高考正弦定理和余弦定理练习题及答案精选.
-正弦定理和余弦定理高考题
温馨提示:此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观 看比例,关闭Word 文档返回原板块。
考点16 正弦定理和余弦定理一、选择题1.(2011·浙江高考文科·T5)在ABC ∆中,角,,A B C 所对的边分别为,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=( )(A)-12 (B)12(C)-1 (D)1 【思路点拨】用正弦定理统一到角的关系上,再用同角三角函数的平方关系即可解决. 【精讲精析】选D.由cos sin a A b B =可得2sin cos sin A A B =所以222sin cos cos sin cos 1A A B B B +=+=.二、填空题2.(2011·安徽高考理科·T14)已知ABC ∆ 的一个内角为120o,并且三边长构成公差为4的等差数列,则ABC ∆的面积为_______________.【思路点拨】设三角形一边的长为x ,可以用x 表示其他两边,再利用余弦定理建立方程求出x ,最后利用三角形面积公式求出ABC ∆的面积.【精讲精析】设三角形中间边长为x ,则另两边的长为x-4,x+4,那么所以解得)(,10,120cos )4(2)4(4222=---+=+x x x x x x .315120sin 61021=⨯⨯⨯=∆ ABC S 【答案】1533.(2011·福建卷理科·T14)如图,△ABC 中,AB=AC=2,BC=23,点D 在BC 边上,∠ADC=45°,则AD 的长度等于______. 【思路点拨】结合图形,∆∠∠ABC 先在中,由余弦定理解出C 与B ,ABD ∆然后在中,由正弦定理解得AD.【精讲精析】在ABC ∆中,由余弦定理易得2223cos 22223AC BC AB C AC BC +-===⋅⋅⨯⨯30,30.C B ABD ∴∠=︒∴∠=︒∆在中,, 2.1sin sin 22AD AB AD AD B ADB =∴∴=∠由正弦定理得: 24.(2011·福建卷文科·T14)若△ABC 的面积为3,BC =2,C=︒60,则边AB 的长度等于_____________. 【思路点拨】3求得AC ,然后再用余弦定理求得AB . 【精讲精析】在ABC ∆中,由面积公式得11sin 2sin 6022S BC CA C AC =⋅⋅=⨯⋅⋅︒ 33,2,AC AC =再由余弦定理,得: 222221+2cos 2222242AB BC AC AC BC C -⋅⋅=+-⨯⨯⨯==,2AB ∴=. 【答案】25.(2011·新课标全国高考理科·T16) 在ABC 中,60,3B AC ==2AB BC +的最大值为 .【思路点拨】利用三角函数知识,化简2AB BC +,统一角变量,然后求最大值. 【精讲精析】 令AB c =,BC a =,则由正弦定理得32,sin sin sin 3a c ACA C B====2sin ,2sin ,c C a A ∴==且120A C +=︒, 222sin 4sin AB BC c a C A ∴+=+=+2sin 4sin(120)C C =+︒-=2sin C +314(sin )4sin 232C C C C +=+7+)C ϕ=(其中3tan )ϕ= ∴当90C ϕ+=︒时,2AB BC +取最大值为7.【答案】76.(2011·新课标全国文科·T15)△ABC 中,B=120°,AC=7,AB=5,则△ABC 的面积为________. 【思路点拨】用余弦定理求得边BC 的值,由1sin 2ABC S AB BC B ∆⨯⨯=求得三角形的面积. 【精讲精析】设,,AB c BC a AC b ===,由余弦定理2222cos b a c ac B =+-,得21492525()2a a =+-⨯⨯-,解得3a =,11sin 35sin12022ABC S ac B ∆∴==⨯⨯⨯︒153= 【答案】15347.(2011·北京高考理科·T9)在ABC ∆中,若5,,tan 24b B A π=∠==,则sin A = ;a = . 【思路点拨】先利用切化弦和平方关系联立解出sinA ,再由正弦定理求出a. 【精讲精析】22sin sin tan 2,cos ,sin ()1,22A A A A A =∴=∴+= 25(0,),sin 5A A π∈∴=又.252=,所以10a =252108.(2011·北京高考文科·T9)在ABC ∆中,若15,,sin 43b B A π=∠==,则a = . 【思路点拨】利用正弦定理求出a . 【精讲精析】由正弦定理得,1232a =,所以523a =. 【答案】523三、解答题2.(2011·安徽高考文科·T16)在ABC ∆中,a ,b ,c 分别为内角 A ,B ,C 所对的边长,3,212cos()0B C ++=,求cosB.【思路点拨】化简12cos()0B C ++=,求出sinA,cosA,再由正弦定理算出sinB,cosC,从而得到sinC,则h=bsinC.【精讲精析】由12cos()0B C ++=和B+C=π-A,得,23sin ,21cos ,0cos 21===-A A A再由正弦定理得,.22sin sin ==a Ab B由b<a ,知B<A,所以B 不是最大角,2π<B ,从而22sin 1cos 2=-=B B . 由上述结果知).2123(22)sin(sin +=+=B A C 设边BC 上的高为h,则有.213sin +==C b h 10.(2011·辽宁高考文科·T17)已知△ABC 的三个内角A ,B ,C 所对的边分别为a 、b 、c ,a Ab B A a 2cos sin sin 2=+.(1)求b a.(2)若c 2=b 23a 2,求B . 【思路点拨】(1)依据正弦定理,先边化角,然后再角化边,即得.(2)先结合余弦定理和已知条件求出B cos 的表达式,再利用第(1)题的结论进行化简即得.【精讲精析】(1)由正弦定理得,A A B B A sin 2cos sin sin sin 22=+,即A A AB sin 2)cos (sin sin 22=+.故A B sin 2sin =,所以2=ab(2)由余弦定理和2223a b c +=,得caB 2)31(cos +=. 由(1)知222a b =,故22)32(a c +=.可得=B 2cos 21,又0cos >B ,故=B cos 22,所以B 45=︒.11.(2011·山东高考理科·T17)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知cos A-2cosC 2c-a=cos B b. (Ⅰ)求sin sin CA的值; (Ⅱ)若cosB=14,b=2, 求△ABC 的面积S.【思路点拨】(Ⅰ)本题可由正弦定理直接转化已知式子,然后再由和角公式及诱导公式易知sin sin CA=2. (Ⅱ)使用余弦定理及第一问结论易知a 和c 的值,然后利用面积公式求解. 【精讲精析】(Ⅰ)在ABC ∆中,由cos 2cos 2cos A C c aB b--=及正弦定理可得 cos 2cos 2sin sin cos sin A C C AB B--=, 即cos sin 2cos sin 2sin cos sin cos -=-A B C B C B A B 则cos sin sin cos 2sin cos 2cos sin +=+A B A B C B C Bsin()2sin()A B C B +=+,而A B C π++=,则sin 2sin C A =,即sin 2sin CA=. 另解:在ABC ∆中,由cos 2cos 2cos A C c aB b--=可得 cos 2cos 2cos cos b A b C c B a B -=-由余弦定理可得22222222222222b c a a b c a c b a c b c a a c+-+-+-+--=-,整理可得2c a =,由正弦定理可得sin 2sin C cA a==. (Ⅱ)由2c a =及1cos ,24B b ==可得 22222242cos 44,c a ac B a a a a =+-=+-=则1a =,2c =,S 21115sin 121cos 22ac B B ==⨯⨯-=,即15S =12.(2011·山东高考文科·T17)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A-2cosC 2c-a=cos B b. (1)求sin sin CA的值. (2)若cos B =14,5b ABC 的周长为,求的长.【思路点拨】(1)本题可由正弦定理直接转化已知式子,然后再由和角公式及诱导公式易知sin sin CA=2. (2)由周长得出,a 和b 之间的关系b=5-3a ,再将b=5-3a 代入余弦定理求得a 和b. 【精讲精析】(1)由正弦定理得2sin ,a R A =2sin ,b R B =2sin ,c R C = 所以cos A-2cosC 2c-a =cos B b =2sin sin sin C AB-, 即sin cos 2sin cos 2sin cos sin cos B A B C C B A B -=-, 即有sin()2sin()A B B C +=+,即sin 2sin C A =,所以sin sin CA=2. (2)由(1)知sin sin CA=2,所以有2c a =,即c=2a,又因为ABC ∆的周长为5,所以b=5-3a, 由余弦定理得:2222cos b c a ac B =+-, 即22221(53)(2)44a a a a -=+-⨯,解得a=1,a=5(舍去) 所以b=2.13.(2011·湖南高考理科·T17)和(2011·湖南高考文科·T17)相同 在中,ABC ∆角A ,B ,C 所对的边分别为a,b,c ,且满足csin A=acos C. (1)求角C 的大小. (2)求)4cos(sin 3π+-B A 的最大值,并求取得最大值时角A ,B 的大小.【思路点拨】本题主要考查利用正弦定理消边,再考查三角恒等变形.突出考查边角的转化思想的使用.边角共存的关系中常考虑消去边或消去角,如果考虑消边,如果是边的一次函数常用正弦定理,如果是边的二次函数常用余弦定理,在考查余弦定理时兼顾考查凑配.如果考虑消角,那么是余弦就用余弦定理,而如果是正弦定理必须等次才能使用.【精讲精析】(1)由正弦定理得sin sin sin cos .C A A C =因为0,A π<<所以sin 0.sin cos .cos 0,tan 1,4A C C C C C π>=≠==从而又所以则(2)由(1)知3.4B A π=-于是 3cos()3cos()43cos 2sin().63110,,,,46612623A B A A A A A A A A A ππππππππππ-+=--=+=+<<∴<+<+==从而当即时2sin()6A π+取得最大值2.3cos()4A B π-+的最大值为2,此时5,.312A B ππ==14.(2011·陕西高考理科·T18) 叙述并证明余弦定理.【思路点拨】本题是课本公式、定理、性质的推导,这是高考考查的常规方向和考点,引导考生回归课本,重视基础知识的学习和巩固.【精讲精析】余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边和它们夹角的余弦之积的两倍.即在△ABC 中,,,a b c 分别为角A ,B ,C 的对边,则有2222cos a b c bc A =+-, 2222cos b c a ca B =+-, 2222cos c a b ab C =+-.证法一 如图,22a BC =()()=--AC AB AC AB222AC AC AB AB =-•+222cos AC AC AB A AB =-•+222cos b bc A c =-+即2222cos a b c bc A =+- 同理可证2222cos b c a ca B =+-, 2222cos c a b ab C =+- 证法二 已知ABC ∆中,角,,A B C 所对边 分别为,,,a b c ,以A 为原点,AB 所在 直线为x 轴建立如图所示的直角坐标系,则(cos ,sin ),(,0)C b A b A B c ,∴222222222||(cos )(sin )cos 2cos sin a BC b A c b A b A bc A c b A ==-+=-++222cos b c bc A =+-,即2222cos a b c bc A =+- 同理可证2222cos b c a ca B =+-,2222cos c a b ab C =+-.15.(2011·天津高考文科·T16)在△ABC 中,内角,,A B C 的对边分别为,,a b c ,已知,23.B C b a(Ⅰ)求cos A 的值. (Ⅱ)cos(2)4+A π的值.【思路点拨】(Ⅰ)根据余弦定理求解.(Ⅱ)利用三角函数的两角和、倍角公式化简计算. 【精讲精析】(Ⅰ)由3,23,2BC b a c ba 可得所以22222233144cos .23332+-+-===⨯⨯a a a b c a A bc a a(Ⅱ)因为1cos ,(0,)3=∈A A π,所以222sin 1cos 3A A2742cos 22cos 1.sin 22sin cos .99A A A A A 故所以 72422872cos 2cos 2cos sin 2sin 444929218+⎛⎫⎛⎫+=-=-⨯-⨯=- ⎪ ⎪⎝⎭⎝⎭A A A πππ16.(2011·浙江高考理科·T18)在ABC ∆中,角A B C ,,所对的边分别为a,b,c. 已知()sin sin sin ,A C p B p R +=∈且214ac b =. (1)当5,14p b ==时,求,a c 的值. (2)若角B 为锐角,求p 的取值范围.【思路点拨】(1)把题目中的条件用正弦定理化为边的关系,可联立方程组解出a,c 的值.(2)角B 为锐角的充要条件为0cos 1B <<,从而得出p 的取值范围.本题主要考查三角变换、正弦定理、余弦定理等基础知识,同时考查运算求解能力. 【精讲精析】由题意得a c pb +=,214ac b =(1) 当5,14p b ==时,54a c +=,14ac =解得114114=⎧⎧=⎪⎪⎨⎨=⎪⎪=⎩⎩a c a c 或; (2)()2222222222222cos 23(0,1)222b p b b ac ac b a c b B p b ac ac--+--+-====-∈ ∴2322p <<,又由a c pb +=可得0,p >所以622<<p 关闭Word 文档返回原板块。
高考正弦定理和余弦定理练习题及答案
高考正弦定理和余弦定理练习题及答案一、选择题1. 已知△ABC中,a=c=2,A=30°,则b=A. 错误!B. 2错误!C. 3错误!D. 错误!+1答案:B解析:∵a=c=2,∴A=C=30°,∴B=120°.由余弦定理可得b=2错误!.2. △ABC中,a=错误!,b=错误!,sin B=错误!,则符合条件的三角形有A. 1个B. 2个C. 3个D. 0个答案:B解析:∵a sin B=错误!,∴a sin B<b=错误!<a=错误!,∴符合条件的三角形有2个.3.2010·天津卷在△ABC中,内角A,B,C的对边分别是a,b,c.若a2-b2=错误! bc,sin C=2错误!sin B,则A=A.30° B.60°C.120° D.150°答案:A解析:利用正弦定理,sin C=2错误!sin B可化为c=2错误!b.又∵a2-b2=错误!bc,∴a2-b2=错误!b×2错误!b=6b2,即a2=7b2,a=错误!b.在△ABC中,cos A=错误!=错误!=错误!,∴A=30°.4.2010·湖南卷在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=错误!a,则A.a>b B.a<bC.a=b D.a与b的大小关系不能确定答案:A解析:由正弦定理,得错误!=错误!,∴sin A=错误!=错误!>错误!.∴A>30°.∴B=180°-120°-A<30°.∴a>b.5. 如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为A. 错误!B. 错误!C. 错误!D. 错误!答案:D解析:方法一:设三角形的底边长为a,则周长为5a,∴腰长为2a,由余弦定理知cosα=错误!=错误!.方法二:如图,过点A作AD⊥BC于点D,则AC=2a,CD=错误!,∴sin错误!=错误!,∴cosα=1-2sin2错误!=1-2×错误!=错误!.6. 2010·泉州模拟△ABC中,AB=错误!,AC=1,∠B=30°,则△ABC的面积等于A. 错误!B. 错误!C. 错误!或错误!D. 错误!或错误!答案:D解析:∵错误!=错误!,∴sin C=错误!·sin30°=错误!.∴C=60°或C=120°.当C=60°时,A=90°,S△ABC=错误!×1×错误!=错误!,当C=120°时,A=30°,S△ABC=错误!×1×错误!sin30°=错误!.即△ABC的面积为错误!或错误!.二、填空题7.在△ABC中,若b=1,c=错误!,∠C=错误!,则a=________.答案:1解析:由正弦定理错误!=错误!,即错误!=错误!,sin B=错误!.又b<c,∴B=错误!,∴A=错误!.∴a=1.8.2010·山东卷在△ABC中,角A,B,C所对的边分别为a,b,c.若a=错误!,b =2,sin B+cos B=错误!,则角A的大小为________.答案:错误!解析:∵sin B+cos B=错误!,∴sin B+错误!=1.又0<B<π,∴B=错误!.由正弦定理,知错误!=错误!,∴sin A=错误!.又a<b,∴A<B,∴A=错误!.9. 2010·课标全国卷在△ABC中,D为边BC上一点,BD=错误!DC,∠ADB=120°,AD=2.若△ADC的面积为3-错误!,则∠BAC=________.答案:60°解析:S△ADC=错误!×2×DC×错误!=3-错误!,解得DC=2错误!-1,∴BD=错误!-1,BC=3错误!-1.在△ABD中,AB2=4+错误!-12-2×2×错误!-1×cos120°=6,∴AB=错误!.在△ACD中,AC2=4+2错误!-12-2×2×2错误!-1×cos60°=24-12错误!,∴AC=错误!错误!-1,则cos∠BAC=错误!=错误!=错误!,∴∠BAC=60°.三、解答题10. 如图,△OAB是等边三角形,∠AOC=45°,OC=错误!,A、B、C三点共线.1求sin∠BOC的值;2求线段BC的长.解:1∵△AOB是等边三角形,∠AOC=45°,∴∠BOC=45°+60°,∴sin∠BOC=sin45°+60°=sin45°cos60°+cos45°sin60°=错误!.2在△OBC中,错误!=错误!,∴BC=sin∠BOC×错误!=错误!×错误!=1+错误!.11. 2010·全国Ⅱ卷△ABC中,D为边BC上的一点,BD=33,sin B=错误!,cos ∠ADC=错误!,求AD.解:由cos∠ADC=错误!>0知B<错误!,由已知得cos B=错误!,sin∠ADC=错误!,从而sin∠BAD=sin∠ADC-B=sin∠ADC cos B-cos∠ADC sin B=错误!×错误!-错误!×错误!=错误!.由正弦定理得错误!=错误!,AD=错误!=错误!=25.12. 2010·安徽卷设△ABC是锐角三角形,a,b,c分别是内角A,B,C所对边长,并且sin2A=sin错误!sin错误!+sin2B.1求角A的值;2若错误!·错误!=12,a=2错误!,求b,c其中b<c.解:1因为sin2A=错误!错误!+sin2B=错误!cos2B-错误!sin2B+sin2B=错误!,所以sin A=±错误!.又A为锐角,所以A=错误!.2由错误!·错误!=12,可得cb cos A=12.①由1知A=错误!,所以cb=24.②由余弦定理知a2=c2+b2-2cb cos A,将a=2错误!及①代入,得c2+b2=52,③③+②×2,得c+b2=100,所以c+b=10.因此c,b是一元二次方程t2-10t+24=0的两个根.解此方程并由c>b知c=6,b=4.。
(完整版)正弦定理与余弦定理练习题
正弦定理与余弦定理1.已知△ABC 中,a=4,ο30,34==A b ,则B 等于( )A .30° B.30° 或150° C.60° D.60°或120° 2.已知锐角△ABC 的面积为33,BC=4,CA=3,则角C 的大小为( ) A .75° B.60° C.45° D.30°3.已知ABC ∆中,c b a ,,分别是角C B A ,,所对的边,若0cos cos )2(=++C b B c a ,则角B 的大小为( ) A .6πB .3πC .32π D .65π 4.在∆ABC 中,a 、b 、c 分别是角A 、B 、C 的对边.若sin sin CA=2,ac a b 322=-,则B ∠=( ) A. 030 B. 060 C. 0120 D. 0150 5.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知a=5,c=10,A=30°,则B 等于( )A .105° B.60° C.15° D.105° 或 15° 6.已知ABC ∆中,756,8,cos 96BC AC C ===,则ABC ∆的形状是( ) A .锐角三角形 B .直角三角形 C .等腰三角形 D .钝角三角形7.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且2B C =,2cos 2cos b C c B a -=,则角A 的大小为( ) A .2π B .3π C .4π D .6π 8.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 9.在ABC ∆中,sin :sin :sin 3:2:4A B C =,那么cos C =( ) A.14 B.23 C.23- D.14- 10.在ABC ∆中,a b c ,,分别为角A B C ,,所对边,若2cos a b C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等腰或直角三角形 11.在△ABC 中,cos2=,则△ABC 为( )三角形.A .正B .直角C .等腰直角D .等腰 12.在△ABC 中,A=60°,a=4,b=4,则B 等于( )A .B=45°或135°B .B=135°C .B=45°D .以上答案都不对13.在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=且a b >,则B ∠=( )A.6πB.3πC.23πD.56π14.设△ABC 的内角A, B, C 所对的边分别为a, b, c, 若cos cos sin b C c B a A +=, 则△ABC 的形状为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定 15.已知在ABC ∆中,2cos 22A b cc+=,则ABC ∆的形状是( ) A .直角三角形 B .等腰三角形或直角三角形 C .正三角形 D .等腰直角三角 16.已知ABC ∆内角,,A B C 的对边分别是,,a b c ,若1cos ,2,sin 2sin 4B bC A ===,则ABC ∆的面积为( ) A.156 B. 154 C. 152D. 15 17.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A =3π,a =3,b =1,则c =( ) A . 3-1 B .3 C. 2 D. 1 评卷人 得分一、解答题(题型注释)18.在ABC ∆中,内角A ,B ,C 所对的边分别是a ,b ,c .已知4A π=,22212b ac -=. (1)求tan C 的值;(2)若ABC ∆的面积为3,求b 的值.19.在△ABC 的内角A ,B ,C 对应的边分别是a ,b ,c ,已知,(1)求B ;(2)若b=2,△ABC 的周长为2+2,求△ABC 的面积.ABC C B A ,,c b a ,,B c C b a sin cos +=B2=b ABC21.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,已知()222332b c a bc +=+ (1)求sinA ; (2)若32a =,△ABC 的面积S =22,且b>c ,求b ,c .22.已知ABC △的内角A B C ,,的对边分别为a b c ,,,且满足sin(2)22cos()sin A B A B A+=++.(Ⅰ)求ba的值; (Ⅱ)若17a c ==,,求ABC △的面积.23.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知2a =,5c =, (1)求b 的值; (2)求sin C 的值.二、填空题 24.已知在中,,,,则___.25.△ABC 中,若222a b c bc =+-,则A = .26.在中,角,,A B C 所对边长分别为,,a b c ,若,则b=___________.27.在C ∆AB 中,已知,C 4A =,30∠B =o ,则C ∆AB 的面积是 . 28.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,设S 为△ABC 的面积,,则C 的大小为___________. 29.在∆ABC ,则这个三角形的形状是参考答案1.D 【解析】试题分析:B b A a sin sin =,2342134430sin 34sin sin 0=⋅=⋅==a A b B ;b a <Θ,030=>∴A B , 060=∴B 或0120=B ,选D.考点:正弦定理、解三角形2.B 【解析】试题分析:33sin 4321sin 21=⋅⋅=⋅⋅=∆C C BC AC S ABC ,则23sin =C ,所以060=C ,选B.考点:三角形面积公式3.C 【解析】试题分析:由已知和正弦定理得(2sin sin )cos sin cos 0,A C B B C ++=展开化简得2sin cos sin 0A B A +=,由于A 为三角形内角,所以0,sin 0A A ≠≠,所以1cos 2B =-,23B π=,选C. 考点:1.正弦定理;2.两角和的正弦公式;3.已知三角函数值求角.4.C 【解析】试题分析:由正弦定理可得,sin 22sin C c c a A a==⇒=,又222237b a ac b a -=⇒=,由余弦定理可得,2222221cos 242a cb a B ac a +--===-,又()0,B π∈,所以120B ︒∠=. 考点:1.正弦定理;2.余弦定理.5.D 【解析】解:=, ∴sinC=•sinA=×=,∵0<C <π,∴∠C=45°或135°, ∴B=105°或15°, 故选D .【点评】本题主要考查了正弦定理的应用.解题的过程中一定注意有两个解,不要漏解. 6.D 【解析】试题分析:由余弦定理得22275682682596AB =+-⨯⨯⨯=,所以最大角为B 角,因为226258cos 0265B +-=<⨯⨯,所以B 角为钝角,选D.考点:余弦定理【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是: 第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果. 7.A 【解析】试题分析:由正弦定理得()2sin cos 2sin cos sin sin B C C A B C -==+sin cos cos sin B C B C =+,2sin cos 3sin cos ,sin 2cos 3sin cos 2B C C B C C C C ==,()2222cos 3cos sin C C C =-,213tan ,tan 33C C ==,2,B C C =∴Q 为锐角,所以,,632C B A πππ===,故选A.考点:1、正弦定理两角和的正弦公式;2、三角形内角和定理.8.C 【解析】试题分析:由题可根据正弦定理,得a 2+b 2<c 2,∴cos C =2222a b c ab+-<0,则角C 为钝角考点:运用正弦和余弦定理解三角形. 9.D 【解析】试题分析:sin :sin :sin 3:2:4,::3:2:4A B C a b c =∴=2221cos 24a b c C ab +-∴==- 考点:正余弦定理解三角形10.C 【解析】试题分析:在给定的边与角的关系式中,可以用余弦定理,得22222a b c a b ab+-=g ,那么化简可知所以 2222=a a b c +-,即 22=b c ,=b c ,所以三角形ABC 是等腰三角形.故选C .考点:余弦定理判断三角形的形状. 11.B 【解析】试题分析:根据二倍角的余弦公式变形、余弦定理化简已知的等式,化简后即可判断出△ABC 的形状. 解:∵cos2=,∴(1+cosB )=,在△ABC 中,由余弦定理得,=,化简得,2ac+a 2+c 2﹣b 2=2a (a+c ),则c 2=a 2+b 2,∴△ABC 为直角三角形, 故选:B . 12.C 【解析】试题分析:由A 的度数求出sinA 的值,再由a 与b 的值,利用正弦定理求出sinB 的值,由b 小于a ,得到B 小于A ,利用特殊角的三角函数值即可求出B 的度数. 解:∵A=60°,a=4,b=4, ∴由正弦定理=得:sinB===,∵b <a ,∴B <A , 则B=45°. 故选C 13.A 【解析】试题分析:利用正弦定理化简得:sinAsinBcosC+sinCsinBcosA=12sinB , ∵sinB ≠0,∴sinAcosC+cosAsinC=sin (A+C )=sinB=12, ∵a >b ,∴∠A >∠B ,∴∠B=6π 考点: 14.B 【解析】试题分析:()22cos cos sin sin cos cos sin sin sin sin b C c B a A B C B C A B C A +=∴+=∴+=sin 12A A π∴=∴=,三角形为直角三角形考点:三角函数基本公式 15.A【解析】试题分析:22cos 2cos 11cos 1cos 222A b c A b c b b b A A c c c c c++=⇒==+⇒+=+⇒= ()sin sin cos sin cos 0cos 0,sin sin 2A CB A AC C C C C π+==⇒=∴==,选A考点:正弦定理,二倍角的余弦,两角和的正弦16.B【解析】试题分析:2222214sin 2sin 2cos 242a c b a c C A c a B ac ac +-+-=∴==∴=Q Q 1,2a c ∴==111515sin 122244S ac B ∴==⨯⨯⨯= 考点:正余弦定理解三角形17.C 【解析】试题分析:由余弦定理可得2222113cos 2222b c a c A c bc c+-+-=∴=∴= 考点:余弦定理解三角形 18.(1)2;(2)3.【解析】试题分析:(1)先运用余弦定理求得b c 322=,进而求得b a 35=,再运用正弦定理求C sin 的值即可获解;(2)利用三角形的面积公式建立关于b 方程求解. 试题解析:(1)由余弦定理可得222222⨯-+=bc c b a , 即bc c a b 2222=+-,将22212b a c -=代入可得b c 322=,再代入22212b ac -=可得b a 35=, 所以522sin sin ==a c A C ,即52sin =C ,则51cos =C ,所以2tan =C ; (2)因3sin 21=A bc ,故322322212=⨯⨯b ,即3=b . 考点:正弦定理余弦定理等有关知识的综合运用. 19.(1)B=(2)【解析】解:(1)由正弦定理可得:=,∴tanB=,∵0<B <π, ∴B=;(2)由余弦定理可得b 2=a 2+c 2﹣2accosB ,即a 2+c 2﹣ac=4,又b=2,△ABC 的周长为2+2, ∴a+c+b=2+2, 即a+c=2, ∴ac=,∴S △ABC =acsinB=××=.【点评】本题考查了正弦定理、余弦定理、三角形周长、三角形面积计算公式,考查了推理能力与计算能力,属于中档题. 20.(1)B=.4π(2)21+ 【解析】试题分析:(1)由题为求角,可利用题中的条件B c C b a sin cos +=,可运用正弦定理化边为角, 再联系两角和差公式,可求出角B 。
正弦定理和余弦定理 高考数学真题详细解析 高考数学真题复习
4.6 正弦定理和余弦定理一、选择题1.在△ABC中,C=60°,AB=3,BC=2,那么A等于( ).A.135° B.105° C.45° D.75°解析由正弦定理知BCsin A=ABsin C,即2sin A=3sin 60°,所以sin A=22,又由题知,BC<AB,∴A=45°.答案 C2.已知a,b,c是△ABC三边之长,若满足等式(a+b-c)(a+b+c)=ab,则角C的大小为( ).A.60° B.90° C.120° D.150°解析由(a+b-c)(a+b+c)=ab,得(a+b)2-c2=ab,∴c2=a2+b2+ab=a2+b2-2ab cos C,∴cos C=-12,∴C=120°.答案 C3.在△ABC中,角A、B、C的对边分别为a、b、c,且a=λ,b=3λ(λ>0),A=45°,则满足此条件的三角形个数是( )A.0 B.1C.2 D.无数个解析:直接根据正弦定理可得asin A=bsin B,可得sin B=b sin Aa=3λsin 45°λ=62>1,没有意义,故满足条件的三角形的个数为0.答案:A4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a cos A =b sin B ,则sin A cos A +cos 2B 等于( ).A .-12 B.12C .-1D .1 解析 根据正弦定理,由a cos A =b sin B ,得sin A cos A =sin 2B ,∴sin A cosA +cos 2B =sin 2B +cos 2B =1.答案 D5. 在ABC ∆中,角,,A B C 所对边的长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )B. 2C. 12D. 12- 解析 2122cos 2222222=+-≥-+=b a c c ab c b a C ,故选C. 答案 C6.在△ABC 中,sin 2 A ≤sin 2 B +sin 2 C -sin B sin C ,则A 的取值范围是( ).A.⎝ ⎛⎦⎥⎤0,π6B.⎣⎢⎡⎭⎪⎫π6,πC.⎝ ⎛⎦⎥⎤0,π3D.⎣⎢⎡⎭⎪⎫π3,π 解析 由已知及正弦定理有a 2≤b 2+c 2-bc ,而由余弦定理可知a 2=b 2+c 2-2bc cos A ,于是可得b 2+c 2-2bc cos A ≤b 2+c 2-bc ,可得cos A ≥12,注意到在△ABC 中,0<A <π,故A ∈⎝⎛⎦⎥⎤0,π3. 答案 C7.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( ).A.43 B .8-4 3 C .1 D.23解析 依题意得⎩⎨⎧ a +b 2-c 2=4a 2+b 2-c 2=2ab cos 60°=ab ,两式相减得ab =43,选A. 答案 A二、填空题8.如图,△ABC 中,AB =AC =2,BC =23,点D 在BC 边上,∠ADC =45°,则AD 的长度等于________.解析 在△ABC 中,∵AB =AC =2,BC =23,∴cos C =32,∴sin C =12;在△ADC 中,由正弦定理得,AD sin C =AC sin ∠ADC , ∴AD =2sin 45°×12= 2. 答案 2 9. 在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,且3a =2c sin A ,角C =________.解析:根据正弦定理,asin A =csin C, 由3a =2c sin A ,得asin A =c32, ∴sin C =32,而角C 是锐角.∴角C =π3.答案:π310.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若三边的长为连续的三个正整数,且A >B >C ,3b=20acosA ,则sinA ∶sinB ∶sinC 为______.答案 6∶5∶411.若AB =2,AC =2BC ,则S △ABC 的最大值________.解析 (数形结合法)因为AB =2(定长),可以令AB 所在的直线为x 轴,其中垂线为y 轴建立直角坐标系,则A (-1,0),B (1,0),设C (x ,y ),由AC =2BC , 得 x +2+y 2= 2 x -2+y 2,化简得(x -3)2+y 2=8,即C 在以(3,0)为圆心,22为半径的圆上运动,所以S △ABC =12·|AB |·|y C |=|y C |≤22,故答案为2 2. 答案 2 212.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b a +a b =6cos C ,则tan C tan A+tan C tan B的值是________. 解析 法一 取a =b =1,则cos C =13,由余弦定理得c 2=a 2+b 2-2ab cos C =43,∴c =233,在如图所示的等腰三角形ABC 中,可得tan A =tan B =2,又sin C =223,tan C =22,∴tan C tan A +tan C tan B=4. 法二 由b a +a b =6cos C ,得a 2+b 2ab =6·a 2+b 2-c 22ab, 即a 2+b 2=32c 2,∴tan C tan A +tan C tan B =tan C ⎝ ⎛⎭⎪⎫cos A sin A +cos B sin B = sin 2C cos C sin A sin B =2c 2a 2+b 2-c 2=4. 答案 4三、解答题13.叙述并证明余弦定理.解析 余弦定理:三角形任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦之积的两倍.或:在△ABC 中,a ,b ,c 为A ,B ,C 的对边,有a 2=b 2+c 2-2bc cos A ,b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C , 法一 如图(1),图(1) a 2=BC →·BC →=(AC →-AB →)·(AC →-AB →)=AC →2-2AC →·AB →+AB →2=AC →2-2|AC →|·|AB →|cos A +AB →2=b 2-2bc cos A +c 2,即a 2=b 2+c 2-2bc cos A .同理可证b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C .法二图(2)已知△ABC 中A ,B ,C 所对边分别为a ,b ,c ,以A 为原点,AB 所在直线为x 轴建立直角坐标系,如图(2)则C (b cos A ,b sin A ),B (c,0),∴a 2=|BC |2=(b cos A -c )2+(b sin A )2=b 2cos 2A -2bc cos A +c 2+b 2sin 2A=b 2+c 2-2bc cos A .同理可证b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C .14.在△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,B =2π3,b =13,a +c =4,求a .解析:由余弦定理b 2=a 2+c 2-2ac cos B=a 2+c 2-2ac cos 2π3 =a 2+c 2+ac =(a +c )2-ac .又∵a +c =4,b =13,∴ac =3.联立⎩⎨⎧ a +c =4,ac =3,解得a =1或a =3.15.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且(1)求角B 的大小;(2)若b=3,sinC=2sinA ,求a ,c 的值.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -a b. (1)求sin C sin A的值; (2)若cos B =14,△ABC 的周长为5,求b 的长. 解析 (1)由正弦定理,设asin A =bsin B =csin C =k ,则2c -a b =2k sin C -k sin A k sin B =2sin C -sin A sin B, 所以cos A -2cos C cos B =2sin C -sin A sin B. 即(cos A -2cos C )sin B =(2sin C -sin A )cos B ,化简可得sin(A +B )=2sin(B +C ).又A +B +C =π,所以sin C =2sin A ,因此sin C sin A =2. (2)由sin C sin A =2得c =2a .由余弦定理及cos B=1 4得b2=a2+c2-2ac cos B=a2+4a2-4a2×14=4a2.所以b=2a.又a+b+c=5.从而a=1,因此b=2.。
正弦定理和余弦定理专题试题及答案
正弦定理和余弦定理专题试题及答案1.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形2.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解 C .无解 D .有解但解的个数不确定3.已知△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,若ɑ2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( ) A.12 B .1 C.3 D .24.在△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,且bsin A =3ɑcos B .则B =( ) A.π6 B.π4 C.π3 D.π25.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c.若3a =2b ,则2sin 2B -sin 2Asin 2A的值为( )A .-19B .13C .1D .726.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,且满足c sin A =3a cos C ,则sin A +sin B 的最大值是( )A .1B . 2C . 3D .37.在△ABC 中,若A=,B=,BC=3,则AC=( )A. B. C.2D.48.在△ABC 中,若a 2+b 2<c 2,则△ABC 的形状是 ( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定9.已知△ABC 的内角A,B,C 的对边分别为a,b,c,且=,则B= ( ) A.B. C. D.10.在△ABC 中,角A,B,C 所对的边长分别为a,b,c.若C=120°,c=a,则 ( )A.a>bB.a<bC.a=bD.a 与b 的大小关系不能确定11.在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC =的面积为________.12.若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________.13.△ABC 中,点D 是BC 上的点,AD 平分∠BAC,BD=2DC. (1)求.(2)若∠BAC=60°,求B.14.在△ABC 中,角A,B,C 的对边分别为a,b,c,且bcosC=3acosB-ccosB. (1)求cosB 的值. (2)若·=2,且b=2,求a 和c 的值.15.如图,在△ABC 中,点P 在BC 边上,∠PAC =60°,PC =2,AP +AC =4.(1)求∠ACP ;(2)若△APB 的面积是332,求sin ∠BAP .16.在△ABC 中,角A ,B ,C 的对边分别是ɑ,b ,c ,且b 2=ɑc =ɑ2-c 2+bc. (1)求bsin Bc的值; (2)试判断△ABC 的形状,并说明理由.正弦定理和余弦定理专题试题及答案1.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形答案:C2.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解 C .无解 D .有解但解的个数不确定 解析:由正弦定理得b sin B =csin C,∴sin B =bsin Cc=40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在. 答案:C3.已知△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,若ɑ2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( ) A.12B .1 C. 3 D .2 解析:∵ɑ2=b 2+c 2-bc ,∴cos A =12,∴A =π3,又bc =4,∴△ABC 的面积为12bcsin A =3,故选C.答案:C4.在△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,且bsin A =3ɑcos B .则B =( ) A.π6 B.π4 C.π3 D.π2解析:根据题意结合正弦定理, 得sin Bsin A =3sin Acos B. 因为sin A ≠0,所以sin B =3cos B , 即sin B cos B =tan B =3,所以B =π3. 答案:C5.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c.若3a =2b ,则2sin 2B -sin 2A sin 2A的值为( )A .-19B .13C .1D .72解析:由正弦定理可得2sin 2B -sin 2A sin 2A =2⎝ ⎛⎭⎪⎫sinB sin A 2-1=2⎝ ⎛⎭⎪⎫b a 2-1,因为3a =2b ,所以b a =32,所以2sin 2B -sin 2A sin 2A =2×⎝ ⎛⎭⎪⎫322-1=72。
(完整版)正弦定理和余弦定理练习题
【正弦定理、余弦定理模拟试题】一. 选择题:1. 在∆ABC 中,a b B ===︒232245,,,则A 为( )A B C D ....60120603015030︒︒︒︒︒︒或或2. 在∆AB C A a B bB 中,若,则sin cos =∠=( ) A BCD ....30456090︒︒︒︒3. 在∆ABC 中,a b c bc 222=++,则A 等于( )A B C D ....604512030︒︒︒︒4. 在∆ABC 中,||||()()AB BC AB BC AB BC →=→=→+→⋅→+→=+12523,,,则边||AC →等于( ) A B C D ....5523523523--+5. 以4、5、6为边长的三角形一定是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 锐角或钝角三角形6. 在∆ABC 中,b A a B cos cos =,则三角形为( )A. 直角三角形B. 锐角三角形C. 等腰三角形D. 等边三角形7. 在∆ABC 中,cos cos sin sin A B A B >,则∆ABC 是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 正三角形8. 三角形的两边分别为5和3,它们夹角的余弦是方程57602x x --=的根,则三角形的另一边长为( )A. 52B. 213C. 16D. 4二. 填空题:9. 在∆ABC 中,a b A B +==︒=︒126045,,,则a =_______,b =________10. 在∆ABC 中,化简b C c B cos cos +=___________11. 在∆ABC 中,已知sin :sin :sin ::A B C =654,则cosA =___________12. 在∆ABC 中,A 、B 均为锐角,且cos sin A B >,则∆ABC 是_________三. 解答题:13. 已知在∆ABC 中,∠=︒==A a c 4526,,,解此三角形。
正弦定理、余弦定理习题及答案
正弦定理、余弦定理练习题年级__________ 班级_________ 学号_________ 姓名__________ 分数____一、选择题(共20题,题分合计100分)1.已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为A.-B.C.-D.2.在△ABC中,a=λ,b=λ,A=45°,则满足此条件的三角形的个数是A.0B.1 C.2 D.无数个3.在△ABC中,b cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形4.已知三角形的三边长分别为x2+x+1,x2-1和2x+1(x>1),则最大角为A.150°B.120°C.60°D.75°5.在△ABC中,=1,=2,(+)·(+)=5+2则边||等于A.B.5-2 C. D.6.在△ABC中,已知B=30°,b=50,c=150,那么这个三角形是A.等边三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形7.在△ABC中,若b2sin2C+c2sin2B=2bc cos B cos C,则此三角形为A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形8.正弦定理适应的范围是A.Rt△B.锐角△C.钝角△D.任意△9.已知△ABC中,a=10,B=60°,C=45°,则c=A.10+B.10(-1)C.(+1)D.1010.在△ABC中,b sin A<a<b,则此三角形有A.一解B.两解C.无解D.不确定11.三角形的两边分别为5和3,它们夹角的余弦是方程5x2-7x-6=0的根,则三角形的另一边长为A.52B.2C.16D.412.在△ABC中,a2=b2+c2+bc,则A等于A.60°B.45°C.120D.30°13.在△ABC中,,则△ABC是A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形14.在△ABC中,a=2,A=30°,C=45°,则△ABC的面积S△ABC等于A.B.2 C.+1 D.(+1)15.已知三角形ABC的三边a、b、c成等比数列,它们的对角分别是A、B、C,则sin A sin C 等于A.cos2BB.1-cos2BC.1+cos2BD.1+sin2B16.在△ABC中,sin A>sin B是A>B的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.在△ABC中,b Cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形18.△ABC中,sin2A=sin2B+sin2C,则△ABC为A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形19.△ABC中,A=60°,b=1,这个三角形的面积为,则△ABC外接圆的直径为A. B. C. D.20.在△ABC中,,则k为A.2RB.RC.4RD.(R为△ABC外接圆半径)二、填空题(共18题,题分合计75分)1.在△ABC中,A=60°,C=45°,b=2,则此三角形的最小边长为.2.在△ABC中,= .3.在△ABC中,a∶b∶c=(+1)∶∶2,则△ABC的最小角的度数为.4.在△ABC中,已知sin A∶sin B∶sin C=6∶5∶4,则sec A= .5.△ABC中,,则三角形为_________.6.在△ABC中,角A、B均为锐角且cos A>sin B,则△ABC是___________.7.在△ABC中,若此三角形有一解,则a、b、A满足的条件为____________________.8.已知在△ABC中,a=10,b=5,A=45°,则B= .9.已知△ABC中,a=181,b=209,A=121°14′,此三角形解.10.在△ABC中,a=1,b=1,C=120°则c= .11.在△ABC中,若a2>b2+c2,则△ABC为;若a2=b2+c2,则△ABC为;若a2<b2+c2且b2<a2+c2且c2<a2+b2,则△ABC为.12.在△ABC中,sin A=2cos B sin C,则三角形为_____________.13.在△ABC中,BC=3,AB=2,且,A= .14.在△ABC中,B=,C=3,B=30°,则A= .15.在△ABC中,a+b=12,A=60°,B=45°,则a= ,b= .16.若2,3,x为三边组成一个锐角三角形,则x的范围为.17.在△ABC中,化简b cos C+c cos B= .18.钝角三角形的边长是三个连续自然数,则三边长为.三、解答题(共24题,题分合计244分)1.已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.2.已知△ABC的三边长a=3,b=4,c=,求三角形的最大内角.3.已知在△ABC中,∠A=45°,a=2,c=,解此三角形.4.在四边形ABCD中,BC=a,DC=2a,四个角A、B、C、D度数的比为3∶7∶4∶10,求AB的长.5.在△ABC中,A最大,C最小,且A=2C,A+C=2B,求此三角形三边之比.6.证明:在△ABC中,.(其中R为△ABC的外接圆的半径)7.在△ABC中,最大角A为最小角C的2倍,且三边a、b、c为三个连续整数,求a、b、c的值.8.如下图所示,半圆O的直径MN=2,OA=2,B为半圆上任意一点,以AB为一边作正三角形ABC,问B在什么位置时,四边形OACB面积最大?最大面积是多少?9.在△ABC中,若sin A∶sin B∶sin C=m∶n∶l,且a+b+c=S,求a.10.根据所给条件,判断△ABC的形状(1)a cos A=b cos B(2)11.△ABC中,a+b=10,而cos C是方程2x2-3x-2=0的一个根,求△ABC周长的最小值.12.在△ABC中,a、b、c分别是角A、B、C的对边,设a+c=2b,A-C=,求sin B的值.13.已知△ABC中,a=1,b=,A=30°,求B、C和c.14.在△ABC中,c=2,tan A=3,tan B=2,试求a、b及此三角形的面积.15.已知S△ABC=10,一个角为60°,这个角的两边之比为5∶2,求三角形内切圆的半径.16.已知△ABC中,,试判断△ABC的形状.17.已知△ABC的面积为1,tan B=,求△ABC的各边长.18.求值:19.已知△ABC的面积,解此三角形.20.在△ABC中,a=,b=2,c=+1,求A、B、C及S△.21.已知(a2+bc)x2+2=0是关于x的二次方程,其中a、b、c是△ABC的三边,(1)若∠A为钝角,试判断方程根的情况.(2)若方程有两相等实根,求∠A的度数.22.在△ABC中,(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断△ABC的形状.23.在△ABC中,a>b,C=,且有tan A·tan B=6,试求a、b以及此三角形的面积.24.已知:k是整数,钝角△ABC的三内角A、B、C所对的边分别为a、b、c(1)若方程组有实数解,求k的值.(2)对于(1)中的k值,若且有关系式,试求A、B、C的度数.正弦定理、余弦定理答案一、选择题(共20题,合计100分)1 A 2A3C 4 B 5 C 6D 7A 8 D 9B 10 B 11 B 12C 13C 14C 15.B 16. C 17:C 18A 19C 20. A二、填空题(共18题,合计75分)1. 2(-1) 2 3. 45° 4. 8 5.等腰三角形 6.:钝角三角形7. a=b sin A或b<a8. 60°或120°9无10.11.钝角三角形直角三角形锐角三角形12.等腰三角形13. 120°14.或215. 36-1216.<x<17.a18. 2、3、4三、解答题(共24题,合计244分)1.a=B=105°b=2.∠C=120°3.∠B=75°或∠B=15°b=+1,∠C=60°,∠B=75°或b=-1,∠C=120°,∠B=15°4. AB的长为5.:此三角形三边之比为6∶5∶47.a=6,b=5,c=48.当θ=时,S四边形OACB最大,最大值为+29.10(1)△ABC是等腰三角形或直角三角形(2)△ABC为等边三角形11△ABC周长的最小值为12.13.B1=60°,B2=120°;C1=90°,C2=30°;c1=2,c2=114..15.16.等边三角形17.18.20. A=60°,B=45°,C=75°,S△=21. (1)没有实数根(2)60°22.等腰三角形或直角三角形23.24.(1)k=1,2,3(2)C=45°,B=15°。
正弦定理、余弦定理综合训练题含答案
正弦定理、余弦定理综合训练题1.[2016·全国卷Ⅰ] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( ) A. 2 B.3 C .2 D .3[解析] D 由余弦定理得5=b 2+4-2×b ×2×23,解得b =3或b =-13(舍去),故选D. 2.[2016·全国卷Ⅲ] 在△ABC 中,B =π4,BC 边上的高等于13BC ,则sin A =( ) A.310 B.1010 C.55 D.31010[解析] D 作AD ⊥BC 交BC 于点D ,设BC =3,则有AD =BD =1,AB =2,由余弦定理得AC = 5.由正弦定理得5sin π4=3sin A,解得sin A =3×225=31010. 3.[2013·新课标全国卷Ⅰ] 已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos 2 A +cos 2A =0,a =7,c =6,则b =( )A .10B .9C .8D .5[解析] D 由23cos 2A +cos 2A =0,得25cos 2A =1.因为△ABC 为锐角三角形,所以cos A =15.在△ABC 中,根据余弦定理,得49=b 2+36-12b ·15,即b 2-125b 4.[2016·全国卷Ⅱ] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.[解析] 因为cos A =45,cos C =513,且A ,C 为三角形的内角,所以sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A sin C =6365.又因为a sin A =b sin B ,所以b =a sin B sin A =2113. -13=0,解得b =5或b =-135(舍去). 5.[2015·全国卷Ⅰ] 已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C.(1)若a =b ,求cos B;(2)若B =90°,且a =2, 求△ABC 的面积.解:(1)由题设及正弦定理可得b 2=2ac .又a =b ,所以可得b =2c ,a =2c .由余弦定理可得cos B =a 2+c 2-b 22ac =14. (2)由(1)知b 2=2ac .因为B =90°,所以由勾股定理得a 2+c 2=b 2.故a 2+c 2=2ac ,得c =a =2,所以△ABC 的面积为1.6.[2015·全国卷Ⅱ] △ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2D C.(1)求sin ∠B sin ∠C; (2)若∠BAC =60°,求∠B.解:(1)由正弦定理得AD sin ∠B =BD sin ∠BAD ,AD sin ∠C =DC sin ∠CAD. 因为AD 平分∠BAC ,BD =2DC ,所以sin ∠B sin ∠C =DC BD =12. (2)因为∠C =180°-(∠BAC +∠B ),∠BAC =60°,所以sin ∠C =sin(∠BAC +∠B )=32cos ∠B +12sin ∠B. 由(1)知2sin ∠B =sin ∠C ,所以tan ∠B =33,即∠B =30°. 7.[2014·新课标全国卷Ⅱ] 四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2.(1)求C 和BD ;(2)求四边形ABCD 的面积.解:(1)由题设及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C=13-12cos C ,①BD 2=AB 2+DA 2-2AB ·DA cos A=5+4cos C .②由①②得cos C =12,故C =60°,BD =7. (2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C =⎝⎛⎭⎫12×1×2+12×3×2sin 60°=2 3. 8.[2016·山东卷] △ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知b =c ,a 2=2b 2(1-sin A ),则A =( )A.3π4B.π3C.π4D.π6[解析] C ∵b =c ,a 2=2b 2(1-sin A ),∴2b 2sin A =b 2+c 2-a 2=2bc cos A =2b 2cos A ,∴tan A=1,即A =π4. 9.[2015·广东卷] 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32且b <c ,则b =( ) A .3 B .22 C .2 D. 3 [解析] C 由余弦定理得a 2=b 2+c 2-2bc cos A ,所以22=b 2+(23)2-2×b ×23×32,即b 2-6b +8=0,解得b =2或b =4.因为b <c, 所以b =2.10.[2016·上海卷] 已知△ABC 的三边长分别为3,5,7,则该三角形的外接圆半径等于________.[解析] 利用余弦定理可求得最大边7所对角的余弦值为32+52-722×3×5=-12,所以此角的正弦值为32.设三角形外接圆的半径为R ,由正弦定理得2R =732,所以R =733. 11.[2016·北京卷] 在△ABC 中,∠A =2π3,a =3c ,则b c=________.[解析] 由余弦定理a 2=b 2+c 2-2bc cos A 可得,3c 2=b 2+c 2-2bc cos 2π3,整理得b c 2+b c-2=0,解得b c =1或b c=-2(舍去).12.[2016·浙江卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B .(1)证明:A =2B ;(2)若cos B =23,求cos C 的值. 解:(1)证明:由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B ,于是sin B =sin(A -B ). 又A ,B ∈(0,π),故0<A -B <π,所以B =π-(A -B )或B =A -B ,因此A =π(舍去)或A =2B ,所以A =2B.(2)由cos B =23得sin B =53,cos 2B =2cos 2B -1=-19,故cos A =-19,sin A =459,cos C =-cos(A +B )=-cos A cos B +sin A sin B =2227.。
(完整版)正弦定理和余弦定理典型例题(最新整理)
【答案】根据余弦定理可得:
cos A b2 c2 a2 8 8 4 3 4 3
2bc
22 2 6 2 2
∵ 0 A 180 , ∴ A 30 ;
∴由正弦定理得: sin C c sin A
6 2 sin 30
6 2
.
a
2
4
【变式 2】在 ABC 中,已知 B 750 , C 600 , c 5 ,求 a 、 A .
【答案】 A 1800 (B C) 1800 (750 600 ) 450 ,
根据正弦定理
a
5
,∴ a 5
6
.
sin 45o sin 60o
3
【变式 3】在 ABC 中,已知 sin A : sin B : sin C 1: 2 : 3 ,求 a : b : c 【答案】根据正弦定理 a b c ,得 a : b : c sin A : sin B : sin C 1: 2 : 3 .
【答案】根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ;
根据正弦定理,
b
asin B sin A
42.9sin81.80 sin32.00
80.1(cm)
;
根据正弦定理,
c
asinC sin A
42.9sin 66.20 sin32.00
74.1(cm).
sin A sin B sin C
例 2.在 ABC中,b 3, B 60, c 1,求: a 和 A , C .
思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角 C ,然后用三角形 内角和求出角 A ,最后用正弦定理求出边 a .
正弦定理余弦定理习题及答案
正 余 弦 定 理3、 已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若则sinC= . 4、如图,在△ABC 中,若b = 1,c23C π∠=,则a= 。
5、在ABC ∆中,角,,A B C 所对的边分别为a ,b ,c,若a =2b =,sin cos B B +=,则角A 的大小为 .6、在∆ABC 中,,,a b c 分别为角,,A B C 的对边,且274sin cos 222B C A +-= (1)求A ∠的度数(2)若a =3b c +=,求b 和c 的值7、 在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.8、如图,在△ABC 中,已知3=a ,2=b ,B=45︒ 求A 、C 及c .1.在△ABC 中,已知角B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,求AB ..AB2.在△ABC 中,已知cos A =35 ,sin B =513 ,求cos C 的值.3、在△ABC 中,已知2cos B sin C =sin A ,试判定△ABC 的形状.4..在△ABC 中,若sin A =sin B +sin Ccos B +cos C ,试判断△ABC 的形状.5.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,求证:a 2-b 2c 2 =sin (A -B )sin C. .6..在△ABC 中,若(a +b +c )(b +c -a )=bc ,并且sin A =2sin B cos C ,试判断△ABC 的形状. \1.解:在△ADC 中,cos C =AC 2+DC 2-AD 22AC ·DC =72+32-522×7×3 =1114 ,又0<C <180°,∴sin C =5314在△ABC 中,AC sin B =ABsin C ∴AB =sin C sin B AC =5314· 2 ·7=5622.解:∵cos A =35 <22=cos45°,0<A <π∴45°<A <90°,∴sin A =45∵sin B =513 <12 =sin30°,0<B <π ∴0°<B <30°或150°<B <180° 若B >150°,则B +A >180°与题意不符.∴0°<B <30° cos B =1213∴cos (A +B )=cos A ·cos B -sin A ·sin B =35 ·1213 -45 · 513 =1665又C =180°-(A +B ).∴cos C =cos [180°-(A +B )]=-cos (A +B )=-1665 . 3.解:在原等式两边同乘以sin A 得2cos B sin A sin C =sin 2A , 由定理得sin 2A +sin 2C -sin 2B =sin 2A , ∴sin 2C =sin 2B ∴B =C 故△ABC 是等腰三角形.4.解:∵sin A =sin B +sin C cos B +cos C,∴cos B +cos C =sin B +sin Csin A ,应用正、余弦定理得a 2+c 2-b 22ac+a 2+b 2-c 22ab =b +ca ,∴b (a 2c 2-b 2)+c (a 2-b 2c 2)=2bc (b +c ), ∴a 2(b +c )-(b +c )(b 2-2bc +c 2)=2bc (b +c ) 即a 2=b 2+c 2故△ABC 为直角三角形.5.证明:由a 2=b 2+c 2-2bc cos A . b 2=a 2+c 2-2ac cos B 两式相减得a 2-b 2=c (a cos B -b cos A ), ∴a 2-b 2c 2 =a cos B -b cos A c 2.又a c =sin A sin C ,b c =sin B sin C ,∴a 2-b 2c 2 =sin A cos B -sin B cos A sin C =sin (A -B )sin C解:由已知条件(a +b +c )(b +c -a )=bc 及余弦定理得 cos A =b 2+c 2-a 22bc =(a +b +c )(b +c -a )2(a +b +c )(b +c -a )=12∴A =60°又由已知条件sin A =2sin B cos C 得sin (B +C )=sin (B +C )+sin (B -C ) ∴sin (C -B )=0,∴B =C 于是有A =B =C =60°, 故△ABC 为等边三角形. 3、【规范解答】由A+C=2B 及180A B C ++=得60B =,由正弦定理得1sin A =得1sin 2A =,由a b <知60A B <=,所以30A =,180C A B =-- 90=,所以sin sin90 1.C ==4、【规范解答】由余弦定理得,222121cos 33a a π+-⨯⨯⨯=,即220a a +-=,解得1a =或2-(舍)。
高考数学 3.7 正弦定理和余弦定理练习
课时提升作业(二十二)正弦定理和余弦定理(25分钟 60分)一、选择题(每小题5分,共25分)1.在△ABC 中,B=45°,C=60°,c=2,则最短边的长为( )A.263B. 6C.1D.3【解析】选A.因为B=45°,C=60°,所以A=180°-(B+C)=75°,B<C<A.故最短的边为b,由正弦定理,得b c sin B sin C =,所以b=2sin 4526.sin 603︒=︒g2.在△ABC 中,A=3π,BC=3,AB=6,则C=( )【解题提示】把用大写字母表示的边长改为小写字母,再用正弦定理求解.【解析】选C.BC=a=3,A B=c=6,由正弦定理,得sin C=csin A 2,a= 又a=3,c=6,所以a>c,即A>C,故C 为锐角,所以C=4π.【误区警示】本题容易由sin C=csin A a 得sin C=22,没有利用a>c 判断A>C,就得出C=4π或34π.从而导致增解.3.(2015·温州模拟)在△ABC 中,角A,B,C 的对边分别为a,b,c,若a2-b2=3bc,3则A=( )A.30°B.60°C.120°D.150°【解析】选A.因为sin C=23sin B,所以由正弦定理得 c=23b, 因为a2-b2=3bc,所以a2=b2+3b ·23b=7b2,即a=7b,cos A=222222bc a 32bc 22b 23b 43+-===g因为0°<A<180°,所以A=30°. 【加固训练】(2014·唐山模拟)若△ABC 的内角A,B,C 满足6sin A=4sin B=3sin C,则cos B=( )【解析】选D.由6sin A=4sin B=3sin C,得sin A ∶sin B ∶sin C=2∶3∶4.设角A,B,C 所对的边分别为a,b,c,则由正弦定理知a ∶b ∶c=2∶3∶4,令a=2k,b=3k,c=4k(k>0),则cos B=()2222222243k a c b 11.2ac 22k 4k 16+-+-==⨯⨯g4.(2015·海淀模拟)在△ABC 中,a=3,b=4,sin A=35,则sin C=( )A.1B.1或725C.1或-725D.1或59 【解题提示】先由正弦定理求sin B,再由内角和定理转化求sin C.【解析】选B.因为a b sin A sin B =,所以sin B=34bsin A 45a 35⨯==,因为b>a,所以B>A,故A 为锐角,B 为锐角或钝角,所以241sin A ,5-=当B 为锐角时231sin B ,5-=此时sin C=sin(A+B)=sin Acos B+cos Asin B =33445555⨯+⨯=1. 当B 为钝角时,cos B=231sin B ,5--=- 此时,sin C=sin(A+B)=sin Acos B+cos Asin B=33447().555525⨯-+⨯= 故选B.【误区警示】解答本题易误选A.出错的原因是求出sin B 的值后,没有根据a<b 讨论B 为钝角的情况.5.(2015·临沂模拟)在△ABC 中,若sin B ·sin C=cos2A2,且sin2B+sin2C=sin2A,则△ABC 是( )A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形【解题提示】把每个等式化简变形,逐一进行判断.【解析】选D.因为sin Bsin C=cos2A 2=1cos A2+,所以2sin Bsin C=1+cos[π-(B+C)]=1-cos(B+C)=1-cos Bcos C+sin Bsin C,即cos Bcos C+sin Bsin C=1,所以cos(B-C)=1.因为B,C 是△ABC 的内角,所以B-C=0,即B=C,又因为sin2B +sin2C=sin2A,即b2+c2=a2.所以A=90°,故△ABC 为等腰直角三角形.二、填空题(每小题5分,共15分)6.(2015·大同模拟)△ABC 的三个内角A,B,C 所对的边分别为a,b,c,已知c=3,C=3π,a=2b,则b 的值为 .【解析】由余弦定理,得c2=a2+b2-2abcos C,即32=(2b)2+b2-2·2b ·b ·cos 3π,解得3.答案: 3【加固训练】若A=60°,a=7,b=5,则c= .【解题提示】直接用余弦定理列出关于c 的方程求解.【解析】由余弦定理得a2=b2+c2-2bccos A,所以49=25+c2-2×5×c ×cos 60°,即c2-5c-24=0,解得c=8(c=-3舍去).答案:87.(2015·中山模拟)在△ABC 中,角A,B,C 所对的边分别为a,b,c,若acos A=bsin B,则sin 2A+cos 2B= .【解题提示】化边为角,把二倍角化为单角,利用整体代入的方法求值.【解析】由正弦定理,得sin Acos A=sin2B,sin 2A+cos 2B=2sin Acos A+2cos2B-1=2sin2B+2cos2B-1=2(sin2B+cos2B)-1=1.答案:1 8.已知以2,3,x 为边长的三角形不是钝角三角形,则x 的取值范围是 .【解题提示】由较大的边对的角都不是钝角,根据余弦定理列不等式组求解.【解析】因为2<3,所以只需2222222x 3,23x ,⎧+≥⎪⎨+≥⎪⎩即5≤x2≤13,又因为x>0,所以5≤x ≤13.答案:[ 5, 13]三、解答题(每小题10分,共20分)9.(2014·安徽高考)设△ABC 的内角A,B,C 所对边的长分别是a,b,c,且b=3,c=1,A=2B.(1)求a 的值. (2)求sin(A+4π)的值.【解题提示】根据三角函数的和角、倍角公式及正、余弦定理解答.【解析】(1)因为A=2B,所以sin A=sin 2B=2sin Bcos B,由正、余弦定理得a=2b ·222a cb 2ac +-,因为b=3,c=1,所以a2=12即3.(2)由余弦定理得cos A=222b c a 91121,2bc 63+-+-==-因为0<A<π,所以2221cos A 3-=故sin(A+4π)=sin Acos 4π+cos Asin 4π=46-10.(2015·大连模拟)在△ABC 中,a2+c2-b2=ac,(1)求角B 的大小.(2)求sin Asin C 的最大值.【解题提示】(1)由余弦定理求B 的大小.(2)利用内角和定理消元,转化成关于C 或A 的三角函数,然后求函数的最大值.【解析】(1)在△ABC 中,由已知和余弦定理, cos B=222a c b 1,2ac 2+-= 因为B ∈(0,π),所以B=3π.(2)在△ABC 中,sin C=sin(A+B)=sin(A+3π) =12sin A+cos A,所以sin Asin C=sin A(12sin A+cos A) =12=11cos2A (sin2A)222-+ =12sin(2A-6π)+14,因为0<2A<43π,所以-6π<2A-6π<76π,故当A=3π时,sin Asin C 有最大值34.【加固训练】(2015·天津模拟)已知锐角△ABC 中,角A,B,C 对应的边分别为a,b,c,tan A=(1)求A 的大小.(2)求cos B+cos C 的取值范围.【解析】(1)由余弦定理知b2+c2-a2=2bccos A,所以tan A=33sin A ,2cos A 2⇒= 因为A ∈(0,2π),所以A=3π.(2)因为△ABC 为锐角三角形且B+C=23π,所以6π<B=23π-C<2π,cos B+cos C=cos B+cos(23π-B)=cos B+cos 23πcos B+sin 23πsin B=12cos B+3sin B=sin(B+6π).因为3π<B+6π<23π,所以3<sin(B+6π)≤1,即cos B+cos C 的取值范围是(32,1].(20分钟 40分)1.(5分)(2013·新课标全国卷Ⅰ)已知锐角△ABC 的内角A,B,C 的对边分别为a,b ,c,23cos2A+cos 2A=0,a=7,c=6,则b=( )A.10 B .9 C.8 D.5【解析】选D.因为23cos2A+cos 2A=0,所以23cos2A+2cos2A-1=0,解得cos2A=125,因为△ABC为锐角三角形,所以cos A=15,sin A=265.由正弦定理a csin A sin C=得,6.sin C26=sin C=126,cos C=1935.又B=π-(A+C),所以sin B=sin(A+C)=sin Acos C+cos Asin C=26191126506. 535535175⨯+⨯=由正弦定理a bsin A sin B=得,26506=,解得b=5.【一题多解】本题还可如下解答选D.因为23cos2A+cos 2A=0,所以23cos2A+2cos2A-1=0,即cos2A=1 25,因为△ABC为锐角三角形,所以cos A=1 5,由余弦定理,得a2=b2+c2-2bccos A,即49=b2+36-125b,5b2-12b-65=0,解得b=5或b=-135(舍去),故b=5.2.(5分)(2015·合肥模拟)在△ABC中,a,b,c分别为角A,B,C的对边,且cos 2B+cos B+cos(A-C)=1,则()A.a,b,c成等差数列B.a,b,c成等比数列C.a,c,b成等差数列D.a,c,b成等比数列【解析】选B.由cos 2B+cos B+cos(A-C)=1变形得:cos B+cos(A-C)=1-cos 2B, 因为cos B=cos[π-(A+C)]=-cos(A+C),cos 2B=1-2sin2B,所以上式化简得:cos(A-C)-cos(A+C)=2sin2B,所以2sin Asin C=2sin2B,即sin Asin C=sin2B,由正弦定理a b c sin A sin B sin C ==得:ac=b2,则a,b,c 成等比数列.故选B.3.(5分)(2015·攀枝花模拟)已知函数f(x)=x3-3x,若△ABC 中,角C 是钝角,那么( )A.f(sin A)>f(cos B)B.f(sin A)<f(cos B)C.f(sin A)>f(sin B)D.f(sin A)<f(sin B)【解题提示】利用三角函数的单调性判断sin A 和cos B 的大小或sin A 与sin B 的大小,再利用函数f(x)的单调性进行判断.【解析】选A.因为f(x)=x3-3x,所以f ′(x)=3x2-3=3(x+1)(x-1).故函数f(x)在区间(-1,1)上是减函数,又角C 是钝角,所以A+B<2π且A,B 都是锐角,所以0<A<2π-B<2π,所以sin A<sin(2π-B)=cos B,故f(sin A)>f(cos B),选A.4.(12分)(2015·哈尔滨模拟)在△ABC 中,a,b,c 分别为内角A,B,C 的对边,且2asin A=(2b+c)sin B+(2c+b)sin C.(1)求A 的大小.(2)若sin B+sin C=1,试判断△ABC 的形状.【解析】(1)由已知,根据正弦定理得2a2=(2b+c)b+(2c+b)c,即a2=b2+c2+bc.由余弦定理得a2=b2+c2-2bccos A,故cos A=-12,A=120°.(2)由(1)得sin2A=sin2B+sin2C+sin B sin C,变形得34=(sin B+sin C)2-sin Bsin C,又sin B+sin C=1,得sin Bsin C=14,上述两式联立得sin B=sin C=12,因为0°<B<90°,0°<C<90°,故B=C=30°,所以△ABC 是等腰的钝角三角形.【方法技巧】判断三角形的形状的思路与依据(1)思路:必须从研究三角形的边与边的关系,或角的关系入手,充分利用正弦定理与余弦定理进行转化,即化边为角或化角为边,使边角统一.(2)判断依据:①等腰三角形:a=b 或A=B.②直角三角形:b2+c2=a2或A=90°.③钝角三角形:a2>b2+c2,A>90°.④锐角三角形:若a 为最大边,且满足a2<b2+c2或A 为最大角,且A<90°.5.(13分)(能力挑战题)已知a,b,c 分别为△ABC 三个内角A,B,C 的对边, acos C+3asin C-b-c=0.(1)求A 的大小.(2)若△ABC 的面积S=3,b+c=4,求sin Bsin C 的值.【解题提示】(1)利用正弦定理及三角恒等变换求角A.(2)利用面积公式、余弦定理、正弦定理求解.【解析】(1)因为3asin C-b-c=0,所以由正弦定理,得3sin Asin C-sin B-sin C=0, 因为B=π-(A+C),所以33因为sin C ≠0,3sin A-cos A=1,即2sin(A-6π)=1,sin(A-6π)=12,因为A ∈(0,π),所以A-6π=6π,即A=3π.(2)因为S △=12bcsin A=3bc=3,所以bc=43,又因为b+c=4,所以a2=b2+c2-2bccos A=b2+c2-bc=(b+c)2-3bc=16-4=12,即3由正弦定理,得b c a 234,sin B sin C sin A sin 3====所以sin B=b 4,sin C=c 4,sin Bsin C=bc 1.1612=。
完整版)正弦定理与余弦定理练习题
完整版)正弦定理与余弦定理练习题1.已知三角形ABC中,a=4,b=43,A=30°,求角B的大小。
解:根据正弦定理,有XXX,即sinB=43/4×sin30°=21.5/4.由此可知B的大小为30°或150°,故选B。
2.已知锐角三角形ABC的面积为33,BC=4,CA=3,求角C的大小。
解:根据面积公式,有33=1/2×4×3×sinC,即sinC=22/3.由此可知C的大小为arcsin(22/3)≈75°,故选A。
3.已知三角形ABC中,a,b,c分别是角A,B,C所对的边,且(2a+c)cosB+bcosC=0,求角B的大小。
解:根据余弦定理,有c^2=a^2+b^2-2abcosC,即cosC=(a^2+b^2-c^2)/(2ab)。
代入已知式中,得(2a+c)cosB-b(a^2+b^2-c^2)/(2ab)=0,化简得(4a^2+2ac-b^2)cosB=2abc。
由此可知cosB=(2abc)/(4a^2+2ac-b^2)。
代入cosine double angle formula,得cos2B=(4a^2b^2c^2)/(4a^2b^2+2a^2c^2-2ab^3+2abc^2-2b^2c^2-b^4)。
由于cos2B≤1,可列出不等式4a^2b^2+2a^2c^2-2ab^3+2abc^2-2b^2c^2-b^4≥4a^2b^2c^2,即b^4-2ab^3+(2ac-2c^2-4a^2)b+6a^2c^2-5a^2b^2≤0.考虑b的取值,当b=0时,不等式显然成立;当b>0时,由于a,b,c均为正数,不等式两边同除以b^4后,得到一个关于x=ac/b^2的一元二次不等式6x^2-5x-2≤0.解得x∈[2/3,1],即ac/b^2∈[2/3,1]。
由此可知cosB的取值范围为[1/2,√3/2],故角B的大小为arccos(1/2)≈60°或arccos(√3/2)≈30°,故选B。
正弦定理余弦定理习题及答案
正 余 弦 定 理1.在是的 ( )ABC ∆中,A B >sin sin A B >A .充分不必要条件 B .必要不充分条件C .充要条件 D .既不充分也不必要条件2、已知关于的方程的两根之和等于两根之积的一半,x 22cos cos 2sin02Cx x A B -⋅+=则一定是 ( )ABC ∆(A )直角三角形(B )钝角三角形(C )等腰三角形(D )等边三角形.3、 已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若, A+C=2B,则Sin C = .4、如图,在△ABC 中,若b = 1,23C π∠=,则a= 。
5、在ABC ∆中,角,,A B C 所对的边分别为a ,b ,c,若a =,2b =,sin cos B B +=,则角A 的大小为 .6、在中,分别为角的对边,且∆ABC ,,a b c ,,A B C 274sin cos 222B C A +-=(1)求的度数A ∠(2)若,求和的值a =3b c +=b c 7、 在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.8、如图,在△ABC 中,已知,,B=45︒ 求A 、C 及c .3=a 2=b 1、解:在,因此,选ABC A B ∆>中,2sin 2sin sin sin a b R A R B A B ⇔>⇔>⇔>.C 2、【答案】由题意可知:,从而211cos cos cos 2sin 222C CA B -=⋅⋅=2cos cos 1cos()1cos cos sin sin A B A B A B A B=++=+-AB,又因为所以,所cos cos sin sin 1A B A B +=cos()1A B -=A B ππ-<-<0A B -=以一定是等腰三角形选CABC ∆3、【命题立意】本题考察正弦定理在解三角形中的应用.【思路点拨】由已知条件求出B 、A 的大小,求出C ,从而求出sin .C【规范解答】由A+C=2B 及180A B C ++=得60B =,由正弦定理得1sin A =得1sin 2A =,由a b <知60A B <= ,所以30A = ,180C A B =--90= ,所以sin sin 90 1.C == 4、【命题立意】本题考查解三角形中的余弦定理。
正弦定理与余弦定理测试题及答案
正弦定理与余弦定理练习题1.已知△ABC中,A:B:C=1:1:4,则a:b:c等于()A.1:1:4 B.1:1:2 C.1:1:D.2:2:2.(2015•浙江)任给△ABC,设角A,B,C所对的边分别为a,b,c,则下列等式成立的是()A.c2=a2+b2+2abcosC B.c2=a2+b2﹣2abcosC C.c2=a2+b2+2absinC D.c2=a2+b2﹣2absinC3.在三角形ABC中,A=120°,AB=5,BC=7,则的值为()A.B.C.D.4.在△ABC中,A=60°,a=4,b=4,则B等于()A.B=45°或135°B.B=135°C.B=45°D.以上答案都不对5.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,a=2,,则b的值为()A.B. C. D.6.在△ABC中,内角A,B,C所对应的边分别为a,b,c,若bsinA﹣acosB=0,且b2=ac,则的值为()A.B.C.2 D.47.△ABC中,AB=,AC=1,∠B=30°,则∠C等于()A.60°B.90°C.120°D.60°或120°8.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若,则sinC=()A.0 B.2 C.1 D.﹣19.已知a,b,c分别为△ABC的三个内角A,B,C的对边,若a=2,b=2,A=60°,则角B等于()DA.45°或135°B.135°C.60°D.45°10.在△ABC中,tan=2sinC,若AB=1,求△ABC周长的取值范围()A.(2,3] B.[1,3] C.(0,2] D.(2,5]11.在△ABC中,内角A,B,C的对边分别为a,b,c,且b2+c2+bc﹣a2=0,则=()A.﹣B.C.﹣D.12.在△ABC中,已知C=,b=4,△ABC的面积为,则c=()A.B. C. D.13.在△ABC中,三内角A,B,C的对边分别为a,b,c,面积为S,若S+a2=(b+c)2,则cosA等于()A.B.﹣C.D.﹣14.在三角形A BC中,∠C=60°,AC+BC=6,A B=4,则AB边上的高为()A. B.C. D.15.在△ABC中,三个内角A,B,C所对的边为a,b,c,若S△ABC=2,a+b=6,=2cosC,则c=()A.2 B.4 C.2D.316.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知A=45°,a=6,b=,则B的大小为(A )A.30°B.60°C.30°或150°D.60°或120°17在△ABC中,B=,c=150,b=50,则△ABC为()A.直角三角形B.等腰三角形或直角三角形C.等边三角形D.等腰三角形18.在△ABC中,如果a+c=2b,B=30°,△ABC的面积为,那么b等于()A.B.C.D.19.若(a+b+c)(b+c﹣a)=3bc且sinA=2sinBcosC,则△ABC是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形20.(2015•安徽)在△ABC中,AB=,∠A=75°,∠B=45°,则AC=.21.(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b=.22.(2015•北京)在△ABC中,a=4,b=5,c=6,则=.23..(2015•重庆)在△ABC中,B=120°,AB=,A的角平分线AD=,则AC=.24.在△ABC中,角A、B、C的对边分别为a,b,c,若S表示△ABC的面积,若acosB+bcosA=csinC,,则∠B=.25.在△ABC中,已知A=45°,b=1,且△ABC仅有一个解,则a的取值范围是.26.已知△ABC的三边a,b,c和其面积S满足S=c2﹣(a﹣b)2,则tanC=.27.设△ABC的三边长分别为a、b、c,面积为S,且满足S=a2﹣(b﹣c)2,b+c=8,则S的最大值为.28.在△ABC中,角A,B,C所对的边长分别为a,b,c,若,则角B的值为29(2015•山东)△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值.30.(2015•陕西)△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.31.已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC﹣ccosA.(1)求角A;(2)若a=2,△ABC的面积为,求b,c.32.在锐角△ABC中,a,b,c分别为角A、B、C所对的边,且a=2csinA.(Ⅰ)确定角C的大小;(Ⅱ)若c=,且△ABC的面积为,求a+b的值.33.在△ABC中,a,b,c分别是角A,B,C的对边,且2cosAcosC+1=2sinAsinC.(Ⅰ)求B的大小;(Ⅱ)若,,求△ABC的面积.34.△ABC中,角A,B,C所对的边之长依次为a,b,c,且cosA=,5(a2+b2﹣c2)=3ab.(Ⅰ)求cos2C和角B的值;(Ⅱ)若a﹣c=﹣1,求△ABC的面积.35.在△ABC中,角A、B、C所对的边分别为a、b、c,已知sin(A+)+2cos(B+C)=0,(1)求A的大小;(2)若a=6,求b+c的取值范围.36.在锐角△ABC中,a、b、c分别为内角A、B、C所对的边长,且满足.(1)求∠B的大小;(2)若b=,△ABC的面积S△ABC=,求a+c的值.37.如图,在△ABC中,D为边AB上一点,DA=DC.已知B=,BC=1.(Ⅰ)若DC=,求角A的大小;(Ⅱ)若△BCD面积为,求边AB的长.答案1-5CBDCA 6-10CDCDA 11-15BCDAC 16-19ABBD286420.221.122.123.624.4525.126.27.28.601201517a a ︒≥=︒︒或或29.解:①因为△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 已知cosB=,sin (A+B )=,ac=2,所以sinB=,sinAcosB+cosAsinB=,所以sinA+cosA=,结合平方关系sin 2A+cos 2A=1, 得27sin 2A ﹣6sinA ﹣16=0,解得sinA=或者sinA=﹣(舍去);②由正弦定理,由①可知sin (A+B )=sinC=,sinA=,所以a=2c ,又ac=2,所以c=1.30.解:(Ⅰ)因为向量=(a ,b )与=(cosA ,sinB )平行,所以asinB ﹣=0,由正弦定理可知:sinAsinB ﹣sinBcosA=0,因为sinB ≠0,所以tanA=,可得A=;(Ⅱ)a=,b=2,由余弦定理可得:a 2=b 2+c 2﹣2bccosA ,可得7=4+c 2﹣2c ,解得c=3,△ABC 的面积为:=. 31.解:(1)由正弦定理==化简已知的等式得:sinC=sinAsinC ﹣sinCcosA ,∵C 为三角形的内角,∴sinC ≠0,∴sinA ﹣cosA=1,整理得:2sin (A ﹣)=1,即sin (A ﹣)=,∴A ﹣=或A ﹣=,解得:A=或A=π(舍去),则A=; (2)∵a=2,sinA=,cosA=,△ABC 的面积为,∴bcsinA=bc=,即bc=4①;∴由余弦定理a 2=b 2+c 2﹣2bccosA 得:4=b 2+c 2﹣bc=(b+c )2﹣3bc=(b+c )2﹣12,整理得:b+c=4②, 联立①②解得:b=c=2. 32.解:(I )∵a=2csinA .∴由正弦定理可得sinA , 又sinA ≠0,∴sinC=,∵A 为锐角,∴. (2)∵c=,,且△ABC 的面积为,∴=,化为ab=6,由余弦定理可得:==(a+b )2﹣3ab ,∴a+b=5.33.解:(Ⅰ)由2cosAcosC+1=2sinAsinC 得:∴2(cosAcosC ﹣sinAsinC )=﹣1,∴,∴,又0<B <π,∴.(Ⅱ)由余弦定理得:,∴,又,,∴,故,∴.34.解:(I )由∵cosA=,0<A <π,∴sinA==,∵5(a 2+b 2﹣c 2)=3ab ,∴cosC==,∵0<C <π,∴sinC==,∴cos2C=2cos 2C ﹣1=,∴cosB=﹣cos(A+C)=﹣cosAcosC+sinAsinC=﹣×+×=﹣∵0<B<π,∴B=.(II)∵=,∴a==c,∵a﹣c=﹣1,∴a=,c=1,∴S=acsinB=××1×=.35.解:(1)由条件结合诱导公式得,sinAcos+cosAsin=2cosA,整理得sinA=cosA,∵cosA≠0,∴tanA=,∵0<A<π,∴A=;(2)由正弦定理得:,∴,,∴==,∵,∴,即6<b+c≤12(当且仅当B=时,等号成立)36.解:(1)由正弦定理:=,得==,∴sinB=,又由B为锐角,得B=;(2)∵S△ABC=acsinB=,sinB=,∴ac=3,根据余弦定理:b2=a2+c2﹣2accosB=7+3=10,∴(a+c)2=a2+c2+2ac=16,则a+c=4.37.解:(1)在△BCD中,B=,BC=1,DC=,由正弦定理得到:,解得,则∠BDC=60°或120°.又由DA=DC,则∠A=30°或60°.(2)由于B=,BC=1,△BCD面积为,则,解得.再由余弦定理得到=,故,又由AB=AD+BD=CD+BD=,故边AB的长为:.。
(完整版)正弦定理、余弦定理综合训练题含答案
正弦定理、余弦定理综合训练题1. [2016全国卷I ] △ ABC 的内角A , B , C 的对边分别为 a , b , c.已知a = 5, c = 2, cos A = 2,则 b =() A. .2B. 3 C . 2D . 32 1[解析]D 由余弦定理得5= b 2 + 4-2 X b X 2X 3,解得b = 3或b =- 3(舍去),故选D. n 1B = —, BC 边上的高等于§BC ,贝U sin A =( )D.S 10D ,设BC = 3,则有 AD = BD = 1 , AB = 2,由余弦定理 得AC = \ 5.由正弦定理得 “5= s^A , n sin Asin ’43. [2013新课标全国卷I ]已知锐角厶 A + cos 2A = 0, a = 7, c = 6,贝U b =( A . 101[解析]D 由23cos2A + cos 2A = 0,得25cos2A = 1•因为△ABC 为锐角三角形,所以cos A =. 51 12在A ABC 中,根据余弦定理,得 49 = b 2 + 36- 12b •即卩b 2—厂b5 545 4. ________________ [2016全国卷n ] △ ABC 的内角A , B , C 的对边分别为 a , b , c ,若cos A =5, cos C = ^, a = 1,贝U b= .4 53 12[解析]因为cos A = 5, cos C = 13,且A , C 为三角形的内角,所以sin A = 5, sin C =〔3, sin63 「, a b ~― asin B 21B = si n(A + C)= sin AcosC + cos As in C = 65.又因为 sin A = sin B ,所以 b = sin A =伯. 13—13 = 0,解得 b = 5 或 b =— 5 (舍去).5. [2015 全国卷 I ]已知 a , b , c 分别是△ ABC 内角 A , B , C 的对边,sin 2B = 2sin Asin C. (1)若 a = b ,求 cos B;⑵若B = 90°,且a =〔 2, 求厶ABC 的面积. 解:(1)由题设及正弦定理可得b 2 = 2ac.又a = b ,所以可得b = 2c , a = 2c.2. [2016全国卷川]在厶ABC 中, [解析]D 作AD 丄BC 交BC 于点解得sin A =学=噜ABC 的内角A , B , C 的对边分别为 a , b , c , 23COS 2D . 5⑵由(1)知 b 2= 2ac.因为B = 90°,所以由勾股定理得a 2+ c 2= b 2. 故 a 2 + c 2= 2ac ,得 c = a = 2, 所以△ABC 的面积为1.6. [2015 全国卷n ] △ ABC 中,D 是 BC 上的点,AD 平分/ BAC , BD = 2DC. sin / B (1)求跖/C ; ⑵若/ BAC = 60°,求/ B. 解:(1)由正弦定理得AD _ BD AD _ DC sin ZB sin /BAD’ sin ZC sin /CAD 因为AD 平分Z BAC , BD = 2DC ,所以 sin ZB DC 1 sinZC BD 2⑵因为/C = 180°—/BAC + /B),/BAC = 60°,所以、i'3 1sin ZC = sin( ZBAC +/B)= ? cos/B + in ZB.V 3由(1)知 2sinZB = sin/C ,所以 tanZB = 3,即/B = 30°7. [2014新课标全国卷n ]四边形ABCD 的内角A 与C 互补,AB = 1, BC = 3, CD 2.(1)求 C 和 BD ;⑵求四边形ABCD 的面积.解:(1)由题设及余弦定理得 BD 2= BC 2+ CD 2— 2BC CDcos C =13 — 12cos C ,①BD 2= AB 2+ DA 2— 2AB DAcos A由余弦定理可得 cos B =a 2+ c 2— b2ac1 4.DA ==5 + 4cos C .②1 —由①②得 cos C = 2,故 C = 60°,BD =7.⑵四边形ABCD 的面积1 1S = ?AB DA si n A + ?BC CDsi n C1 1/ 1X 2 + 2 x 3X 2 sin 60°=2 38. [2016 山东卷]△ ABC 中,角 A , B , C 的对边分别是 a , b , c.已知 b = c , a 2= 2b 2(1 — sin A), 贝U A =(nCG'•b = c , a 2 = 2b 2( 1 — sin A),「.2b 2sin A = b 2+ c 2— a 2= 2bccos A = 2b 2cos A ,「.tanA=1,即 A = 4. 9.[2015广东卷]设厶ABC 的内角 A , B , C 的对边分别为 a , b , c.若a = 2, c = 2.3, cos A =于且b<c ,则b =( ) A . 3B . 2 .2C . 2D. 3[解析]C 由余弦定理得 a 2= b 2 + c 2— 2bccos A ,所以22 = b 2+ (2\'勺)2— 2x b x 2屈,即卩 b 2— 6b + 8= 0,解得 b = 2 或 b = 4•因为 b<c,所以 b = 2. 10. [2016上海卷]已知△ ABC 的三边长分别为3, 5, 7,则该三角形的外接圆半径等于32+ 52 — 72 1[解析]利用余弦定理可求得最大边 7所对角的余弦值为2x 3x 5 =—2,所以此角的正弦值为牙•设三角形外接圆的半径为R ,由正弦定理得2R=^|,所以R = 于.22冗 b11. ________________________________________________________ [2016 北京卷]在厶 ABC 中,/ A =〒,a = ■. 3c ,则b = _______________________________ .3 c2 n b b[解析]由余弦定理 a 2= b 2+ c 2— 2bccos A 可得,3c 2= b 2+ c 2— 2bccos 3,整理得 2+ — 2= 0,3 c cnD.?[解析]C解得b= 1或c=—2(舍去).12. [2016浙江卷]在厶ABC 中,内角 A , B , C 所对的边分别为 a , b , c.已知b + c = 2acos B. (1)证明:A = 2B ;2⑵若cos B = 3,求cos C 的值.解:⑴证明:由正弦定理得 sin B + sin C = 2sin Acos B ,故 2s in Acos B = sin B + sin (A + B)= sin B + sin Acos B + cos As in B ,于是 sin B = sin (A — B). 又 A , B € (0, n ),故 O V A — B Vn, 所以 B =n —(A — B)或 B = A — B , 因此A =%(舍去)或A = 2B ,所以A = 2B.=—cos(A + B) = — cos Acos B + sin A sin B =⑵由cos B =cos 2B = 2cos 2B — 1 = — 9,故 cos A =— 9, sin sin cos C。
正弦定理与余弦定理练习题共3套(附答案)
正弦定理与余弦定理练习第一套正弦定理(一)●作业导航掌握正弦定理,会利用正弦定理求已知两角和任意一边或两边和一边对角的三角形问题.一、选择题(本大题共5小题,每小题3分,共15分)1.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于()A .30°B .30°或150°C .60°D .60°或120°2.已知△ABC 中,AB =6,∠A =30°,∠B =120°,则△ABC 的面积为()A .9B .18C .93D .1833.已知△ABC 中,a ∶b ∶c =1∶3∶2,则A ∶B ∶C 等于()A .1∶2∶3B .2∶3∶1C .1∶3∶2D .3∶1∶24.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k≠0),则k 的取值范围为()A .(2,+∞)B .(-∞,0)C .(-21,0)D .(21,+∞) 5.在△ABC 中,sin A >sin B 是A >B 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题(本大题共5小题,每小题3分,共15分)1.在△ABC 中,若∠B =30°,AB =23,AC =2,则△ABC 的面积是________.2.在△ABC 中,若b =2c sin B ,则∠C =________.3.设△ABC 的外接圆半径为R ,且已知AB =4,∠C =45°,则R =________.4.已知△ABC 的面积为23,且b =2,c =3,则∠A =________.5.在△ABC 中,∠B =45°,∠C =60°,a =2(3+1),那么△ABC 的面积为________.三、解答题(本大题共5小题,每小题6分,共30分)1.在△ABC 中,∠C =60°,BC =a ,AC =b ,a +b =16.(1)试写出△ABC 的面积S 与边长a 的函数关系式.(2)当a 等于多少时,S 有最大值?并求出这个最大值.2.在△ABC 中,已知a 2-a =2(b +c ),a +2b =2c -3,若sin C ∶sin A =4∶13,求a ,b ,c .3.在△ABC 中,求证2tan 2tanBA BA b a b a +-=+-.4.△ABC 中,A 、B 、C 成等差数列,b =1,求证:1<a +c ≤2.5.在一个三角形中,若有一个内角不小于120°,求证:最长边与最短边之比不小于3.参考答案一、选择题(本大题共5小题,每小题3分,共15分)1.D 分析:由正弦定理得,B bA a sin sin =,∴sin B =23sin =aA b ,∴∠B =60°或∠B =120°.2.C 分析:∵∠A =30°,∠B =120°,∴∠C =30°,∴BA =BC =6,∴S △ABC =21×BA ×BC ×sin B =21×6×6×23=93.3.A 分析:由正弦定理得,C cB b A a sin sin sin ==,∴sin A ∶sin B ∶sin C =1∶3∶2=21∶23∶1,∴A ∶B ∶C =30°∶60°∶90°=1∶2∶3.4.D 分析:利用正弦定理及三角形两边之和大于第三边.5.C 分析:A >B ⇔a >b ⇔2Rsin A >2Rsin B ⇔sin A >sin B .二、填空题(本大题共5小题,每小题3分,共15分)1.23或3分析:sin C =23230sin 32=︒,于是,∠C =60°或120°,故∠A =90°或30°,由S △ABC =21×AB ×AC ×sin A ,可得S △ABC =23或S △ABC =3.2.30°或150°分析:由b =2c sin B 及正弦定理C cB B c Cc B b sin sin sin 2sin sin ==得,∴sin C =21,∴∠C =30°或150°.3.22分析:∵c =2R sin C ,∴R =22sin 2=C c.4.60°或120°分析:∵S △ABC =21bc sin A ,∴23=21×2×3sin A ,∴sin A=23,∴∠A =60°或120°.5.6+23分析:∵B bA a sin sin =,∴︒=︒-︒-︒+45sin )6045180sin()13(2b,∴b =4.∴S △ABC =21ab sin C =6+23.三、解答题(本大题共5小题,每小题6分,共30分)1.解:(1)∵a +b =16,∴b =16-aS =21ab sin C =21a (16-a )sin60°=43(16a -a 2)=-43(a -8)2+163(0<a <16)(2)由(1)知,当a =8时,S 有最大值163.2.解:∵sin C ∶sin A =4∶13∴c ∶a =4∶13设c =4k ,a =13k ,则⎪⎩⎪⎨⎧-=++=-38213)4(213132k b k k b kk∵k =133时b <0,故舍去.∴k =1,此时a =13,b =2135-,c =4.3.证明:由正弦定理,知a =2R sin A ,b =2R sin B2tan2tan2cos 2sin 22cos 2sin 2)22sin(22sin()22sin()22sin(sin sin sin sin sin 2sin 2sin 2sin 2B A B A B A B A B A B A B A B A B A B A B A B A B A B A BA BA B R A R B R A R b a b a +-=-++-=--++-++--+--++=+-=+-=+-∴4.证明:∵A 、B 、C 成等差数列,∴2B =A +C ,又A +B +C =π,∴B =3π,A +C =32π.∵b =1,设△ABC 的外接圆半径为R ,∴b =2R sin 3π∴1=2R ·23,∴3R =1.∴a +c =2R sin A +2R sin C =2R (sin A +sin C )=2R [sin(32π-C )+sin C ]=2R (23cos C +23sin C )=23R (21cos C +23sin C )=23R sin(C +6π)=2sin(C +6π)∵A +C =32π,∴0<C <32π∴6π<C +6π<65π∴21<sin(C +6π)≤1∴1<2sin(C +6π)≤2 ∴1<a +c ≤2.5.证明:在△ABC 中,设C ≥120°,则c 最长,令最短边为a ,由正弦定理得A B A A C a c sin )sin(sin sin +==∵A ≤B∴2A ≤A +B ≤180°-C ≤60°∵正弦函数在(0,3π)上是增函数,∴sin(A +B )≥sin2A >0∴A B A a c sin )sin(+=≥A A A A A sin cos sin 2sin 2sin ==2cos A ∴a c≥2cos A ∵2A ≤60° ∴0°<A ≤30°∴cos A ≥cos30°=23∴a c ≥2·23∴a c≥3∴最长边与最短边之比不小于第二套正弦定理练习(二)1.在ABC ∆中,已知角04345,2,,3B c b ===则角A 的值是()A.15°B.75°C.105°D.75°或15°2.ABC ∆中,bsinA<a<b,则此三角形有()A.一解B.两解C.无解D.不确定3.若sin cos cos ,A B CABC a b c==∆则是()A.等边三角形B.有一内角是30°C.等腰直角三角形D.有一内角是30°的等腰三角形4.在ABC ∆中,已知0060,45,8,B C BC AD BC ===⊥于D,则AD 长为()A.4(31)- B.4(3+1)3+3)D.4(33)5.在ABC ∆中,A>B 是sinA>sinB 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.在ABC ∆中,060,6,14B b a ===,则A=7.在ABC ∆ABC ∆中,已知cos 2cos 21sin 2sin cos ,cos sin B C A B C C B +=+==求证:b=c 且A=900。
高考数学 正弦定理和余弦定理 专题
高考数学 正弦定理和余弦定理 专题一、选择题1.在△ABC 中,若∠A =60°,b =1,S △ABC =3,则a +b +csin A +sin B +sin C 的值为( )A.2633B.2393C.393D.1333解析:∵S △ABC =3,即12bc sin A =3,∴c =4.由余弦定理a 2=b 2+c 2-2bc cos A =13,∴a=13, ∴a +b +c sin A +sin B +sin C =a sin A =2133=2393.答案:B2.在△ABC 中,已知∠B =45°,c =22,b =433,则∠A 等于( )A .15°B .75°C .105°D .75°或15°解析:根据正弦定理c sin C =b sin B ,sin C =c sin B b =22×22433=32.∴C =60°或C =120°,因此A =75°或A =15°. 答案:D3.在△ABC 中,设命题p :a sin B =b sin C =c sin A,命题q :△ABC 是等边三角形,那么命题p是命题q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:若△ABC 是等边三角形,则a sin B =b sin C =c sin A ;若a sin B =b sin C =csin A ,又a sin A =b sin B =csin C,则⎩⎪⎨⎪⎧a 2=bc ,b 2=ac ,c 2=ab ,即a =b =c .∴p 是q 的充要条件. 答案:C4.若钝角三角形三内角成等差数列,且最大边长与最小边长的比值为m ,则m 的范围是( )A.(1,2) B.(2,+∞) C.=sin(B+C)=sin B cos C+cos B sin C=32cos C+12sin C,∴3+12sin C=32cos C+12sin C,即sin C=cos C.又0°<C<180°,∴C=45°,A=180°-(B+C)=75°.解法二:设最大边长为a,最小边长为c,则ac=3+12,由a2+c2-b22ac=12,则b2=a2+c2-ac.cos C=a2+b2-c22ab=2a2-ac2a a2+c2-ac=2·a2c2-ac2·aca2c2-ac+1=22.又0°<C<180°,∴C=45°,则A=180°-(B+C)=75°.1.在△ABC中,角A、B、C所对应的边分别为a、b、c,a=23,tanA+B2+tanC2=4,2sin B cos C=sin A,求A,B及b,c.解答:由tanA+B2+tanC2=4得cotC2+tanC2=4,∴cosC2sinC2+sinC2cosC2=4,∴1sinC2cosC2=4.∴sin C=12,又C∈(0,π),∴C=π6,或C=5π6,由2sin B cos C=sin A得2sin B cos C=sin(B+C),即sin(B-C)=0,∴B=C,B=C=π6,A=π-(B+C)=2π3,由正弦定理asin A=bsin B=csin C得b=c=asin Bsin A=23×1232=2.2.如下图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β.(1)证明sin α+cos 2β=0;(2)若AC=3DC,求β的值.解答:(1)证明:∵AB=AD,则∠ADB=β,∴∠C=β-α.又∠B+∠C=90°,即2β-α=90°,则2β=90°+α,cos 2β=-sin α,即cos 2β+sin α=0.①(2)在△ADC中,DCsin α=ACsin β,即sin β=3sin α.②①代入②整理得:23sin2β-sin β-3=0.解得sin β=32,或sin β=-33舍去,又β为锐角,则β=60°.。
高中数学高考总复习正弦定理与余弦定理习题及详解
高中数学高考总复习正弦定理与余弦定理习题及详解一、选择题1.(2010·聊城市、银川模拟)在△ABC 中,a 、b 、c 分别是三内角A 、B 、C 的对边,且sin 2A -sin 2C =(sin A -sin B )sin B ,则角C 等于( )A.π6B.π3C.5π6D.2π3 [答案] B[解析] 由正弦定理得a 2-c 2=(a -b )·b ,由余弦定理得cos C =a 2+b 2-c 22ab =12, ∵0<C <π,∴C =π3. 2.(文)(2010·泰安模拟)在△ABC 中,若A =60°,BC =43,AC =42,则角B 的大小为( )A .30°B .45°C .135°D .45°或135°[答案] B[解析] ∵AC ·sin60°=42×32=26<42<43,故△ABC 只有一解,由正弦定理得,42sin B =43sin60°, ∴sin B =22,∵42<43,∴B <A ,∴B =45°. (理)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,A =π3,a =3,b =1,则c =( ) A .1B .2 C.3-1D. 3[答案] B[解析] ∵b sin A =32<1<3,∴本题只有一解. ∵a =3,b =1,A =π3, ∴根据余弦定理,cos A =b 2+c 2-a 22bc =1+c 2-32c =12, 解之得,c =2或-1,∵c >0,∴c =2.故选B.3.在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若a =2,b =22,且三角形有两解,则角A 的取值范围是( )A.⎝⎛⎭⎫0,π4 B.⎝⎛⎭⎫π4,π2 C.⎝⎛⎭⎫π4,3π4D.⎝⎛⎭⎫π4,π3[答案] A[解析] 由条件知b sin A <a ,即22sin A <2,∴sin A <22, ∵a <b ,∴A <B ,∴A 为锐角,∴0<A <π4. [点评] 如图,AC =22,以C 为圆心2为半径作⊙C ,则⊙C上任一点(⊙C 与直线AC 交点除外)可为点B 构成△ABC ,当AB 与⊙C 相切时,AB =2,∠BAC =π4,当AB 与⊙C 相交时,∠BAC <π4,因为三角形有两解,所以直线AB 与⊙C 应相交,∴0<∠BAC <π4. 4.(2010·湖南理)在△ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c .若∠C =120°,c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定 [答案] A[解析] ∵∠C =120°,c =2a ,c 2=a 2+b 2-2ab cos C∴a 2-b 2=ab ,又∵a >0,b >0,∴a -b =ab a +b >0,所以a >b . 5.(文)(2010·天津理)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150°[答案] A[解析] 由余弦定理得:cos A =b 2+c 2-a 22bc, ∵sin C =23sin B ,∴c =23b ,∴c 2=23bc ,又∵b 2-a 2=-3bc ,∴cos A =32, 又A ∈(0°,180°),∴A =30°,故选A.(理)(2010·山东济南)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π3 [答案] D[解析] 由(a 2+c 2-b 2)tan B =3ac 得,a 2+c 2-b 2ac·tan B =3,再由余弦定理cos B =a 2+c 2-b 22ac 得,2cos B ·tan B =3,即sin B =32,∴角B 的值为π3或2π3,故应选D. 6.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为0.5,那么b 为( )A .1+ 3B .3+ 3 C.3+33D .2+ 3[答案] C[解析] 12ac sin B =12,∴ac =2, 又2b =a +c ,∴a 2+c 2=4b 2-4,由余弦定理b 2=a 2+c 2-2ac cos B 得,b =3+33. 7.(2010·厦门市检测)在△ABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,若角A 、B 、C 依次成等差数列,且a =1,b =3,则S △ABC 等于( )A. 2B. 3C.32 D .2 [答案] C[解析] ∵A 、B 、C 成等差数列,∴B =60°,∵b sin B =a sin A ,∴sin A =a sin B b =1×323=12, ∴A =30°或A =150°(舍去),∴C =90°,∴S △ABC =12ab =32. 8.(2010·山师大附中模考)在△ABC 中,cos 2B 2=a +c 2c(a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为( )A .直角三角形B .正三角形C .等腰三角形D .等腰三角形或直角三角形[答案] A [解析] ∵cos 2B 2=a +c 2c ,∴1+cos B 2=sin A +sin C 2sin C, ∴sin C cos B =sin A ,∴sin C cos B =sin(B +C ),∴sin B cos C =0,∵0<B ,C <π,∴sin B ≠0,cos C =0,∴C =π2,故选A. 9.(2010·四川双流县质检)在△ABC 中,tan A =12,cos B =31010,若最长边为1,则最短边的长为( ) A.455B.355C.255D.55[答案] D[解析] 由tan A >0,cos B >0知A 、B 均为锐角, ∵tan A =12<1,∴0<A <π4,cos B =31010>32, ∴0<B <π6,∴C 为最大角, 由cos B =31010知,tan B =13,∴B <A ,∴b 为最短边, 由条件知,sin A =15,cos A =25,sin B =110, ∴sin C =sin(A +B )=sin A cos B +cos A sin B=15×310+25×110=22, 由正弦定理b sin B =c sin C 知,b 110=122,∴b =55. 10.(2010·山东烟台)已知非零向量AB →,AC →和BC →满足⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AC →·BC →|AC →|·|BC →|=22,则△ABC 为( ) A .等边三角形B .等腰非直角三角形C .直角非等腰三角形D .等腰直角三角形[答案] D[解析] ∵AC →·BC →|AC →|·|BC →|=cos ∠ACB =22, ∴∠ACB =45°,又∵⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0, ∴∠A =90°,∴△ABC 为等腰直角三角形,故选D.二、填空题11.(文)判断下列三角形解的情况,有且仅有一解的是________.①a =1,b =2,B =45°;②a =5,b =15,A =30°;③a =6,b =20,A =30°;④a =5,B =60°,C =45°.[答案] ①④[解析] ①一解,a sin B =22<1<2,有一解. ②两解,b ·sin A =152<5<15,有两解; ③无解,b ·sin A =10>6,无解.④一解,已知两角和一边,三角形唯一确定.(理)在锐角△ABC 中,边长a =1,b =2,则边长c 的取值范围是________.[答案] 3<c < 5[解析] 边c 最长时:cos C =a 2+b 2-c 22ab =1+4-c 22×1×2>0, ∴c 2<5.∴0<c < 5.边b 最长时:cos B =a 2+c 2-b 22ac =1+c 2-42c>0, ∴c 2>3.∴c > 3.综上,3<c < 5.12.(2010·上海模拟)在直角坐标系xOy 中,已知△ABC 的顶点A (-1,0),C (1,0),顶点B 在椭圆x 24+y 23=1上,则sin A +sin C sin B的值为________.[答案] 2[解析] 由题意知△ABC 中,AC =2,BA +BC =4,由正弦定理得sin A +sin C sin B =BC +BA AC=2. 13.(文)(2010·沈阳模拟)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若b 2+c 2=a 2+bc ,且AC →·AB →=4,则△ABC 的面积等于________.[答案] 2 3[解析] ∵b 2+c 2=a 2+bc ,∴cos A =b 2+c 2-a 22bc =12, ∵AC →·AB →=4,∴b ·c ·cos A =4,∴bc =8,∴S =12AC ·AB sin A =12×bc ·sin A =2 3. (理)(2010·北京延庆县模考)在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =c=2b 且sin B =45,当△ABC 的面积为32时,b =________. [答案] 2[解析] ∵a +c =2b ,∴a 2+c 2+2ac =4b 2(1)∵S △ABC =12ac sin B =25ac =32,∴ac =154(2) ∵sin B =45,∴cos B =35(由a +c =2b 知B 为锐角), ∴a 2+c 2-b 22ac =35,∴a 2+c 2=92+b 2(3) 由(1)、(2)、(3)解得b =2.14.(2010·合肥市质检)在△ABC 中,sin A -sin B sin (A +B )=2sin A -sin C sin A +sin B,则角B =________. [答案] π4[解析] 依题意得sin 2A -sin 2B =sin(A +B )(2sin A -sin C )=2sin A sin C -sin 2C ,由正弦定理知:a 2-b 2=2ac -c 2, ∴a 2+c 2-b 2=2ac ,由余弦定理知:cos B =a 2+c 2-b 22ac =22, ∴B =π4. 三、解答题15.(文)(2010·广州六中)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足cos A 2=255,AB →·AC →=3. (1)求△ABC 的面积;(2)若b +c =6,求a 的值.[解析] (1)∵cos A 2=255, ∴cos A =2cos 2A 2-1=35,sin A =45. 又由AB →·AC →=3得,bc cos A =3,∴bc =5,∴S △ABC =12bc sin A =2. (2)∵bc =5,又b +c =6,∴b =5,c =1或b =1,c =5,由余弦定理得a 2=b 2+c 2-2bc cos A =20,∴a =2 5.(理)(2010·山东滨州)已知A 、B 、C 分别为△ABC 的三边a 、b 、c 所对的角,向量m =(sin A ,sin B ),n =(cos B ,cos A ),且m ·n =sin2C .(1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求边c 的长.[解析] (1)m ·n =sin A ·cos B +sin B ·cos A =sin(A +B ).在△ABC 中,由于sin(A +B )=sin C .∴m ·n =sin C .又∵m ·n =sin2C ,∴sin2C =sin C ,∴2sin C cos C =sin C .又sin C ≠0,所以cos C =12.而0<C <π,因此C =π3. (2)由sin A ,sin C ,sin B 成等差数列得,2sin C =sin A +sin B ,由正弦定理得,2c =a +b .∵CA →·(AB →-AC →)=18,∴CA →·CB →=18.即ab cos C =18,由(1)知,cos C =12,所以ab =36. 由余弦定理得,c 2=a 2+b 2-2ab cos C=(a +b )2-3ab .∴c 2=4c 2-3×36,∴c 2=36.∴c =6.16.(文)在△ABC 中,已知AB =3,BC =2.(1)若cos B =-36,求sin C 的值; (2)求角C 的取值范围.[解析] (1)在△ABC 中,由余弦定理知,AC 2=AB 2+BC 2-2AB ·BC ·cos B=3+4-2×23×⎝⎛⎭⎫-36=9. 所以AC =3.又因为sin B =1-cos 2B =1-⎝⎛⎭⎫-362=336, 由正弦定理得AB sin C =AC sin B. 所以sin C =AB AC sin B =116. (2)在△ABC 中,由余弦定理得,AB 2=AC 2+BC 2-2AC ·BC cos C ,∴3=AC 2+4-4AC ·cos C ,即AC 2-4cos C ·AC +1=0.由题意知,关于AC 的一元二次方程应该有解,令Δ=(4cos C )2-4≥0,得cos C ≥12,或cos C ≤-12(舍去,因为AB <BC ) 所以,0<C ≤π3,即角C 的取值范围是⎝⎛⎦⎤0,π3. [点评] 1.本题也可用图示法,如图:A 为⊙B 上不在直线BC 上的任一点,由于r =AB =3,故当CA 与⊙B 相切时∠C 最大为π3,故C ∈⎝⎛⎦⎤0,π3. 2.高考命题大题的第一题一般比较容易入手,大多在三角函数的图象与性质、正余弦定理、平面向量等内容上命制,这一部分要狠抓基本原理、公式、基本方法的落实.(理)(2010·东北师大附中、辽宁省实验中学联考)设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且a cos C +12c =b . (1)求角A 的大小;(2)若a =1,求△ABC 的周长l 的取值范围.[解析] (1)由a cos C +12c =b 得 sin A cos C +12sin C =sin B又sin B =sin(A +C )=sin A cos C +cos A sin C∴12sin C =cos A sin C , ∵sin C ≠0,∴cos A =12, 又∵0<A <π,∴A =π3. (2)解法1:由正弦定理得:b =a sin B sin A =23sin B ,c =23sin C l =a +b +c =1+23(sin B +sin C ) =1+23(sin B +sin(A +B )) =1+2⎝⎛⎭⎫32sin B +12cos B =1+2sin ⎝⎛⎭⎫B +π6 ∵A =π3,∴B ∈⎝⎛⎭⎫0,2π3,∴B +π6∈⎝⎛⎭⎫π6,5π6, ∴sin ⎝⎛⎭⎫B +π6∈⎝⎛⎦⎤12,1. 故△ABC 的周长l 的取值范围是(2,3].解法2:周长l =a +b +c =1+b +c由(1)及余弦定理a 2=b 2+c 2-2bc cos A ,∴b 2+c 2=bc +1,∴(b +c )2=1+3bc ≤1+3⎝⎛⎭⎫b +c 22,∴b +c ≤2,又b +c >a =1,∴l =a +b +c ∈(2,3],即△ABC 的周长l 的取值范围为(2,3].17.(文)△ABC 中内角A 、B 、C 的对边分别为a 、b 、c ,向量m =(2sin B ,-3),n =(cos2B,2cos 2B 2-1)且m ∥n . (1)求锐角B 的大小;(2)如果b =2,求△ABC 的面积S △ABC 的最大值.[分析] (1)问利用平行向量的坐标表示将向量知识转化为三角函数,利用三角恒等变换知识解决;(2)问利用余弦定理与基本不等式结合三角形面积公式解决.[解析] (1)∵m ∥n ,∴2sin B ⎝⎛⎭⎫2cos 2B 2-1=-3cos2B ∴sin2B =-3cos2B ,即tan2B =- 3又∵B 为锐角,∴2B ∈(0,π),∴2B =2π3,∴B =π3. (2)∵B =π3,b =2, ∴由余弦定理cos B =a 2+c 2-b 22ac得, a 2+c 2-ac -4=0又∵a 2+c 2≥2ac ,∴ac ≤4(当且仅当a =c =2时等号成立)S △ABC =12ac sin B =34ac ≤3(当且仅当a =c =2时等号成立), [点评] 本题将三角函数、向量与解三角形有机的结合在一起,题目新疑精巧,难度也不大,即符合在知识“交汇点”处构题,又能加强对双基的考查,特别是向量的坐标表示及运算,大大简化了向量的关系的运算,该类问题的解题思路通常是将向量的关系用坐标运算后转化为三角函数问题,然后用三角函数基本公式结合正、余弦定理求解.(理)(2010·山师大附中模考)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知sin B =513,且a 、b 、c 成等比数列. (1)求1tan A +1tan C的值; (2)若ac cos B =12,求a +c 的值.[解析] (1)依题意,b 2=ac由正弦定理及sin B =513得,sin A sin C =sin 2B =25169. 1tan A +1tan C =cos A sin A +cos C sin C =sin (A +C )sin A sin C =sin B sin A sin C =135. (2)由ac cos B =12知cos B >0,∵sin B =513,∴cos B =1213(b 不是最大边,舍去负值) 从而,b 2=ac =12cos B=13. 由余弦定理得,b 2=(a +c )2-2ac -2ac cos B .∴13=(a +c )2-2×13×⎝⎛⎭⎫1+1213. 解得:a +c =37.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考正弦定理和余弦定理练习题及答案
一、选择题
1. 已知△ABC 中,a =c =2,A =30°,则b =( ) A. 3
B. 2 3
C. 3 3
D. 3+1 答案:B
解析:∵a =c =2,∴A =C =30°,∴B =120°.
由余弦定理可得b =2 3.
2. △ABC 中,a =5,b =3,sin B =
22,则符合条件的三角形有( ) A. 1个
B. 2个
C. 3个
D. 0个
答案:B
解析:∵a sin B =102, ∴a sin B <b =3<a =5,
∴符合条件的三角形有2个.
3.(2010·天津卷)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc ,sin C =23sin B ,则A =( )
A .30°
B .60°
C .120°
D .150°
答案:A
解析:利用正弦定理,sin C =23sin B 可化为c =23b .
又∵a 2-b 2=3bc ,
∴a 2-b 2=3b ×23b =6b 2,即a 2=7b 2,a =7b .
在△ABC 中,cos A =b 2+c 2-a 2
2bc
=b 2+(23b )2-(7b )22b ×23b
=32, ∴A =30°.
4.(2010·湖南卷)在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C =120°,c =2a ,则( )
A .a >b
B .a <b
C .a =b
D .a 与b 的大小关系不能确定
答案:A
解析:由正弦定理,得c sin120°=a sin A , ∴sin A =a ·3
22a =64>1
2.
∴A >30°.∴B =180°-120°-A <30°.∴a >b .
5. 如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( )
A. 5
18 B. 3
4
C. 3
2 D. 7
8
答案:D
解析:方法一:设三角形的底边长为a ,则周长为5a ,
∴腰长为2a ,由余弦定理知cos α=(2a )2+(2a )2-a 22×2a ×2a =7
8.
方法二:如图,过点A 作AD ⊥BC 于点D ,
则AC =2a ,CD =a 2,∴sin α2=1
4,
∴cos α=1-2sin 2α
2
=1-2×116=7
8.
6. (2010·泉州模拟)△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积等于(
) A. 3
2 B. 3
4
C. 3
2或 3 D. 32或3
4
答案:D
解析:∵sin C 3=sin B
1,
∴sin C =3·sin30°=3
2.
∴C =60°或C =120°.
当C =60°时,A =90°,S △ABC =12×1×3=32
, 当C =120°时,A =30°,S △ABC =12×1×3sin30°=34
. 即△ABC 的面积为
32或34. 二、填空题
7.在△ABC 中,若b =1,c =3,∠C =2π3
,则a =________. 答案:1
解析:由正弦定理b sin B =c sin C ,即1sin B =3sin 2π3
,sin B =12. 又b <c ,∴B =π6,∴A =π6
.∴a =1. 8.(2010·山东卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2,sin B +cos B =2,则角A 的大小为________.
答案:π6
解析:∵sin B +cos B =2,
∴sin(B +π4
)=1. 又0<B <π,∴B =π4. 由正弦定理,知2sin A =2sin B ,∴sin A =12
. 又a <b ,∴A <B ,∴A =π6
. 9. (2010·课标全国卷)在△ABC 中,D 为边BC 上一点,BD =12
DC ,∠ADB =120°,AD =2.若△ADC 的面积为3-3,则∠BAC =________.
答案:60° 解析:S △ADC =12×2×DC ×32
=3-3, 解得DC =2(3-1),
∴BD =3-1,BC =3(3-1).
在△ABD 中,AB 2=4+(3-1)2-2×2×(3-1)×cos120°=6,
∴AB = 6.
在△ACD 中,AC 2=4+[2(3-1)]2-2×2×2(3-1)×cos60°=24-123, ∴AC =6(3-1),
则cos ∠BAC =AB 2+AC 2-BC 2
2AB ·AC
=6+24-123-9(4-23)2×6×6×(3-1)=12, ∴∠BAC =60°. 三、解答题
10. 如图,△OAB 是等边三角形,∠AOC =45°,OC =2,A 、B 、C 三点共线.
(1)求sin ∠BOC 的值;
(2)求线段BC 的长.
解:(1)∵△AOB 是等边三角形,∠AOC =45°,
∴∠BOC =45°+60°,
∴sin ∠BOC =sin(45°+60°)
=sin45°cos60°+cos45°sin60°
=2+64
. (2)在△OBC 中,OC sin ∠OBC =BC sin ∠BOC
, ∴BC =sin ∠BOC ×
OC sin ∠OBC =2+64×2sin60°=1+33
. 11. (2010·全国Ⅱ卷)△ABC 中,D 为边BC 上的一点,BD =33,sin B =513
,cos ∠ADC =35
,求AD . 解:由cos ∠ADC =35>0知B <π2
, 由已知得cos B =1213,sin ∠ADC =45
, 从而sin ∠BAD =sin(∠ADC -B )
=sin ∠ADC cos B -cos ∠ADC sin B
=45×1213-35×513=3365
. 由正弦定理得AD sin B =BD sin ∠BAD
, AD =BD ·sin B sin ∠BAD
=33×5133365
=25. 12. (2010·安徽卷)设△ABC 是锐角三角形,a ,b ,c 分别是内角A ,B ,C 所对边长,并
且sin 2A =sin ⎝⎛⎭⎫π3+B sin ⎝⎛⎭
⎫π3-B +sin 2B . (1)求角A 的值;
(2)若AB →·AC →=12,a =27,求b ,c (其中b <c ).
解:(1)因为sin 2A =⎝⎛⎭
⎫32cos B +12sin B ⎝⎛⎭
⎫32cos B -12sin B +sin 2B =34cos 2B -14sin 2B +sin 2B =34, 所以sin A =±32. 又A 为锐角,所以A =π3
. (2)由AB →·AC →=12,可得cb cos A =12.①
由(1)知A =π3
,所以cb =24.② 由余弦定理知a 2=c 2+b 2-2cb cos A ,将a =27及①代入,得c 2+b 2=52,③ ③+②×2,得(c +b )2=100,
所以c +b =10.
因此c ,b 是一元二次方程t 2-10t +24=0的两个根.
解此方程并由c >b 知c =6,b =4.
最新文件 仅供参考 已改成word 文本 。
方便更改。