实验3-信号的频域分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一,实验目的四,心得体会

了解信号频谱和信号频域,掌握其特性。

一,实验原理

实验主要分为四个部分,分别分析了连续和离散信号的周期、非周期情况下特性。

1.连续周期信号的频谱分析

首先手算出信号的傅里叶级数,得出信号波形,然后通过代码画出信号波形图。

2.连续非周期信号的频谱分析

先由非周期信号的时域信号得到它的频谱X(w),再通过MATLAB 求出其傅里叶变换并绘出图形。

X=fourier(x)

x=ifourier(x)

①符号运算法

syms t

②数值积分法

quad(fun,a,b)

③数值近似法

3.离散周期信号的频谱分析

X=fft(x)

4.离散非周期信号的频谱分析

可以化为两个相乘的矩阵,从而由MATLAB实现。

三,实验内容

(1)已知x(t)是如图周期矩形脉冲信号。

1).计算该信号的傅里叶级数。

2).利用MATLAB绘出由前N次谐波合成的信号波形,观察随着N的变化合成信号波形的变化规律。

3).利用MATLAB绘出周期矩形脉冲信号的频谱,观察参数T和τ变化时对频谱波形的影响。

思考下列问题:

①什么是吉伯斯现象?产生吉伯斯现象的原因是什么?

②以周期矩形脉冲信号为例,说明周期信号的频谱有什么特点。

③周期矩形脉冲信号参数τ/T的变化,其频谱结构(如频谱包络形状、过零点、频谱间隔等)如何变化?

(2)已知x(t)是如图所示矩形脉冲信号。

1).求该信号的傅里叶变幻。

2). 利用MATLAB绘出周期矩形脉冲信号的频谱,观察参数T和τ变化时对频谱波形的影响。

3). 让矩形脉冲宽度始终等于一,改变矩形脉冲宽度,观察矩形脉冲信号时域波形和频谱随矩形脉冲宽度的变化趋势。

①比较矩形脉冲信号和周期矩形脉冲信号的频谱,两者之间有何异同。

②让矩形脉冲的面积始终等于一,改变矩形脉冲的宽度,观察矩形脉冲信号时域波形和频谱波形随矩形脉冲宽度的变化趋势。

(1)已知x(t)是如图所示的周期矩形脉冲信号

①,计算该信号的傅里叶级数

答:由图中x(t)波形可知信号为

通过计算,可以知道

所以x(t)的傅里叶级数为。。

②利用MATLAB绘出前N次谐波合成的信号波形,观察随着N的变化合成信号波形的变化规律。

Matlab程序如下:

t=-1.5:0.01:1.5

N=input('N=')

A=1

T=2*pi

ta=T/2

syms xt

for i=1:(length(N))

x=A*ta/T

end

for k=1:N(i)

x=x+2/(k*pi)*sin(k*pi*ta/T)*cos(2*pi*k*t/T)

end

if mod(i,4)==1

figure

flag=13

end

subplot(2,2,flag)

ezplot(x)

str_title=['N=',sprintf('%d',N(i))]

title(str_title)

grid on

程序执行结果:

由图形可知,随着N的增大,选取的傅里叶级数增加,合成波形越来越接近原有的矩形脉冲信号。

③利用MATLAB绘出周期矩形脉冲信号的频谱,观察参数T和τ变化时,对频谱波形的影响。

答:由计算,

MATLAB程序如下:

N=input('N=')

A=input('A=')

T=input('T=')

i=input('c=')

n1=-N:-1

c1=A./n1./pi.*sin(n1.*pi.*i./T)

c0=A.*i./T

n2=1:N

c2=A./n2./pi.*sin(n2.*pi.*i./T)

cn=[c1 c0 c2]

n=-N:N

subplot(211)

stem(n,abs(cn),'filled')

xlabel('w/w0')

title('Magnitude of ck')

subplot(212)

stem(n,angle(cn),'filled')

xlabel('w/w0')

title('Phaseof ck')

程序执行结果:

①输入N=18,A=3,T=3,c=0.1:

②输入N=18,A=3,T=3,c=1:

③输入N=18,A=3,T=1,c=1:

由程序执行结果可知,频谱波形与τ/T有关,当比值相同时,频谱波形图相同,比值不

同时,随比值的减小,频谱包络性状趋于收敛、过零点越少、谱线越密。

思考:

①什么是吉伯斯现象?产生吉伯斯现象的原因是什么?

答:

吉伯斯现象:将具有不连续点的周期函数(如矩形脉冲)进行傅立叶级数展开后,选取有限项进行合成。当选取的项数越多,在所合成的波形中出现的峰起越靠近原信号的不连续点。当选取的项数很大时,该峰起值趋于一个常数,大约等于总跳变值的9%。这种现象称为吉伯斯现象。

产生原因:当一个信号通过某一系统时,如果这个信号不是连续时间函数,则由于一般物理系统对信号高频分量都有衰减作用,从而产生。

②以周期矩形脉冲信号为例,说明周期信号的频谱有什么特点。

答:周期信号的频谱是具有周期性的一系列脉冲信号,谱线间隔为w,谱线长度岁谐波次数增高趋于收敛。

③周期矩形脉冲信号的有效频带宽度与信号的时域宽度之间有什么关系?

答:有效频宽与信号的时域宽度成反比。

④随着矩形脉冲信号参数τ/T的变化,其频谱结构如何变化?

答:比值越小,频谱包络性状趋于收敛、过零点越少、谱线越密。

(2)已知x(t)是如图所示的矩形脉冲信号。

①求该信号的傅里叶变换。

由所给波形可知,

Matlab程序如下:

syms t

A=input('A=')

c=input('c=')

x=A*(heaviside(t+c/2)-heaviside(t-c/2))

X=fourier(x)

collect(X)

则当A=1,c=1,可得ans=(2*sin(w/2))/w=Aτsinc(wτ/2)

所以x(t)的傅里叶变换为

相关文档
最新文档