上举行升旗仪式,在坡度15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,看台上第一排和最后一排的距离米(如图所示),旗杆底部与第一排在一个水平面上,已知国歌长度约为50秒,升旗手匀速升旗的速度为()A、(米/秒)B、(米/秒)C、(米/秒)D、(米/秒)12、有一山坡,坡角为30°,若某人在斜坡的平面上沿着一条与山坡底线成30°角的小路前进一段路后,升高了100米,则此人行走的路程为()A、300mB、400m二、填空题(共12小题)13、在△ABC中,已知a,b,c是角A,B,C的对应边,①若a>b,则f(x)=(sinA﹣sinB)•x在R上是增函数;②若a2﹣b2=(acosB+bcosA)2,则△ABC是Rt△;③cosC+sinC的最小值为;④若cosA=cosB,则A=B;⑤若(1+tanA)(1+tanB)=2,则,其中正确命题的序号是_________.14、设函数f(x)=3sinx+2cosx+1.若实数a、b、c使得af(x)+bf(x﹣c)=1对任意实数x恒成立,则的值等于_________.15、在△ABC中,,且△ABC的面积S=asinC,则a+c的值=_________.16、已知a,b,c分别是△ABC的三个内角A,B,C所对的边,向量=,若,且,则角A,B的大小分别是_________.17、如图,在海岸上A、C两地分别测得小岛B在A地的北偏西α方向,在C地的北偏西﹣α方向,且,则C与B的距离是_________km.18、在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若a:b:c=3:5:6,则=_________.19、已知△ABC的面积为S,角A、B、C的对边分别为a、b、c,若4S=a2+b2﹣c2,那么C=_________.20、在△ABC中,已知a2+b2﹣ab﹣c2=0,且,则A=21、在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,若A=60°,b、c分别是方程x2﹣7x+11=0的两个根,则a等于_________.22、如图,已知△ABC内接于⊙O,点D在OC的延长线上,AD切⊙O于A,若∠ABC=30°,AC=2,则AD的长为_________.23、有一广告气球,直径为6 m,如图所示,放在公司大楼的上空,当行人仰望气球的中心的仰角∠BAC=30°时,测得气球的视角θ=2°,若θ的弧度数很小时,可取si nθ=θ,由此可估计该气球的高BC约为_________.24、将边长为1正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S的最大值是_________.三、解答题(共6小题)25、(2008•湖南)已知△ABC的外接圆的半径为,内角A,B,C的对边分别为a,b,c,又向量,,且,(I)求角C;(II)求三角形ABC的面积S的最大值.26、(2006•江西)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,已知,(1)求的值;(2)若a=2,,求b的值.27、(2010•重庆)设函数f(x)=cos(x+π)+2,x∈R.(1)求f(x)的值域;(2)记△ABC内角A、B、C的对边长分别为a,b,c,若f(B)=1,b=1,c=,求a的值.28、(2009•山东)已知函数f(x)=2sinxcos2+cosxsinθ﹣sinx(0<θ<π),在x=π处取最小值.(Ⅰ)求θ的值;(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,已知a=1,b=,f(A)=,求角C.29、(2007•浙江)已知△ABC的周长为+1,且sinA+sin B=sin C(I)求边AB的长;(Ⅱ)若△ABC的面积为sin C,求角C的度数.30、(2005•湖北)在△ABC中,已知AB=,cosB=,AC边上的中线BD=,求sinA的值.答案与评分标准一、选择题(共12小题)1、线段AB外有一点C,∠ABC=60°,AB=200 km,汽车以80 km/h的速度由A向B行驶,同时摩托车以50 km/h的速度由B向C行驶,则运动开始____ h后,两车的距离最小.()A、B、1C、D、2考点:函数模型的选择与应用;余弦定理。

高考数学正弦余弦真题及答案一

高考数学正弦余弦真题及答案一

B.直角三角形C.等腰直角三角形D .等腰三角形或直角三角形(2020•江苏)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c.已知a=3,c=2,B=45°.(1)求sinC 的值;(2)在边BC 上取一点D ,使得cos ∠ADC=-45,求tan ∠DAC的值.√【题型】整体思想;综合法;解三角形;数学运算.【答案】见试题解答内容【分析】(1)由题意及余弦定理求出b 边,再由正弦定理求出sinC 的值;(2)三角形的内角和为180°,cos ∠ADC=-45,可得∠ADC 为钝角,可得∠DAC 与∠ADC+∠C 互为补角,所以sin ∠DAC=sin (∠ADC+∠C )展开可得sin ∠DAC 及cos ∠DAC ,进而求出tan ∠DAC的值.【解答】解:(1)因为a=3,c=2,B=45°.,由余弦定理可得:b=a 2+c 2−2accosB =9+2−2×3×2×22=5,由正弦定理可得c sinC =b sinB ,所以sinC=c b •sin45°=25•22=55,所以sinC=55;(2)因为cos ∠ADC=-45,所以sin ∠ADC=1−cos 2∠ADC =35,在三角形ADC 中,易知C 为锐角,由(1)可得cosC=1−sin2C=255,所以在三角形ADC 中,sin ∠DAC=sin (∠ADC+∠C )=sin ∠ADCcos ∠C+cos ∠ADCsin ∠C=2525,因为∠DAC ∈(0,π2),所以cos ∠DAC=1−sin2∠DAC=11525,所以tan ∠DAC=sin ∠DAC cos ∠DAC =211.√√√√√√√√√√√√√√√√√【点评】本题考查三角形的正弦定理及余弦定理的应用,及两角和的正弦公式的应用,属于中档题.(2022秋•鄠邑区期末)在△ABC 中,内角A ,B ,C 的对边分别为a,b,c,且满足c=2acosB ,则△ABC 的形状是( )A.6B.12D.无解B.7C.19D.19【题型】解三角形.【答案】A【分析】利用余弦定理代入,可得a=b,从而可得结论.【解答】解:∵c=2acosB,∴c=2a•a2+c2−b22ac,∴a2=b2,∴a=b,∴△ABC的形状是等腰三角形.故选:A.【点评】本题考查余弦定理的运用,考查学生的计算能力,属于基础题.(2023春•雁塔区校级期中)在△ABC中,已知b=63,c=6,C=30°,则a=( )√【题型】计算题;转化思想;综合法;解三角形;数学运算.【答案】C【分析】由已知利用余弦定理可得a2-18a+72=0,解方程即可求解a的值.【解答】解:∵b=63,c=6,C=30°,∴由余弦定理c2=a2+b2-2abcosC,可得36=a2+108-2×a×63×32,整理可得:a2-18a+72=0,∴解得a=12,或6.故选:C.√√√【点评】本题主要考查了余弦定理在解三角形中的应用,考查了方程思想,属于基础题.(2023春•房山区期末)在△ABC中,已知a=2,b=3,C=60°,则c等于( )√【题型】解三角形.【答案】A【分析】利用余弦定理列出关系式,将a,b及cosC的值代入即可求出c的值.【解答】解:∵在△ABC中,a=2,b=3,C=60°,∴由余弦定理得:c2=a2+b2-2abcosC=4+9-6=7,A.2B.2C.3A.23C.45D.38则c=7.故选:A.√【点评】此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.(2023春•青铜峡市校级期末)△ABC的内角A,B,C的对边分别为a,b,c,若cosA=63,b=22,c=3,则a=( )√√√√【题型】整体思想;综合法;解三角形;数学运算.【答案】D【分析】根据余弦定理求解即可.【解答】解:由余弦定理得a2=b2+c2-2bccosA=3,得a=3.故选:D.√【点评】本题主要考查了余弦定理在求解三角形中的应用,属于基础题.(2023春•香洲区校级期末)已知△ABC的三边长分别为a,a+3,a+6,且最大内角是最小内角的2倍,则最小内角的余弦值为( )【题型】整体思想;综合法;解三角形;数学运算.【答案】B【分析】设角A,B,C所对的边分别为a,a+3,a+6,则C=2A,由正弦定理可得asinA=a+6sinC,化简得cosA=a+62a,再利用余弦定理可求出a的值,进而求出cosA即可.【解答】解:设角A,B,C所对的边分别为a,a+3,a+6,则A为最小角,C为最大角,∴C=2A,由正弦定理可得,asinA=a+6sinC=a+6sin2A,∴asin2A=(a+6)sinA,即2asinAcosA=(a+6)sinA,又∵A∈(0,π),∴sinA≠0,A.6-2B.4-23D.4+23B.60°C.135°D.150°∴cosA=a+62a=(a+3)2+(a+6)2−a22(a+3)(a+6),解得a=12,∴cosA=a+62a=1824=34,即最小内角的余弦值为34.故选:B.【点评】本题主要考查了正弦定理和余弦定理的应用,属于基础题.(2023春•密山市校级期中)已知△ABC中,角A,B,C的对边分别为a,b.c.若a=c=6+2,且A=75°,则边b=( )√√√√√√【题型】解三角形;逻辑推理.【答案】C【分析】根据两角和公式可得sinA,三角形内角和为180°,可得B,根据正弦定理,列出等式,直接求出b.【解答】解:根据两角和公式可得sinA=sin(30°+45°)=2+64,根据题意可知a=c,C=75°,三角形内角和为180°,可得B=30°,sinB=12,根据正弦定理bsinB=asinA,b12=2+62+64=4,所以b=2.故选:C.√√√√√√【点评】本题考查解三角形问题,正弦定理的应用,属基础题.(2023•雁塔区校级模拟)在△ABC中,若a2+c2-b2=-ac,则角B=( )【题型】解三角形.【答案】A【分析】由条件利用余弦定理求得cosB=-12,从而求得B的值.A.135°C.60°D.90°B.(1,3)C.(0,1)D.(3,+∞)【解答】解:△ABC中,∵a2+c2-b2=-ac,由余弦定理可得 cosB=a2+c2−b22ac=−ac2ac=-12,∴B=120°,故选:A.【点评】本题主要考查余弦定理的应用,根据三角函数的值求角,属于基础题.(2023•新干县校级一模)已知三角形的三边长分别为a、b、a2+ab+b2,则三角形的最大内角是( )√【题型】解三角形.【答案】B【分析】利用三角形中大边对大角可得,三角形的最大内角是a2+ab+b2所对的角,设为θ,由余弦定理求得cosθ 的值,可得θ的值.√【解答】解:∵三角形的三边长分别为a、b、a2+ab+b2中,a2+ab+b2为最大边,则三角形的最大内角是a2+ab+b2所对的角,设为θ.由余弦定理可得 cosθ=a2+b2−(a2+ab+b2)2ab=-12,∴θ=120°,故选:B.√√√【点评】本题主要考查余弦定理的应用,以及大边对大角,根据三角函数的值求角,属于中档题.(2023春•鼓楼区校级期中)已知锐角△ABC中,角A,B,C的对边分别为a,b,c,a2=b2+bc,则tanAtanB的取值范围为( )√√【题型】计算题;对应思想;综合法;解三角形;数学运算.【答案】A【分析】由余弦定理,三角函数恒等变换的应用化简已知等式可得tanA=tan2B=2tanB1−tan2B,进而得到tanAtanB=-2+21−tan2B,再求出B的范围,求解即可.【解答】解:∵a2=b2+bc,a2=c2+b2-2bccosA,∴c-2bcosA=b,∴sinC-2sinBcosA=sinB ,∴sin (A+B )-2sinBcosA=sinB ,∴sinAcosB-sinBcosA=sinB ,∴sin (A-B )=sinB ,∵A ,B ∈(0,π),∴A-B=B ,∴A=2B ,∴tanA=tan2B=2tanB1−tan 2B,即tanAtanB=2tan 2B1−tan 2B=-2+21−tan 2B,∵锐角△ABC ,∴V Y Y Y Y Y Y Y Y W Y Y Y Y Y Y Y Y X 0<2B <π20<B <π20<π−3B <π2,∴π6<B <π4,∴13<tan 2B <1,∴tanAtanB=-2+21−tan 2B>1,∴tanAtanB 的取值范围为(1,+∞).故选:A .【点评】本题主要考查了余弦定理,三角函数恒等变换的应用,属于中档题.(2023•黄埔区校级模拟)在△ABC 中,a,b,c 分别为角A ,B ,C ,向量m =(2sinB ,2-cos2B ),n =(2sin 2(B 2+π4),-1)且m ⊥n (1)求角B 的大小;(2)若a=3,b=1,求c 的值.→→→→√【题型】计算题;解三角形;平面向量及应用.【答案】见试题解答内容【分析】(1)根据m ⊥n 即m •n =0得关于角B 的三角函数的方程,运用二倍角公式和诱导公式化简,即可求出角B ;(2)由a >b,得到A >B ,即B=π6,根据余弦定理可得一个关于c 的一元二次方程,解这个方程求解c值.→→→→【解答】解:(1)由于m ⊥n ,则m •n =0,即有2sinB•2sin 2(B 2+π4)-(2-cos2B )=0,即2sinB•[1-cos2(B 2+π4)]-2+cos2B=0,即2sinB+2sin 2B-2+1-2sin 2B=0,→→→→解得sinB=12,由于0<B <π,则B=π6或5π6;(2)由a >b,得到A >B ,即B=π6,由余弦定理得:b 2=a 2+c 2-2accosB ,代入得:1=3+c 2-23c •32,即c 2-3c+2=0,解得c=1或c=2.√√【点评】本题考查三角形中三角恒等变换、解三角形.方程思想在三角形问题中的应用极为广泛,根据已知条件可得方程、根据正弦定理、余弦定理、三角形面积公式等都可以得到方程,解三角形问题的实质就是根据有关定理列方程求解未知元素.(2023春•雨山区校级期中)在△ABC 中,A =π3,b =2,再从条件①、条件②这两个条件中选择一个作为已知,求(Ⅰ)B 的大小;(Ⅱ)△ABC 的面积.条件①:b 2+2ac =a 2+c 2;条件②:acosB=bsinA .√√【题型】转化思想;综合法;解三角形;数学运算.【答案】(Ⅰ)B=π4;(Ⅱ)S △ABC =3+34.√【分析】选择条件①时:(Ⅰ)利用余弦定理求出cosB 和B 的值;(Ⅱ)由正弦定理求出a 的值,再利用三角形内角和定理求出sinC ,计算△ABC 的面积.选择条件②时:(Ⅰ)由正弦定理求出tanB 和B 的值;(Ⅱ)由正弦定理求出a 的值,再利用三角形内角和定理求出sinC ,计算△ABC 的面积.【解答】解:选择条件①:b 2+2ac=a 2+c 2,(Ⅰ)由b 2+2ac=a 2+c 2,得a 2+c 2-b 2=2ac,所以cosB=a 2+c 2−b 22ac=2ac 2ac =22;又B ∈(0,π),所以B=π4;(Ⅱ)由正弦定理知a sinA =bsinB,所以a=bsinAsinB =3;所以sinC=sin (A+B )=sinAcosB+cosAsinB=32×22+12×22=6+24,√√√√√√√√√√√所以△ABC的面积为S△ABC=12absinC=12×3×2×6+24=3+34.选择条件②:acosB=bsinA.(Ⅰ)由正弦定理得asinA =b sinB,所以asinB=bsinA;又acosB=bsinA,所以sinB=cosB,所以tanB=1;又B∈(0,π),所以B=π4;(Ⅱ)由正弦定理知asinA =b sinB,所以a=bsinAsinB=3;所以sinC=sin(A+B)=sinAcosB+cosAsinB=32×22+12×22=6+24,所以△ABC的面积为S△ABC=12absinC=12×3×2×6+24=3+34.√√√√√√√√√√√√√√√√【点评】本题考查了解三角形的应用问题,也考查了运算求解能力,是基础题.(2022秋•南通期中)在△ABC中,三边长是公差为2的等差数列,若△ABC是钝角三角形,则其最短边长可以为4(区间(2,6)之间的实数都可以).(写出一个满足条件的值即可)【题型】计算题;转化思想;分析法;解三角形;逻辑推理.【答案】4(区间(2,6)之间的实数都可以).【分析】设三边分别为x-2,x,x+2,求出最大边对角的余弦值,令其小于零,结合构成三角形的三边满足的条件,列出关于x的不等式组解出x的范围.【解答】解:由已知令△ABC的三边为:x-2,x,x+2,则应满足x>2,且x-2+x>x+2,解得x>4①,因为△ABC是钝角三角形,故边长解得为x+2的边对角θ满足:cosθ=x 2+(x−2)2−(x+2)22x•(x−2)<0,结合①式解得4<x<8,故最短边2<x-2<6,故可取x=6,则最短边长为4.故答案为:4(区间(2,6)之间的实数都可以).【点评】本题考查三角形的性质、余弦定理的应用,属于中档题.(2023•玉林三模)在△ABC中,内角A、B、C的对边分别为a、b、c,且acosB+bsinA=c.(1)求角A的大小;(2)若a=2,△ABC的面积为2−12,求b+c的值.√√【题型】对应思想;综合法;解三角形.【答案】见试题解答内容【分析】(1)利用正弦定理和三角形内角和定理与三角恒等变换求得A 的值;(2)由三角形面积公式和余弦定理,即可求得b+c 的值.【解答】解:(1)△ABC 中,acosB+bsinA=c,由正弦定理得:sinAcosB+sinBsinA=sinC ,又sinC=sin (A+B )=sinAcosB+cosAsinB ,∴sinBsinA=cosAsinB ,又sinB≠0,∴sinA=cosA ,又A ∈(0,π),∴tanA=1,A=π4;(2)由S △ABC =12bcsinA=24bc=2−12,解得bc=2-2;又a 2=b 2+c 2-2bccosA ,∴2=b 2+c 2-2bc=(b+c )2-(2+2)bc,∴(b+c )2=2+(2+2)bc=2+(2+2)(2-2)=4,∴b+c=2.√√√√√√√√【点评】本题考查了三角恒等变换与解三角形的应用问题,是基础题.(2023春•杨浦区校级期末)在△ABC 中,角A ,B ,C 所对的边为a,b,c,若a=4,b=6,c=9,则角C=π-arccos2948.【题型】对应思想;定义法;解三角形;数学运算.【答案】见试题解答内容【分析】利用余弦定理求出cosC ,再根据反余弦函数求出C 的值.【解答】解:△ABC 中,a=4,b=6,c=9,由余弦定理得cosC=42+62−922×4×6=-2948,有C ∈(0,π),所以C=π-arccos 2948.故答案为:π-arccos 2948.【点评】本题考查了余弦定理和反余弦函数的应用问题,是基础题.B.2π3C.π6D.5π6B.63C.22D.12(2023•青海模拟)在△ABC中,内角A,B,C所对应的边分别是a,b,c,若△ABC的面积是3(b2+c2−a2)4,则A=( )√【题型】计算题;转化思想;综合法;三角函数的求值;解三角形;逻辑推理;数学运算.【答案】A【分析】直接利用三角形的面积公式和余弦定理建立方程,再利用三角函数的值求出A的值.【解答】解:已知△ABC的面积是3(b2+c2−a2)4,利用余弦定理b2+c2-a2=2bccosA,整理得:12bcsinA=3(b2+c2−a2)4=32bccosA,所以tanA=3,由于A∈(0,π).则A=π3.故选:A.√√√√【点评】本题考查的知识要点:三角形的面积公式,余弦定理,三角函数的值,主要考查学生的理解能力和计算能力,属于中档题和易错题.(2023春•鼓楼区校级期末)△ABC的面积为S,角A,B,C的对边分别是a,b,c,已知43S=(a+b)2−c2,则sinC的值是( )√√√【题型】整体思想;综合法;解三角形;数学运算.【答案】A【分析】根据三角形的面积公式结合余弦定理化简求出C,即可得解.【解答】解:因为43S=(a+b)2−c2,又S=12absinC,所以23absinC−2ab=a2+b2−c2,所以3sinC−1=a2+b2−c22ab,又cosC=a2+b2−c22ab,所以3sinC−cosC=1,所以sin(C−π6)=12,√√√√A.3B.2D.3或7又C∈(0,π),则C−π6∈(−π6,5π6),所以c−π6=π6,所以C=π3,则sinC=32.故选:A.√【点评】本题主要考查了余弦定理的应用,考查了三角形的面积公式,属于基础题.(2023春•永昌县校级月考)在钝角△ABC中,角A,B,C的对边分别为a,b,c,且AB=2,sinB=32,且S△ABC= 32,则AC=( )√√√√√【题型】计算题;转化思想;综合法;解三角形;数学运算.【答案】C【分析】由题意利用三角形的面积公式可求BC=1,分类讨论,利用余弦定理即可求解AC的值.【解答】解:因为AB=2,sinB=32,且S△ABC=32=12AB•BC•sinB=12×2×BC×32,所以BC=1,因为BC<AB,所以A为锐角,当C为钝角时,可得cosB=1−sin2B=12,所以由余弦定理AC2=AB2+BC2-2AB•BC•cosB=22+12-2×2×1×12=3,可得AC=3,此时cosC=a2+b2−c22ab=1+3−42×1×3=0,又C∈(0,π),可得C=π2,不符合题意,故舍去,当B为钝角时,可得cosB=-1−sin2B=-12,所以由余弦定理AC2=AB2+BC2-2AB•BC•cosB=22+12-2×2×1×(-12)=7,可得AC=7.故选:C.√√√√√√√√【点评】本题考查了三角形的面积公式以及余弦定理在解三角形中的应用,属于基础题.(2023春•江油市校级期中)在△ABC中,角A、B、C对的边分别为a、b、c.若a=1,b=3,c=13,则角C等于( )√A.90°C.60°D.45°A.5π6C.π3D.π6【题型】转化思想;转化法;解三角形;数学运算.【答案】B【分析】利用余弦定理求解即可.【解答】解:a=1,b=3,c=13,则cosC=a2+b2−c22ab=12+32−(13)22×1×3=−12,因为0°<C<180°,故C=120°.故选:B.√√【点评】本题主要考查余弦定理的应用,属于基础题.(2023春•尖山区校级月考)在△ABC中,内角A,B,C所对的边分别为a,b,c,若(a+b+c)(c+b-a)=bc,则A=( )【题型】计算题;转化思想;综合法;解三角形;数学运算.【答案】B【分析】由已知利用平方差公式整理可得b2+c2-a2=-bc,由余弦定理得cosA=-12,结合A∈(0,π),即可求解A的值.【解答】解:∵△ABC中,(a+b+c)(c+b-a)=bc,∴(b+c)2-a2=bc,整理得:b2+c2-a2=-bc,∴由余弦定理得:cosA=b2+c2−a22bc=−bc2bc=-12,又A∈(0,π),∴A=2π3.故选:B.【点评】本题考查余弦定理在解三角形中的应用,求得b2+c2-a2=-bc是关键,属于基础题.(2023春•安化县期末)在△ABC中,角A,B,C所对的边分别为a,b,c,若ac=8,a+c=7,B=π3,则b=( )A.25C.4 $D.5 A.−22B.22D.1010√【题型】计算题;方程思想;综合法;解三角形;数学运算.【答案】B【分析】结合余弦定理与完全平方和公式,进行运算,得解.【解答】解:因为ac=8,a+c=7,B=π3,所以由余弦定理知,b2=a2+c2-2accosB=(a+c)2-2ac-2accosB=49-2×8-2×8×12=25,所以b=5.故选:B.【点评】本题考查解三角形,熟练掌握余弦定理是解题的关键,考查运算求解能力,属于基础题.(2023春•房山区期末)已知平面直角坐标系中的3点A(2,2),B(6,0),C(0,0),则△ABC中最大角的余弦值等于( )√√√【题型】转化思想;转化法;解三角形;数学运算.【答案】C【分析】根据夹角公式算出△ABC每个内角的余弦值,然后分析可得结果.【解答】解:A(2,2),B(6,0),C(0,0),AB=(4,−2),AC=(−2,−2),cosA=cos〈AB,AC〉=AB⋅AC|AB||AC|=−4410=−1010;CB=(6,0),CA=(2,2),cosC=cos〈CB,CA〉=CB⋅CA|CB||CA|=126×22=22,BA=(−4,2),BC=(−6,0),cosB=cos〈BA,BC〉=BA⋅BC|BA||BC|=246×25=255;由A,B,C为三角形ABC的内角,则cosA<0,cosB>0,cosC>0,于是A是钝角,B,C是锐角,最大角是A,余弦值为−1010.故选:C.→→→→→→→→√√→→→→→→→→√√→→→→→→→→√√√【点评】本题主要考查余弦定理的应用,属于基础题.A.3B.4D.6 A.-1C.1D.6(2023•郑州模拟)在△ABC中,满足9sin2A+6cosA=10,且AB=3,BC=26,则AC=( )√【题型】整体思想;综合法;解三角形;数学运算.【答案】C【分析】由同角三角函数的平方关系化简9sin2A+6cosA=10求出cosA,再利用余弦定理即可求解AC.【解答】解:9sin2A+6cosA=9(1-cos2A)+6cosA=9-9cos2A+6cosA=10,即9cos2A-6cosA+1=(3cosA-1)2=0,解得cosA=13,由余弦定理可知cosA=AB2+AC2−BC22AB⋅AC=9+AC2−246AC=AC2−156AC,则AC2−156AC=13,整理得3AC2-6AC-45=(3AC-15)(AC+3)=0,解得AC=5或AC=-3(舍).故选:C.【点评】本题主要考查了余弦定理的应用,属于基础题.(2015•重庆)在等差数列{a n}中,若a2=4,a4=2,则a6=( )【题型】等差数列与等比数列.【答案】B【分析】直接利用等差中项求解即可.【解答】解:在等差数列{a n}中,若a2=4,a4=2,则a4=12(a2+a6)=12(4+a6)=2,解得a6=0.故选:B.【点评】本题考查等差数列的性质,等差中项个数的应用,考查计算能力.B.b≤0C.c=0D.a-2b+c=0(2017•上海)已知a、b、c为实常数,数列{x n}的通项x n=an2+bn+c,n∈N*,则“存在k∈N*,使得x100+k、x200+k、x300+k成等差数列”的一个必要条件是( )【题型】方程思想;等差数列与等比数列;简易逻辑.【答案】A【分析】由x100+k,x200+k,x300+k成等差数列,可得:2x200+k=x100+k+x300+k,代入化简即可得出.【解答】解:存在k∈N*,使得x100+k、x200+k、x300+k成等差数列,可得:2[a(200+k)2+b(200+k)+c]=a(100+k)2+b(100+k)+c+a(300+k)2+b(300+k)+c,化为:a=0.∴使得x100+k,x200+k,x300+k成等差数列的必要条件是a≥0.故选:A.【点评】本题考查了等差数列的通项公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.(2021•乙卷)记S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2S n+1b n=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.【题型】计算题;方程思想;综合法;定义法;等差数列与等比数列;逻辑推理;数学运算.【答案】(1)证明过程见解答;(2)a n=V Y Y YW YY Y X32,n=1−1n(n+1),n≥2.【分析】(1)由题意当n=1时,b1=S1,代入已知等式可得b1的值,当n≥2时,将b nb n−1=S n,代入2S n +1b n=2,可得b n-b n-1=12,进一步得到数列{b n}是等差数列;(2)由a1=S1=b1=32,可得b n=n+22,代入已知等式可得S n=n+2n+1,当n≥2时,a n=S n-S n-1=-1n(n+1),进一步得到数列{a n}的通项公式.【解答】解:(1)证明:当n=1时,b1=S1,由2b1+1b1=2,解得b1=32,B.a n=3n-10C.Sn=2n2-8n D.S n=12n2-2n 当n≥2时,b nb n−1=S n,代入2S n+1b n=2,消去S n,可得2 b n−1b n+1b n=2,所以b n-b n-1=12,所以{b n}是以32为首项,12为公差的等差数列.(2)由题意,得a1=S1=b1=32,由(1),可得b n=32+(n-1)×12=n+22,由2S n+1b n=2,可得S n=n+2n+1,当n≥2时,a n=S n-S n-1= n+2n+1-n+1n=-1n(n+1),显然a1不满足该式,所以a n=V Y Y YW YY Y X32,n=1−1n(n+1),n≥2.【点评】本题考查了等差数列的概念,性质和通项公式,考查了方程思想,是基础题.(2019•新课标Ⅰ)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则( )【题型】计算题;方程思想;等差数列与等比数列.【答案】A【分析】根据题意,设等差数列{a n}的公差为d,则有V WX4a1+6d=0a1+4d=5,求出首项和公差,然后求出通项公式和前n项和即可.【解答】解:设等差数列{a n}的公差为d,由S4=0,a5=5,得V WX4a1+6d=0a1+4d=5,∴V WX a1=−3d=2,∴a n=2n-5,S n=n2−4n,故选:A.【点评】本题考查等差数列的通项公式以及前n项和公式,关键是求出等差数列的公差以及首项,属于基础题.(2016•新课标Ⅰ)已知等差数列{a n}前9项的和为27,a10=8,则a100=( )A.100B.99D.97 A.既不充分也不必要条件C.必要不充分条件D.充要条件【题型】计算题;定义法;等差数列与等比数列.【答案】C【分析】根据已知可得a5=3,进而求出公差,可得答案.【解答】解:∵等差数列{a n}前9项的和为27,S9=9(a1+a9)2=9×2a52=9a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C.【点评】本题考查的知识点是数列的性质,熟练掌握等差数列的性质,是解答的关键.(2023•阿拉善盟一模)已知{a n}是等差数列,S n是{a n}的前n项和,则“对任意的n∈N*且n≠3,S n>S3”是“a4>a3”的( )【题型】转化思想;综合法;等差数列与等比数列;简易逻辑;逻辑推理.【答案】B【分析】根据等差数列的性质,充分与必要条件的概念即可求解.【解答】解:由对任意的n∈N*且n≠3,S n>S3,可得等差数列{a n}的前n项和的最小值为S3,∴等差数列{a n}仅有前三项为负项,且公差d>0,∴可得a4>a3,反过来,由a4>a3,可得d>0,但不能得到等差数列{a n}仅有前三项为负项,即不能得到等差数列{a n}的前n项和的最小值为S3,∴“对任意的n∈N*且n≠3,S n>S3”是“a4>a3”的充分不必要条件,故选:B.【点评】本题考查等差数列项的性质,充分与必要条件的概念,属基础题.A.若①有实根,②有实根,则③有实根C.若①无实根,②有实根,则③无实根D .若①无实根,②无实根,则③无实根(2023•长宁区二模)设各项均为实数的等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,对于方程①2023x 2-S 2023x+T 2023=0,②x 2-a 1x+b 1=0,③x 2+a 2023x+b 2023=0.下列判断正确的是( )【题型】计算题;转化思想;综合法;等差数列与等比数列;数学运算.【答案】B【分析】若①有实根,得到a21012−4b 1012≥0,设方程x 2-a 1x+b 1=0与方程x 2+a 2023x+b 2023=0的判别式分别为Δ1和Δ2023,得到Δ1+Δ2023≥0,结合举反例可以判断选项AB ;通过举反例可以判断选项CD .【解答】解:若①有实根,由题意得:S22023−4×2023T 2023≥0,其中S 2023=2023(a 1+a 2023)2=2023a 1012,T 2023=2023(b 1+b 2023)2=2023b 1012,代入上式得a21012−4b 1012≥0,设方程x 2-a 1x+b 1=0与方程x 2+a 2023x+b 2023=0的判别式分别为Δ1和Δ2023,则Δ1+Δ2023=(a 21−4b 1)+(a 22023−4b 2023)=a 21+a 22023−4(b 1+b 2023)≥(a 1+a 2023)22−4(b 1+b 2023)等号成立的条件是a 1=a 2023.又Δ1+Δ2023≥(a 1+a 2023)22−4(b 1+b 2023)=(2a 1012)22−8b 1012=2(a21012−4b 1012)≥0,如果②有实根,则Δ1≥0,则Δ2023≥0或者Δ2023<0,所以③有实根或者没有实根,如a 1=6,b 1=2,a 2023=4,b 2023=6,满足a 21012−4b 1012=52−4×4>0,Δ1=36-8>0,但是Δ2023=16-24<0,所以③没有实根,所以A 错误;如果②没实根,则Δ1<0,则Δ2023≥0,所以③有实根,所以B 正确;若①无实根,则a21012−4b 1012<0,②有实根,则Δ1≥0,设a 1=3,b 1=2,a 2023=-3,b 2023=2,所以a 21012−4b 1012=(0)2−4×2<0,Δ1>0,此时Δ2023=1>0,则③有实根,所以C 错误;若①无实根,则a21012−4b 1012<0,②无实根,则Δ1<0,设a 1=3,b 1=3,a 2023=-3,b 2023=2,所以a 21012−4b 1012=(0)2−4×52<0,Δ1<0,此时Δ2023=1>0,则③有实根,所以D错误.故选:B.【点评】本题主要考查等差数列的性质,等差数列的前n项和,解答本题的关键是排除法的灵活运用,要证明一个命题是假命题,证明比较困难,只需举一个反例即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正 余 弦 定 理1.在ABC ∆中,A B >是sin sin A B >的 ( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 2、已知关于x 的方程22cos cos 2sin02Cx x A B -⋅+=的两根之和等于两根之积的一半,则ABC ∆一定是 ( ) (A )直角三角形(B )钝角三角形(C )等腰三角形(D )等边三角形.3、 已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若a=1,b=3, A+C=2B,则sinC= .4、如图,在△ABC 中,若b = 1,c =3,23C π∠=,则a= 。

5、在ABC ∆中,角,,A B C 所对的边分别为a ,b ,c ,若2a =,2b =,sin cos 2B B +=,则角A 的大小为 .6、在∆ABC 中,,,a b c 分别为角,,A B C 的对边,且274sin cos 222B C A +-= (1)求A ∠的度数(2)若3a =,3b c +=,求b 和c 的值7、 在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.8、如图,在△ABC 中,已知3=a ,2=b ,B=45︒ 求A 、C 及c .AB323π1、解:在ABC A B ∆>中,2sin 2sin sin sin a b R A R B A B ⇔>⇔>⇔>,因此,选C .2、【答案】由题意可知:211cos cos cos 2sin 222C CA B -=⋅⋅=,从而2cos cos 1cos()1cos cos sin sin A B A B A B A B =++=+-cos cos sin sin 1A B A B +=,cos()1A B -=又因为A B ππ-<-<所以0A B -=,所以ABC ∆一定是等腰三角形选C3、【命题立意】本题考察正弦定理在解三角形中的应用.【思路点拨】由已知条件求出B 、A 的大小,求出C ,从而求出sin .C【规范解答】由A+C=2B 及180A B C ++=得60B =,由正弦定理得1sin 60A =得1sin 2A =,由a b <知60A B <=,所以30A =,180C A B =-- 90=,所以sin sin 90 1.C ==4、【命题立意】本题考查解三角形中的余弦定理。

【思路点拨】对C ∠利用余弦定理,通过解方程可解出a 。

【规范解答】由余弦定理得,222121cos 33a a π+-⨯⨯⨯=,即220a a +-=,解得1a =或2-(舍)。

【答案】1【方法技巧】已知两边及一角求另一边时,用余弦定理比较好。

5、【命题立意】本题考查了三角恒等变换、已知三角函数值求解以及正弦定理,考查了考生的推理论证能力和运算求解能力。

【思路点拨】先根据sin cos B B +=B ,再利用正弦定理求出sin A ,最后求出A.【规范解答】由sin cos B B +=12sin cos 2B B +=,即sin 2B 1=,因为0<B<π,所以B=45,又因为a =2b =,所以在ABC ∆中,由正弦定理得:2=sin A sin 45,解得1sin A 2=,又<b a ,所以A<B=45,所以A=30. 【答案】30°或6π6.【答案】由题意得[]2721cos()2cos 12B C A -+-+=()2721cos 2cos 12A θ+-+= ∴1cos 2A =03A π<<2221cos 22b c a A bc +-==()223b c a bc +-=将3a b c =+=代入得2,bc =由3b c +=及2bc =,得1,2b c ==或2,1b c ==.7、 【分析】利用正弦定理或余弦定理判断三角形形状,可以将三角形中的边用角表示,也可将角用边来表示.从中找到三角形中的边角关系,判断出三角形的形状. 【答案】解法1:由扩充的正弦定理:代入已知式 2RsinAcosB=2RsinBcosAsinAcosB-cosAsinB=0 , sin(A-B)=0A-B=0 ∴A=B 即△ABC 为等腰三角形解法2:由余弦定理: 22222222bca cb b ac b c a a -+⋅=-+⋅ 22b a = ∴ b a =即△ABC 为等腰三角形.8、 【分析】在解斜三角形应用过程中,注意要灵活地选择正弦定和余弦定理,解得其它的边和角【答案】解法1:由正弦定理得:23245sin 3sin sin === b B a A ∵B=45︒<90︒ 即b <a ∴A=60︒或120︒当A=60︒时C=75︒ 22645sin 75sin 2sin sin +===BC b c 当A=120︒时C=15︒ 22645sin 15sin 2sin sin -===B C b c 解法2:设c =x 由余弦定理 B ac c a b cos 2222-+=将已知条件代入,整理:0162=+-x x 解之:226±=x 当226+=c 时2)13(231226223)226(22cos 22221=++=+⋅⋅-++=-+=bc a c b A 从而A=60︒ ,C=75︒ 当226-=c 时同理可求得:A=120︒ C=15︒.1.在△ABC 中,已知角B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,求AB . 解:在△ADC 中,cos C =AC 2+DC 2-AD 22AC ·DC =72+32-522×7×3 =1114 ,又0<C <180°,∴sin C =5314在△ABC 中,AC sin B =ABsin C∴AB =sin C sin B AC =5314· 2 ·7=562.2.在△ABC 中,已知cos A =35 ,sin B =513 ,求cos C 的值.解:∵cos A =35 <22=cos45°,0<A <π∴45°<A <90°,∴sin A =45∵sin B =513 <12 =sin30°,0<B <π∴0°<B <30°或150°<B <180° 若B >150°,则B +A >180°与题意不符. ∴0°<B <30° cos B =1213∴cos (A +B )=cos A ·cos B -sin A ·sin B =35 ·1213 -45 · 513 =1665又C =180°-(A +B ).∴cos C =cos [180°-(A +B )]=-cos (A +B )=-1665 .3、在△ABC 中,已知2cos B sin C =sin A ,试判定△ABC 的形状. 解:在原等式两边同乘以sin A 得2cos B sin A sin C =sin 2A , 由定理得sin 2A +sin 2C -sin 2B =sin 2A , ∴sin 2C =sin 2B ∴B =C 故△ABC 是等腰三角形.1.在△ABC 中,若sin A =sin B +sin Ccos B +cos C ,试判断△ABC 的形状.解:∵sin A =sin B +sin C cos B +cos C,∴cos B +cos C =sin B +sin Csin A ,应用正、余弦定理得a 2+c 2-b 22ac +a 2+b 2-c 22ab =b +ca ,∴b (a 2c 2-b 2)+c (a 2-b 2c 2)=2bc (b +c ),∴a 2(b +c )-(b +c )(b 2-2bc +c 2)=2bc (b +c ) 即a 2=b 2+c 2故△ABC 为直角三角形.2.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,求证:a 2-b 2c 2 =sin (A -B )sin C .证明:由a 2=b 2+c 2-2bc cos A . b 2=a 2+c 2-2ac cos B两式相减得a 2-b 2=c (a cos B -b cos A ), ∴a 2-b 2c 2 =a cos B -b cos A c 2 .又a c =sin A sin C ,b c =sin B sin C, ∴a 2-b 2c 2 =sin A cos B -sin B cos A sin C =sin (A -B )sin C.3.在△ABC 中,若(a +b +c )(b +c -a )=bc ,并且sin A =2sin B cos C ,试判断△ABC的形状.解:由已知条件(a +b +c )(b +c -a )=bc 及余弦定理得cos A =b 2+c 2-a 22bc =(a +b +c )(b +c -a )2(a +b +c )(b +c -a ) =12∴A =60°又由已知条件sin A =2sin B cos C 得sin (B +C )=sin (B +C )+sin (B -C ) ∴sin (C -B )=0,∴B =C 于是有A =B =C =60°, 故△ABC 为等边三角形.。

相关文档
最新文档