毕赤酵母表达蛋白步骤
毕赤酵母表达知识归纳
毕赤酵母表达知识归纳1a.配制500×BIOTIN stock solution(0.02%)有这么3种方案:1、懒人是将Biotin直接溶在去离子水中,放过夜,基本就能溶;2、急性子是将溶液配成0.02N的NaOH,就很容易溶解了;3、水浴加热,温度不能高于50度。
D-生物素是具有生物活性的生物素,也就是vitaminH。
在毕赤酵母代谢过程中,作为多种酶的辅基起作用。
天然培养基中一般可以不单独添加,因为YNB中、酵母粉、蛋白胨中均含有一定量的生物素,但是做高密度发酵还是必须要添加的。
b.有几个比较迷惑的问题请教大家:(很典型的小问题)1、制感受态细胞,OD多少比较好?pyrimidine 战友的方法:取1mlGS115过夜培养物(OD约6-10) 分装到1.5ml EP管中。
说明书还有一些文献是说在1.3左右效率高,再高了效率会很低2、关于高效转化法,文献说用(LiAc),而invitrogen的说明书说转化毕赤酵母用(LiAc)没用,要用LiCl。
Lithium acetate does not work with Pichia pastoris. Use only lithium chloride.3、YNB到底能高温灭么?有的说能有的说不能。
过滤灭菌的怎么操作?我是把滤器装好膜绑到瓶口用纱布盖上,报纸包上,瓶盖放烧杯里单灭。
然后把配好的溶液用注射器一点点推进去。
4、葡萄糖为什么在YPD里一起灭颜色很深,单灭则不会。
该115度还是121度灭?网上搜了下,都有人用!5、电转化参数用400欧还是200欧?有的用400,有的还专门说不是用400。
都是从园里看到的!电击参数:1.5KV,25uF,200欧姆(不是400)6、电转后,在MD平板上长的应该就是整合了目的基因的重组子了吧?如果不想筛高拷贝的,是否PCR验证一下即可?网友的回答:ynb最好不灭菌,我是0.22um过滤处理的。
invitrogen手册上可以灭菌的。
毕赤酵母实验操作手册
毕赤酵母表达实验手册大肠杆菌表达系统最突出的优点是工艺简单、产量高、生产成本低。
然而,许多蛋白质在翻译后,需经过翻译后的修饰加工,如磷酸化、糖基化、酰胺化及蛋白酶水解等过程才能转化成活性形式。
大肠杆菌缺少上述加工机制,不适合用于表达结构复杂的蛋白质。
另外,蛋白质的活性还依赖于形成正确的二硫键并折叠成高级结构,在大肠杆菌中表达的蛋白质往往不能进行正确的折叠,是以包含体状态存在。
包含体的形成虽然简化了产物的纯化,但不利于产物的活性,为了得到有活性的蛋白,就需要进行变性溶解及复性等操作,这一过程比较繁琐,同时增加了成本。
与大肠杆菌相比,酵母是低等真核生物,具有细胞生长快,易于培养,遗传操作简单等原核生物的特点,又具有真核生物时表达的蛋白质进行正确加工,修饰,合理的空间折叠等功能,非常有利于真核基因的表达,能有效克服大肠杆菌系统缺乏蛋白翻泽后加工、修饰的不足。
因此酵母表达系统受到越来越多的重视和利用。
大肠杆菌是用得最多、研究最成熟的基因工程表达系统,当前已商业化的基因工程产品大多是通过大肠杆菌表达的,其主要优点是成本低、产量高、易于操作。
但大肠杆菌是原核生物,不具有真核生物的基因表达调控机制和蛋白质的加工修饰能力,其产物往住形成没有活性的包涵体,需要经过变性、复性等处理,才能应用。
近年来,以酵母作为工程菌表达外源蛋白日益引起重视,主更是因为酵母是单细胞真核生物,不但具有大肠杆菌易操作、繁殖快、易于工业化生产的特点,还具有真核生物表达系统基因表达调控和蛋白修饰功能,避免了产物活性低,包涵体变性、复性等等间题[1]。
与大肠杆菌相比,酵母是单细胞真核生物,具有比较完备的基因表达调控机制和对表达产物的加工修饰能力,人们对酿酒酵母(Saccharomyces.Cerevisiae)分子遗传学方面的认识最早,酿酒酵母也最先作为外源基因表达的酵母宿主.1981年酿酒酵母表达了第一个外源基因一干扰素基因,随后又有一系列外源基因在该系统得到表达。
酵母表达外源蛋白(foreign protein)(1)
酵母表达外源蛋白(foreign protein)(1)1、菌株用GS115表达不出蛋白,换KM71H后,大部分克隆能表达。
2、温度:在28度和室温下诱导表达,表达水平可能都不低。
3、pH手册上用6.0,pH提高到6.8,不表达的蛋白可能就表达出来。
BMMY的pH7.0-7.5比较合适。
国内外做的最好的rHSA,最适pH大概 5-6左右。
pH3的时候yeast和peptone好像会沉淀的,可以用磷酸和磷酸二氢钾调,具体比例自己去试试。
4、偏爱密码子codon bias一般不是主要的问题,你要表达的蛋白特性才是主要问题,酵母对分子量大(30KD以上),结构复杂(如一些蛋白酶),二硫键含量多的蛋白往往不能有效表达,尤其是分泌表达。
密码子改造对一些较小的而且结构简单的蛋白表达量的提高可能有一些作用。
比如一位战友用Pichia酵母表达一个单链抗体,29KD,含有2对二硫键,表达量约几毫克每升,选用酵母偏好密码子全基因合成后,表达量没有什么提高。
5、表达时间与空质粒转化对照诱导时间长了以后,是会有很多蛋白分泌出来的,时间越长杂蛋白就越多,且分子量都比较大。
最好做一个空质粒转化的对照,这样就会比较肯定到底是不是自身的蛋白分泌的结果。
6、污染每个样品从G418板上挑10个左右单克隆于2ml BMGY摇菌(30ml玻璃管,比LB管大一点),纱布一般用8层,一天左右看着比较浑离心,留样1m l,余1ml换2ml BMMY诱导表达,3,4层纱布足够了。
污染一般都是跟瓶口覆盖有关的原因造成的,只盖纱布肯定会污染。
加盖报纸后,就再没遇到过污染。
如果只用6层纱布,污染的可能当然很大,100ml 三角瓶,装量10ml培养液,用橡筋把8层纱布和2层报纸拴紧封口,空气浴摇床。
7、不表达蛋白有没有表达就要看你的运气了,一般重复2-3次实验都没有表达菌株,这个蛋白就放弃表达了。
8、表达量30KD,10mg/L表达量已经很高,最直接的方法是发酵,一般提高5-10倍。
毕赤酵母手册
毕赤酵母表达实验手册作者:Jnuxz 来源:丁香园时间:2007-9-5大肠杆菌表达系统最突出的优点是工艺简单、产量高、周期短、生产成本低。
然而,许多蛋白质在翻译后,需经过翻译后的修饰加工,如磷酸化、糖基化、酰胺化及蛋白酶水解等过程才能转化成活性形式。
大肠杆菌缺少上述加工机制,不适合用于表达结构复杂的蛋白质。
另外,蛋白质的活性还依赖于形成正确的二硫键并折叠成高级结构,在大肠杆菌中表达的蛋白质往往不能进行正确的折叠,是以包含体状态存在。
包含体的形成虽然简化了产物的纯化,但不利于产物的活性,为了得到有活性的蛋白,就需要进行变性溶解及复性等操作,这一过程比较繁琐,同时增加了成本。
大肠杆菌是用得最多、研究最成熟的基因工程表达系统,当前已商业化的基因工程产品大多是通过大肠杆菌表达的,其主要优点是成本低、产量高、易于操作。
但大肠杆菌是原核生物,不具有真核生物的基因表达调控机制和蛋白质的加工修饰能力,其产物往住形成没有活性的包涵体,需要经过变性、复性等处理,才能应用。
近年来,以酵母作为工程菌表达外源蛋白日益引起重视,原因是与大肠杆菌相比,酵母是低等真核生物,除了具有细胞生长快,易于培养,遗传操作简单等原核生物的特点外,又具有真核生物时表达的蛋白质进行正确加工,修饰,合理的空间折叠等功能,非常有利于真核基因的表达,能有效克服大肠杆菌系统缺乏蛋白翻译后加工、修饰的不足。
因此酵母表达系统受到越来越多的重视和利用。
[1]。
同时与大肠杆菌相比,作为单细胞真核生物的酵母菌具有比较完备的基因表达调控机制和对表达产物的加工修饰能力。
酿酒酵母(Saccharomyces.Cerevisiae)在分子遗传学方面被人们的认识最早,也是最先作为外源基因表达的酵母宿主。
1981年酿酒酵母表达了第一个外源基因----干扰素基因[2],随后又有一系列外源基因在该系统得到表达[3、4、5、6]。
干扰素和胰岛素虽然已经利用酿酒酵母大量生产并被广泛应用,当利用酿酒酵母制备时,实验室的结果很令人鼓舞,但由实验室扩展到工业规模时,其产量迅速下降。
毕赤酵母实验操作手册
毕赤酵母表达实验手册大肠杆菌表达系统最突出的优点是工艺简单、产量高、生产成本低。
然而,许多蛋白质在翻译的修饰加工,如磷酸化、糖基化、酰胺化及蛋白酶水解等过程才能转化成活性形式。
大肠杆菌缺少适合用于表达结构复杂的蛋白质。
另外,蛋白质的活性还依赖于形成正确的二硫键并折叠成高级结表达的蛋白质往往不能进行正确的折叠,是以包含体状态存在。
包含体的形成虽然简化了产物的纯的活性,为了得到有活性的蛋白,就需要进行变性溶解及复性等操作,这一过程比较繁琐,同时增与大肠杆菌相比,酵母是低等真核生物,具有细胞生长快,易于培养,遗传操作简单等原核生物的生物时表达的蛋白质进行正确加工,修饰,合理的空间折叠等功能,非常有利于真核基因的表达,菌系统缺乏蛋白翻泽后加工、修饰的不足。
因此酵母表达系统受到越来越多的重视和利用。
大肠杆菌是用得最多、研究最成熟的基因工程表达系统,当前已商业化的基因工程产品大多是通过其主要优点是成本低、产量高、易于操作。
但大肠杆菌是原核生物,不具有真核生物的基因表达调加工修饰能力,其产物往住形成没有活性的包涵体,需要经过变性、复性等处理,才能应用。
近年程菌表达外源蛋白日益引起重视,主更是因为酵母是单细胞真核生物,不但具有大肠杆菌易操作、化生产的特点,还具有真核生物表达系统基因表达调控和蛋白修饰功能,避免了产物活性低,包涵间题[1]。
与大肠杆菌相比,酵母是单细胞真核生物,具有比较完备的基因表达调控机制和对表达产物的们对酿酒酵母(Saccharomyces.Cerevisiae)分子遗传学方面的认识最早,酿酒酵母也最先作为外宿主.1981年酿酒酵母表达了第一个外源基因一干扰素基因,随后又有一系列外源基因在该系统得素和胰岛素已大量生产并在人群中广泛应用,但很大部分表达由实验室扩展到工业规模时,培养基数的选择压力消失,质粒变得不稳定,拷贝数下降,而大多数外源基因的高效表达需要高拷贝数的量下降。
同时,实验室用培养基复杂而昂贵,采用工业规模能够接受的培养基时,往往导致产量的酵母的局限,人们发展了以甲基营养型酵母(methylotrophic yeast)为代表的第二代酵母表达系甲基营养型酵母包括:Pichia、Candida等.以Pichia.pastoris(毕赤巴斯德酵母)为宿主的外源来发展最为迅速,应用也最为广泛,已利用此系统表达了一系列有重要生物学活性的蛋自质。
毕赤酵母诱导表达实验流程
毕赤酵母诱导表达实验流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!毕赤酵母(Pichia pastoris)是一种常用于外源蛋白表达的真核生物,具有高表达量、高分泌性和易于操作等优点。
毕赤酵母表达系统原理
毕赤酵母表达系统原理《毕赤酵母表达系统那点事儿》嘿,朋友们!今天咱来唠唠毕赤酵母表达系统。
这玩意儿可有意思啦!你看啊,毕赤酵母就像是一个神奇的小工厂。
它呀,能把我们想要的东西给生产出来。
想象一下,它就像一个勤劳的小工匠,在自己的小天地里忙忙碌碌。
这个小工厂有自己的一套工作流程呢。
首先,我们得把我们需要表达的基因送进去,就好像给小工匠下达一个任务订单。
毕赤酵母接收到这个基因后,就开始开动啦。
它会利用自己身体里的各种零部件和原材料,一点一点地把这个基因表达出来,变成我们想要的蛋白质。
它可厉害了,能生产出各种各样的蛋白质。
就像一个万能的大厨,不管你要做什么菜,它都能给你做出来。
而且啊,它做出来的东西质量还挺高。
毕赤酵母还有个优点,就是它比较好养活。
不需要特别复杂的条件,给它点吃的喝的,它就能茁壮成长。
这就像咱家里养的小宠物,只要你稍微照顾一下它,它就能给你带来很多欢乐。
不过呢,毕赤酵母也不是完美的啦。
有时候它也会出点小差错,就像人一样,偶尔也会犯点小迷糊。
但这并不影响它的可爱和实用呀。
在实际应用中,毕赤酵母表达系统可是帮了大忙呢。
比如说在生物医药领域,很多药物的生产都离不开它。
它就像一个幕后英雄,默默地为我们的健康贡献着力量。
我记得有一次,我在实验室里研究一个项目,就是用毕赤酵母表达系统来生产一种蛋白质。
那时候真是费了不少心思,不断地调整各种条件,就盼着能得到高质量的产物。
经过一番努力,终于看到了成果,那一刻的心情真是无法用言语来形容。
总之呢,毕赤酵母表达系统是个很有趣也很有用的东西。
它虽然小小的,但却有着大大的能量。
它就像一颗闪亮的星星,在科学的天空中绽放着自己的光芒。
我们要好好利用它,让它为我们创造更多的价值呀!。
毕赤酵母表达操作手册(PDF精译版)
版权声明:本站几乎所有资源均搜集于网络,仅供学习参考,不得进行任何商业用途,否则产生的一切后 果将由使用者本人承担! 本站仅仅提供一个观摩学习与交流的平台, 将不保证所提供资源的完 整性,也不对任何资源负法律责任。
所有资源请在下载后 24 小时内删除。
如果您觉得满意, 请购买正版,以便更好支持您所喜欢的软件或书籍!☆☆☆☆☆生物秀[]☆☆☆☆☆中国生物科学论坛[/bbs/]☆☆☆☆☆生物秀下载频道[/Soft/]生物秀——倾力打造最大最专业的生物资源下载平台!■■■ 选择生物秀,我秀我精彩!!■■■欢迎到生物秀论坛(中国生物科学论坛)的相关资源、软件版块参与讨论,共享您的资源,获 取更多资源或帮助。
毕赤酵母多拷贝表达载体试剂盒用于在含多拷贝基因的毕赤酵母菌中表达并分离重组蛋白综述:基本特征:作为真核生物,毕赤酵母具有高等真核表达系统的许多优点:如蛋白加工、折叠、翻译后修饰等。
不仅如此,操作时与E.coli及酿酒酵母同样简单。
它比杆状病毒或哺乳动物组织培养等其它真核表达系统更快捷、简单、廉价,且表达水平更高。
同为酵母,毕赤酵母具有与酿酒酵母相似的分子及遗传操作优点,且它的外源蛋白表达水平是后者的十倍以至百倍。
这些使得毕赤酵母成为非常有用的蛋白表达系统。
与酿酒酵母相似技术:许多技术可以通用:互补转化基因置换基因破坏另外,在酿酒酵母中应用的术语也可用于毕赤酵母。
例如:HIS4基因都编码组氨酸脱氢酶;两者中基因产物有交叉互补;酿酒酵母中的一些野生型基因与毕赤酵母中的突变基因相互补,如HIS4、LEU2、ARG4、TR11、URA3等基因在毕赤酵母中都有各自相互补的突变基因。
毕赤酵母是甲醇营养型酵母:毕赤酵母是甲醇营养型酵母,可利用甲醇作为其唯一碳源。
甲醇代谢的第一步是:醇氧化酶利用氧分子将甲醇氧化为甲醛,还有过氧化氢。
为避免过氧化氢的毒性,甲醛代谢主要在一个特殊的细胞器-过氧化物酶体-里进行,使得有毒的副产物远离细胞其余组分。
毕赤酵母常用表达载体
毕赤酵母常用培养基与载体一、毕赤酵母表达常用载体:典型的巴斯德毕赤酵母表达载体载体包含醇氧化酶-1(AOX1)基因的启动子和转录终止子(5'AOX1和3'AOX1),它们被多克隆位点(MCS)分开,外源基因可以在此插入。
此载体还包含组氨醇脱氢酶基因(HIS4)选择标记及3'AOX1区。
当整合型载体转化受体时,它的5'AOX1和3'AOX1能与染色体上的同源基因重组,从而使整个载体连同外源基因插入到受体染色体上,外源基因在5'AOX1启动子控制下表达。
毕赤酵母本身不分泌内源蛋白,而外源蛋白的分泌需要具有引导分泌的信号序列。
而由89个氨基酸组成的酿酒酵母的分泌信号—α交配因子(α-factor)引导序列已经成功地引导了几种外源蛋白的分泌。
分泌表达载体主要有:pPIC9,pPIC9K,pHIL-S1,pPICZα A,pYAM75P等。
胞内表达载体主要有:pHIL-D2,pA0815,pPIC3K,pPICZ,pHWO10,pGAPZ,pGAPZa(Invitrogen),pPIC3.5K等。
工程菌株Y11430,MG1003,GS115 (AOX1),KM71,SMD1168。
毕赤酵母宿主菌常用的有GS115和KM71两种,都具有HIS4营养缺陷标记。
其中,GS115茵株具有AOX1基因,是Mut+,即甲醇利用正常型;而KM71菌株的AOX1位点彼ARG4基因插入,表型为Muts,即甲醇利用缓慢型,两种菌株都适用于一般的酵母转化方法。
多拷贝表达菌株的获得方式:与自主复制的质粒型表达载体不同,整合型表达载体的拷贝数可以有很大的变化。
含多拷贝外源基因的表达菌株合成蛋白的量也较多。
体内整合可通过高遗传霉素抗性,筛选可能的多拷贝插入;而体外整合可通过连接产生外源基因的串联插入。
多拷贝表达菌株的获得方式有两种:一种是利用SDS-PAGE电泳、免疫杂交或菌落点杂交方法在大量的转化子中进行自然筛选。
毕赤酵母表达系统
毕赤酵母表达系统前言:所用表达质粒有pPIC3.5K,pAO815用于胞内表达,而pPIC9K用于分泌表达,所有载体均利用AOX1启动子来诱导高水平表达。
抗性选择:最有效的筛选遗传霉素抗性及高抗性克隆的程序需要先对HIS+转化子进行选择,再进行不同水平遗传霉素抗性筛选。
毕赤菌株表型:毕赤酵母菌GS115 及KM71 在组氨酸脱氢酶位点(His4)有突变,因而不能合成组氨酸,所有表达质粒都有HIS4 基因可与宿主进行互补,通过不含组氨酸的培养基来选择转化子。
GS115 及KM71都可在复合培养基如YPD(YEPD)及含组氨酸的最小培养基中生长。
转化之前,GS115 及KM71 都不能在最小培养基中生长,因为它们是His-。
培养温度:毕赤酵母生长温度为28-30度(液体、平板、斜面)。
在32 度以上诱导生长时,对蛋白表达有害,甚至会导致细胞死亡。
贮存:贮存细胞几周或几月,用YPD培养基或YPD 琼脂斜面1 挑取所需菌株单克隆在YPD 平板上划线生长;2 挑取单克隆转移至YPD进行穿刺培养,30 度2 天;3 细胞在4 度可放几周几月或几年,存于-80度1 挑取所需菌株单克隆在YPD 中过夜培养;2 收集细胞,在含15%甘油的YPD 中悬浮至终OD600 为50-100(大约2.5-5.0×109细胞/ml);3 细胞先用液氮或干冰/酒精浴中冰冻再贮存于-80 度。
注意:在4 度或-80 度长期保存后,用之前建议在MM、MD 或MGY 平板上划线培养以检测His+转化子的表型是否正确及其活力。
以质粒pPIC9K,酵母Pichia pastoris GS115为例说明做法。
载体pPIC9K酶切为点线性化质粒DNA:建议使用下列方法线性化载体以获得Mut+及Muts重组子,可能其中一个会比另一个更利于表达多拷贝重组子。
如果只想得到Muts重组子,使用KM71 菌株。
单个十字交换事件可比双重十字交换更容易、更有效地获得Muts重组菌(例如:插入AOX1或his4 而不是取代AOX1)。
毕赤酵母表达系统资料整理
毕赤酵母表达系统Mut+和Muts毕赤酵母中有两个基因编码醇氧化酶——AOX1及AOX2,细胞中大多数的醇氧化酶是AOX1基因产品,甲醇可紧密调节、诱导AOX1基因的高水平表达,较典型的是占可溶性蛋白的30%以上。
AOX1基因调控分两步:抑制/去抑制机制加诱导机制。
简单来说,在含葡萄糖的培养基中,即使加入诱导物甲醇转录仍受抑制。
为此,用甲醇进行优化诱导时,推荐在甘油培养基中培养。
注意即使在甘油中生长(去抑制)时,仍缺乏以使AOX1基因达到最低水平的表达,诱导物甲醇是AOX1基因可辨表达水平所必须的。
AOX1基因已被分离,含AOX1启动子的质粒可用来促进编码外源蛋白的目的基因的表达。
AOX2基因与AOX1基因有97%的同源性,但在甲醇中带AOX2基因的菌株比带AOX1基因菌株慢得多,通过这种甲醇利用缓慢表型可分离Muts菌株。
在YPD(酵母膏、蛋白胨、葡萄糖)培养基中,不管是Mut+还是Muts其在对数期增殖一倍的时间大约为2h。
Mut+和Muts菌株在没有甲醇存在的情况下生长速率是一样的,存在甲醇的情况下,Mut+在对数期增殖一倍的时间大约为4至6个小时,Muts 在对数期增殖一倍的时间大约为18个小时。
菌株GS115、X-33、KM71和SMD1168的区别GS115、KM71和SMD1168等是用于表达外源蛋白的毕赤酵母受体菌,与酿酒酵母相比,毕赤酵母不会使蛋白过糖基化,糖基化后有利于蛋白的溶解或形成正确的折叠结构。
GS115、KM71、SMD1168在组氨酸脱氢酶位点(His4)有突变,是组氨酸缺陷型,如果表达载体上携带有组氨酸基因,可抵偿宿主菌的组氨酸缺陷,因此可以在不含组氨酸的培养基上筛选转化子。
这些受体菌自发突变成组氨酸野生型的概率一般低于10-8。
GS115表型为Mut+,重组表达载体转化GS115后,长出的转化子可能是Mut+,也可能是Muts(载体取代AXO1基因),可以在MM和MD培养基上鉴定表型。
毕赤酵母表达操作手册(PDF精译版)
版权声明:本站几乎所有资源均搜集于网络,仅供学习参考,不得进行任何商业用途,否则产生的一切后 果将由使用者本人承担! 本站仅仅提供一个观摩学习与交流的平台, 将不保证所提供资源的完 整性,也不对任何资源负法律责任。
所有资源请在下载后 24 小时内删除。
如果您觉得满意, 请购买正版,以便更好支持您所喜欢的软件或书籍!☆☆☆☆☆生物秀[]☆☆☆☆☆中国生物科学论坛[/bbs/]☆☆☆☆☆生物秀下载频道[/Soft/]生物秀——倾力打造最大最专业的生物资源下载平台!■■■ 选择生物秀,我秀我精彩!!■■■欢迎到生物秀论坛(中国生物科学论坛)的相关资源、软件版块参与讨论,共享您的资源,获 取更多资源或帮助。
毕赤酵母多拷贝表达载体试剂盒用于在含多拷贝基因的毕赤酵母菌中表达并分离重组蛋白综述:基本特征:作为真核生物,毕赤酵母具有高等真核表达系统的许多优点:如蛋白加工、折叠、翻译后修饰等。
不仅如此,操作时与E.coli及酿酒酵母同样简单。
它比杆状病毒或哺乳动物组织培养等其它真核表达系统更快捷、简单、廉价,且表达水平更高。
同为酵母,毕赤酵母具有与酿酒酵母相似的分子及遗传操作优点,且它的外源蛋白表达水平是后者的十倍以至百倍。
这些使得毕赤酵母成为非常有用的蛋白表达系统。
与酿酒酵母相似技术:许多技术可以通用:互补转化基因置换基因破坏另外,在酿酒酵母中应用的术语也可用于毕赤酵母。
例如:HIS4基因都编码组氨酸脱氢酶;两者中基因产物有交叉互补;酿酒酵母中的一些野生型基因与毕赤酵母中的突变基因相互补,如HIS4、LEU2、ARG4、TR11、URA3等基因在毕赤酵母中都有各自相互补的突变基因。
毕赤酵母是甲醇营养型酵母:毕赤酵母是甲醇营养型酵母,可利用甲醇作为其唯一碳源。
甲醇代谢的第一步是:醇氧化酶利用氧分子将甲醇氧化为甲醛,还有过氧化氢。
为避免过氧化氢的毒性,甲醛代谢主要在一个特殊的细胞器-过氧化物酶体-里进行,使得有毒的副产物远离细胞其余组分。
毕赤酵母的基因表达及其初步纯化
1、表达效率高,遗传稳定性好 2、结构简单,表达调控机理比较清楚 3、有Pr加工系统 4、培养简单,成本低廉 5、表达产物可分泌至培养基中而自身蛋白的
分泌却很少,利于下游的纯化 (毕赤氏酵母是近年来广泛应用的真核表达
系统。)
一、实验材料
• DH5α、pPICZαA 、GS115、TOP10、, pQE4Aβ15
• 离心收集沉淀,取适量沉淀进行12% SDSPAGE 分析。
• 并用Band Scan 软件进行蛋白质纯度分析.
蛋白质的分离纯化方法
——Alade
四种分离纯化方法
• 1、根据分子大小不同进行分离纯化 • 2 、根据溶解度不同进行分离纯化 • 3 、根据电荷不同进行分离纯化 • 4 、利用对配体的特异亲和力进行分离纯化
• TBST 洗涤 5 次,H来自P-DAB 底物显色试剂 盒显色.
Western Blot 原理 a
• Western Blot与Southern印迹杂交或 Northern印迹杂交方法类似,但Western Blot采用的是聚丙烯酰胺凝胶电泳,被检测 物是蛋白质,“探针”是抗体,“显色” 用标记的二抗。
Western Blot操作步骤
• 1、蛋白样品制备 • 2、蛋白含量的测定 • 3、SDS-PAGE电泳 • 4、转膜 • 5、免疫反应 • 6、化学发光,显影,定影 • 7、凝胶图象分析
6、重组蛋白的鉴定与分析
6.2 质谱分析
• 从考染(考马斯亮蓝R250CBR-250,用于检 测Pr的氨基和羧基)凝胶上切下重组蛋白 带, 进行基质辅助激光解吸附电离飞行时 间质谱分析.
• 挑阳性克隆单菌落接种于BMGY(含酵母粉、 甘油、生物素……)的培养基上摇床培养
酵母表达手册
酵母表达手册
酵母表达系统是一种常用于生产重组蛋白质的方法,其利用酵母细胞作为宿主来表达外源基因。
以下是酵母表达系统的基本步骤:
1. 基因克隆和转化:将目的基因克隆到酵母表达载体中,常用的载体有质粒和整合型载体。
转化方法包括电转化和化学转化。
2. 重组蛋白表达:将转化后的酵母细胞接种到发酵罐中进行培养,在适宜的温度、pH和营养条件下,目的基因在酵母细胞中表达出重组蛋白。
3. 蛋白质纯化:通过一系列的纯化技术,如离心、过滤、沉淀、亲和层析等,将重组蛋白从酵母细胞中分离出来并进行纯化。
4. 蛋白质后处理:根据需要,对纯化的重组蛋白进行进一步的后处理,如去盐、脱色、除菌等。
5. 蛋白质检测:通过SDS-PAGE、Western blot等方法检测重组蛋白的表达水平和纯度。
6. 蛋白质功能研究:对纯化的重组蛋白进行生物活性检测和功能研究,如酶活测定、免疫分析等。
在实际应用中,需要根据不同的需求选择不同的酵母表达系统,如酿酒酵母表达系统、毕赤酵母表达系统等。
同时,还需要对重组蛋白进行质量分析和稳定性研究,以确保其用于后续的实验或生产中具有可靠性和有效性。
巴斯德毕赤酵母生物过程
巴斯德毕赤酵母生物过程
巴斯德毕赤酵母(Pichia pastoris)是一种广泛用于重组蛋白生产的生物表达系统。
巴斯德毕赤酵母的生物过程涉及以下几个关键步骤:
1. 基因插入:通过同源重组将目标基因插入到巴斯德毕赤酵母的基因组中,通常插入到甲醇氧化酶(AOX1)基因的位置,利用其强启动子来实现高效表达。
2. 蛋白质表达:在甲醇的存在下,巴斯德毕赤酵母会被诱导产生大量的重组蛋白。
甲醇氧化酶是巴斯德毕赤酵母代谢甲醇的关键酶,其在细胞中的含量会随着甲醇的加入而显著增加,从而带动目标蛋白的表达。
3. 蛋白质折叠和修饰:巴斯德毕赤酵母具有真核生物的翻译后修饰能力,包括糖基化、二硫键形成等,这对于许多蛋白质的功能至关重要。
4. 蛋白质分泌:巴斯德毕赤酵母能够将重组蛋白分泌到培养基中,这有助于简化后续的纯化过程。
由于其内源分泌蛋白的产生有限,重组蛋白的纯化相对容易。
5. 过程优化:为了实现目标蛋白质的最大产量,需要对培养条件进行优化,包括甲醇和山梨糖醇的浓度、菌株的形式(Mut表型)、温度和孵育时间等因素的调整。
巴斯德毕赤酵母作为一种高效的表达系统,不仅操作简便,而且能够提供适当的蛋白质折叠和翻译后修饰,使其成为生产重组蛋白的理想选择。
毕赤酵母表达蛋白糖基化位点的方法
一、概述毕赤酵母是一种常见的真菌,它在生物技术和分子生物学领域有着广泛的应用。
在这些领域,研究人员经常需要对蛋白质进行糖基化修饰的研究,而毕赤酵母表达系统正是其中的一种重要工具。
本文将就毕赤酵母表达蛋白糖基化位点的方法进行介绍。
二、毕赤酵母表达系统简介1. 毕赤酵母表达系统的原理毕赤酵母表达系统是指利用毕赤酵母表达载体,将目标蛋白基因导入毕赤酵母中,使其在毕赤酵母中进行表达。
该系统具有高度的复制和表达效率,能够在较短的时间内高效地产生目标蛋白。
2. 毕赤酵母表达系统的优势和应用毕赤酵母表达系统具有许多优势,例如能够进行大规模的表达,提高了蛋白质的产量;同时也能够实现正常的翻译后修饰以及蛋白折叠功能。
在生物技术和分子生物学领域有着广泛的应用,如药物开发、生物能源等领域。
三、毕赤酵母表达蛋白糖基化位点的方法1. 利用质粒表达毕赤酵母表达载体中含有丰富的糖基化因子,对于糖基化位点的研究提供了便利。
研究人员可以将目标蛋白基因克隆至毕赤酵母表达载体中,通过大规模的表达筛选,筛选出糖基化位点进行研究。
2. 利用质粒诱导表达研究人员还可以通过对毕赤酵母进行质粒诱导,使其表达特定的糖基化酶,从而实现对特定蛋白质的糖基化位点的研究。
这种方法能够有效地降低研究成本,是当前常用的研究手段之一。
3. 基因敲除或过表达最近,基因敲除或过表达技术在毕赤酵母的研究中得到了广泛的应用。
研究人员可以通过敲除特定的糖基化酶基因或过表达其基因,从而实现对糖基化位点的研究。
这种方法能够帮助研究人员更深入地了解糖基化位点在蛋白质功能中的作用。
四、毕赤酵母表达蛋白糖基化位点研究的意义1. 为蛋白质功能研究提供重要依据研究糖基化位点能够帮助人们更深入地了解蛋白质的结构和功能。
糖基化位点通常与蛋白质的功能密切相关,通过研究糖基化位点,可以为蛋白质功能的研究提供重要的依据。
2. 为药物研发提供理论支持糖基化位点在药物研发中也有着重要的意义。
许多药物的研发过程中需要考虑蛋白质的糖基化修饰,因此对糖基化位点进行研究能够为药物研发提供理论支持。
一种筛选高表达fad-gdh重组毕赤酵母菌株的方法与流程
一种筛选高表达fad-gdh重组毕赤酵母菌株的方法与流程要筛选高表达fad-gdh重组毕赤酵母菌株,可以采用以下方法与流程:1.实验前准备:-制备适宜的培养基:根据菌株的要求制备完整的毕赤酵母培养基(如YEPD培养基)和选择性培养基(如SD培养基)。
-制备适宜的宿主菌株:选择适宜的毕赤酵母株系,例如常用的BY4741或BY4742。
-构建fad-gdh重组质粒:将fad-gdh基因克隆到适宜的表达载体中,如pYES2.1/V5-His-TOPO载体。
2.转化重组质粒:-将构建好的fad-gdh重组质粒转化到适宜的宿主菌株中。
可采用化学转化法或电转化法,具体方法根据实验室的设备和经验来选择。
-将转化后的菌液在恒温振荡器中培养,以使其充分恢复并扩增。
3.筛选目标菌株:-通过选择性培养基,如SD培养基,筛选出转化成功的重组菌株。
SD培养基中通常含有对应表达载体的选择性抗生素,如G418。
-过筛选后,将生长较快、形成较大克隆的菌株挑选出来,进行进一步的鉴定。
4.鉴定高表达菌株:-提取重组毕赤酵母菌株的总蛋白,可以采用常用的裂解液如RIPA 溶液。
-通过Western blot或ELISA等方法,使用特异性的抗体检测目标蛋白fad-gdh是否得到高表达。
5.进一步优化与表达增强:-对于表达水平不理想的菌株,可通过多因素优化法进一步提高表达水平。
这包括优化培养条件(如温度、pH值、培养液组成等)、转化载体的种类和浓度、诱导剂的浓度和时机等。
-可以采用宿主菌株基因敲除、突变体或缺失株系等筛选方法,削弱其他代谢路线的竞争,以进一步提高fad-gdh的表达。
总结:以上是一种筛选高表达fad-gdh重组毕赤酵母菌株的方法与流程。
通过适宜的转化、筛选、鉴定和优化步骤,可以筛选获得高表达fad-gdh的毕赤酵母菌株,为进一步研究fad-gdh的功能和应用打下基础。
当然,具体的实验操作细节还需根据实验室的设备和实际情况进行具体设计和优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕赤酵母表达蛋白步骤
一、引言
毕赤酵母(Pichia pastoris)是一种常用的真菌表达系统,被广泛应用于蛋白质的表达和生物技术研究中。
其优势包括高表达水平、易于培养和操作、能够正确折叠复杂蛋白等。
本文将介绍毕赤酵母表达蛋白的步骤。
二、构建表达载体
毕赤酵母表达系统的关键是表达载体的构建。
首先,需要选择适合的表达载体,常用的有pPIC6、pPICZα等。
然后,在载体上选择合适的启动子和信号序列,以确保蛋白质能够被正确表达和分泌。
同时,还需要在表达载体上加入选择标记,如His标签、FLAG标签等,以便后续的蛋白质纯化和检测。
三、转化毕赤酵母
将构建好的表达载体转化入毕赤酵母中,使其成为表达宿主。
转化方法包括电击转化、化学转化等。
其中,电击转化是常用的方法,通过电击脉冲使毕赤酵母细胞膜发生破裂,使表达载体进入细胞内。
转化后,将细胞培养在选择性培养基上,筛选出带有表达载体的毕赤酵母克隆。
四、表达蛋白
经过转化筛选后,得到含有目标蛋白表达载体的毕赤酵母克隆。
接
下来,需要将克隆进行培养,在适当的条件下诱导蛋白的表达。
常用的诱导剂包括甲醇、巯基乙醇等,通过加入适量的诱导剂,可以使目标蛋白得到高效表达。
五、蛋白纯化
在蛋白表达后,需要进行蛋白纯化,以获得纯度较高的目标蛋白。
常用的纯化方法包括亲和层析、离子交换层析、凝胶过滤层析等。
在选择纯化方法时,需要根据目标蛋白的性质和需求进行合理选择。
同时,可以利用加入的选择标记,如His标签,通过亲和层析纯化进行快速高效的纯化。
六、蛋白鉴定和功能分析
蛋白纯化后,需要进行蛋白的鉴定和功能分析。
常用的鉴定方法包括SDS-PAGE、Western blot等,可以确定蛋白的分子量和纯度。
功能分析则可以通过生物学实验来进行,如酶活测定、结合实验等,以验证目标蛋白的功能。
七、应用和展望
毕赤酵母表达系统在生物技术和蛋白质研究领域有着广泛的应用。
通过该系统,可以高效表达各种蛋白,包括抗体、酶和重组蛋白等。
未来,可以进一步改进表达载体和培养条件,提高毕赤酵母表达系统的表达水平和稳定性,以满足更多领域的需求。
八、结论
毕赤酵母表达系统是一种重要的蛋白表达系统,具有高效、便捷和可靠的特点。
通过合理的构建表达载体、转化毕赤酵母、表达蛋白、蛋白纯化和功能分析等步骤,可以实现目标蛋白的高效表达和纯化。
毕赤酵母表达系统的不断发展和应用,将为生物技术和蛋白质研究提供更多的可能性。