三校生数学高考模拟试卷
2025届江西省南昌三校高三第三次模拟考试数学试卷含解析
2025届江西省南昌三校高三第三次模拟考试数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是( ) A .14B .13C .532D .3162.函数的图象可能是下面的图象( )A .B .C .D .3.阅读名著,品味人生,是中华民族的优良传统.学生李华计划在高一年级每周星期一至星期五的每天阅读半个小时中国四大名著:《红楼梦》、《三国演义》、《水浒传》及《西游记》,其中每天阅读一种,每种至少阅读一次,则每周不同的阅读计划共有( ) A .120种B .240种C .480种D .600种4.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是( )A .3?i ≤B .4?i ≤C .5?i ≤D .6?i ≤5.已知集合{}10A x x =+≤,{|}B x x a =≥,若A B R =,则实数a 的值可以为( )A .2B .1C .0D .2-6.若复数z 满足()1i z i +=(i 是虚数单位),则z 的虚部为( ) A .12B .12-C .12i D .12i -7.函数2|sin |2()61x f x x=+ )A .B .C .D .8.如图是计算11111++++246810值的一个程序框图,其中判断框内应填入的条件是( )A .5k ≥B .5k <C .5k >D .6k ≤9.已知函数()5sin 12f x x π⎛⎫=+ ⎪⎝⎭,要得到函数()cos g x x =的图象,只需将()y f x =的图象( )A .向左平移12π个单位长度 B .向右平移12π个单位长度C .向左平移512π个单位长度 D .向右平移512π个单位长度 10.已知实数x ,y 满足2212x y +≤,则2222267x y x y x +-++-+的最小值等于( )A .625B .627C 63-D .962-11.总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A .23B .21C .35D .3212.()6321x x x ⎫-⎪⎭的展开式中的常数项为( ) A .-60B .240C .-80D .180二、填空题:本题共4小题,每小题5分,共20分。
【中职数学】精品 2020年三校生高考模拟考试数学试卷(一)
江西省2020年三校生高考模拟考试数学试卷(一)注意事项:本试卷分是非选择题、选择题和填空、解答题两部分,满分为150分,考试时间为120分钟,试题答案请写在答题卡上,不能超出答题卡边界,解答题必须有解题过程。
第Ⅰ卷(选择题共70分)一、是非选择题(本大题共10小题,每小题3分,共30分.对每小题的命题做出判断,对的选A,错的选B,请把答案填涂在答题卡上)1、设集合A ={-3,0,3},B ={0},则A B ⊆…………………………………………………………………(A B )2、02=-x 是0)3)(2(=+-x x 的必要但不充分条件……………………………………………………(A B )3、函数x y 2sin 21=的最小正周期是π………………………………………………………………………(A B )4、在等差数列}{n a 中,33=a ,125=a ,则1562=+a a ……………………………………………(AB )5、已知向量)1,3(=a,)5,2(-=b ,则)6,1(=-b a ………………………………………………………(AB )6、已知函数2)1(2+-=+x x x f ,则4)3(=f ……………………………………………………………(A B )7、二项式5)1(+x 的展开式的项数为5………………………………………………………………………(A B )8、夹在两个平行平面间的平行线段相等……………………………………………………………………(A B )9、从1,2,3,4,5中任选两个数,恰好都是奇数的是奇数的概率是103………………………………(A B )10、椭圆15922=+y x 的离心率为32………………………………………………………………………(A B )二、单项选择题(本大题共8小题,每小题5分,共40分,请把答案填涂在答题卡上)11、集合{}21<<=x x A ,集合{}1>=x x B ,则=B A ().A .())2,1(1,⋃-∞-B .()+∞,1C .(1,2)D .[),2+∞12、已知b a >,则下列不等式成立的是().A .22ba >B .ba 11>C .22bc ac >D .0<-a b 13、设}{n a 是等比数列,如果12,442==a a ,则=6a ().A .36B .12C .16D .4814、若2log 4x =,则12x =().A .4B .4±C .8D .1615、函数xy ⎪⎭⎫⎝⎛-=311的定义域为().A .[0,+∞)B .(-∞,+∞)C .[-1,1]D .(-∞,0)16、已知ABC ∆的三边分别为7=a ,10=b ,6=c 则ABC ∆为().A .锐角三角形B .直角三角形C .钝角三角形D .无法确定17、已知直线b a //,⊆b 平面M ,下列结论中正确的是().A .//a 平面MB .//a 平面M 或⊆a 平面MC .⊆a 平面MD .以上都不对18、平面上到两定点)0,6(-和)0,6(的距离之差的绝对值等于8的点的轨迹方程为().A .1162022=-y x B .1201622=+y x C .1201622=-y x D .1162022=+y x 第Ⅱ卷(非选择题共80分)三、填空题:本大题共6小题,每小题5分,共30分.19、723≤-x 的解集为___________________(用区间表示).20、=o750tan _______________.21、5本不同的书分给4个同学,每个同学至少一本,共有___________种分法.22、等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为.23、若4πβα=+,则=++)tan 1)(tan 1(βα.24、轴截面为正方形的圆柱,其侧面积和表面积之比为_______________.四、解答题:本大题共6小题,25~28小题每小题8分,29~30小题每小题9分,共50分.解答应写出过程或步骤.25、若)2,1(=a,)1,1(-=b ,求:(1)b a +2;(2)b a -.26、已知等比数列1,2,4,8,16,…求10a 和10S .27、已知直线l 经过抛物线y x 82-=的焦点,且与直线012=-+y x 平行,求直线l 的方程.28、已知函数f (x )=2sin x cos x +cos2x .(1)求)4(πf 的值;(2)求)(x f 的值域.29、已知动圆过定点)0,1(,且与直线1-=x 相切.(1)求动圆的圆心C 的轨迹方程;(2)直线l 过点)0,1(,且斜率2-=k ,与圆心C 的轨迹方程交于A 、B 两点,求A 、B 两点间的距离.30、已知⊥PA 正方形ABCD 所在平面,AB PA =,M 、N 分别是AB 、PC 的中点.(1)求证://MN 平面PAD ;(2)求证:⊥MN 平面PCD .。
三校生对口高职单招数学模拟试卷15套1
三校⽣对⼝⾼职单招数学模拟试卷15套1⾼职单招数学模拟试卷⼀姓名:__________ 考号:__________得分:__________⼀、选择题:(本⼤题共12⼩题,每⼩题7分,共84分)1.已知集合{1,3,4,5,7}A =,集合{1,2,5,9}B =,则A B =I ()A .{1,3,4,5,7}B .{1,2,5,9}C .{1,5}D .{1,2,4,5,7,9}2.10sin 3π= ()AB. C .12 D .12-3.6⼈排成⼀排,甲、⼄两⼈必须相邻的站法有多少种()A .720B .480C .240D .1204.已知2sin cos 3αα-=,则sin 2α= ()A .13B .23C .49D .595.函数()sin(2)36f x x π=-+的最⼤值和最⼩正周期为()A .4与2πC .1与πD .1与2π6.若⽅程222x ky +=表⽰焦点在y 轴上的椭圆,那么实数k 的取值范围是()A .(,1)-∞B .(0,2)C .(1,)+∞D .(0,1)7.倾斜⾓为2π,且过点(3,2)P -的直线⽅程是() A .50x y -+= B .20y -=C .30x +=D .230x y +=8.命题“260x x +-=”是命题“3x =-”的() A .充分条件 B .必要条件 C .充要条件 D .既不充分也不必要条件 9.不等式2 21x x +>+的解集是() A .(1,0)(0,1)-UB .(,1)(0,1)-∞-UC .(1,0)(1,)-+∞UD .(,1)(1,)-∞-+∞U10.10件产品中有3件次品,从中任取3件,⾄少有⼀件次品的抽取⽅法有() A .85种 B .84种 C .18个 D .24个11.在等差数列{}n a 中,已知1232,13a a a =+=,则456a a a ++= ()A .40B .42C .43D .4512.若⽅程2222220x y kx k k +-+-=表⽰⼀个圆,则k 的取值范围是()A .[0,2]B .(0,2)C .[0,2)D .(0,2] ⼆、填空题:(本⼤题共6⼩题,每⼩题7分,共42分)13.双曲线22x y -=上任意⼀点P 到此双曲线距离较远的⼀个焦点的距离是12,则点P 到另⼀焦点的距离是.14.在x 轴上有⼀定P ,它与A (1,4)-的距离等于5,则P 点的坐标是. 15.经过椭圆22143x y +=的⼀个焦点1F 的直线交椭圆与A 、B 两点,则2ABF ?的周长是.16.若⽅程2221211x y m m -=--表⽰双曲线,则m 的取值范围是.17.以直线1x =为准线的抛物线的标准⽅程是.18.已知直线l 的倾斜⾓是直线31y x =-的倾斜⾓的2倍,求直线l 的斜率.三、解答题:(本⼤题共6⼩题,共74分)19.计算(本⼩题满分12分)1232133sin tan 64P C ππ++-20.(本⼩题满分12分)直线2370x y-+=与x轴、y轴分别交于A、B两点.求:线段AB的垂直平分线的⽅程.21.(本⼩题满分12分)直线过(2,3)A-且与两轴围成的三⾓形⾯积为4.求:直线l的⽅程.22.(本⼩题满分12分)若p是圆224210x y x y+-++=上的动点.求:点p到直线:43240l x y-+=的最短距离.23.(本⼩题满分12分)椭圆两焦点12(4,0),(4,0)F F-,P在椭圆上,若12PF F的⾯积最⼤为12,求此椭圆⽅程.24.(本⼩题满分14分)已知直线l过(2,3)A且与圆22C x y+=相切.求:直线l的⽅程.。
上海数学三校生高考模拟卷-3
三校生高考 (数学) 模拟考试卷(3)一、选择题(每题3分, 共18分)1、已知集合A =*x |x 2−x −6=0+,集合B =*x |x 2−3x −10=0+,则集合 A⋃B 为( )A.{−2};B.{−2,3};C.{−2,5};D.{−2,3,5 }.2、绝对值不等式:|x −1|>2,则它的解集是( )A.*x | −1<x <3+;B.*x | −1≤x ≤3+;C.{x | x <−1或 x >3};D.{x | x ≤−1或 x ≥3 }.3、若,0<<b a 下列不等式成立的是( )A 、22b a <B 、ab a <2C 、1<a bD 、b a 11<4、函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为,a −3,2a -,则( )A 、a =1,b =0B 、a =−1,b =0C 、a =1,b =0D 、a =3,b =05、若四个幂函数y =a x ,y =b x ,y =c x ,y =d x 在同一坐标系中的图象如右图,则a 、b 、c 、d 的大小关系是( )A 、d >c >b >aB 、a >b >c >dC 、d >c >a >bD 、a >b >d >c6、在0,1,2三个数中任取两个,组成两位数,则在组成的两位数中是奇数的概率为() A .14 B .16 C .12 D .34二、填空题(每题3分,共36分)7、函数f (x )=1x−2+√x −1的定义域为 .8、若向量a ⃗=(3,−1),b ⃗⃗=(1,0),则a ⃗−2b ⃗⃗=______ _.9、若直线 与直线y =2x −7平行,截距为5,则直线 方程为______ __.10、不等式(x+2)(x−7)<0的解集为.11、等差数列*a+中,若a=2,a2+a=13,则数列公差d= ___ __.12、有6名男生,4名女生,现选3名参加比赛,要求至少一男一女,则有种不同选法.13、在∆ABC中,已知sinA:sinB:sinC=3:5:7,且最大边长为14,则∆ABC的面积是 .14、已知角 α 终边上一点 P(−3,4),则 sinα+cosα=。
三校生高考模拟数学试卷
一、选择题(本大题共20小题,每小题5分,共100分)1. 下列函数中,在实数域内单调递增的是()A. y = -x^2 + 2xB. y = 2^xC. y = log2xD. y = √x2. 已知等差数列{an}的前n项和为Sn,若S10 = 100,S20 = 300,则第15项a15的值为()A. 10B. 15C. 20D. 253. 若复数z满足|z - 1| = |z + 1|,则复数z的实部是()A. 0B. 1C. -1D. 无法确定4. 下列命题中,正确的是()A. 函数y = x^3在R上单调递增B. 等差数列{an}的通项公式为an = a1 + (n - 1)dC. 若a > b > 0,则a^2 > b^2D. 函数y = log2x在(0,+∞)上单调递减5. 已知函数f(x) = x^3 - 3x^2 + 2,则f(x)的极小值为()A. -1B. 0C. 1D. 26. 下列方程组中,无解的是()A. x + y = 1B. 2x + 3y = 6C. 3x - 4y = 2D. 4x - 5y = 107. 已知等比数列{an}的首项a1 = 2,公比q = 3,则第10项a10的值为()A. 18B. 54C. 162D. 4868. 下列函数中,在区间(0,+∞)上为减函数的是()A. y = x^2B. y = 2^xC. y = log2xD. y = √x9. 若复数z满足|z - 1| = |z + 1|,则复数z的虚部是()A. 0B. 1C. -1D. 无法确定10. 下列命题中,正确的是()A. 函数y = x^3在R上单调递增B. 等差数列{an}的通项公式为an = a1 + (n - 1)dC. 若a > b > 0,则a^2 > b^2D. 函数y = log2x在(0,+∞)上单调递减11. 已知函数f(x) = x^3 - 3x^2 + 2,则f(x)的极大值为()A. -1B. 0C. 1D. 212. 下列方程组中,有唯一解的是()A. x + y = 1B. 2x + 3y = 6C. 3x - 4y = 2D. 4x - 5y = 1013. 已知等比数列{an}的首项a1 = 2,公比q = 3,则第10项a10的值为()A. 18B. 54C. 162D. 48614. 下列函数中,在区间(0,+∞)上为增函数的是()A. y = x^2B. y = 2^xC. y = log2xD. y = √x15. 若复数z满足|z - 1| = |z + 1|,则复数z的虚部是()A. 0B. 1C. -1D. 无法确定16. 下列命题中,正确的是()A. 函数y = x^3在R上单调递增B. 等差数列{an}的通项公式为an = a1 + (n - 1)dC. 若a > b > 0,则a^2 > b^2D. 函数y = log2x在(0,+∞)上单调递减17. 已知函数f(x) = x^3 - 3x^2 + 2,则f(x)的极大值为()A. -1B. 0C. 1D. 218. 下列方程组中,无解的是()A. x + y = 1B. 2x + 3y = 6C. 3x - 4y = 2D. 4x - 5y = 1019. 已知等比数列{an}的首项a1 = 2,公比q = 3,则第10项a10的值为()A. 18B. 54C. 162D. 48620. 下列函数中,在区间(0,+∞)上为减函数的是()A. y = x^2B. y = 2^xC. y = log2xD. y = √x二、填空题(本大题共10小题,每小题5分,共50分)21. 已知等差数列{an}的前n项和为Sn,若S10 = 100,S20 = 300,则第15项a15的值为______。
三校生数学高考模拟试卷
三校生数学高考模拟试卷一、是非选择题。
(对的选A ,错的选B。
每小题3分,共30分)1.如果A={0.1.2.3},B={1},则B ∈A …………………………………………( ) 2.已知直线上两点A (-3,3),B (3,-1),则直线AB 的倾斜角为65π( ) 3.lg 2+lg5=lg7………………………………………………………………………( ) 4.函数f(x)=245x x -+的定义域是【-1,5】…………………………( )5.sin750·sin3750=41-……………………………………………………………( )6.在等比数列{a n }中,a 1=31,a 4=89,则数列的公比为23…………………( )7.若向量32=+,则∥……………………………………( )8.双曲线13422=-y x 的渐近线方程为x y 23±=,焦距为2………………( ) 9.直线l ⊥平面α,直线m ∥平面β,若l ∥m ,则α⊥β………………( )10.二项式1033⎪⎭⎫⎝⎛-x x 展开式中二项式系数最大的项是第五项…………………( )二、选择题(每小题5分,共40分) 11.函数f(x)=lg(x-3)的定义域是 ( )A.RB.(-3,3)C.(-∞,-3)∪(3,+∞)D.【0,+∞) D.112.以点M (-2,3)为圆心且与x 轴相切的圆的方程( )A.(x +2)2+(y -3)2=4 B . (x -2)2+(y +3)2=4C.(x +2)2+(y -3)2=9 D . (x -2)2+(y +3)2=913.10件产品中,3件次品,甲、乙两人依次各取一件产品,按取后放回,求恰有一件次品的概率为( ) A.10021 B. 241 C. 4521 D. 502114.若函数f(x)在定义域R 上是奇函数,且当x ﹥0时,f(x)=2410x x -,则f(-2)=( ).A. -104B.104C. 1D.10-1215.a=2是直线(a 2-2)x +y=0和直线2x +y +1=0互相平行的( ).A.充分条件 B.必要条件 C.充要条件 D.即不充分也不必要条件 16.设数列{a n }的前n 项和为2n s n=,则a 8=()A.64B.49C.16D.1517.在直角坐标系中,设A (-2,3),B (-3,-3),现沿x 轴把直角坐标系折成直二面角,则AB 的长为( )A.6B.5C.19D.118.a =(1,2),b =(x ,5),且b a⊥2,则x= ( )A .10B .-10 C.25 D.25-三、填空题(每题5分,共30分)19.已知x ∈(ππ,-),已知sinx=21, 则x= _ 已知tanx=-1,则x= _20.已知正方形ABCD 的边长为2,AP ⊥平面ABCD ,且AP=4,则点P 到BD 的距离 21.过圆3622=+y x 上一点(4,52)的切线方程为 _ _22.椭圆1422=+y x 的离心率为23.4名男生和2名女生站成一排,其中2名女生站在两端的站法有 种24.函数1422+-=x x y 的值域为 班级: 姓名: 座号:四、解答题(第25、26、题,每小题10分,第27.28题,每小题15分,共50分) 255=8=,<b a ,> =32π,求()()b a b a -∙+2。
三校生高考数学模拟试卷
数学试卷 一、 单项选择题(每小题3分,共2×12=24分)1.集合{}{}13,15A x x B x x =-<≤=<<则A B ⋃=( )A .{}15x x -<< B.{}35x x << C. {}11x x -<< D. {}13x x <≤2.不等式24210x x --+≥的解集是( )A .(,7][3,)-∞-⋃+∞B .[7,3]-C .(,3][7,)-∞-⋃+∞D .[3,7]-3.下列函数既是奇函数又是增函数的是( )A .3y x =B .1y x =C .22y x =D .13y x =- 4.已知3log 2=则x=( )A .3B .9C .27D .815.已知{}n a 是等比数列,252,6a a ==则8a =( )A . 12B .18C . 24D .366.已知两点坐标A (-1,2),B (1,-2),则下列各式正确的是( )A .5OA OB →→∙= B .OA BO →→=C .(2,4)AB →=-D .10AB →=7.一个袋子中有7个球,其中3个绿球,4个红球,问从中摸出一个球是红球的概率是( )A .14B .13C .112D .478.如右图,O 为正六边形对角线的交点,则与OA →共线的向量有( )个A .2B .3C .7D .99.已知直线2310x y +-=,则斜率和在y 轴上的截距是() A .21,33- B .21,33- C .21,33 D .21,33-- 10.已知球的大圆周长为6π,求该球的表面积和体积( ) A .9,18ππ B .9,36ππ C .18,36ππD .36,36ππ11.甘肃省3家省属单位被安排某县4个材开展“联村联户,为民富民”活动,要求每家单位至少对口帮助其中1个村且每村只受1家单位帮扶,则不同的安排方法总数是 ( )A .7B .12C .36D .7212.如图为1500辆汽车通过某路段 AO40 50 60 70 80时的速度频率分布直方图,在速度为[60,70]的车辆约有( )辆A .450B .600C .800D .1000二、填空题(每小题3分,共12分)12、已知3cos 5θ=,且θ在第四象限,则sin θ= 13、过点()3,1-且垂直于直线032=+-y x 的直线方程为14、在等差数列}{n a 中,已知42=a ,84=a 则该数列的前10项之和等于15、函数lg(4)3x y x -=-的定义域是 ____________________________.三、解答题(共14分,17、18每题4分,19题6分)16.(6分)解不等式358x -<.17.(6分)已知等差数列{}n a 中,3915,9a a ==-求1a 和20S 的值.18.(7分)求经过点M (3,2),圆心在直线2y x = .。
三校生高考数学模拟试卷
三校生高考数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设集合A = {xx^2 - 3x + 2 = 0},B={1, 2},则A与B的关系是()A. A⊂neqq BB. A = BC. A⊃neqq BD. A∩ B=varnothing2. 函数y=√(x - 1)的定义域是()A. (-∞,1]B. [1,+∞)C. (-∞, 0]D. [0,+∞)3. 若sinα=(3)/(5),且α是第二象限角,则cosα的值为()A. (4)/(5)B. -(4)/(5)C. (3)/(4)D. -(3)/(4)4. 过点(1,2)且斜率为3的直线方程为()A. y - 2 = 3(x - 1)B. y+2=3(x + 1)C. y - 2=-3(x - 1)D. y+2=-3(x + 1)5. 二次函数y = x^2+2x - 3的对称轴为()A. x = - 1B. x = 1C. x = 2D. x=-26. 已知向量→a=(1,2),→b=(3,-1),则→a·→b等于()A. 1B. -1C. 5D. -57. 在等差数列{a_n}中,若a_1=1,d = 2,则a_5的值为()A. 9B. 10C. 11D. 128. 若x>0,则函数y = x+(1)/(x)的最小值是()A. 1B. 2C. 3D. 49. 从5名男生和3名女生中选3人参加某项活动,要求既有男生又有女生,则不同的选法有()种。
A. 45B. 30C. 15D. 1010. 若f(x)是定义在R上的奇函数,当x>0时,f(x)=x^2+1,则f(-1)的值为()A. -2B. 2C. -1D. 1二、填空题(本大题共5小题,每小题4分,共20分)11. 计算log_28=_。
12. 椭圆frac{x^2}{16}+frac{y^2}{9}=1的长半轴长a = _。
最新三校生数学高考模拟试卷
三校生数学高考模拟试卷一、是非选择题。
(对的选A ,错的选B。
每小题3分,共30分)1.如果A={0.1.2.3},B={1},则B ∈A …………………………………………( ) 2.已知直线上两点A (-3,3),B (3,-1),则直线AB 的倾斜角为65π( ) 3.lg 2+lg5=lg7………………………………………………………………………( ) 4.函数f(x)=245x x -+的定义域是【-1,5】…………………………( )5.sin750·sin3750=41-……………………………………………………………( )6.在等比数列{a n }中,a 1=31,a 4=89,则数列的公比为23…………………( )7.若向量32=+,则∥……………………………………( )8.双曲线13422=-y x 的渐近线方程为x y 23±=,焦距为2………………( ) 9.直线l ⊥平面α,直线m ∥平面β,若l ∥m ,则α⊥β………………( )10.二项式1033⎪⎭⎫⎝⎛-x x 展开式中二项式系数最大的项是第五项…………………( )二、选择题(每小题5分,共40分) 11.函数f(x)=lg(x-3)的定义域是 ( )A.RB.(-3,3)C.(-∞,-3)∪(3,+∞)D.【0,+∞) D.112.以点M (-2,3)为圆心且与x 轴相切的圆的方程( )A.(x +2)2+(y -3)2=4 B . (x -2)2+(y +3)2=4C.(x +2)2+(y -3)2=9 D . (x -2)2+(y +3)2=913.10件产品中,3件次品,甲、乙两人依次各取一件产品,按取后放回,求恰有一件次品的概率为( ) A.10021 B. 241 C. 4521 D. 502114.若函数f(x)在定义域R 上是奇函数,且当x ﹥0时,f(x)=2410x x -,则f(-2)=( ).A. -104B.104C. 1D.10-1215.a=2是直线(a 2-2)x +y=0和直线2x +y +1=0互相平行的( ).A.充分条件 B.必要条件 C.充要条件 D.即不充分也不必要条件 16.设数列{a n }的前n 项和为2n s n=,则a 8=()A.64B.49C.16D.1517.在直角坐标系中,设A (-2,3),B (-3,-3),现沿x 轴把直角坐标系折成直二面角,则AB 的长为( )A.6B.5C.19D.118.a =(1,2),b =(x ,5),且b a⊥2,则x= ( )A .10B .-10 C.25 D.25-三、填空题(每题5分,共30分)19.已知x ∈(ππ,-),已知sinx=21, 则x= _ 已知tanx=-1,则x= _20.已知正方形ABCD 的边长为2,AP ⊥平面ABCD ,且AP=4,则点P 到BD 的距离 21.过圆3622=+y x 上一点(4,52)的切线方程为 _ _22.椭圆1422=+y x 的离心率为23.4名男生和2名女生站成一排,其中2名女生站在两端的站法有 种24.函数1422+-=x x y 的值域为 班级: 姓名: 座号:四、解答题(第25、26、题,每小题10分,第27.28题,每小题15分,共50分)255=8=,<b a ,> =32π,求()()b a b a -∙+2。
三校生高考数学模拟试卷.pptx
四、解答题:本大题共 6 小题,25-28 小题每小题 8 分,29-30 小题每小题 9 分,共 50 分. 25. (本小题满分 8 分)
已知向量a (1,2),b (1,m),若a b,求实数m的值
学海无 涯 已知C的方程是: x2 y2 2x 4 y 5 m 0(m 0).
(1)求圆心C的坐标; (2)若圆C与直线l : 3x 4 y 9 0相切,求实数m的值.
26(.本 小 题 满 分 8分 )
已知函数f (x) 1 1 cos x
(1)求函数f (x)的定义域; (2)判断函数f (x)的奇偶性.
29. (本小题满分 9 分)
已知函数f (x) x2 ax b(a,b R)在区间(,1]上单调递增,在区间(1,)上 单调递增. (1)求实数a的值. (2)若f (x)在x [1,0]上的最小值为2,求实数b的值.
3 6. lg 25 lg 4 2
(A B) (A B) (A B)
7. 函数 y sin x 的最小周期是 2
8. 若点 A,B 到平面a 的距离都等于 1,则直线 AB // a. 9 . 当 (2x 3)3的展开式中x的系数是6
(A B) (A B) (A B)
10,等差数列1,3,5 的通项公式为a n 2n 1(n N * ).
(A B)
A. -1
B. 0 C. 2 D. 3
15. 三个数cos(- ),cos ,cos 3 的大小关系是(
8
5
5
3
A. cos( ) cos( ) cos( )
8
5
5
)
B.cos(3 ) cos() cos
5
5 8
B.C.
最新三校生数学高考模拟试卷教学内容
三校生数学高考模拟试卷一、是非选择题。
(对的选A ,错的选B。
每小题3分,共30分)1.如果A={0.1.2.3},B={1},则B ∈A …………………………………………( ) 2.已知直线上两点A (-3,3),B (3,-1),则直线AB 的倾斜角为65π( ) 3.lg 2+lg5=lg7………………………………………………………………………( ) 4.函数f(x)=245x x -+的定义域是【-1,5】…………………………( )5.sin750·sin3750=41-……………………………………………………………( )6.在等比数列{a n }中,a 1=31,a 4=89,则数列的公比为23…………………( )7.若向量32=+,则∥……………………………………( )8.双曲线13422=-y x 的渐近线方程为x y 23±=,焦距为2………………( ) 9.直线l ⊥平面α,直线m ∥平面β,若l ∥m ,则α⊥β………………( )10.二项式1033⎪⎭⎫⎝⎛-x x 展开式中二项式系数最大的项是第五项…………………( )二、选择题(每小题5分,共40分) 11.函数f(x)=lg(x-3)的定义域是 ( )A.RB.(-3,3)C.(-∞,-3)∪(3,+∞)D.【0,+∞) D.112.以点M (-2,3)为圆心且与x 轴相切的圆的方程( )A.(x +2)2+(y -3)2=4 B . (x -2)2+(y +3)2=4C.(x +2)2+(y -3)2=9 D . (x -2)2+(y +3)2=913.10件产品中,3件次品,甲、乙两人依次各取一件产品,按取后放回,求恰有一件次品的概率为( ) A.10021 B. 241 C. 4521 D. 502114.若函数f(x)在定义域R 上是奇函数,且当x ﹥0时,f(x)=2410x x -,则f(-2)=( ).A. -104B.104C. 1D.10-1215.a=2是直线(a 2-2)x +y=0和直线2x +y +1=0互相平行的( ).A.充分条件 B.必要条件 C.充要条件 D.即不充分也不必要条件 16.设数列{a n }的前n 项和为2n s n=,则a 8=()A.64B.49C.16D.1517.在直角坐标系中,设A (-2,3),B (-3,-3),现沿x 轴把直角坐标系折成直二面角,则AB 的长为( )A.6B.5C.19D.118.a =(1,2),b =(x ,5),且b a⊥2,则x= ( )A .10B .-10 C.25 D.25-三、填空题(每题5分,共30分)19.已知x ∈(ππ,-),已知sinx=21, 则x= _ 已知tanx=-1,则x= _20.已知正方形ABCD 的边长为2,AP ⊥平面ABCD ,且AP=4,则点P 到BD 的距离 21.过圆3622=+y x 上一点(4,52)的切线方程为 _ _22.椭圆1422=+y x 的离心率为23.4名男生和2名女生站成一排,其中2名女生站在两端的站法有 种24.函数1422+-=x x y 的值域为 班级: 姓名: 座号:四、解答题(第25、26、题,每小题10分,第27.28题,每小题15分,共50分) 255=8=,<b a ,> =32π,求()()b a b a -•+2。
三校生数学模拟试卷一
26.已知 A 0, 4, B x | x2 px q 0 ,若 A B A ,求 p 、 q 的值。
27.设 a (x 1)2 ,b 2x2 2x 1 ,比较 a 与 b 的大小。
A.2, 5
B.2
C.5
14.设全集U x | 4 x 10, x N, A 4, 6,8,10,则 U A =
A.5
B.5, 7
C.7, 9
D.
D.5, 7, 9
15.下列各题中正确的是
A. 若 a b c b ,则 a c C. 若 ab bc ,则 a c
B. 若
a b
30.设U R, A
x | x2 16 0
,
B
x
|
x3 x 1
CU A , CU B 。
学号
21.不等式 2x 3 4 的整数解的解集是
班级
…………………………………………………………………………………………………………
姓名
………………………………………………密…………封…………线………………………………………………
22.已知 A x | x 3, B x | 2 x 7,则 A B
9. p (x 2)(x 3), q x(x 1) ,则 p q …………………………………………( A B )
10.空集是任意集合的真子集 ……………………………………………………………( A B )
二、单项选择题:本大题共 8 题,每小题 5 分,共计 40 分。
11.已知集合 A 1,3,5,7, B 2,3, 4,5,6 ,则 A B
2023新疆三校生数学卷子
2023新疆三校生数学卷子
这是2023年新疆三校生数学卷子,请注意题目的描述和解答方法。
一、选择题
1. 已知函数f(x)的定义域为实数集R,当x>0时,f(x) = 2x-1,当
x<0时,f(x) = |x|+2,则f(x)在x=0处的值为()
A. 1
B. 2
C. 0
D. 3
2. 设复数z满足|z-1+i|=1,则z的取值范围为()
A. 实数集R
B. 虚数集M
C. 单位圆心圆O(0,1)
D. 点O(1,0)
3. 已知等差数列{an}满足a1+a5=10,a2+a4=8,求a3+a6的值为()
A. 7
B. 10
C. 11
D. 12
二、填空题
1. 若3x+4y=7,x+2y=3,则x=_____,y=_____。
2. 已知锐角三角形ABC中,AB=5,BC=12,角B=60°,则三角形ABC 的面积为_____。
三、解答题
1. 某商店原价出售一件商品,又七折优惠出售,再给顾客8元的抵扣券,如此一来,顾客实际支付了84元。
求该商品的原价。
2. 函数f(x)=ax²+bx+c(a≠0)的图像经过点(1,3),且对称轴为直线x=4,求函数f(x)的表达式。
以上就是2023年新疆三校生数学卷子的部分题目,请按照要求完成题目的解答。
(请按照实际情况填写答案,以上答案仅供参考)。
三校生高考数学模拟试卷3
三校生高考数学模拟试卷3三校生高考数学模拟试卷3对于许多即将参加三校生高考的同学们来说,数学是一门至关重要的科目。
而在高考前,进行模拟考试是非常必要的。
最近,我们学校组织了一次高考数学模拟试卷3的考试,旨在帮助同学们熟悉考试形式和提升应试能力。
在本文中,我将分享一些有关这次模拟试卷的看法和体会。
首先,让我们来了解一下什么是三校生高考。
三校生高考是指中等职业学校、中等技术学校和职业高中的毕业生参加的高考。
与普通高考相比,三校生高考在考试科目、考试形式和内容上都有所不同。
其中,数学科目在三校生高考中占有较大比重,对于很多同学来说也是相对较难的一门课程。
在这次模拟试卷3的考试中,我们遇到了各种类型的题目,包括计算题、应用题和证明题等。
总体来说,这次模拟试卷的难度适中,但也有一些比较有挑战性的题目。
从题型上来看,填空题和选择题的比例较大,这也符合三校生高考数学的实际考试情况。
在备考过程中,我发现自己在一些基础知识方面还需要加强。
例如,在这次模拟试卷中,有一道关于三角函数的题目,如果对相关概念掌握不够扎实,就很难顺利解答。
此外,我还需要提高自己的解题速度和准确率,特别是在做一些计算题和应用题时,需要更加细心和耐心。
为了提高自己的数学成绩,我采取了一些具体的措施。
首先,我会对每个知识点进行系统的学习和复习,确保自己对基础知识有更加深入的理解。
其次,我会通过做题来巩固自己的知识,特别是做一些历年高考数学真题和模拟试卷,这样可以更好地了解自己的薄弱环节,并针对性地进行提高。
最后,我会积极参加各种数学竞赛和辅导班,这样可以与其他同学进行交流和学习,同时也可以拓展自己的解题思路和方法。
总之,这次高考数学模拟试卷3的考试对我来说是一次非常有价值的经历。
通过这次考试,我更加清晰地了解了自身的数学水平,同时也发现了自己在备考过程中需要加强的地方。
我相信,在未来的备考过程中,我会更加努力地学习和提高自己的数学能力,争取在高考中取得优异的成绩。
三校生高考数学模拟试卷.pdf
(A B)
A. -1
B. 0 C. 2 D. 3
15. 三个数cos(- ),cos ,cos 3 的大小关系是 ( )
8
5
5
A. cos(− ) cos( ) cos(3 )
8
5
5
B. cos(3 ) cos( ) cos−
5
5 8
B.C. cos(3 ) cos(− ) cos
21. 若双曲线 x2 − x2 = 1右支上一点 p到右焦点的距离为 3,则点p到右焦点的距离为 9 16
22. 已知一个圆柱的底面半径为 1,高为 2,则该圆柱的全面积为
23. 已知向量 a = (−1,1),b = (2,−1), 则a + b =
24.甲乙两人投掷飞镖,他们的成绩(环数)如下面的频数条形统计图所示,用甲、乙训练
5
8
5
D. cos(− ) cos(3 ) cos
8
5
5
16. 不等式 若是直线与平面所成的角,则的取值范围是( )
A.0, )
B. (0, ) C. [0, )
2
2
17. 如果a b,那么下列说法正确的是( )
D.[0, ] 2
A. a 1 b
B. a2 b2 C. 1 1 D. a3 b3 ab
学海无涯
三校生高考数学模拟试卷
14. 不等式函数y = −x2 + 3, x −1,2的最小值为 ( )
班级
姓名
学号
得分
第 I 卷(选择题 70 分)
题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
答案
(请将是非选择题、单项选择题答案写到表格中) 一、是非选择题:本大题共 10 小题,每小题 3 分,共 30 分.对每小题的命题作出选择,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三校生数学高考模拟试卷
一、是非选择题。
(对的选A ,错的选B。
每小题3分,共30分)
1.如果A={0.1.2.3},B={1},则B ∈A …………………………………………( ) 2.已知直线上两点A (-3,
3),B (3,-1),则直线AB 的倾斜角为
6
5π
( ) 3.lg 2+lg5=lg7………………………………………………………………………( ) 4.函数f(x)=
245x x -+的定义域是【-1,5】…………………………( )
5.sin750
·sin3750
=4
1
-……………………………………………………………()
6.在等比数列{a n }中,a 1=31,a 4
=89,则数列的公比为23
…………………( )
7.若向量32=+,则∥……………………………………( )
8.双曲线13
42
2=-y x 的渐近线方程为x y 23±=,焦距为2………………( ) 9.直线l ⊥平面α,直线m ∥平面β,若l ∥m ,则α⊥β………………( )
10.二项式10
33⎪
⎭
⎫
⎝⎛-x x 展开式中二项式系数最大的项是第五项…………………( )
二、选择题(每小题5分,共40分) 11.函数f(x)=lg(x
-
3)的定义域是( )
A.R
B.(-3,3)
C.(-∞,-3)∪(3,+∞)
D.【0,+∞)D.1 12.以点M (-2,3)为圆心且与x 轴相切的圆的方程( ) A.(x +2)2
+(y -3)2
=4B .(x -2)2
+(y +3)2
=4
C.(x +2)2+(y -3)2=9 D .(x -2)2+(y +3)2
=9
13.10件产品中,3件次品,甲、乙两人依次各取一件产品,按取后放回,求恰有一件次品的概率为( ) A.
10021B. 241 C.4521 D. 50
21
14.若函数f(x)在定义域R 上是奇函数,且当x ﹥0时,f(x)=2
410x x -,则f(-2)=( ).
A.-104
B.104
C.1
D.10
-12
15.a=2是直线(a 2
-2)x +y=0和直线2x +y +1=0互相平行的( ) .A.充分条件B.必要条件 C.充要条件 D.即不充分也不必要条件 16.设数列{a n }的前n 项和为2n s n =,则a 8=(
)
A.64
B.49
C.16
D.15
17.在直角坐标系中,设A (-2,3),B (-3,-3),现沿x 轴把直角坐标系折成直二面角,则AB 的长为( ) A.6B.5 C.
19
D.1
18.a =(1,2),b =(x ,5),且b a ⊥2,则x=( )
A .10
B .-10 C.25 D.2
5
-
三、填空题(每题5分,共30分)
19.已知x ∈(ππ,-),已知sinx=
2
1
,则x=_ 已知tanx=-1,则x=_
20.已知正方形ABCD 的边长为2,AP ⊥平面ABCD ,且AP=4,则点P 到BD 的距离 21.过圆3622=+y x 上一点(4,52)的切线方程为_ _ 22.椭圆
1422=+y x 的离心率为 23.4名男生和2名女生站成一排,其中2名女生站在两端的站法有种 24.函数
1422+-=x x y 的值域为
班级: 姓名: 座号:
四、解答题(第25、26、题,每小题10分,第27.28题,每小题15分,共50分) 25
5=
8=,<b a ,>=
3
2π
,求
()()
b a b a -•+2。
26.在△ABC 中,∠A ,∠B ,∠C 成等差数列,cosA=7
1,求sinC
27.已知f(x)=c bx ax
++2
且f (-1)=f(4)=0,f(0)=-4,
求(1)f(x)的解析式;(2)解不等式f(x )≧6
28.设{a n }为等差数列,已知S 3=12,S 5=35,求a n 和S 10
29.顶点在原点,对称轴为坐标轴的抛物线的焦点是椭圆144
91622
=+y x 的上顶点
求:(1)抛物线的标准方程;
(2)直线
x y =被抛物线截得的弦长
30.长方形ABCD 的对角线交于O 点,如图所示,PA=PB=PC=PD=BC=3,AB=4 求:(1)PA 与BC 所成的角
(2)求证:平面APC ⊥平面ABCD
(3)求PA 与平面ABCD 所夹角的正切值。