熔沸点高低的判断规律
物质熔沸点高低的比较
物质熔、沸点高低的规律小结熔点是固体将其物态由固态转变(熔化)为液态的温度。
熔点是一种物质的一个物理性质,物质的熔点并不是固定不变的,有两个因素对熔点影响很大,一是压强,平时所说的物质的熔点,通常是指一个大气压时的情况,如果压强变化,熔点也要发生变化;另一个就是物质中的杂质,我们平时所说的物质的熔点,通常是指纯净的物质。
沸点指液体饱和蒸气压与外界压强相同时的温度。
外压力为标准压(1.01×105Pa)时,称正常沸点。
外界压强越低,沸点也越低,因此减压可降低沸点。
沸点时呈气、液平衡状态。
在近年的高考试题及高考模拟题中我们常遇到这样的题目:下列物质按熔沸点由低到高的顺序排列的是,A、二氧化硅,氢氧化钠,萘B、钠、钾、铯C、干冰,氧化镁,磷酸D、C2H6,C(CH3)4,CH3(CH2)3CH3在我们现行的教科书中并没有完整总结物质的熔沸点的文字,在中学阶段的解题过程中,具体比较物质的熔点、沸点的规律主要有如下:根据物质在相同条件下的状态不同一般熔、沸点:固>液>气,如:碘单质>汞>CO22. 由周期表看主族单质的熔、沸点同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。
但碳族元素特殊,即C,Si,Ge,Sn越向下,熔点越低,与金属族相似;还有ⅢA族的镓熔点比铟、铊低;ⅣA族的锡熔点比铅低。
3. 同周期中的几个区域的熔点规律①高熔点单质C,Si,B三角形小区域,因其为原子晶体,故熔点高,金刚石和石墨的熔点最高大于3550℃。
金属元素的高熔点区在过渡元素的中部和中下部,其最高熔点为钨(3410℃)。
②低熔点单质非金属低熔点单质集中于周期表的右和右上方,另有IA的氢气。
其中稀有气体熔、沸点均为同周期的最低者,如氦的熔点(-272.2℃,26×105Pa)、沸点(268.9℃)最低。
金属的低熔点区有两处:IA、ⅡB族Zn,Cd,Hg及ⅢA族中Al,Ge,Th;ⅣA族的Sn,Pb;ⅤA族的Sb,Bi,呈三角形分布。
金属熔沸点比较
金属熔沸点比较
金属的熔沸点高低比较,需要考虑多个因素,包括金属的种类、晶体结构、原子间相互作用力等。
以下是一些常见金属熔沸点的比较:
1.同周期金属单质,从左到右(如Na、Mg、Al)熔沸点升高。
这是因为随着原
子序数的增加,金属原子的半径减小,原子间的相互作用力增强,导致熔沸点升高。
2.同主族金属单质,从上到下(如碱金属)熔沸点降低。
这是因为随着原子序数
的增加,金属原子的半径增大,原子间的相互作用力减弱,导致熔沸点降低。
3.合金的熔沸点比其各成分金属的熔沸点低。
这是因为合金中的不同金属原子之
间的相互作用力不同于纯金属,导致熔沸点降低。
4.不同金属单质的熔沸点差别很大。
例如,汞常温为液体,熔点很低(-38.9℃),
而铁等金属熔点很高(1535℃)。
这主要是因为不同金属的晶体结构、原子间相互作用力等因素不同。
物质熔沸点的比较
物质熔沸点的比较1、不同晶体类型的物体的熔沸点高低的一般顺序原子晶体→离子晶体→分子晶体(金属晶体的熔沸点跨度大)同一晶体类型的物质,晶体内部结构粒子间的作用越强,熔沸点越高。
2、原子晶体要比较其共价键的强弱,一般地说,原子半径越小,形成的共价键长越短,键能越大,其晶体熔沸点越高,如:金刚石→碳化硅→晶体硅。
3、离子晶体要比较离子键的强弱,一般地说,阴阳离子的电荷数越多,离子半径越小,则离之间的相互作用就越强,其离子晶体的熔沸点越高。
如:MgO >Mgd2>Nad>Csd。
4、分子晶体组成和结构相似的物质,相对分子质量越大,熔沸点越高,如:O2>N2,HI>HBr>Hd;组成和结构不相似的物质,分子极性越大,其熔沸点越高,如Co>N2;在同分异构件,一般支链越多,其熔沸点越低,如沸点,正成烷>异成烷>新戌烷洁香烃及其衔生物的同分异构件,其熔沸点,高低顺序为:邻位>间位>对位化容物。
5、金属晶体中金属离子半径越小,离子电荷越多,其金属键越强,金属熔沸点就越高。
6、元素周期表中第IA族金属元素单质(金属晶体)的熔沸点,随原子序数的递增而降低;第VIA族卤素单质(分子晶体)的溶沸点随原子序数递增而升高。
1、HNO3→AgNO3溶液法①检验方法:表明存在cl表明存在Br表明存在I②反应原理反应①:Ag+d-=Agd↓反应②:Ag+Br-=AgBr↓反应③:Ag+I-=AgI↓2、氯水—CdH法①检验方法加适量新朱子饱和氯水加Cll H 未知液混合液分层振荡振荡橙红色表明有Br-有机层紫红色表明有I-②原理:D2+2Br-=Br2+2a-d2+2I-=I2+2d-,因Br2、I2在ccl4中的溶解度大于在水中的溶解度。
3、检验食盐是否加碘(1:Io3)的方法①检验方法变蓝:加碘盐食盐未变蓝:无碘盐②反应原理:IO3-+SI-+6H+=3I2+3H2O(淀粉遇I2变蓝色)常见的放热反应与吸热反应一、放热反应(1)燃烧都是放热反应;(2)中和反应都是放热反应;(3)化合反应都是放热反应;(4)置换风应多为放热反应;(5)生石灰与水的反应、铝热反应等。
化合物熔沸点高低的判断
化合物熔沸点高低的判断化合物的熔沸点是一种物理性质,可以用来判断化合物的纯度和分子间力的强弱。
在研究化合物时,通常会测定其熔沸点,从熔沸点可以得到许多有用的信息。
化合物的熔沸点取决于分子之间的力,包括离子键、共价键和范德华力等。
一般来说,分子间力越强,化合物的熔沸点越高。
首先,离子键是一种强力,形成离子晶体。
在离子晶体中,正负离子通过电磁作用力紧密结合在一起。
由于离子的电荷量大,引力力也很大,所以离子晶体的熔沸点很高。
典型的例子是氯化钠(NaCl),它的熔点为801°C。
其次,共价键是一种中等力,形成分子晶体。
在分子晶体中,分子间通过共用电子进行相互作用。
共价键一般分为极性共价键和非极性共价键。
极性共价键的熔沸点往往较高,因为带电的极性分子间的吸引力较大,例如水(H2O)的熔点为0°C。
而非极性共价键的熔沸点较低,因为非极性分子间的作用力相对较弱,例如甲烷(CH4)的熔点为-183°C。
最后,范德华力是一种弱力,主要是由于电子的瞬时偶极矩引起的吸引力。
范德华力较弱,所以分子间距离较大,因此化合物的熔沸点较低。
典型例子是氢气(H2),其熔点为-259°C。
此外,分子的大小、形状、分子量和分子内的键类型等因素也会对熔沸点产生影响。
分子较大、分子量较大的化合物由于分子间的接触面积更大,所以分子间力更强,熔沸点较高。
而分子较小、分子量较小的化合物则相反,熔沸点较低。
另外,分子中如果存在氢键、取代基等,也会增强分子间的作用力,使熔沸点升高。
此外,化合物纯度的影响也需要考虑。
纯度高的化合物,分子间的相互作用更强,熔沸点也会相应升高。
相反,杂质的存在会破坏化合物的相互作用,使熔沸点下降。
通过测定化合物的熔沸点,可以进行许多判断。
首先,可以判断化合物是否为纯品。
如果化合物熔沸点的范围很窄,且与已知纯品的熔沸点相符,那么可以得出化合物是纯品的结论。
反之,如果熔沸点的范围较大或与已知纯品存在差异,那么可能存在杂质或者不纯。
化学熔沸点高低的判断
化学熔沸点高低的判断说到化学中的熔点和沸点,嘿,听起来可能有点枯燥,但其实它们就像我们日常生活中的小伙伴一样,时不时就要关注一下。
你想想,如果熔点和沸点高低不一,那我们的日常生活可就热闹了!今天就来聊聊这些小家伙们是怎么决定高低的,顺便让你也能在朋友聚会时引经据典,唬唬他们。
1. 熔点和沸点的基本概念1.1 什么是熔点?首先,熔点就是物质从固态变成液态的温度。
简单来说,就是你把冰块放到室温下,等它化成水的那个瞬间。
可别小看这个过程,熔点的高低和物质的分子结构、相互作用力有着密切的关系。
1.2 什么是沸点?然后,沸点就是物质从液态变成气态的温度。
想象一下,水在锅里煮开,水蒸气“咕嘟咕嘟”冒出来,就是在沸点的表演。
沸点同样受分子间的力量影响,像一场分子之间的拔河比赛,力气大的一方更难被打败,沸点自然就高。
2. 决定熔沸点的因素2.1 分子间的作用力首先,咱得提提分子间的作用力。
分子间的引力越强,熔点和沸点就越高。
这就像是你和朋友的关系,关系越紧密,分开的时候就越不容易。
比如,盐的熔点高,是因为它的离子间强烈的静电吸引力,搞得它在高温下都不想分开。
2.2 分子的大小与形状再来就是分子的大小和形状。
大分子往往有更高的熔沸点,因为它们的表面积大,分子间的接触面积也多,互相吸引得更紧。
就好比一群人挤在一起,越多的人,越难散开。
你看,石蜡就是个好例子,分子大,熔点高。
3. 特殊的物质3.1 水的“逆袭”说到水,真是个奇妙的家伙!大家都知道,水的熔点是0°C,沸点是100°C,听起来普通,但水的氢键可是让它的熔沸点都比其它同类物质高得多。
氢键就像是水分子之间的友情纽带,让它们在高温下依然不轻易放手。
3.2 其他例子再说说像氟化氢这样的家伙,虽然分子量小,但由于强烈的氢键,熔点和沸点也意外地高。
这就像一个小个子,打着强壮的气势,往往让人刮目相看。
所以,化学中真是“看脸”的时代,很多时候都不止看分子量,还得看这分子间的“朋友圈”。
高中化学重要知识点规律性的知识归纳:熔点沸点的规律
熔点沸点的规律晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定)非晶体物质,如玻璃水泥石蜡塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点沸点指液体饱和蒸气压与外界压强相同时的温度,外压力为标准压(1.01 105Pa)时,称正常沸点外界压强越低,沸点也越低,因此减压可降低沸点沸点时呈气液平衡状态(1)由周期表看主族单质的熔沸点同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点沸点渐高但碳族元素特殊,即C,Si,GeSn越向下,熔点越低,与金属族相似还有A族的镓熔点比铟铊低,A族的锡熔点比铅低(2)同周期中的几个区域的熔点规律高熔点单质C,Si,B三角形小区域,因其为原子晶体,熔点高金刚石和石墨的熔点最高大于3550,金属元素的高熔点区在过渡元素的中部和中下部,其最高熔点为钨(3410)低熔点单质非金属低熔点单质集中于周期表的右和右上方,另有IA的氢气其中稀有气体熔沸点均为同周期的最低者,而氦是熔点(-272.2,26 105Pa)沸点(268.9)最低金属的低熔点区有两处:IAB族Zn,Cd,Hg及A族中Al,Ge,Th;A族的Sn,Pb;A族的Sb,Bi,呈三角形分布最低熔点是Hg(-38.87),近常温呈液态的镓(29.78)铯(28.4),体温即能使其熔化(3)从晶体类型看熔沸点规律原子晶体的熔沸点高于离子晶体,又高于分子晶体金属单质和合金属于金属晶体,其中熔沸点高的比例数很大(但也有低的)在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高判断时可由原子半径推导出键长键能再比较如熔点:金刚石>碳化硅>晶体硅分子晶体由分子间作用力而定,其判断思路是:结构性质相似的物质,相对分子质量大,范德华力大,则熔沸点也相应高如烃的同系物卤素单质稀有气体等相对分子质量相同,化学式也相同的物质(同分异构体),一般烃中支链越多,熔沸点越低烃的衍生物中醇的沸点高于醚;羧酸沸点高于酯;油脂中不饱和程度越大,则熔点越低如:油酸甘油酯常温时为液体,而硬脂酸甘油酯呈固态上述情况的特殊性最主要的是相对分子质量小而沸点高的三种气态氢化物:NH3,H2O,HF 比同族绝大多数气态氢化物的沸点高得多(主要因为有氢键)(4)某些物质熔沸点高低的规律性同周期主族(短周期)金属熔点如Li 碱土金属氧化物的熔点均在2000以上,比其他族氧化物显著高,所以氧化镁氧化铝是常用的耐火材料卤化钠(离子型卤化物)熔点随卤素的非金属性渐弱而降低如:NaF>NaCl>NaBr>NaI。
如何判断离子晶体原子晶体分子晶体的熔沸点高低
如何判断离子晶体原子晶体分子晶体的熔沸点高低
熔沸点是指物质从固态到液态变化的温度,是衡量物质结构强度的重要指标。
离子晶体、原子晶体、分子晶体的熔沸点在一定情况下是有规律可循的,如下:
离子晶体的熔沸点最为高。
由于离子晶体的物理结构较为稳定,其熔沸点通常非常高,且其伴随着液化过程伴随着大量的放电源,因此要融化一定要达到极高的温度。
原子晶体的熔沸点较高,但比离子晶体稍低。
原子晶体因其原子间较远的距离,以及原子间的较弱相互作用,使其熔沸点低于离子晶体,但仍然较高。
分子晶体的熔沸点最低。
由于分子晶体分子间的距离较近,因此分子间的相互作用较强,熔沸点相对低一些。
因此,总结起来,离子晶体的熔沸点最高,原子晶体的熔沸点次之,分子晶体的熔沸点最低。
物质的熔沸点怎么看
在我们现行的教科书中并没有完整总结物质的熔沸点的文字,在中学阶段的解题过程中,具体比较物质的熔点、沸点的规律主要有如下:根据物质在相同条件下的状态不同1.一般熔、沸点:固>液>气,如:碘单质>汞>CO22. 由周期表看主族单质的熔、沸点同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。
但碳族元素特殊,即C,Si,Ge,Sn越向下,熔点越低,与金属族相似;还有ⅢA族的镓熔点比铟、铊低;ⅣA族的锡熔点比铅低。
3. 同周期中的几个区域的熔点规律①高熔点单质 C,Si,B三角形小区域,因其为原子晶体,故熔点高,金刚石和石墨的熔点最高大于3550℃。
金属元素的高熔点区在过渡元素的中部和中下部,其最高熔点为钨。
②低熔点单质非金属低熔点单质集中于周期表的右和右上方,另有IA的氢气。
其中稀有气体熔、沸点均为同周期的最低者,如氦的熔点(-272.2℃,26×105Pa)、沸点(268.9℃)最低。
金属的低熔点区有两处:IA、ⅡB族Zn,Cd,Hg及ⅢA族中Al,Ge,Th;ⅣA族的Sn,Pb;ⅤA族的Sb,Bi,呈三角形分布。
最低熔点是Hg(-38.87℃),近常温呈液态的镓(29.78℃)铯(28.4℃),体温即能使其熔化。
4. 从晶体类型看熔、沸点规律晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定)。
非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点。
①原子晶体的熔、沸点高于离子晶体,又高于分子晶体。
在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。
判断时可由原子半径推导出键长、键能再比较。
如键长:金刚石(C —C)>碳化硅(Si—C)>晶体硅(Si—Si)。
熔点:金刚石>碳化硅>晶体硅②在离子晶体中,化学式与结构相似时,阴阳离子半径之和越小,离子键越强,熔沸点越高。
反之越低。
如KF>KCl>KBr>KI,ca*>KCl。
物质熔沸点高低的规律总结
物质熔沸点高低的规律总结ʏ陕西省永寿县中学 马亚楼物质熔沸点高低是由构成物质质点间作用力大小决定的㊂物质质点间作用力包括分子之间的作用力和各种化学键㊂现从这两方面谈几点比较物质熔沸点高低的规律和方法㊂一㊁从分子之间作用力大小比较物质熔沸点高低1.氢键法㊂因为氢键作用力大于范德华力,所以由氢键构成的物质的熔沸点高于由范德华力构成的物质的熔沸点,如乙醇>氯乙烷,H F >H I >H B r >H C l㊂一般情况下,H F ㊁N H 3㊁H 2O ㊁C 2H 5OH ㊁C H 3C O O H 等分子间都存在氢键㊂2.同系物C 数法㊂对于有机同系物来说,因结构相似,C 数越多,分子越大,范德华力就越大,熔沸点也就越高,如C 2H 6<C 3H 8<C 4H 10,C H 3C l <C H 3C H 2C l <C H 3C H 3C H 3C l㊂3.同分异构体支链法㊂在有机同分异构体中,支链越多,分子就越接近于球形,分子间接触面积就越小,沸点就越低,如正戊烷>异戊烷>新戊烷㊂4.分子量法㊂对于一些结构相似的物质因为分子量大小与分子大小成正比,故分子量越大,分子间力就越大,沸点就越高,如C H 3C l >C H 3F ,C H 2C l 2>CH 3C l >C H 4㊂5.极性法㊂对于分子大小与分子量大小都相近的共价化合物来说,分子极性越大,分子间力就越大,沸点就越高,如C O>N 2㊂二㊁从化学键的强弱比较物质熔沸点高低6.晶体类型法㊂不同类型晶体物质间熔沸点高低变化顺序大致为共价晶体>离子晶体>金属晶体>分子晶体,如沸点:金刚石>食盐>铁>干冰7.微粒半径法㊂对于晶体类型相同的物质,熔沸点高低可由质点微粒半径大小来判断㊂即质点半径越小,质点间键长就越短,键就越难断裂,晶体的沸点(熔点㊁硬度)就越高㊂如金属晶体类沸点A l >M g >N a ㊂同理可得碱金属从L i ңC s 沸点逐渐降低㊂共价晶体类沸点C >S i C >S i ,同理可得沸点C >B >S i ㊂至于离子晶体,其沸点高低与晶格能大小基本上成正比㊂即阴阳离子所带电荷越多,离子键就越强,沸点就越高;离子核间距离越大,离子键越弱,物质沸点越低,如M g O >N a C l ,M g O>C a O ㊂判断物质沸点高低的方法很多,要根据不同的题目采用不同的方法分析比较,灵活运用知识㊂8.状态法㊂一般来说,物质沸点高低按常温下的状态 固体>液体>气体 变化㊂例1 下列各组物质中,按熔点由低到高排列正确的是( )㊂A.O 2㊁I 2㊁H g B .C O 2㊁K C l ㊁S i O 2C .N a ㊁K ㊁R bD .S i C ㊁N a C l ㊁S O 2解析:本题主要考查离子晶体㊁共价晶体㊁分子晶体㊁金属晶体四类典型晶体熔点的关系㊂一般是分子晶体的熔点低于金属晶体与离子晶体,这两种晶体的熔点又低于共价晶体㊂同一类型晶体间,其微粒之间的作用力越强,熔点越高㊂O 2㊁I 2㊁H g 常温下分别是气体㊁固体和液体,所以熔点O 2<H g <l 2,故A 项不符合题意㊂C O 2㊁K C l ㊁S i O 2分别属于分子晶体㊁离子晶体和共价晶体,它们的熔点由低到高的顺序为C O 2<K C l <S i O 2,故B 项符合题意㊂N a ㊁K ㊁R b 都是金属晶体,结合碱金属的知识,熔点应为N a >K>R b,故C 项不符合题意㊂S i C ㊁N a C l ㊁S O 2分别属于共价晶体㊁离子晶体和分子晶体,它们的熔点为S i C >N a C l >S O 2㊂答案:B例2 下列物质熔点由高到低的排列顺序正确的是( )㊂A.S i O 2>KC l >H 2S >H 2O B .S i O 2>K C l >H 2O>H 2S C .H 2O>H 2S >K C l >S i O 2D .K C l >S i O 2>H 2O>H 2S 解析:M r (H 2O )<M r (H 2S),但H 2O 分子间存在氢键,故熔点H 2O>H 2S㊂答案:B93解题篇 经典题突破方法 高考理化 2023年12月例3下列物质的熔点由高到低排列,正确的是()㊂A.L i>N a>K>C sB.N a C l>K C l>R b C l>C s C lC.F2>C l2>B r2>I2D.金刚石>硅>碳化硅解析:A项皆为金属晶体,其熔点高低决定于金属键的强弱,由L iңC s,同主族元素原子半径逐渐增大,离子半径相应增大,金属键逐渐减弱,熔点逐渐降低,故A项正确㊂B 项中皆为离子晶体,其熔点高低决定于离子键的强弱,由N a+ңC s+半径逐渐增大,与C l-间的作用逐渐减弱,熔点逐渐降低,故B 项正确㊂C项中皆为分子晶体,其熔点决定于分子间作用力的大小,由F2ңI2相对分子质量逐渐增大,分子间作用力逐渐增强,熔点越来越高,故C项错误㊂D项中皆为共价晶体,其熔点的高低决定于共价键的强弱,由原子半径可推知三种键长的顺序是C C<C S i<S i S i,三种键能的强弱顺序是C C> C S i>S i S i,故D项错误㊂答案:A㊁B例4有以下烷烃:①3,3-二甲基戊烷 ②正庚烷③2-甲基己烷 ④正丁烷它们的沸点由高到低的顺序是()㊂A.③>①>②>④B.①>②>③>④C.②>③>①>④D.②>①>③>④解析:在同类烃中,碳链越长,即分子量越大的烃,熔沸点越高;当碳原子数相同时,支链越多,空间几何形状越对称的烃,熔沸点越低㊂四种物质中丁烷的相对分子质量最小,则沸点最低,而3,3-二甲基戊烷㊁庚烷㊁2-甲基己烷互为同分异构体,含有的支链越多,沸点越低,则沸点由高到低的顺序为②>③>①>④㊂答案:C例5下列物质的熔沸点高低顺序正确的是()㊂A.金刚石>晶体硅>二氧化硅>碳化硅B.C I4>C B r4>C C l4>C F4C.M g O>H2O>N2>O2D.金刚石>生铁>钠>纯铁解析:A项中,物质全部为共价晶体,判断其熔沸点高低可比较其原子半径:S i>C>O,故键长关系为S i S i>S i C>S i O>C C,键长越长,键能越小,故A项错误;B项中物质为同种类型的分子晶体,可比较其相对分子质量大小,相对分子质量越大,熔沸点越高,故B项正确㊂C项中N2与O2为同种类型的分子晶体,O2的熔沸点比N2的高,故C项错误㊂D项中熔沸点关系应为金刚石>纯铁>生铁>钠,合金的熔沸点比纯金属低,故D项错误㊂答案:B例6(1)氯酸钾熔化,粒子间克服的作用力;二氧化硅熔化,粒子间克服的作用力;碘的升华,粒子间克服的作用力㊂三种晶体的熔点由高到低的顺序是(填化学式)㊂(2)下列六种晶体:①C O2 ②N a C l③N a④S i⑤C S2 ⑥金刚石它们的熔点从低到高的顺序为(填序号)㊂解析:(1)氯酸钾是离子晶体,熔化离子晶体时需要克服离子键的作用力;二氧化硅是共价晶体,熔化共价晶体时需要克服共价键的作用力;碘为分子晶体,熔化分子晶体时需克服的是分子间的作用力㊂由于共价晶体是由共价键形成的空间网状结构的晶体,所以共价晶体的熔点最高,其次是离子晶体,由于分子间作用力与化学键相比较要小得多,所以碘的熔点最低㊂(2)先把六种晶体分类㊂共价晶体为④⑥,离子晶体为②,金属晶体为③,分子晶体为①⑤㊂由于C原子半径小于S i原子半径,所以金刚石的熔点高于晶体硅;C O2和C S2同属于分子晶体,其熔点与相对分子质量成正比,故C S2熔点高于C O2;N a在通常状况下是固态,而C S2是液态,C O2是气态,所以N a的熔点高于C S2和C O2;N a在水中即熔化成小球,说明它的熔点较N a C l低㊂答案:(1)离子键共价键分子间S i O2>K C l O3>I2(2)①⑤③②④⑥(责任编辑谢启刚)0 4解题篇经典题突破方法高考理化2023年12月。
晶体间熔沸点比较 -回复
晶体间熔沸点比较晶体熔、沸点高低的比较规律(1)不同类型晶体的熔、沸点高低规律:一般,原子晶体>离子晶体>分子晶体。
金属晶体的熔、沸点有的很高,如钨、铂等;有的则很低,如汞、铯等。
(2)同种类型晶体,晶体内粒子间的作用力越大,熔、沸点越高。
①分子晶体:分子间作用力越大,物质的熔、沸点越高,反之越低。
a.组成和结构相似的分子,相对分子质量越大,范德华力越大,熔、沸点越高。
如沸点:O2>N2、HI>HBI>HCl(含氢键的除外)。
b.相对分子质量相等或相近的分子,极性分子的范德华力大,熔、沸点高。
如沸点:CO>N2。
c.含有氢键的分子熔、沸点比较高。
如沸点:H2O >H2Te>H2Se>H2S,HF>HCl,NH3>PH3。
d.在烷烃的同分异构体中,一般来说,支链越多,熔、沸点越低。
如沸点:正戊烷>异戊烷>新戊烷。
芳香烃及其衍生物苯环上的同分异构体熔、沸点大小一般按照“邻位>问位>对位”的顺序。
e.在高级脂肪酸形成的油脂中,油的熔、沸点比脂肪低,烃基部分的不饱和程度越大(碳碳双键越多),熔、沸点越低。
②原子晶体:要比较共价键的强弱。
一般来说,原子半径越小,键长越短,键能越大,共价键越牢固,晶体的熔、沸点越高.如熔点:金刚石(C—C)>金刚砂 (Si—C)>晶体硅(Si—Si)>锗(Ge—Ge)。
③离子晶体:要比较离子键的强弱。
一般来说,阴、阳离子电荷数越多,离子半径越小,离子键越强,熔、沸点越高,如熔点:MgO>NaCl,KF>KCl>KBr> KI。
离子晶体的晶格能越大,其熔、沸点越高。
④金属晶体:要比较金属键的强弱。
金属晶体中金属原子的价电子数越多,原子半径越小,金属阳离子与自由电子间的静电作用越强,金属键越强,熔、沸点越高,反之越低,如熔点:Na<Mg<Al。
判断有机物熔点沸点的规律
有机物熔沸点规律中学的有机化学知识系统性强,用归纳和演绎的方法很容易掌握各类有机物的化学性质。
但对于其物理性质总觉得杂乱无章,无规律可循,其实有机物的熔、沸点高低也是由其结构决定的。
有机物的晶体大多是分子晶体,它们的熔、沸点取决于有机物分子间作用力的大小,而分子间作用力与分子的结构(有无H键、有无极性基团、饱和程度)、分子量等有关。
主要分为下面四个情况:1.组成和结构相似的物质,分子量越大,其分子间作用力就越大。
所以有机物中的同系物随分子中碳原子个数增加,熔、沸点升高。
在通常状况下分子中含四个碳原子以下的烷烃、烯烃、炔烃是气体,含四个碳原子以上的是液体,含更多碳原子的是固体。
2.分子式相同时,直键分子间的作用力要比带支键分子间的作用力大,支键越多,排列越不规则,分子间作用力越小。
如:分子间作用力:正戊烷>异戊烷>新戊烷。
沸点: 30.07℃>27.9℃>9.5℃3.分子中元素种类和碳原子个数相同时,分子中有不饱和键的物质熔、沸点要低些。
如: C2H6 C2H4 硬脂酸油酸熔点:-88.63℃>-103.7℃ 69.5℃>14.0℃4.分子量相近时,极性分子间作用力大于非极性分子间的作用力。
分子中极性基团越多,分子间作用力越大。
如:分子间作用力:C2H5OH>CH3OCH3 C2H5Cl>CH3CH2CH3沸点: 78.5℃>34.51℃ 12.27℃>0.5℃苯同系物看取代基位置相同的取代物,邻位>间位>对位如:二甲苯有三种同分异构体:邻二甲苯、间二甲苯、对二甲苯。
我们可以这样理解,把这些分子看作一个球体,这三种分子的体积依次增大,分子间的距离也增大,因而分子间作用力减小,熔沸点就降低。
因此它们的沸点依次降低。
分子量相同看分子极性如果有机物分子是极性分子,由于极性分子具有偶极,而偶极是电性的。
因此,极性分子之间除了具有色散力外,还具有偶极之间的静电引力。
同主族元素从上到下熔沸点
同主族元素从上到下熔沸点
一、熔沸点规律:
对单质而言:分为金属单质和非金属单质.
金属单质:从上而下,熔沸点依次降低.因为金属键,金属键减小,熔沸点降低.
非金属单质,从上而下,熔沸点依次升高.因为相对分子质量增大,分子间作用力增大,熔沸点升高.
对氢化物而言:从上而下,熔沸点一般是增大的,因为分子间作用力增大.
但是,第二周期的氢化物(如氨气、水、氟化氢因为分子间有氢键)熔沸点比同主族的氢化物熔沸点高的多.
二、氢化物的热稳定性:同主族非金属元素氢化物的热稳定性规律是:从上而下,氢化物热稳定性依次减弱.因为化学键依次减弱.。
高中化学物质熔沸点高低的判断;
高中化学熔沸点的比较根据物质在相同条件下的状态不同1.一般熔、沸点:固>液>气,如:碘单质>汞>CO22. 由周期表看主族单质的熔、沸点同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。
但碳族元素特殊,即C,Si,Ge,Sn越向下,熔点越低,与金属族相似;还有ⅢA族的镓熔点比铟、铊低;ⅣA族的锡熔点比铅低。
3. 从晶体类型看熔、沸点规律晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定)。
非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点。
①原子晶体的熔、沸点高于离子晶体,又高于分子晶体。
在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。
判断时可由原子半径推导出键长、键能再比较。
如键长:金刚石(C—C)>碳化硅(Si—C)>晶体硅(Si—Si)。
熔点:金刚石>碳化硅>晶体硅②在离子晶体中,化学式与结构相似时,阴阳离子半径之和越小,离子键越强,熔沸点越高。
反之越低。
如KF>KCl>KBr>KI,ca*>KCl。
③分子晶体的熔沸点由分子间作用力而定,分子晶体分子间作用力越大物质的熔沸点越高,反之越低。
(具有氢键的分子晶体,熔沸点反常地高,如:H2O>H2Te>H2Se>H2S)。
对于分子晶体而言又与极性大小有关,其判断思路大体是:ⅰ组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。
如:CH4<SiH4<GeH4<SnH4。
ⅱ组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。
如: CO>N2,CH3OH>CH3—CH3。
ⅲ在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。
如: C17H35COOH(硬脂酸)>C17H33COOH(油酸);ⅳ烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4,C2H5Cl>CH3Cl,CH3COOH>HCOOH。
比较物质的熔沸点
物质沸点高低是由构成物质质点间作用力大小决定的。
物质质点间作用力包括分子间作用力和各种化学键。
以下从两大方面谈几点比较物质沸点高低的方法。
一. 从分子间作用力大小比较物质沸点高低1. 据碳原子数判断对于有机同系物来说,因结构相似,碳原子数越多,分子越大,范德瓦尔斯力就越大,沸点也就越高。
如:;2. 根据支链数目判断在有机同分异构体中,支链越多,分子就越近于球形,分子间接触面积就越小,沸点就越低。
如:正戊烷>异戊烷>新戊烷。
3. 根据取代基的位置判断例如,二甲苯有三种同分异构体:邻二甲苯、间二甲苯、对二甲苯。
我们可以这样理解,把这些分子看作一个球体,这三种分子的体积依次增大,分子间的距离也增大,因而分子间作用力减小,熔沸点就降低。
因此它们的沸点依次降低。
4. 根据相对分子质量判断对于一些结构相似的物质,因此相对分子质量大小与分子大小成正比,故相对分子质量越大,分子间作用力就越大,沸点就越高。
如:。
5. 据分子极性判断对于分子大小与相对分子质量大小都相近的共价化合物来说,分子极性越大,分子间作用力就越大,沸点就越高。
如:CO>N2。
6. 根据氢键判断因为氢键>范德瓦尔斯力,所以由氢键构成的物质沸点高于由范德瓦尔斯力构成的物质。
如:乙醇>氯乙烷;HF>HI>HBr>HCl。
一般情况下,HF、H2O、NH3等分子间存在氢键。
二. 从化学键的强弱比较物质沸点高低对于原子晶体、离子晶体和分子晶体来说,构成这些晶体的化学键强弱,不仅能帮助判断物质熔点、硬度大小,还能用来判断物质沸点高低。
1. 根据晶体类型判断一般来说,不同类型晶体的熔沸点的高低顺序为:原子晶体>离子晶体>分子晶体,而金属晶体的溶沸点有高有低。
这是由于不同类型晶体的微粒间作用不同,其熔沸点也不相同。
原子晶体间靠共价键结合,一般熔沸点最高;离子晶体阴、阳离子间靠离子键结合,一般熔沸点较高;分子晶体分子间靠范德瓦尔斯力结合,一般熔沸点较低;金属晶体中金属键的键能有大有小,因而金属晶体熔沸点有高有低。
高中化学物质熔沸点比较规律
高中化学物质熔沸点比较规律摘要:一、引言二、熔沸点的定义及影响因素三、金属晶体熔沸点规律四、分子晶体熔沸点规律五、有机物熔沸点规律六、总结正文:一、引言熔沸点是物质由固态或液态转变为气态的温度,是化学中一个重要的物理性质。
对于不同类型的物质,熔沸点的高低有不同的比较规律。
本文将针对高中化学中常见的物质类型,探讨其熔沸点比较规律。
二、熔沸点的定义及影响因素熔沸点是指物质在一定的压力下,由固态或液态转变为气态的温度。
它的大小取决于物质分子间的作用力,如范德华力、氢键等。
此外,物质的熔沸点还受到分子结构、分子量、溶剂和压力等因素的影响。
三、金属晶体熔沸点规律金属晶体的熔沸点主要取决于金属键的强弱。
一般来说,金属离子半径越小,离子所带电荷越多,其金属键越强,金属熔沸点就越高。
例如,钠(Na)和钾(K)的离子半径相近,但钠的金属键更强,所以钠的熔沸点高于钾。
四、分子晶体熔沸点规律分子晶体的熔沸点主要取决于分子间作用力,包括范德华力和氢键。
在分子晶体中,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。
对于组成和结构相似的分子晶体,分子极性越大,其熔沸点就越高。
例如,在有机同系物中,碳原子数越多,分子越大,范德华力就越大,沸点也就越高。
五、有机物熔沸点规律有机物的熔沸点受多种因素影响,包括分子结构、分子量、分子间作用力以及溶剂等。
在有机同分异构体中,支链越多,分子就越近于球形,分子间接触面积就越小,沸点就越低。
此外,有机物中的氢键也会影响其熔沸点。
六、总结本文主要探讨了高中化学中物质熔沸点的比较规律,包括金属晶体、分子晶体和有机物的熔沸点规律。
晶体熔沸点高低规律及应用
晶体熔沸点高低规律及应用武汉市新洲区第一中学张新平(430400)晶体熔沸点高低的比较,是常见的考点之一。
熟知其变化的一般规律极其特殊性,是我们解决这类问题的关键。
一、不同类型晶体的熔沸点高低规律晶体类型不同,其结构(化学键或作用力)不同,物理性质上就表现为熔沸点高低不同。
一般有如下规律:(化学键或作用力的强弱是熔沸点高低的决定因素)1.熔沸点高低规律有:原子晶体>离子晶体、金属晶体>分子晶体如熔点高低顺序有:晶体硅>氯化钠>白磷。
2.特殊情况有:一般常温时的固体分子晶体(如白磷、硫等)的熔点就比水银高;金属晶体钨的熔点(3410℃)就比原子晶体二氧化硅(1713℃)的高等。
二、同类型晶体的熔沸点高低规律同一类型的晶体,其构成微粒(大小、电荷等)不同,微粒间的化学键或作用力不同,物理性质上就表现为熔沸点高低不同。
一般有如下规律:1.分子晶体熔、沸点的变化规律分子晶体是依靠分子间作用力即范德瓦耳斯力维系的,分子间作用力与化学键相比弱得多,使得分子容易克服这种力的约束,因此,分子晶体的熔、沸点较低。
一般有如下规律:(1)分子的组成和结构相似的物质,相对分子质量越大,熔、沸点越高;如:稀有气体、卤素单质、ⅣA族的RH4型氢化物等都符合这一规律。
(2)相对分子质量相近的分子,分子的极性越强,熔、沸点越高;如:第3周期气态氢化物的熔、沸点(见右表),但极性最强的HCl却反常地低于H2S。
(3)分子的组成和结构相似的物质,能形成氢键时,熔、沸点升高。
在常温下,绝大多数非金属元素的氢化物都是气态的(只有H2O例外),气态氢化物的熔、沸点理应遵循第(1)条规律,随着相对分子质量的增大而升高,但是由于NH3、H2O、HF等分子间存在氢键,增强了分子间的作用,因而造成NH3、H2O、HF等的熔、沸点反常的高(比其组成和结构相似的分子)。
2.原子晶体的熔、沸点变化规律原子晶体中各原子以强烈的共价键相结合。
原子晶体在熔化时必须破坏很大一部分共价键,在气化时几乎要破坏全部共价键,所以原子晶体都具有很高的熔、沸点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
熔沸点高低的判断规律
首先要确定化合物种类。
只有同种化合物种类才能以微观的角度去判断熔点或沸点。
针对离子化合物,他含有离子键的强度是决定熔点的主要因素,离子键的键能越高,则所需要的能量也越高,所以熔点也就高。
有机化和物的沸点高低有一定的规律,现总结如下:
1、同系物沸点大小推论,通常随着碳原子数激增,沸点减小。
如甲烷<乙烷<丙烷<丁烷<戊烷<.....
2、链烃同分异构体沸点大小推论,通常支链越多,沸点越大。
如:正戊烷>异戊烷>新戊烷
3、芳香烃的沸点大小推论,侧链相同时,临位>间位>对位。
如:临二甲苯》间二甲苯》对二甲苯
4、对于碳原子数成正比的烃沸点大小推论,烯烃<烷烃<炔烃
5、同碳原子的脂肪烃的衍生物沸点大小判断,烯烃的衍生物沸点低于烷烃的同类衍生物。
例如:油酸的沸点<硬脂酸
6、不同类型的烃的含氧衍生物的沸点比较,相对分子质量相近的脂肪羧酸>脂肪醇>
脂肪醛
7、酚和羧酸与它们对应的盐沸点比较,酚和羧酸<对应盐的沸点。
如乙酸<乙酸钠
8、分子量相似的烃的沸点通常高于烃的衍生物。