专题:电磁感应导体棒问题

合集下载

电磁感应现象压轴难题综合题附答案

电磁感应现象压轴难题综合题附答案

电磁感应现象压轴难题综合题附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。

导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。

空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。

质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。

【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。

由平衡条件sin mg BId θ=①导体棒切割磁感线产生的电动势为E =Bdv ②由闭合电路欧姆定律得EI R r=+③ 联立①②③得v =20m/s ④由欧姆定律得U =IR ⑤联立①⑤得U =7V ⑥(2)由电流定义式得Q It =⑦由法拉第电磁感应定律得E t∆Φ=∆⑧B ld ∆Φ=⋅⑨由欧姆定律得EI R r=+⑩ 由⑦⑧⑨⑩得Q =0.02C ⑪2.如图所示,无限长平行金属导轨EF 、PQ 固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m ,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T 。

一质量m=2kg 的金属棒ab 与导轨接触良好,ab 与导轨间的动摩擦因数μ=0.5,ab 连入导轨间的电阻r=0.04Ω,电路中其余电阻不计。

现用一质量M=6kg 的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab 相连.由静止释放物体,当物体下落高度h=2.0m 时,ab 开始匀速运动,运动中ab 始终垂直导轨并与导轨接触良好。

电磁感应导轨问题归纳(有答案).

电磁感应导轨问题归纳(有答案).

应用动力学和能量观点解决电磁感应中的“导轨+杆”模型问题1. 模型概述“导轨+杆”模型是电磁感应问题在高考命题中的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“导轨+杆”模型又分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,情景复杂,形式多变. 2. 常见模型类型 “电—动—电”型“动—电—动”型示意图已知量棒ab 长L ,质量m ,电阻R ;导轨光滑水平,电阻不计 棒ab 长L ,质量m ,电阻R ;导轨光滑,电阻不计过程分析S 闭合,棒ab 受安培力F =BLER,此时加速度a =BLEmR,棒ab 速度v↑→感应电动势E ′=BLv ↑→电流I ↓→安培力F =BIL ↓→加速度a ↓,当安培力F =0时,a =0,v 最大,最后匀速运动棒ab 释放后下滑,此时加速度a =gsin α,棒ab 速度v ↑→感应电动势E =BLv ↑→电流I =ER ↑→安培力F =BIL ↑→加速度a ↓,当安培力F =mgsin α时,a =0,v 最大,最后匀速运动能 量 转 化 通过安培力做功,把电能转化为动能克服安培力做功,把重力势能转化为内能运动 形式 变加速运动 变加速运动 最终 状态匀速运动,vm =E ′BL匀速运动vm =mgRsin αB2L2一、单棒问题 1、发电式(1)电路特点:导体棒相当于电源,当速度为v 时,电动势E =Blv (2)安培力特点:安培力为阻力,并随速度增大而增大(3)加速度特点:加速度随速度增大而减小(4)运动特点:加速度减小的加速运动 (5)最终状态:匀速直线运动 (6)两个极值①v=0时,有最大加速度:Fm F mg a mμ-=②a=0时,有最大速度:(7)能量关系(8)动量关系(9)变形:摩擦力;改变电路;改变磁场方向;改变轨道解题步骤:解决此类问题首先要建立“动→电→动”的思维顺序,可概括总结为: (1)找”电源”,用法拉第电磁感应定律和楞次定律求解电动势的大小和方向; (2)画出等效电路图,求解回路中的电流的大小及方向;(3)分析安培力对导体棒运动速度、加速度的动态过程,最后确定导体棒的最终运动情况; (4)列出牛顿第二定律或平衡方程求解. (一)导轨竖直1、如图所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s2(忽略ab 棒运动过程中对原磁场的影响),求:甲 乙(1)磁感应强度B 的大小; (2)金属棒ab 在开始运动的1.5 s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的1.5 s 内,电阻R 上产生的热量. 答案 (1)0.1 T (2)0.67 C (3)0.26 J解析 (1)金属棒在AB 段匀速运动,由题中图象乙得: v =Δx Δt =7 m/s I =BLv r +R,mg =BIL 解得B =0.1 T(2)q =I Δt I =ΔΦR +r Δt ΔΦ=ΔSΔtB 解得:q =0.67 C(3)Q =mgx -12mv2 解得Q =0.455 J 从而QR =Rr +RQ =0.26 J2、 如图所示,竖直放置的两根足够长平行金属导轨相距L ,导轨间接有一定值电阻R ,质量为m ,电阻为r 的金属棒与两导轨始终保持垂直并良好接触,且无摩擦,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,现将金属棒由静止释放,金属棒下落高度为h时开始做匀速运动,在此过程中NM 22-+=()()m F mg R r v B l μ212E mFs Q mgS mv μ=++0m Ft BLq mgt mv μ--=-FB F( )A .导体棒的最大速度为2ghB .通过电阻R 的电荷量为BLhR +rC .导体棒克服安培力做的功等于电阻R 上产生的热量D .重力和安培力对导体棒做功的代数和等于导体棒动能的增加量 答案 BD3、如图2所示,电阻为R ,其他电阻均可忽略,ef 是一电阻可不计的水平放置的导体棒,质量为m ,棒的两端分别与ab 、cd 保 持良好接触,又能沿框架无摩擦下滑,整个装置放在与框架垂直的 匀强磁场中,当导体棒ef 从静止下滑一段时间后闭合开关S ,则S 闭合后 ( ) A .导体棒ef 的加速度可能大于g B .导体棒ef 的加速度一定小于gC .导体棒ef 最终速度随S 闭合时刻的不同而不同D .导体棒ef 的机械能与回路内产生的电能之和一定守恒4、MN 和PQ 为竖直方向的两平行长直金属导轨,间距l 为0.40m ,电阻不计.导轨所在平面与磁感应强度B 为0.50T 的匀强磁场垂直.质量m 为6.0×10-3kg 、电阻为1.0Ω的金属杆ab 始终垂直于导轨,并与其保持光滑接触.导轨两端分别接有滑动变阻器和阻值为3.0Ω的电阻R 1.当杆ab 达到稳定状态时以速率υ匀速下滑,整个电路消耗的电功率P 为0.27W ,重力加速度取10m/s 2,试求速率υ和滑动变阻器接入电路部分的阻值R 2.5、如图,两根足够长的金属导轨ab 、cd 竖直放置,导轨间距离为L 1电阻不计。

电磁感应中涉及导体棒的题型

电磁感应中涉及导体棒的题型

(4)由牛顿第二定律,得
B2L2(v1 R
v2) -
Ff
= ma
可见导体棒要 做匀加速运动,( v1 - v2)必须为一 常数,设为 Δv ,由图 2,得
k = a = vt + Δv t

B2L2(at R
vt) - F f = ma
B2L2vt + F f R 解得 a = B2L2t - mR
(4)若 t = 0 时磁场由 静止开始水平向右做匀加速
运动,经过较短时间后,导体棒也做匀 加速直线运动,
其 v - t 关系 如图 1 乙,已知在时刻 t 导体棒的瞬 时速
度大小为 vt ,则导体棒做匀加速 直线运动时的加速度
大小是多少?
解析 (1)当导体 棒运动速 度为 v2 时,整个回 路 产生的电动势为 E = BL(v1 - v2)
B
M
N
b
a
P
Q
C
图3
(1)t 时刻 C 的加速度值;
(2)t 时刻 a 、b 与导轨所组成的闭合回路消耗的
总功率.
解析 (1)画出等效电路图 4,两棒切割磁场均产
生电 动势,相当 于反接 ,根 据法拉第 电磁感 应定律,t
时刻回路的感应电动势
E=
ΔΦ Δt
=
Ea
-
Eb = Bl(v1 -
v2)
回路 中的感 应电流为 I = E ,对 a ,据牛 顿第二 2R
定律,有 F T - F 安 = ma
F安
F安
FT
b
a
x
x
b
a
图4
对 C ,据牛顿第二定律,有 M g - F T = M a 联 立以上 各式 ,得 a = 2M gR - B2l2(v1 - v2) ,说

单导体棒切割磁感线问题(计算题)(基础篇)

单导体棒切割磁感线问题(计算题)(基础篇)

第四部分 电磁感应专题4.16 单导体棒切割磁感线问题(计算题)(基础篇)计算题1.(13分) (2020浙江稽阳联考)如图为二根倾角θ=300的平行金属导轨,上端有一个电动势为E =5 V 、内阻为r =1 Ω的电源,以及一个电容为C 的电容器,导轨通过单刀双掷开关可分别与1、2相连。

导轨中间分布有两个相同的有界磁场AA’CC’及DD’FF’,磁场方向垂直导轨向下,磁场内外边界距离等于导轨间距L ,L =1 m ,磁场的上下边界距离如图所示均为d =2 m ,CC’到DD’的距离也为d 。

除电源内阻外,其它电阻忽略不计,导体棒与导轨光滑接触。

初始时刻,开关与1相连,一根质量为m =1 kg 的导体棒恰好能静止在导轨上AA’位置,导体棒处于磁场之中。

当开关迅速拨向2以后,导体棒开始向下运动,它在AA’CC’、 CC’DD’两个区域运动的加速度大小之比为4/5。

(1)求磁感应强度B 的大小;(2)求导体棒运动至DD’时的速度大小v 2;(3)求电容C 的值;(4)当导体棒接近DD’时,把开关迅速拨向1,求出导体棒到达FF’的速度v 3。

【参考答案】(1)B =ELmgr sin (2)v 2=6m/s (3)C=0.25 F (4)v t =4m/s 【名师解析】(1)由平衡条件知,初始时刻mg sin θ=Bil (1分)i=E r(1分) 得B =ELmgr θsin 代入数据得B =1T 。

(1分)(2) 从CC’到DD’,导体棒做的匀加速运动,加速度为a 2=g sin θ=5m/s 2由题意知,导体棒在AA’CC’运动的加速度a 1=4m/s 2(1分)其到达CC’的速度满足 v 12=2a 1d从CC’到DD’, 有v 22-v 12=2a 2d (1分)计算得v 1=4m/sv 2=6m/s (1分)(3)开关拨向2后,导体棒开始在磁场中运动,当速度为v 时,由牛顿运动定律得mg sin θ-BiL =mai =Δq Δt(1分) q =CU (1分)U =BLv (1分)可得a =22sin L CB m mg +θ计算得C=0.25 F (1分)(4)进入第二个磁场后,导体棒受到重力、弹力、安培力,其动力学方程可写作mg sin θ-BiL =ma其中i =rBLv E + 代入后mg sin θ-r BEL -rv L B 22=ma (1分) 注意到B =ELmgr θsin ,上式写为-r v L B 22=ma 可等效为导体棒在仅受安培力作用下的运动,上式变形可得-rx L B 22=mv t -mv 2 (1分) 代入x =2m ,得v t =4m/s ,即到达FF’时的速度为4m/s 。

专题67 电磁感应现象中的单棒问题(解析版)

专题67 电磁感应现象中的单棒问题(解析版)

2023届高三物理一轮复习重点热点难点专题特训专题67 电磁感应现象中的单棒问题特训目标 特训内容目标1 阻尼式单棒问题(1T —5T ) 目标2 电动式单棒问题(6T —10T ) 目标3发电式单棒问题(11T —15T )一、阻尼式单棒问题1.如图所示,左端接有阻值为R 的定值电阻且足够长的平行光滑导轨CE 、DF 的间距为L ,导轨固定在水平面上,且处在磁感应强度为B 、竖直向下的匀强磁场中,一质量为m 、电阻为r 的导体棒ab 垂直导轨放置且静止,导轨的电阻不计。

某时刻给导体棒ab 一个水平向右的瞬时冲量I ,导体棒将向右运动,最后停下来,则此过程中( )A .导体棒做匀减速直线运动直至停止运动B .电阻R 上产生的焦耳热为22I mC .通过导体棒ab 横截面的电荷量为I BLD .导体棒ab 运动的位移为22IRB L 【答案】C【详解】A .导体棒获得向右的瞬时初速度后切割磁感线,回路中出现感应电流,导体棒ab受到向左的安培力,向右减速运动,由22B L vma R r =+可知,由于导体棒速度减小,则加速度减小,所以导体棒做的是加速度越来越小的减速运动直至停止运动,A 错误;B .导体棒减少的动能22211()222k I I E mv m m m ===根据能量守恒定律可得k E Q =总又根据串并联电路知识可得22()R R I R Q Q R r m R r ==++总,B 错误; C .根据动量定理可得0BIL t mv -=-;I mv =;q I t =可得Iq BL=,C 正确; D .由于E BLxq I t t R r R r R rΦ====+++将I q BL =代入可得,导体棒ab 运动的位移22()I R r x B L +=,D 错误。

故选C 。

2.如图所示,一根直导体棒质量为m 、长为L ,其两端放在位于水平面内、间距也为L 的光滑平行金属导轨上,并与之接触良好,导体棒左侧两导轨之间连接一可控电阻,导轨置于匀强磁场中,磁场的磁感应强度大小为B ,方向垂直于导轨所在平面。

重点内容回味无穷_电磁感应中导体棒运动问题归类解析

重点内容回味无穷_电磁感应中导体棒运动问题归类解析

27
试题研究
B
2
L2 R
v
0
,
则当
ma -
B
2L 2v R
0>
0
时,

v0<
maR B2L2
=
10 m/ s
时, F > 0, 方向 F 方向与 x 轴方向相反.
当 ma-
B
2L 2 R
v
0
<
0 时,
即 v 0>
L
maR B2L 2
=
10 m/ s 时,
F< 0, 方向与 x 轴方向相同.
二、双导棒问题
较宽部分, 此后两棒运动情况同例 3, 动 量守恒, 且最终 同向匀速前进.
3. 导轨宽度均匀, 两棒所受的合外力不为零 例 5 如图 8, 在相
距 L= 0. 5 m 的 两条水 平 放置 无 限 长 的金 属 导 轨
上, 放 置 两 根 金 属 棒 ab 和 cd, 两棒质量均为 m =
0. 1 kg, 电阻均为 R = 3 欧 姆, 整 个 装 置 处 于 无 限
对 ab 棒由动量定理: - 2BILt= mv - mv0 对 cd 棒由动量定理: - 2BILt = mv - 0
由上分 析知, 要使两棒产 生相等 感应电 动势, 必须
v = 2v
由以上两棒中 I 相等, 令 I = BILt
则- 2I = mv - mv 0 I = 2mv - 0
v = v0 / 5, v = 2v0 / 5
于同 一 水 平面 内, 两 导 轨 间距为 L , 导轨上放着两 根
导体棒 ab 和 cd , 构 成矩 形 回路, 两根导棒的 质量皆 为 m, 电 阻均 为 R , 回路 中其

电磁感应导体棒切割磁感线题型

电磁感应导体棒切割磁感线题型

电磁感应导体棒切割磁感线题型引言电磁感应是指导体内的电荷受到磁场变化的影响而发生运动的现象。

当导体与磁场相互作用时,导体内部将产生感应电流。

本文将讨论关于电磁感应导体棒切割磁感线的题型,并探讨有关问题。

电磁感应基础知识回顾在讨论电磁感应导体棒切割磁感线的题型之前,我们首先回顾一些基础知识。

电磁感应定律电磁感应定律是描述电磁感应现象的基本定律。

它可以用以下公式表达:ε=−dΦdt其中,ε表示产生的感应电动势,Φ表示磁通量,t表示时间。

该定律表明,当磁场发生变化时,导体内部将产生感应电动势,通过闭合回路可以产生感应电流。

磁感线磁感线是描述磁场分布的线条。

磁感线的方向表示磁场的方向,磁感线的密度表示磁场强度。

在磁场的分布中,磁感线形成一个封闭的回路。

电磁感应导体棒切割磁感线问题在实际问题中,我们经常遇到关于电磁感应导体棒切割磁感线的题型。

这类问题要求计算感应电动势、感应电流或导体受到的力等。

我们将通过以下几个方面来探讨这类问题。

导体切割磁感线产生的感应电动势当导体切割磁感线时,根据电磁感应定律,导体内将产生感应电动势。

感应电动势的大小可以根据切割磁感线的速度、磁感线的密度和导体的长度等因素来计算。

根据右手定则,我们可以确定感应电动势的方向。

导体切割磁感线产生的感应电流如果导体是一个闭合回路,切割磁感线产生的感应电动势将产生感应电流。

根据欧姆定律,我们可以计算产生的感应电流的大小,并根据导体形状和电源方向确定感应电流的方向。

感应电流会产生磁场,与外部磁场相互作用。

导体受到的力通过切割磁感线产生的感应电流,导体将受到一个力,称为洛伦兹力。

洛伦兹力的大小与感应电流、磁感线的强度以及导体的长度和形状等有关。

根据洛伦兹力的方向规则,我们可以确定导体受到的力的方向。

导体切割磁感线的应用导体切割磁感线的现象广泛应用于发电机、电动机和变压器等电磁设备中。

通过切割磁感线产生感应电流,可以实现能量转换和能量传输。

各种电磁设备的工作原理都涉及到导体切割磁感线的现象。

电磁感应导体棒问题

电磁感应导体棒问题

(2008•东莞模拟)如图(a)所示,两根足够长的光滑平行金属导轨相距为L,导轨平面与水平面成θ角,上端通过导线连接阻值为R的电阻,阻值为r的金属棒ab放在两导轨上,棒与导轨垂直并保持良好接触,整个装置处在垂直导轨平面向上的磁场中,若所加磁场的磁感应强度大小恒为B,使金属棒沿导轨由静止向下运动,金属棒运动的v-t图象如图(b)所示,当t=t时刻,物体下滑距离为s.已知重力加速度为g,导轨电阻忽略不计.试求:(1)金属棒ab匀速运动时电流强度I的大小和方向;(2)导体棒质量m;时间内电阻R产生的焦耳热.(3)在t如图所示,两根足够长不计电阻的光滑平行金属导轨相距为L=1m,导轨平面与水平面成θ=300,上端通过导线连接阻值为R=3Ω的电阻,阻值为r=1Ω的金属棒ab放在两导轨上,棒与导轨垂直并保持良好接触,整个装置处在垂直导轨平面向上的匀强磁场中,磁场的磁感应强度B=2T,使金属棒沿导轨由静止向下运动,t0时刻,金属棒下滑距离为s=3m,此时金属棒恰好以速度v0=5m/s匀速运动.g=10m/s2.试求:(1)金属棒ab匀速运动时电流强度I的大小和方向;(2)求导体棒质量m;(3)在t0时间内产生的总热量Q.如图所示,足够长的光滑平行金属导轨MN、PQ固定在一水平面上,两导轨间距L=0.2m,在两导轨左端M、P间连接阻值R=0.4Ω的电阻,导轨上停放一质量m=0.1kg、电阻r=0.1Ω的金属杆CD,导轨电阻可忽略不计,整个装置处于方向竖直向上磁感应强度B=0.5T的匀强磁场中.现用一垂直金属杆CD的拉力F沿水平方向拉杆,使之由静止开始向右运动.(1)若拉力F恒为0.5N,求F的最大功率;(2)若在拉力F作用下,杆CD由静止开始作加速度a=0.5m/s2的匀加速运动,求在开始运动后的2s时间内通过电阻R的电量.如图所示,两根水平放置的平行光滑导轨上,有两根可以移动的、垂直导轨的导体棒ab和cd,导轨的间距为25cm,ab棒和cd棒的阻值均为2Ω,导轨的电阻不计.现将cd棒用一根绝缘细绳水平拉住,细绳所能承受的最大拉力为2N.整个装置处于竖直向上的匀强磁场中,磁感应强度为4T.今在棒ab上作用一个与导轨平行向右的恒力F,直到细绳被拉断.则细绳被拉断时,求:(1)cd棒中电流强度的大小(2)ab棒的速度大小.如图所示,在一对平行的金属导轨的上端连接一阻值为R的定值电阻,两导轨所决定的平面与水平面成30°角,若将一质量为m、长为L的导体棒ab垂直于两导轨放在导轨上,并使其由静止开始下滑,已知导体棒电阻为r,整个装置处在垂直于导轨平面的匀强磁场中,磁感应强度为B,求导体棒最终下滑的速度及电阻R最终的发热功率分别为多少.(导轨足够长,磁场足够大,不计导轨电阻和摩擦)。

电磁感应4(两根导体棒问题)

电磁感应4(两根导体棒问题)

电磁感应4(两根导体棒问题)1.如图A 、B 两导轨水平放置且光滑,ab 、cd 导体棒如图静止放置于导轨上,导体棒cd 在拉力F 的作用下向右运动/过程中ab 、cd 棒受的安培力大小相等,方向相反/2.如图所示,两根相距为L 的竖直平行金属导轨位于磁感应强度为B 、方向垂直纸面向里的匀强磁场中,导轨电阻不计,另外两根与上述光滑导轨保持良好接触的金属杆ab 、cd 质量均为m ,电阻均为R.若要使cd 静止不动,则ab 杆应向_____________运动,速度大小为_________,作用于ab 杆上的外力大小为___________.3.如图所示,足够长的光滑平行金属导轨cd 和ef ,水平放置且相距L ,在其左端各固定一个半径为r 的四分之三金属光滑圆环,两圆环面平行且竖直。

在水平导轨和圆环上各有一根与导轨垂直的金属杆,两金属杆与水平导轨、金属圆环形成闭合回路,两金属杆质量均为m ,电阻均为R ,其余电阻不计。

整个装置放在磁感应强度大小为B 、方向竖直向上的匀强磁场中。

当用水平向右的恒力F=3 mg 拉细杆a ,达到匀速运动时,杆b 恰好静止在圆环上某处,试求:(1)杆a 做匀速运动时,回路中的感应电流;(2)杆a 做匀速运动时的速度;(3)杆b 静止的位置距圆环最低点的高度。

4.如图所示,宽为L 、光滑的导电轨道的弧形部分处于磁场外,轨道的水平部分处于垂直轨道平面向上、磁感强度为B 的匀强磁场中,质量为2m 的金属杆cd 静止在水平轨道上,另一质量为m 的金属杆ab ,从弧形轨道上h 高处由静止开始下滑。

设ab 杆和cd 杆始终与轨道垂直,且接触良好,ab 杆与cd 杆不会相碰,ab 和cd 杆的电阻均为R ,轨道电阻不计。

求:(1)回路abcd 内电流的最大值。

(2)在ab 杆运动的整个过程中回路可产生的热量。

F。

导体棒在磁场中的运动问题

导体棒在磁场中的运动问题

导体棒在磁场中的运动问题 近十年的高考物理试卷和理科综合试卷中,电磁学的导体棒问题复现率很高,且多为分值较大的计算题;为何导体棒问题频繁复现,原因是:导体棒问题是高中物理电磁学中常用的最典型的模型,常涉及力学和热学问题,可综合多个物理高考知识点,其特点是综合性强、类型繁多、物理过程复杂,有利于考查学生综合运用所学的知识,从多层面、多角度、全方位分析问题和解决问题的能力;导体棒问题是高考中的重点、难点、热点、焦点问题;导体棒问题在磁场中大致可分为两类:一类是通电导体棒,使之平衡或运动;其二是导体棒运动切割磁感线生电;运动模型可分为单导体棒和双导体棒; 一通电导体棒问题通电导体棒题型,一般为平衡型和运动型,对于通电导体棒平衡型,要求考生用所学的平衡条件包含合外力为零0F=∑,合力矩为零0M =∑来解答,而对于通电导体棒的运动型,则要求考生用所学的牛顿运动定律、动量定理以及能量守恒定律结合在一起,加以分析、讨论,从而作出准确的解答;例8如图3-9-8所示,相距为d 的倾角为α的光滑平行导轨电源的电动势E 和内阻r ,电阻R 均为己知处于竖直向上磁感应强度为B 的匀强磁场中,一质量为m 的导体棒恰能处于平衡状态,则该磁场B 的大小为 ;当B 由竖直向上逐渐变成水平向左的过程中,为保持导体棒始终静止不动,则B 的大小应是 ,上述过程中,B 的最小值是 ; 解析此题主要用来考查考生对物体平衡条件的理解情况,同时考查考生是否能利用矢量封闭三角形或三角函数求其极值的能力.将图3-9-8首先改画为从右向左看的侧面图,如图3-9-9所示,分析导体棒受力,并建立直角坐标系进行正交分解,也可采用共点力的合成法来做.根据题意0F =∑,即0,0xyFF==∑∑,即:sin 0x B F F N α=-= ① cos 0y F F mg α=-= ②由①②得:tan BF mgα=③ 由安培力公式:B F BId = ④由闭合电路欧姆定律EI R r=+⑤ 联立③④⑤并整理可得:()tan mg R r B Edα+=2借助于矢量封闭三角形来讨论,如图3-9-10所示在磁场由竖直向上逐渐变成水平的过程中,安培力由水平向右变成竖直向上,在此过程中,由图3-9-10看出B F 先减小后增大,最终0,B N F mg ==,因而磁感应强度B 也应先减小后增大.3由图3-9-10可知,当B F 方向垂直于N 的方向时B F 最小,其B 最小,故:sin B F mgα=⑥而:B F BId = ⑦ EI R r=+ ⑧ 联立⑥⑦⑧可得:sin Emg Bd R rα=+, 即min ()sin mg R r B Bdα+=答案()tan mg R r Ed α+,先减小后增大 ()sin mg R r Bdα+点评:该题将物体的平衡条件作为重点,让考生将公式和图象有机地结合在一起,以达到简单快速解题的目的,其方法是值得提倡和借鉴的; 二棒生电类棒生电类型是电磁感应中最典型的模型,生电方式分为平动切割和转动切割,其模型可分为单导棒和双导棒;要从静态到动态、动态到终态加以分析讨论,其中分析动态是关键;对于动态分析,可从以下过程考虑:闭合电路中的磁通量发生变化→导体棒产生感应电流→导体棒受安培力和其他力作用→导体加速度变化→速度变化→感应电流变化→周而复始地循环最后加速度减小至零→速度达到最大→导体做匀速直线运动.我们知道,电磁感应现象的实质是不同形式能量的转化过程,因此,由功能观点切入,分清楚电磁感应过程中能量的转化关系,往往是我们解决电磁感应问题的关键,当然也是我们处理这类题型的有效途径. 1.单导棒问题例9如图3-9-11所示,一对平行光滑轨道放置在水平面上,两轨道间距0.20L m =,电阻1.0R =Ω,有一导体棒静止地放在轨道上,与两轨道图 3-9-10 图 3-9-11图 3-9-12图 3-9-8 图 3-9-9垂直,棒及轨道的电阻皆可忽略不计,整个装置处于磁感应强度0.50B T =的匀强磁场中,磁场方向垂直轨道面向下.现用一外力F 沿轨道方向拉棒,使之作匀加速运动,测得力F 与时间t 的关系如图3-9-12所示;求棒的质量m 和加速度a .解析此题主要用来考查学生对基本公式掌握的情况,是否能熟练将力电关系式综合在一起,再根据图象得出其加速度a 和棒的质量m 的值;从图中找出有用的隐含条件是解答本题的关键;解法一:导棒在轨道上做匀加速直线运动,用v 表示其速度,t 表示时间,则有v at =①导体棒切割磁感线,产生感应电动势:E BLv = ② 闭合电路中产生感应电流:EI R=③ 杆所受安培力:B F BId = ④再由牛顿第二定律得:B F F ma -= ⑤联立①~⑤式得:22B L F ma at R=+ ⑥ 在图线上取两点代入⑥式,可得: 210/,0.1a m s m kg ==.解法二:从F t -图线可建立方程0.11F t =+,① 导体棒受拉力F 和安培力B F 作用,做匀加速直线运动,其加速度恒定;其合力不随时间t 变化,并考虑初始状态0B F =,因而B F 的大小为0.1F t = ② 再由牛顿第二定律: B F F ma -= ③ 联立①②③可得:1ma = ④ 又因为: B F BId = ⑤而: EI R=⑥ E BLv = ⑦ 联立⑤⑥⑦式得:22B B L vF R= ⑧而v at =,故22B B L atF R = ⑨由②⑨得:222220.10.1 1.010/(0.50)(0.20)R a m s B L ⨯===⨯ ⑩ 再由④与⑩式得:10.1m kg a== 答案0.1m kg = 210/a m s =点评:解法一采用了物理思维方法,即用力学的观点,再结合其F t -图象将其所求答案一一解出;解法二则采用了数学思维方法,先从F t -图象中建立起相应的直线方程,再根据力学等知识一一求得,此解法不落窠臼,有一定的创新精神;此题不愧为电磁学中的经典习题,给人太多的启发,的确是一道选拔优秀人才的好题;例10如图3-9-13所示,两根竖直放置在绝缘地面上的金属框架上端接有一电容量为C 的电容器,框架上有一质量为m ,长为L 的金属棒,平行于地面放置,与框架接触良好且无摩擦,棒离地面的高度为h ,磁感应强度为B 的匀强磁场与框架平面垂直,开始时电容器不带电,将棒由静止释放,问棒落地时的速度多大 落地时间多长解析此题主要用来考查考生对匀变速直线运动的理解,这种将电容和导棒有机地综合在一起,使之成为一种新的题型;从另一个侧面来寻找电流的关系式,更有一种突破常规思维的创新,因而此题很具有代表性.金属棒在重力作用下下落,下落的同时产生了感应电动势;由于电容器的存在,在金属棒上产生充电电流,金属棒将受安培力的作用,因此,金属棒在重力和安培力B F 的合力作用下向下运动,由牛顿第二定律得:B mg F ma -= ① B F BiL = ②由于棒做加速运动,故B v a E F 、、、均为同一时刻的瞬时值,与此对应电容器上瞬时电量为Q CE =,而E BLv =,设在时间t ∆内,棒上电动势的变化量为E ∆,电容器上电量的增加量为Q ∆, 显然:E BL v ∆=∆ ③ Q C E ∆=∆ ④再根据电流和加速度的定义式,Q vi a t t∆∆==∆∆ ⑤ 联立①~⑤式得:22mga m B L C=+ ⑥由⑥式可知,a 与运动时间无关,且是一个恒量,故金属棒做初速度为零的匀加速直线运动,其落地速度为v ,则:2v ah = ⑦将⑥式代入⑦式得:222mghv m B L C =+ ⑧落地时间可由212h at =得:2222()h h m B L C t amg+==答案222mghm B L C+ 222()h m B L C mg +点评:本题应用了微元法求出Q ∆与v ∆的关系,又利用电流和加速度的定义式,使电流i 和加速度a 有机地整合在一起来求解,给人一种耳目一新的感觉,读后使人颇受启示.例11如图3-9-14所示,倾角为030θ=,宽度为1L m=的足够长的U 型平行光滑金属导轨固定在磁感应强度1B T =,范围充分大的匀强磁场中,磁场方向垂直导轨平面斜向上,现用平行导轨,功率恒为6W 的牵引力F ,牵引一根质量0.2m kg =,电阻1R =Ω,放在导轨上的导棒ab ,由静止沿导轨向上移动ab 棒始终与导轨接触良好且垂直;当金属导图 3-9-14 图 3-9-13棒移动 2.8S m =时,获得稳定速度,在此过程中金属导棒产生的热量为 5.8Q J =,不计导轨电阻及一切摩擦,取210/g m s =;问:1导棒达到稳定速度是多大2导棒从静止达到稳定速度所需时间是多少解析此题主要考查考生是否能熟练运用力的平衡条件和能量守恒定律来巧解此题;当金属导棒匀速沿斜面上升有稳定速度v 时,金属体棒受力如图3-9-15所示,由力的平衡条件则有: sin 0B F F mg θ--= ①B F BIL = ②E I R =③ E BLv = ④ PF v= ⑤由①~⑤可得:22sin 0P B L vmg v Rθ--=整理得:222sin 0PR mgvR B L v θ--=代入有关数据得:260v v --= 解得:2/,3/v m s v m s ==-舍去;2由能量守恒得:21sin 2Pt mg S mv Q θ=⨯++, 代入数据可得: 1.5t s = 答案2/v m s = 1.5t s =点评:此题较一般电磁感应类型题更能体现能量转化和守恒过程,因此,在分析和研究电磁感应中的导体棒问题时,从能量观点去着手求解,往往更能触及该问题的本质,当然也是处理此类问题的关键. 2.双导体棒问题在电磁感应现象中,除了单导体棒问题外,还存在较多的双导体棒问题,这类问题的显著特征是:两导棒在切割磁感线时,相当于电池的串联或并联,组成闭合回路,而且,求解此类型问题的最佳途径往往从能量守恒、动量守恒的角度出发,用发展、变化的眼光,多角度、全方位地发散思维,寻求相关物理量和公式,挖掘隐含条件,采用“隔离法”或“整体法”系统法快捷作出解答;因此,双导体棒问题更能反映考生的分析问题和解决问题的能力,特别是方法、技巧、思路均反映在解题中,是甄别考生层次、拉大差距的优秀试题. 例12如图3-9-16所示,两金属导棒ab 和cd 长均为L ,电阻均为R ,质量分别为M 和m ,M >m ;用两根质量和电阻均可忽略的不可伸长的柔软导线将它们连成闭合回路,并悬挂于水平、光滑、不导电的圆棒两侧,两金属导体棒都处于水平位置,整个装置处在一与回路平面相垂直的匀强磁场中,磁感应强度为B ,若金属导体棒ab 正好匀速向下运动,求运动的速度.解析此题主要用来考查考生对力学中的受力分析、力的平衡、电磁感应、欧姆定律和安培力公式的掌握,此题也可用多种方法去解答.解法一:采用隔离法,假设磁场B 的方向是垂直纸面向里,ab 棒向下匀速运动的速度为v ,则ab 棒切割磁感线产生的感应电动势大小:1E BLv =,方向由a →b ,cd 棒以速度v 向上切割磁感线运动产生感应电动势,其大小为:2E BLv =,方向由d →c .回路中的电流方向由a →b →d →c ,大小为:12222E E BLv BLvI R R R+=== ① ab 棒受到的安培力向上,cd 棒受到安培力向下,大小均为:22B B L vF BIL R== ②当ab 棒匀速下滑时,设棒受到的导线拉力为T ,则对ab 棒有:B T F mg += ③ 对cd 棒有: B T F mg =+ ④ 由③④解得:2()B F M m g =- ⑤再由②⑤可得:222()B L vM m g R=-故22()2M m gR v B L -=.解法二:采用整体法,把ab 、cd 柔软导线视为一个整体,因为M m >,整体动力为()M m g -,ab 棒向下,cd 棒向上,整体所受安培力与整体动力相等时正好做匀速向下运动,则有:22()2B L vM m g R-=,所以得:22()2M m gRv B L -=解法三:采用能量守恒法,将整个回路视为一个整体系统,因其速度大小不变,故动能不变;ab 棒向下,cd 棒在向上运动的过程中,因Mg mg >,系统的重力势能减少,将转化为回路的电能,由能量守恒定律得: 202E Mgv mgv R-= ①02E E = ② E BLv = ③ 联立①②③可得: 22()2M m gRv B L -=答案22()2M m gRv B L -=点评:此题为典型的双导体棒在磁场中运动的问题;并且两根棒都切割磁感线产生感应电动势,对整个回路而言,相当于电池组的串联,整个回路中有电流流过,两棒都受安培力,在末达到稳定速度前,两棒均做变加速运动,当加速度减为零时,速度为最大;从以上三种解法来看,解法三更显简便,思维灵活.例13如图3-9-17所示,两根足够长的固定的平行金属导轨位于同一水平面内,两图 3-9-16 图 3-9-17导轨间距为L 导轨上面横放着两根导体棒ab 和cd ,构成矩形回路;两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计;在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B ,这两根导体棒可沿导轨无摩擦地滑行,开始时,棒cd 静止,棒ab 有指向棒cd 的初速度0v ,若两导体棒在运动中始终不接触,求:1在运动中产生的焦耳热最多是多少2当ab 棒的速度变为初速度的34时,cd 棒的加速度是多少解析此题主要用来考查考生对双导体棒运动的动态分析和终态推理以及两个守恒定律的熟练掌握情况;此题是一道层次较高的典型水平面双导体棒试题;ab 棒向cd 棒运动时,ab 棒产生感应电动势,由于通过导轨和cd 棒组成回路,于是回路中便产生感应电流,ab 棒受到与运动方向相反的安培力作用作减速运动,而cd 棒则在安培力作用下作加速运动;在ab 棒的速度大于cd 棒的速度时,回路中总有感应电流,ab 棒继续减速,cd 棒继续加速,两棒速度达到相同后,回路面积保持不变,磁通量不变化,即不产生感应电流,两棒以相同的速度v 作匀速直线运动.1从初始至两棒达到速度相同的过程中,两棒组成的系统动量守恒,则有:02mv mv = ①再根据能量守恒有:22011(2)22mv m v Q =+ ② 联立①②两式得:2014Q mv =2设ab 棒的速度变为初速的34时,cd 棒的速度为'v ,则再次由动量守恒定律可知:003'4mv m v mv =+③ 此时回路中的感应电动势和感应电流分别是:03(')4E BL v v =- ④ 2EI R=⑤ 此时cd 棒所受安培力: B F BIL = ⑥cd 棒的加速度:B Fa m = ⑦联立③~⑦得:2204B L v a mR =.答案12014Q mv = 22204B L v a mR=点评:此题将分析双棒的初态、过渡态、终态以及整个过程的运动情况,各个物理量的变化情况和动量守恒、能量守恒仍然联系在一起,确实达到了命题人综合考查考生分析问题能力和解决问题能力的目的;充分体现了命题专家以综合见能力的命题意图,即“着眼综合,立足基础,突出能力”.此题的确是一道经典考题;通过对以上例题的分类处理、解析,从中发现,电磁学中的导体棒问题内涵的确丰富、灵活、新颖,涉及面广,易于拓展和延伸,的确不愧为电磁学中的精华部分;活学巧练1.两根相距为L 的足够长的金属直角导轨如图3-9-18所示放置,它们各有一边在同一水平面内,另一边垂直于水平面,质量均为m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数均为μ,导轨电阻不计,回路总电阻为2R ,整个装置处于磁感应强度大小为B .方向竖直向上的匀强磁场中,当ab 杆在平行于水平导轨的拉力F 作用下以速度1v 沿导轨匀速运动时,cd 杆也正好以速度2v 向下匀速运动.重力加速度为g ,以下说法正确的是A.ab 杆所受拉力F 的大小为2212B L v mg Rμ+B.cd 杆所受摩擦力为零C.回路中的电流为12()2BL v v R+D.μ与1v 大小的关系为2212RmgB L v μ=2.如图3-9-19所示,矩形裸导线框长边的长度为2l ,,短边的长度为l ,在两个短边上均接有电阻R ,其余部分电阻不计,导线框一长边与x 轴重合,左边的坐标0x =,线框内有一垂直于线框平面的磁场,磁场的磁感应强度满足关系0sin()2xB B lπ=,一光滑导体棒AB 与短边平行且与长边接触良好,电阻也是R .开始时导体棒处于0x =处,从0t =时刻起,导体棒AB 在沿x 方向的F 作用下做速度为v 的匀速运动,求:导体棒AB 从0x =运动到2x l =的过程中F 随时间t 变化的规律.3.如图3-9-20所示,在水平面上有两条平行导电导轨MN 、PQ ,导轨间距离为l ,匀强磁场垂直于导轨所在的平面纸面向里,磁感应强度的大小为B ,两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为12m m 、和12R R 、,两杆与导轨接触良好,与导轨间的动摩擦因数均为μ,己知杆1被外力拖动,以恒定的速度0v 沿导轨运动;达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略,求此时杆2克服摩擦力做功的功率.图 3-9-18 图 3-9-20 图 3-9-194..一个边长为L 、质量为m 、电阻为R 的金属丝方框,竖直放置,以初速度0v 水平抛出,框在重力场中运动,并且总是位于垂直于框面即水平方向的磁场中,如图3-9-21所示,己知磁感应强度的大小随方框下降高度y 的变化规律是0B B ky =+,式中k 为恒定系数,同一水平面上磁感应强度相同,设重力加速度为g . 1试分析方框水平方向和竖直方向的运动情况; 2试确定方框的最终运动状态. 5. 如图3-9-22所示,竖直平面内有一半径为r 、内阻为1R 、粗细均匀的光滑半圆形金属球,在M 、N 处与相距为2r 、电阻不计的平行光滑金属轨道ME 、NF 相接,EF 之间接有电阻2R ,已知112R R =,24R R =,在MN 上方及CD 下方有水平方向的匀强磁场I和II,磁感应强度大小均为B ;现有质量为m 、电阻不计的导体棒ab ,从半圆环的最高点A 处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,平行轨道足够长;已知导体棒ab 下落/2r 时的速度大小为1v ,下落到MN 处的速度大小为2v ;1求导体棒ab 从A 下落/2r 时的加速度大小;2若导体棒ab 进入磁场II 后棒中电流大小始终不变,求磁场I 和II 之间的距离h 和2R 上的电功率2P . 3若将磁场II 的CD 边界略微下移,导体棒ab 刚进入磁场II 时速度大小为3v ,要使其在外力F 作用下做匀加速直线运动,加速度大小为a ,求所加外力F 随时间变化的关系式; 参考答案1.解析cd 杆的速度方向与磁场方向平行,只有ab 杆运动时使回路内的磁通量发生变化,根据法拉第电磁感应定律;回路中的电动势:1E BLv = ① 根据闭合电路的欧姆定律:2EI R=② ab 杆所受安培力: B F BIL = ③ ab 杆匀速运动有:1B F F f =+ ④又1f mg μ= ⑤由①~⑤得:2212B L v F mg R μ=+回路中的电流: 12BLv I R= ⑥cd 杆匀速运动: 2f mg = ⑦又: 22122B B L v f F R μμ== ⑧由⑦⑧得:2212RmgB L v μ=,所以,A 、D 正确答案A D2解析由于磁感应强度随空间坐标变化,导体棒虽做匀速运动,其电动势仍是变化的,t 时刻AB 棒的坐标为x vt = ①感应电动势:0sin()2xE Blv B lv l π== ②回路总电阻为1 1.52R R R R =+=总 ③ 回路感应电流:EI R =总④ 棒做匀速运动,F F BIl ==安 ⑤ 联立①~⑤解得:22202sin ()22(0)3xB l v l lF t R vπ=≤≤答案22202sin ()22(0)3xB l v l lF t Rvπ=≤≤3.解析设杆2的运动速度为v ,由于两杆运动时,两杆间和导轨构成的回路中的磁通量发生变化,产生感应电动势0()E Bl v v =- 感应电流EI R R =+12杆2做匀速运动,它受到的安培力等于它受到的摩擦力,即2BIl m g μ=故导体杆2克服摩擦力做功的功率2P m gv μ=,解得:2201222[()]m gP m g v R R B lμμ=-+答案2201222[()]m g P m g v R R B l μμ=-+4.解析1方框水平方向的合力为零,做初速度为0v 的匀速直线运动;竖直方向受重力和安培力作用,由于安培力是逐渐增大,故竖直方向上做初速度为零,加速度逐渐减小的加速运动.2最终当竖直方向上加速度为零时,方框运动达到稳定状态,此时有:21B IL B IL mg =+ ① 回路中的电动势为:21E B Lv B Lv ⊥⊥=- ②回路电流为:EI R=③ 由已知条件得:2121B B ky ky kL -=-= ④联立①~④得方框在竖直方向上的最大速度为:24mgRv k L⊥= ⑤所以方框最终做匀速直线运动,其速度大小为:22024()mgR v v k L=+速度方向与水平方向x 轴正方向的夹角为:240arctan()mgRv k Lα=答案1水平方向上匀速直线运动;竖直方向上做初速度为零,加速度逐渐减小的加速运动.2最终做匀速直线运动22024()mgR v v k L=+5.解析1以导体棒为研究对象,棒在磁场I 中切割图 3-9-21 图 3-9-22磁感线,棒中产生产生感应电动势,导体棒ab 从A 下落/2r 时,导体棒在策略与安培力作用下做加速运动,由牛顿第二定律,得:mg BIL ma -=,式中L =,1Blv I R =总 式中8444844R R R R R R R R ⨯=+总(+)=(+)由以上各式可得到22134B r v a g mR=-2当导体棒ab 通过磁场II 时,若安培力恰好等于重力,棒中电流大小始终不变,即:222422t tB r v B r v mg BI r B r R R ⨯⨯=⨯=⨯⨯=并并 式中1243R RR R ⨯并==,解得22223t mgR mgR v ==并动,即:3为v 即:F 3222234433B r v B r a F t ma mg R R=++-。

高中物理 电磁感应中的导轨上的导体棒问题

高中物理  电磁感应中的导轨上的导体棒问题

电磁感应中的导轨上的导体棒问题,是力学和电学的综合问题。

解决 电磁感应中的导轨上的导体棒问题 ,首先要挖掘出导体棒的稳定条件及它最后能达到的稳定状态,然后才能利用相关知识和稳定条件列方程求解。

下文是常见导轨上的导体棒问题的分类及结合典型例题的剖析。

想必你阅过全文,你会对滑轨上的导体棒运动问题,有一个全面的细致的了解,能迅速分析出稳定状态,挖掘出稳定条件,能准确的判断求解所运用的方法。

一、滑轨上只有一个导体棒的问题滑轨上只有一个导体棒的问题,分两类情况:一种是含电源闭合电路的导体棒问题,另一种是闭合电路中的导体棒在安培力之外的力作用下的问题。

(一)含电源闭合电路的导体棒问题例 1、如图1所示,水平放置的光滑导轨MN、PQ上放有长为L、电阻为R、质量为m的金属棒 ab ,导轨左端接有内阻不计、电动势为E的电源组成回路,整个装置放在竖直向上的匀强磁场B中,导轨电阻不计且足够长,并与电键S串联。

当闭合电键后,求金属棒可达到的最大速度。

图 1分析:本题的稳定状态是金属棒最后的匀速运动;稳定条件是金属棒的加速度为零(安培力为零,棒产生的感应电动势与电源电动势大小相等)。

解析:闭合电键后,金属棒在安培力的作用下向右运动。

当金属棒的速度为v时,产生的感应电动势,它与电源电动势为反接,从而导致电路中电流减小,安培力减小,金属棒的加速度减小,即金属棒做的是一个加速度越来越小的加速运动。

但当加速度为零时,导体棒的速度达到最大值,金属棒产生的电动势与电源电动势大小相等,回路中电流为零,此后导体棒将以这个最大的速度做匀速运动。

金属板速度最大时,有解得(二)闭合电路中的导体棒在安培力之外的力作用下的问题1.导体棒在外力作用下从静止运动问题例 2、 如图 2,光滑导体棒 bc固定在竖直放置的足够长的平行金属导轨上,构成框架 abcd ,其中 bc棒电阻为R,其余电阻不计。

一质量为m且不计电阻的导体棒 ef 水平放置在框架上,且始终保持良好接触,能无摩擦地滑动。

专题13 电磁感应中的单杆、双杆和导体框问题(讲义)原卷版-【高频考点解密】2024年高考物理二轮

专题13  电磁感应中的单杆、双杆和导体框问题(讲义)原卷版-【高频考点解密】2024年高考物理二轮

专题13电磁感应中的单杆、双杆、导线框问题01专题网络.思维脑图 (1)02考情分析.解密高考 (2)03高频考点.以考定法 (2) (2) (5) (7)考向1:导体棒平动切割磁感应线的综合问题 (7)考向2:导体棒旋转切割磁感应线的综合问题 (8)考向3:线框进出磁场类问题的综合应用 (9)考向4:双杆在导轨上运动的综合应用 (10)04核心素养.难点突破 (11)05创新好题.轻松练 (16)新情境1:航空航天类 (16)新情境2:航洋科技类 (18)新情境3:生产生活相关类 (19)一、电磁感应中的单杆模型1.单杆模型的常见情况质量为m、电阻不计的单杆ab以一定初速度v0在光滑水平轨道上滑动,两平行导轨间距为L 轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L,拉力F恒定轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L,拉力F恒定F 做的功一部分转化2.在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量。

(1)求电荷量或速度:B I LΔt =mv 2-mv 1,q =I Δt 。

(2)求位移:-B 2L 2v ΔtR 总=0-mv 0,x =v̅Δt 。

(3)求时间:⇒-B I LΔt +F 其他·Δt =mv 2-mv 1,即-BLq +F 其他·Δt =mv 2-mv 1 已知电荷量q ,F 其他为恒力,可求出变加速运动的时间。

⇒-B 2L 2v ΔtR 总+F 其他·Δt =mv 2-mv 1,v̅Δt =x已知位移x ,F 其他为恒力,也可求出变加速运动的时间。

二、电磁感应中的双杆模型1.双杆模型的常见情况(1)初速度不为零,不受其他水平外力的作用质量m b=m a;电阻r b=r a;长度L b=L a质量m b=m a;电阻r b=r a;长度L b=2L a杆b受安培力做变减速运动,杆a受安培力能量质量m b=m a;电阻r b=r a;长度L b=L a摩擦力F fb=F fa;质量m b=m a;电阻r b=r a;长度L b=L a 开始时,两杆受安培力做变加速运动;开始时,若F<F≤2F,则a杆先变加速后匀速运动;b杆F做的功转化为两杆的动能和内能:F做的功转化为两杆的动能和内能(包括电热和摩擦热):进行解决。

专题19 电磁感应中的单导体棒模型--2024版高三物理培优——模型与方法

专题19 电磁感应中的单导体棒模型--2024版高三物理培优——模型与方法

2024版高三物理培优——模型与方法专题19电磁感应中的单导体棒模型目录一.阻尼式单导体棒模型 (1)二.发电式单导体棒模型 (9)三.无外力充电式单导体棒模型 (22)四.无外力放电式单导体棒模型 (23)五.有外力充电式单导体棒模型 (27)六.含“源”电动式模型 (34)1.电路特点:导体棒相当于电源。

当速度为5.最终状态:静止6.四个规律(1)全过程能量关系:A.当MN速度为v1时,MN两端的电势差为B.当MN速度为v1时,MN的加速度大小为【答案】(1)BLvRR r+;(2)P=【详解】(1)感应电动势电路中的感应电流【答案】(1)BLv,【详解】(1)刚开始运动时金属杆【答案】(1)22B L vmR;(2)mvBL;(3)22mv RB L【详解】(1)由于金属棒所受外力的合力等于安培力,则金属棒速度最大时的加速度最大,则有【答案】(1)0v v a x-'=【详解】(1)类比匀加速直线运动中加速度(2)①在导体棒速度从因为时间极短,可认为这一段时间内安培力为一定值,根据动量定理可得1.电路特点:导体棒相当于电源,当速度为5.最终特征:匀速运动6.两个极值(1)(2)磁场方向变化(3)导轨面变化(竖直或倾斜)10.若F的作用下使导体棒做匀加速直线运动则证明:根据法拉第电磁感应定律E=..................................................................BLv【答案】(1)4.8A ;19.2V ;(2)23.2m /s ;(3)33.76J【详解】(1)由乙图可知,导体棒做切割磁感线运动的最大速度为m 12m/sv =导体棒产生的最大感应电动势为m mE BLv =【答案】(1)max max BLv I R r =+,方向由M 流向N ;(2)F 0m 0si 21R r W Q m gv t R +=-【详解】(1)由题图2知杆AB 运动到水平轨道P 2Q 2处时的速率为v max ,则回路中的最大感应电动势max maxE BLv =杆AB 运动到水平轨道的P 2Q 2处时,回路中的感应电流最大,回路中的最大感应电流max max E I R r=+解得【答案】(1)223BF L gt mgR=+【详解】(1)根据法拉第电磁感应定律有【答案】(1)0.25μ=;(2)m 8m/s v =;(3)19.52JQ =【详解】(1)由图乙可知,金属棒在0~1s 内做初速度为的匀加速直线运动,可知金属棒第1s 末进入磁场。

专题65 电磁感应中的双棒问题(解析版)

专题65 电磁感应中的双棒问题(解析版)

2023届高三物理一轮复习多维度导学与分层专练专题65 电磁感应中的双棒问题导练目标导练内容目标1无外力等距式双棒问题目标2有外力等距式双棒问题目标3无外力不等距式双棒问题目标4有外力不等距式双棒问题模型规律无外力等距式(导轨光滑)1、电流大小:21211212Blv Blv Bl(v v)IR R R R--==++2、稳定条件:两棒达到共同速度3、动量关系:2012()m v m m v=+4、能量关系:2122211m v(m m)v Q22=+共+;1122Q RQ R=有外力等距式(导轨光滑)1、电流大小:1221Blv BlvIR R-=+2、力学关系:11AFam=;22AF Fam-=。

(任意时刻两棒加速度)3、稳定条件:当a2=a1时,v2-v1恒定;I恒定;F A恒定;两棒匀加速。

4、稳定时的物理关系: 12F (m m )a =+;1A F m a =;2112A Bl(v v )F BIlB lR R -==+;121212212(R R )m F v v B l (m m )+-=+无外力不等距式 (导轨光滑)1、动量关系:11110BL I t m v m v -∆=-;2220BL I t m v -∆=-2、稳定条件:1122BL v BL v =3、最终速度:21222122110m L v v m L m L =+;12122122120m L L v v m L m L =+4、能量关系:222101122111222Q m v m v m v =-- 5、电量关系:2202BL q m v =-有外力不等距式 (导轨光滑)F 为恒力,则:1、稳定条件:1122l a l a =,I 恒定,两棒做匀加速直线运动 2、常用关系:111A F F a m -=;222A F a m =;1122l a l a =;1122A A F l F l =3、常用结果:2121221221A l m F F l m l m =+;1222221221A l l m F F l m l m =+; 221221221l a F l m l m =+; 122221221l l a F l m l m =+; 此时回路中电流为:12221221l m F I l m l m B=⋅+与两棒电阻无关一、无外力等距式双棒问题【例1】如图,水平面内固定有两根平行的光滑长直金属导轨,导轨间距为l ,电阻不计。

导体棒切割磁感线问题分类解析 专题辅导 不分版本 高中物理经典复习资料 电磁感应

导体棒切割磁感线问题分类解析 专题辅导 不分版本 高中物理经典复习资料 电磁感应

导体棒切割磁感线问题分类解析杨中甫电磁感应中,“导体棒”切割磁感线问题是高考常见命题。

解此类型问题的一般思路是:先解决电学问题,再解决力学问题,即先由法拉第电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,求出安培力,再往后就是按力学问题的处理方法,如进行受力情况分析、运动情况分析及功能关系分析等。

导体棒切割磁感线的运动一般有以下几种情况:匀速运动、在恒力作用下的运动、恒功率运动等,现分别举例分析。

一、导体棒匀速运动导体棒匀速切割磁感线处于平衡状态,安培力和外力等大、反向,给出速度可以求外力的大小,或者给出外力求出速度,也可以求出功、功率、电流强度等,外力的功率和电功率相等。

例1. 如图1所示,在一磁感应强度B =0.5T 的匀强磁场中,垂直于磁场方向水平放置着两根相距为h =0.1m 的平行金属导轨MN 和PQ ,导轨电阻忽略不计,在两根导轨的端点N 、Q 之间连接一阻值R =0.3Ω的电阻。

导轨上跨放着一根长为L =0.2m ,每米长电阻r =2.0Ω/m 的金属棒ab ,金属棒与导轨正交放置,交点为c 、d ,当金属棒在水平拉力作用于以速度v =4.0m/s 向左做匀速运动时,试求:图1(1)电阻R 中的电流强度大小和方向;(2)使金属棒做匀速运动的拉力;(3)金属棒ab 两端点间的电势差;(4)回路中的发热功率。

解析:金属棒向左匀速运动时,等效电路如图2所示。

在闭合回路中,金属棒cd 部分相当于电源,内阻r cd =hr ,电动势E cd =Bhv 。

图2(1)根据欧姆定律,R 中的电流强度为I E R r Bhv R hrcd cd =+=+=0.4A ,方向从N 经R 到Q 。

(2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为F =F 安=BIh =0.02N 。

(3)金属棒ab 两端的电势差等于U ac 、U cd 与U db 三者之和,由于U cd =E cd -Ir cd ,所以U ab =E ab -Ir cd =BLv -Ir cd =0.32V 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F1图专题:电磁感应导体棒问题电磁感应导体棒问题涉及力学、功能关系、电磁学等一系列基本概念、基本规律和科学思维方法。

分清不同性质的导轨,熟悉各种导轨中导体的运动性质、能量转化特点和极值规律,对于吃透基本概念,掌握基本规律,提高科学思维和综合分析能力,具有重要的意义。

主干知识一、发电式导轨的基本特点和规律如图1所示,间距为l 的平行导轨与电阻R 相 连,整个装置处在大小为B 、垂直导轨平面向上的匀强磁场中,质量为m 、电阻为r 的导体从静止 开始沿导轨滑下,已知导体与导轨的动摩擦因数为μ。

求:棒下滑的最大速度. 1、 电路特点导体为发电边,与电源等效,当导体的速度为v 时,其中的电动势为 E=Blv 2、 安培力的特点安培力为运动阻力,并随速度按正比规律增大。

F B =BI l =v rR vl B l r R Blv B∝+=+22 3、 加速度特点加速度随速度增大而减小,导体做加速度减小的加速运动mr R v l B mg mg a )/(cos sin 22+--=θμθ 4、 两个极值的规律faR beBdc r当v=0时,F B =0,加速度最大为a m =g (sin θ-μcos θ) 当a=0时,ΣF=0,速度最大,根据平衡条件有mgsin θ=μmgcos θ+)(22r R v l Bm +所以,最大速度为 :22))(cos (sin l B r R mg v m+-=θμθ5、 匀速运动时能量转化规律当导体以最大速度匀速运动时,重力的机械功率等于安培力功率(即电功率)和摩擦力功率之和,并均达到最大值。

P G =P F +P f ⎪⎪⎩⎪⎪⎨⎧=+=+====θμθcos )(sin 22m fm m m m m m F m G mgv P r R I r R E E I v F P mgv P当μ=0时,重力的机械功率就等于安培力功率,也等于电功率,这是发电导轨在匀速运动过程中,最基本的能量转化和守恒规律。

mgv m sin θ=F m v m =I m E m )(22r R I rR E m m +=+=例1、如图所示,两根平行金属导轨abcd,固定在同一水平面上,磁感应强度为B 的匀强磁场与导轨所在的平面垂直,导轨的电阻可忽略不计。

一阻值为R 的电阻接在导轨的bc 端。

在导轨上放一根质量为 m ,长为L ,电阻为r 的导体棒ef ,它可在导轨上无摩擦滑动,滑动过程中与导轨接触良好并保持垂直。

(1)若导体棒从静止开始受一恒定的水平外力F 的作用求:导体棒获得的最大速度时,ef 的位移为S,整个过程中回路产生的焦耳热。

(2)若金属棒ef 在受到平行于导轨,功率恒为P 的水平外力作用下从静止开始运动。

求:金属棒ef 的速度为最大值一半时的加速度a 。

二、双动式综合导轨的基本特点和规律如图所示,宽为l 的光滑平行导轨的水平部分处于方向垂直导轨平面向上的匀强磁场中。

质量为m 的导体从高h 处由静止开始滑下,而且与原来静止在水平轨道上质量为M 、电阻为R1、电路特点两导体同方向运动,开始电动势较大的为发电边,与电源等效;电动势较小的为电动边,与电动机等效。

2、电流特点导体m 进入磁场后,开始切割磁感线,产生感应电动势,并在回路中形成感应电流;同时,在安培力的作用下,导体M 也同向运动,产生反电动势。

根据欧姆定律,电路中的电流可以表示为:rR v v Bl r R Blv Blv I M m M m +-=+-=)(所以电流随两导体的相对速度v m -v M 的减小而减小。

当v M =0时电流最大。

当v m =v M ,电流I=0 3、安培力、加速度特点安培力对发电边为阻力,对电动边为动力,在轨道宽度不变的情况下,两边的安培力大小相等,方向相反即矢量和为零。

安培力的大小可表示为:rR v v l B BIl F M m B +-==)(22所以安培力也随两导体的相对速度v m -v M 的减小而减小。

当v M =0时安培力最大。

当v m =v M ,安培力F B =0据牛顿第二定律知:加速度a 随安培力的变化而变化 4、速度极值根据机械能守恒定律,发电边进入水平轨道时速度的最大值为gh v v 20max ==当两者达到共同速度时,发电边的速度达到最小值,电动边的速度达最大值。

根据系统动量守恒,所以有Mm mv v v M m mv +=+=00)(5、 全过程系统产生的热当相对速度为零,即v m =v M =v 时,电流为零,回路不再消耗电能——两导体开始以共同速度v 匀速运动。

根据全过程中能转化和守恒规律,有Q v M m mgh ++=2)(21所以全过程中系统产生的热为:Mm Mmghv M m mgh Q +=+-=2)(21 6、 全过程两导体产生的热量之比与电阻成正比根据连导体串联电路中,每时刻通过的电流相等,从而有Q=I 2Rt 所以全过程中两导体产生的热之比为:Rr Q Q R r = 例2电容冲电式导轨的基本特点和规律如图所示,宽为l 的光滑竖直导轨,处于磁感应强度为B 方向垂直导轨平面的匀强磁场中,上端接有电容为C 的电容器。

一根质量为m 的导体,从静止开始沿导轨滑下。

1、电路特点导体为发电边,在加速运动的过程中不断对电容器充电,电路中始终存在充电电流 2、三个基本关系在重力和安培力的作用下,导体的加速度可以表示为:mF mg a B-=① 受到的安培力可以表示为:F B =BI l ②回路中的电流可以表示为:I CBla tvCBl t E C t Q I =∆∆∆∆=∆∆= ③ 3、四个重要结论结论一:导体做出速度为零的匀加速直线运动证明 将②、③式代入①得:加速度为22L CB m mga +=结论二:电路中的充电电电流恒定不变,为恒定直流。

证明:将加速度a 之值代入③式,所以,电流为:22lCB mg CBlmgI +=结论三:导体受到的安培力为恒力证明: 将电流代入安培力公式得,2222lCB m mg l CB FB += 结论四:电容器储存的电场能等于安培力做的功证明:f2222)(21)(21)21()()21(Blv C Blat C at l CBla B at BIl h F W B F =====式中Blv=E ,即导体的电动势,也即电容器连极板间的电压,所以,安培力的功等于电容器储存的电场能E c ,即c F E CE W ==221例2、如图所示,导体棒ef 、bc 处于水平放置宽度不同的足够长的平行金属导轨上,L 1=2L 2,导体棒bc 和ef 的质量均为m ,磁感应强度为B的匀强磁场垂直穿过导轨平面。

现固定bc 棒,给ef 一水平向右的初速度V 0,不计导轨电阻及摩擦。

问:当bc 棒不固定时,ef 以V 0起动后整个运动过程中产生多少热量 ? 练习:例1、如图所示,在间距为l 的光滑的水平导轨上,放置两根质量均为m 、电阻均为R 的导体a 和b ,处于方向竖直向上的大小为B 的匀强磁场中。

如果对导体a 价水平向右的恒力F ,是计算:(1)导体a 的加速度的最小值和导体b的加速度的最大值是多少?(2)两导体最终的相对速度【解析】但两导体开始运动后,导体a 为发电边,受到的安培力为阻力,做加速度减小的加速运动;导体b 为电动边,受到的安培力为动力,做加速度增大的加速运动。

(1)当两者的加速度相等时,导体a 的加速度达到最小值,导体b 的加速度达到最大值。

以系统为研究对象,根据牛顿第二定律,两极值为mF a a 2max min == (2)以导体b 为研究对象,根据牛顿第二定律,安培力为F ma F B 21max == 从而有l RBlv Blv B BIl F b a 2)(21-== 这时,两导体的相对速度(v a -v b )、电路中的电流I 也恒定不变。

所以两导体最终的相对速度为22)(lB FRv v v b a ab =-=例2、如果上题中,导体a 以初速度v 0向导体b 运动,两导体始终没接触,试计算: (1)在运动中产生的焦耳热是多少?(2)当导体a 速度减少1/4时,导体b 的加速度是多大?【解析】当两导体运动后,导体a 为发电边,受到的安培力为阻力做加速度减小的减速运动;导体b 为电动边受到的安培力为动力,作加速度减小的加速运动。

(1)当两者达到共同速度v ,即E=E 反时,电路中无电流机械能不再转化为焦耳热。

根据系统的动量和能量守恒,有Q v m mv mvmv +==2200)2(21212 所以,产生的焦耳热为22204121mv mv mv Q =-=(2)当导体a 的速度减小1/4,即v a =3v 0/4时,根据动量守恒得,40v v mv mv mv b b a =+=,则 这时导体b 受到的安培力为Rv l B l R Blvb Blva B BIl F B 42)(022=-==所以这时导体b 的加速度为mRv l B m F a B b 4022==例5、如图所示,宽为L=1m 、倾角θ=30o 的光滑平行导轨与电动势为E=3.0V 、阻r=0.5Ω的电池相连接,处在磁感应强度B=T 33、方向竖直向上的匀强电场中。

质量为m=200g 、电阻R=1Ω的导体ab 从静止开始运动。

不计其余电阻,且导轨足够长,试计算:(1)若在导体ab 运动t=3s 是将开关合上,这时导体受到的安培力是多大?加速度是多少?(2)导体ab 的收尾速度是多大?(3)当达到收尾速度时,导体ab 的重力功率、安培力功率、电功率,以及回路中焦耳热功率各是多少?【解析】 在电路接通前,导体ab 在3s 末的速度为s m gt at v /15sin 0===θ导体ab 的电动势为V E V BLv E ab 35.7cos 0=>==θ因此,导体ab 于电源等效,而电池为被充电的反电动势负载 (1)所以,开关S 和尚时导体ab 阿后到的安培力水平向右,大小为N L rR EE BL BI F ab 300=+-== 而导体的加速度为200/5.2cos sin s m mF mg a -=-=θθ式中负号表示加速度方向沿斜面向上,即导体沿斜面作减速运动。

(2)以沿斜面向上为正方向,导体加速度的一般表达式为θθθθsin cos )()(sin cos g r R m E E BL mmg F a ab -+-=-=因此导体做加速度减小的加速运动,当a=0时,速度最小,然后以最小速度开始匀速运动。

从而有θθθcos )cos (sin min rR E BLv BL mg +-=所以收尾速度为s m L B BEL r R mg v /12cos cos sin )(222min =++=θθθ(3)当导体以收尾速度匀速运动时,导体ab 的重力功率、安培力功率和电功率大小相等,即: W mgv P 12sin min ==θ同理,还有 θcos min min min min BLv I E I P == 则电路中电流为 A BLv P I 2cos min min ==θ所以回路中焦耳热功率为 W r R I P 6)(2min=+=热 如图所示,两根光滑的水平放置的平行导轨,相距为d ,两根质量均为m 金属棒ab 、cd 平行静止在导轨上,金属棒与导轨垂直,其中ab 棒用长为L 的绝缘细线悬挂在支架上,细线伸直,ab 恰好与导轨接触,整个装置处于竖直向上的匀强磁场中,现把ab 棒移至水平位置a /b /,从静止开始释放,到最低点与轨道接触,又继续向左摆动,摆到最高点位置a //b //时与竖直方向成600,问(1)ab 棒与导轨第一次接触后,cd 棒的速度大小(2)ab 棒与cd/电容冲电式导轨的基本特点和规律如图所示,宽为l 的光滑竖直导轨,处于磁感应强度为B 方向垂直导轨平面的匀强磁场中,上端接有电容为C 的电容器。

相关文档
最新文档