概率知识点总结

合集下载

概率论的知识点总结

概率论的知识点总结

概率论的知识点总结1.概率的基本概念概率是描述随机事件发生可能性的数学工具,其基本概念包括样本空间、事件和概率空间。

样本空间是随机试验的所有可能结果的集合,事件是样本空间的子集,概率空间包括样本空间和定义在样本空间上的概率测度。

2.概率分布概率分布描述了随机变量可能取值的概率情况。

概率分布分为离散分布和连续分布两种。

常见的离散分布包括伯努利分布、二项分布、泊松分布等;常见的连续分布包括均匀分布、正态分布、指数分布等。

概率密度函数和累积分布函数是描述连续分布的重要工具。

3.随机变量随机变量是一种具有随机性的变量,它可以取样本空间中的某些值。

随机变量分为离散随机变量和连续随机变量。

离散随机变量的概率分布由概率质量函数描述,连续随机变量的概率分布由概率密度函数描述。

4.数学期望和方差数学期望是随机变量的平均值,描述了随机变量的位置参数;方差是随机变量与其数学期望之间的离散程度,描述了随机变量的分散程度。

数学期望和方差是描述随机变量性质的重要指标,它们具有许多重要的性质,如线性性质、切比雪夫不等式等。

5.大数定律大数定律是描述随机变量序列平均值的收敛性质的定理。

大数定律包括弱大数定律和强大数定律两种。

弱大数定律描述了随机变量序列平均值收敛于数学期望的概率性质,强大数定律描述了随机变量序列平均值几乎必然收敛于数学期望的性质。

6.中心极限定理中心极限定理是概率论中一个重要的定理,描述了大量独立随机变量的和呈现出正态分布的性质。

中心极限定理包括林德伯格-莱维中心极限定理、李亥莱中心极限定理等。

中心极限定理在统计学和金融学中具有重要的应用价值,它解释了正态分布在自然界和人类活动中的普遍性。

以上是概率论的一些重要知识点,概率论作为一门基础数学学科,不仅具有重要的理论意义,而且在实际应用中有着广泛的应用价值。

随着数据科学和人工智能的快速发展,概率论的应用前景将更加广阔。

概率基础知识点总结

概率基础知识点总结

概率基础知识点总结一、概率的定义概率是描述事件发生可能性的一种数值,它通常用0到1之间的实数表示。

概率的定义可以从频率的角度和古典概率的角度来理解。

频率的定义:在实际实验中,事件A出现的次数除以实验总次数,称为事件A的频率。

当实验次数足够大的时候,事件A的频率会趋向于一个固定值,这个固定值就是事件A的概率。

古典概率的定义:在一个等可能的实验中,事件A发生的可能性等于事件A包含的基本事件数与所有基本事件数的比值。

二、概率的性质概率具有一些基本的性质,包括非负性、规范性、可列可加性等。

1. 非负性:对于任意事件A,它的概率满足0 <= P(A) <= 1。

2. 规范性:整个样本空间的概率为1,即P(S) = 1。

3. 可列可加性:如果事件A1, A2, A3, ...两两互不相容(互斥),那么它们的并事件的概率等于它们的概率之和,即P(A1 ∪ A2 ∪ A3 ∪ ...) = P(A1) + P(A2) + P(A3) + ...三、概率分布在概率论中,概率分布是描述随机变量取值的概率情况的一种数学函数。

常见的概率分布包括离散型概率分布和连续型概率分布。

1. 离散型概率分布:在一组有限或可数的取值中,每个取值对应一个概率。

常见的离散型概率分布包括二项分布、泊松分布、几何分布等。

2. 连续型概率分布:在一个区间内,概率分布是连续变化的。

常见的连续型概率分布包括正态分布、指数分布、均匀分布等。

概率分布函数有许多应用,例如在金融领域中用以描述股票价格的波动、在物理学中用以描述微观粒子的运动等。

四、条件概率条件概率是指在已知某一事件发生的条件下,另一个事件发生的概率。

条件概率通常用P(A|B)表示,读作“在B条件下A的概率”。

条件概率的计算公式为:P(A|B) = P(A ∩ B) / P(B)。

条件概率在许多实际问题中都有重要应用,例如在医学诊断中用以计算某种疾病的发病率、在金融领域中用以计算风险事件发生的概率等。

概率论知识点总结归纳

概率论知识点总结归纳

概率论知识点总结归纳概率论是数学中的一个分支,研究随机现象发生的规律性及其数学模型。

概率论广泛应用于统计学、金融、生物学等领域。

本文将对概率论的基本概念、概率计算方法、常见概率分布以及概率论在实际问题中的应用进行总结归纳。

一、基本概念1. 随机试验:在相同的条件下可以重复进行的实验,结果不确定。

2. 样本空间:随机试验所有可能结果的集合,用S表示。

3. 事件:由样本空间S的一个或多个元素构成的子集,表示试验结果的一个集合。

4. 概率:事件发生的可能性大小的度量,用P(A)表示。

二、概率计算方法1. 古典概型:指随机试验中每个基本事件发生的概率相等的情况。

计算概率时可以根据样本空间和事件个数进行计算。

2. 频率派概率:根据大量实验的频率来计算概率,概率等于事件发生的次数与试验次数之比的极限。

3. 主观概率:根据个人主观判断来计算概率,没有明确的计算方法。

三、常见概率分布1. 离散概率分布:表示随机变量在有限取值集合上的概率分布。

a. 伯努利分布:只有两个可能取值的离散概率分布。

b. 二项分布:多次伯努利试验的结果相加,每次试验相互独立。

c. 泊松分布:表示单位时间或空间内随机事件发生的次数的概率分布。

2. 连续概率分布:表示随机变量在一个区间上的概率分布。

a. 均匀分布:随机变量在一段区间上取值的概率相等。

b. 正态分布:最常见的连续概率分布,具有钟形曲线的特点。

四、概率论的应用1. 统计学:概率论是统计学的基础,通过概率论可以推导出统计学各种假设检验和置信区间的计算方法。

2. 金融学:概率论在金融学中被广泛应用,例如在风险管理、期权定价、投资组合构建等方面。

3. 生物学:概率论能够帮助解释生物学中的随机现象,如遗传、进化等过程中的概率计算。

4. 工程学:概率论可以用于工程问题的风险评估和可靠性分析,如工程结构的寿命预测等。

总结:概率论是研究随机现象的规律性及其数学模型的学科,它包括了基本概念、概率计算方法、常见概率分布以及在各个领域的应用。

概率知识点总结及归纳

概率知识点总结及归纳

概率知识点总结及归纳一、概率基础知识1. 随机试验与样本空间随机试验是指在相同条件下,重复进行实验,结果不确定的现象,如掷硬币、抛骰子等。

每次实验的所有可能结果组成的集合称为样本空间,通常用Ω表示。

样本空间的元素称为样本点,通常用ωi表示。

2. 事件与事件的概率事件是样本空间的子集,即样本空间中的一些样本点组成的集合。

事件的概率是指该事件发生的可能性大小,通常用P(A)表示,其中A表示事件。

3. 概率的性质(1)非负性:对任意事件A,有0≤P(A)≤1。

(2)规范性:必然事件的概率为1,不可能事件的概率为0。

(3)可加性:若事件A与事件B互斥(即A与B无公共样本点),则P(A∪B) = P(A) + P(B);若事件A与事件B不互斥,则P(A∪B) = P(A) + P(B) - P(A∩B)。

4. 等可能概型当所有样本点发生的可能性相等时,称为等可能概型。

在等可能概型中,事件A的概率公式为P(A) = n(A)/n(Ω),其中n(A)表示事件A中样本点的个数,n(Ω)表示样本空间中样本点的个数。

二、概率的计算方法1. 古典概率法古典概率法适用于等可能概型,即所有样本点发生的可能性相等的情况。

在此情况下,事件A的概率公式为P(A) = n(A)/n(Ω),其中n(A)表示事件A中样本点的个数,n(Ω)表示样本空间中样本点的个数。

2. 几何概型法几何概型法适用于计算几何概型中的事件概率。

对于几何概型中一个区域的面积为S,事件A发生的区域面积为S(A),则事件A的概率为P(A) = S(A)/S。

3. 频率统计法频率统计法适用于大量试验中,用实验结果的频率估计事件的概率。

当试验次数增大时,事件A发生的频率逼近于事件A的概率。

频率统计法是概率理论与统计学的基础,也是实际应用中常用的方法。

4. 概率的性质及计算(1)互补事件的概率:对于事件A,其互补事件为A的对立事件,即事件A不发生的概率为1减去事件A发生的概率,即P(Ac) = 1 - P(A)。

概率相关知识点总结

概率相关知识点总结

概率相关知识点总结一、概率的基本概念1.1 随机事件在概率论中,随机事件是指在一定条件下,将出现的结果是不确定的事情。

例如掷骰子、抛硬币等都属于随机事件。

1.2 样本空间样本空间是指所有可能结果的集合,通常用S表示。

对于掷骰子来说,样本空间为S={1,2,3,4,5,6}。

1.3 事件的概率事件的概率是指事件发生的可能性大小,通常用P(A)表示。

对于事件A,其概率P(A)满足0≤P(A)≤1。

1.4 事件的互斥与独立事件A和事件B是互斥的,是指事件A发生时事件B不可能发生,即P(A∩B)=0;事件A 和事件B是独立的,是指事件A发生时事件B发生的概率与事件A不发生时事件B发生的概率相等,即P(A∩B)=P(A)P(B)。

1.5 概率的加法规则对于两个事件A和B,它们的并事件的概率满足P(A∪B)=P(A)+P(B)-P(A∩B)。

特别地,如果A和B是互斥事件,则P(A∩B)=0,此时有P(A∪B)=P(A)+P(B)。

1.6 频率与概率频率是指在一次试验中事件发生的次数与试验的总次数的比值。

当试验次数趋于无穷大时,频率趋于概率。

二、概率的性质2.1 非负性对于任意事件A,有P(A)≥0。

2.2 规范性对于样本空间S,有P(S)=1。

2.3 互斥事件概率的加法性质对于互斥事件A和B,有P(A∪B)=P(A)+P(B)。

2.4 对立事件概率的互补性对于事件A的对立事件A',有P(A')+P(A)=1。

2.5 事件的独立性对于事件A和事件B,如果P(A∩B)=P(A)P(B),则称事件A和事件B是独立的。

2.6 独立事件的加法性质对于独立事件A和B,有P(A∪B)=P(A)+P(B)-P(A)P(B)。

三、常见概率分布3.1 二项分布二项分布是最为常见的概率分布之一,用来描述在n次独立重复试验中成功次数的分布。

设每次试验成功的概率为p,失败的概率为1-p,则n次试验中成功次数X服从二项分布B(n,p)。

概率的全部知识点总结

概率的全部知识点总结

概率的全部知识点总结一、定义概率是指某一随机现象发生的可能性大小的度量。

通常用P(A)表示事件A发生的概率。

概率的取值范围是0到1之间,即0 ≤ P(A) ≤ 1。

当概率为0时,表示事件不可能发生;当概率为1时,表示事件一定发生;当概率为0.5时,表示事件发生的可能性为50%。

二、事件在概率论中,事件是指随机试验的某一结果,用大写字母A、B、C等表示。

事件可以包含一个或多个基本事件,基本事件是随机试验的最小基本单位,用小写字母a、b、c等表示。

例如,掷一枚硬币的结果可以是正面(基本事件H)或反面(基本事件T),而事件可以是“出现正面”或“出现反面”。

三、概率的性质1. 非负性:对任意事件A,有P(A) ≥ 0。

2. 规范性:对样本空间Ω中的事件,有P(Ω) = 1。

3. 互斥事件的加法规则:对互斥事件A和B,有P(A ∪ B) = P(A) + P(B)。

4. 对立事件的性质:对对立事件A和A',有P(A) + P(A') = 1。

四、古典概率古典概率是指在样本空间有限且等可能的情况下,根据事件发生的可能性来计算概率。

例如,掷一枚硬币得到正面的概率为1/2,掷一个骰子得到点数为3的概率为1/6。

古典概率的计算公式为P(A) = n(A) / n(Ω),其中n(A)表示事件A包含的基本事件个数,n(Ω)表示样本空间Ω中基本事件的总数。

五、条件概率条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。

条件概率的计算公式为P(B|A) = P(A ∩ B) / P(A),表示在事件A发生的条件下,事件B发生的概率。

条件概率的性质包括P(B|A) ≥ 0,P(B|A)P(A) = P(A ∩ B) = P(A|B)P(B),以及全概率公式和贝叶斯公式等。

六、贝叶斯公式贝叶斯公式是根据条件概率和全概率公式推导出来的一种计算概率的方法。

贝叶斯公式的计算公式为P(A|B) = P(B|A)P(A) / P(B),表示在事件B发生的条件下,事件A发生的概率。

概率知识点归纳整理总结

概率知识点归纳整理总结

概率知识点归纳整理总结概率基础知识1. 样本空间和事件概率论的基本概念是样本空间和事件。

样本空间是一个随机试验所有可能结果的集合,通常用Ω表示。

事件是样本空间的一个子集,表示随机试验的一些结果。

事件的概率描述了该事件发生的可能性有多大。

2. 概率的定义在样本空间Ω中,事件A包含n(A)个基本事件,概率P(A)定义为P(A)=n(A)/n(Ω),即事件A的发生可能性是A包含的基本事件数目与样本空间的基本事件数目之比。

3. 概率的性质概率具有以下几个性质:(1)非负性:对于任意事件A,有0≤P(A)≤1;(2)规范性:样本空间的概率为1,即P(Ω)=1;(3)可列可加性:若事件A1,A2,A3,...两两互斥,则P(A1∪A2∪A3∪...)=P(A1)+P(A2)+P(A3)+...。

4. 条件概率条件概率是指在事件B已经发生的条件下,事件A发生的概率,表示为P(A|B),其定义为P(A|B)=P(A∩B)/P(B)。

5. 独立事件两个事件A和B称为独立事件,当且仅当P(A∩B)=P(A)P(B)。

6. 贝叶斯定理贝叶斯定理是用来计算逆概率的定理,它表示为P(A|B)=P(B|A)P(A)/P(B)。

概率的应用1. 排列与组合排列和组合是概率论的一个重要应用。

排列是指从n个不同元素中取出m个元素进行排列的种数,用P(n,m)表示,其公式为P(n,m)=n!/(n-m)!。

组合是指从n个不同元素中取出m个元素进行组合的种数,用C(n,m)表示,其公式为C(n,m)=n!/(m!(n-m)!)。

2. 事件的独立性在概率论中,独立性是一个重要的概念。

事件A和事件B称为独立事件,如果P(A∩B)=P(A)P(B),即事件A的发生与事件B的发生互不影响。

在实际应用中,很多情况下要求两个事件的独立性,以便于计算事情发生的可能性。

3. 随机变量随机变量是概率论中的一个重要概念,它是一个从样本空间到实数的映射。

随机变量可分为离散型和连续型两种。

概率知识点总结汇总

概率知识点总结汇总
(17)伯努利概型
我们作了次试验,且满足
u每次试验只有两种可能结果,发生或不发生;
u次试验是重复进行的,即发生的概率每次均一样;
u每次试验是独立的,即每次试验发生与否与其他次试验发生与否是互不影响的。
这种试验称为伯努利概型,或称为重伯努利试验。
用表示每次试验发生的概率,则发生的概率为,用表示重伯努利试验中出现次的概率,
1° 0≤P(A)≤1,
2° P(Ω) =1
3°对于两两互不相容的事件,,…有
常称为可列(完全)可加性。
则称P(A)为事件的概率。
(8)古典概型
1°,
2°。
设任一事件,它是由组成的,则有
P(A)= =
(9)几何概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A,
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件
在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:
①每进行一次试验,必须发生且只能发生这一组中的一个事件;
②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用来表示。
基本事件的全体,称为试验的样本空间,用表示。
(8)二维均匀分布
设随机向量(X,Y)的分布密度函数为
其中SD为区域D的面积,则称(X,Y)服从D上的均匀分布,记为(X,Y)~U(D)。
例如图3.1、图3.2和图3.3。
y
1
D1
O1x
图3.1
y
D2
1
1
O2x
图3.2
y

全概率知识点总结大全

全概率知识点总结大全

全概率知识点总结大全1. 概率的基本概念1.1 概率的定义概率是描述随机事件发生可能性的数学工具。

它用来衡量事件发生的可能性大小,通常用0到1之间的一个实数表示,事件发生可能性越大,概率值越接近1;事件不发生的可能性越大,概率值越接近0。

1.2 随机事件随机事件是指在一定条件下,无法准确预测其具体结果的事件。

例如掷骰子的结果、抛硬币的正反面等都属于随机事件。

1.3 样本空间和事件样本空间是指所有可能结果的集合,用S表示。

事件是指样本空间中的子集,表示一组可能发生的结果。

2. 概率的计算2.1 古典概率古典概率适用于有限元素的事件。

概率的计算公式为P(A) = n(A) / n(S),其中n(A)表示事件A包含的基本事件数,n(S)表示样本空间包含的基本事件数。

2.2 几何概率几何概率适用于连续性事件。

概率的计算公式为P(A) = (事件A的面积) / (总体的面积)。

2.3 条件概率在给定B发生的条件下,A发生的概率称为条件概率,记为P(A|B) = P(AB) / P(B),其中P(AB)表示A和B同时发生的概率,P(B)表示B发生的概率。

2.4 边际概率当A和B是两个事件时,以及P(A) = P(AB) + P(A¬B)。

而P(B) = P(AB) + P(B¬A)。

3. 全概率公式和贝叶斯定理3.1 全概率公式全概率公式指的是如果事件A可以划分为互斥事件B1、B2、···、Bn,那么P(A) =P(A|B1)P(B1)+P(A|B2)P(B2)+···+P(A|Bn)P(Bn)。

3.2 贝叶斯定理贝叶斯定理是一种在已知P(A|Bi)的情况下求得P(Bi|A)的方法,公式为P(Bi|A) =(P(A|Bi)P(Bi)) / ΣP(A|Bj)P(Bj),其中Σ表示对所有可能的i求和。

4. 概率分布4.1 离散概率分布离散概率分布适用于有限个数的情况,常见的离散概率分布包括伯努利分布、二项分布、泊松分布等。

概率论知识点总结归纳

概率论知识点总结归纳

概率论知识点总结归纳概率论是一门研究随机现象数量规律的数学学科,它在许多领域都有着广泛的应用,如统计学、物理学、工程学、经济学等。

下面将对概率论中的一些重要知识点进行总结归纳。

一、随机事件与概率1、随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。

例如,掷骰子出现的点数就是一个随机事件。

2、样本空间样本空间是指随机试验的所有可能结果组成的集合。

3、事件的关系与运算包括包含、相等、和事件、积事件、差事件、互斥事件、对立事件等。

4、概率的定义概率是对随机事件发生可能性大小的度量。

概率的古典定义适用于等可能概型,几何概型则通过几何度量来计算概率。

5、概率的性质包括非负性、规范性和可加性。

二、条件概率与乘法公式1、条件概率在已知某个事件发生的条件下,另一个事件发生的概率称为条件概率。

2、乘法公式用于计算两个事件同时发生的概率。

三、全概率公式与贝叶斯公式1、全概率公式如果事件组构成一个完备事件组,那么对于任意一个事件,可以通过全概率公式计算其概率。

2、贝叶斯公式在已知结果的情况下,反推导致这个结果的某个原因的概率。

四、随机变量及其分布1、随机变量用来表示随机现象结果的变量。

2、离散型随机变量取值可以一一列举的随机变量,常见的离散型随机变量分布有二项分布、泊松分布等。

3、连续型随机变量取值充满某个区间的随机变量,其概率通过概率密度函数来描述。

常见的连续型随机变量分布有正态分布、均匀分布等。

五、期望与方差1、期望反映随机变量取值的平均水平。

2、方差描述随机变量取值的离散程度。

六、协方差与相关系数1、协方差衡量两个随机变量之间的线性关系程度。

2、相关系数是标准化后的协方差,取值范围在-1 到 1 之间。

七、大数定律与中心极限定理1、大数定律说明在大量重复试验中,随机变量的平均值趋近于其期望值。

2、中心极限定理当样本量足够大时,独立同分布的随机变量之和近似服从正态分布。

在学习概率论的过程中,需要理解各个概念的含义,掌握相关的公式和定理,并通过大量的练习来加深对知识点的理解和应用。

概率的知识点总结

概率的知识点总结

概率的知识点总结
一、基本概念
概率(Probability):表示某一事件发生的可能性大小的数值,通常用P表示。

随机事件:在相同条件下,可能发生也可能不发生的事件。

必然事件:在一定条件下,一定会发生的事件。

不可能事件:在一定条件下,一定不会发生的事件。

二、概率的计算
古典概型:当试验只有有限个基本结果,且每个基本结果出现的可能性相同时,称为古典概型。

此时,事件的概率等于该事件包含的基本结果数除以所有可能的基本结果数。

频率概型:在长期观察或大量重复试验中,某一事件发生的频率趋近于一个稳定值,这个稳定值即为该事件的概率。

三、概率的性质
非负性:任何事件的概率都是非负的,即P(A) ≥ 0。

归一性:必然事件的概率为1,即P(Ω) = 1;不可能事件的概率为0,即P(∅) = 0。

可加性:对于互斥事件A和B,有P(A∪B) = P(A) + P(B)。

条件概率:在已知事件B发生的条件下,事件A发生的概率称为条件概率,记作P(A|B)。

四、概率的应用
概率论在各个领域都有广泛的应用,如生物学、金融与经济学、工程与物理学、社会科学、数据科学与机器学习以及环境科学与地理学等。

它不仅是理论研究的基础,更是解决实际问题的重要工具。

总之,概率是一个涉及多个概念和计算方法的数学分支,具有广泛的应用价值。

通过学习和掌握这些知识点,可以更好地理解和应用概率论解决实际问题。

概率复习知识点总结

概率复习知识点总结

概率复习知识点总结1. 随机事件和概率随机事件是指在一定条件下,可能发生也可能不发生的事件。

概率是描述随机事件出现可能性的一种数学工具,通常用P(A)来表示事件A发生的概率。

概率的取值范围是0≤P(A)≤1,其中P(A)=0表示事件A不可能发生,P(A)=1表示事件A必然发生。

2. 概率的性质(1)互斥事件的概率如果事件A和事件B是互斥事件(即事件A和事件B不可能同时发生),则有P(A∪B)=P(A)+P(B)。

(2)对立事件的概率如果事件A和事件B是对立事件(即事件A和事件B不能同时发生,且二者的并集为全集),则有P(A)+P(B)=1。

3. 条件概率条件概率是指在已知事件B发生的条件下,事件A发生的概率,通常用P(A|B)表示。

条件概率的计算公式为P(A|B)=P(A∩B)/P(B)。

4. 事件的独立性如果事件A和事件B的发生不会相互影响,即P(A|B)=P(A),P(B|A)=P(B),则称事件A 和事件B是相互独立的。

独立事件的概率计算公式为P(A∩B)=P(A)×P(B)。

5. 随机变量和概率分布随机变量是对随机事件结果的数值描述,分为离散随机变量和连续随机变量两种。

概率分布是描述随机变量概率规律的函数,可以分为离散概率分布和连续概率分布。

6. 期望和方差随机变量的期望是对随机变量取值的加权平均,通常用E(X)表示。

随机变量的方差是对随机变量取值与其期望的离差的平方和的平均值,通常用Var(X)表示。

7. 大数定律和中心极限定理大数定律指的是随着样本数量的增加,样本均值会趋向于总体均值。

中心极限定理是指当样本容量足够大时,样本均值的分布将近似服从正态分布。

8. 总结概率学是一门重要的数学学科,具有广泛的应用价值。

通过掌握概率论的基本理论和方法,可以帮助我们更好地理解和应用概率学知识,解决实际问题。

希望大家通过本文的介绍,加深对概率学知识点的理解,为今后的学习和工作打下坚实的基础。

数学统计概率知识点总结

数学统计概率知识点总结

数学统计概率知识点总结一、概率的基本概念1. 概率的定义数学统计中的概率是指在一定的条件下,某一事件发生的可能性大小。

一般用P(A)来表示事件A发生的概率,0≤P(A)≤1,且P(Ω)=1。

2. 事件的分类在概率论中,事件可分为基本事件和复合事件。

基本事件是不可再分解的事件,而复合事件是由基本事件组成的事件。

3. 概率的公理概率的公理包括样本空间、事件和概率的公理。

其中,样本空间是指所有可能发生的基本事件的集合,事件是样本空间的子集,而概率就是定义在事件上的函数。

4. 古典概率古典概率是指在古典概型条件下,根据基本事件的等可能性,利用概率定义来计算事件发生的可能性。

5. 条件概率条件概率是指在已知事件B发生的条件下,事件A发生的概率。

条件概率的计算公式为P(A|B)=P(AB)/P(B)。

6. 独立事件独立事件是指事件A和事件B的发生与否互不影响,即P(AB)=P(A)P(B)。

7. 事件的互斥与对立互斥事件是指事件A和事件B不能同时发生,即P(AB)=0;对立事件是指事件A和事件B至少有一个发生,即P(A或B)=P(A)+P(B)。

二、概率的计算方法1. 加法定理加法定理是指事件A或事件B发生的概率为P(A或B)=P(A)+P(B)-P(AB)。

2. 全概率公式全概率公式是指如果事件B1、B2、…、Bn构成了一个完备事件组,且它们两两互斥,那么对任意事件A,有P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+…+P(A|Bn)P(Bn)。

3. 贝叶斯公式贝叶斯公式是指利用全概率公式和条件概率的定义,可以求得P(Bi|A)=P(A|Bi)P(Bi)/[P(A|B1)P(B1)+P(A|B2)P(B2)+…+P(A|Bn)P(Bn)]。

4. 排列与组合排列是指从n个元素中取出m个元素按一定顺序排列的方法数,记作A(n,m);组合是指从n个元素中取出m个元素不考虑顺序的方法数,记作C(n,m)。

概率知识点总结(实用8篇)

概率知识点总结(实用8篇)

概率知识点总结(实用8篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!概率知识点总结(实用8篇)概率知识点总结(1)概率,现实生活中存在着大量的随机事件,而概率正是研究随机事件的一门学科,教学中,首先以一个学生喜闻乐见的摸球游戏为背景,通过试验与分析,使学生体验有些事件的发生是必然的、有些是不确定的、有些是不可能的,引出必然发生的事件、随机事件、不可能发生的事件,然后,通过对不同事件的分析判断,让学生进一步理解必然发生的事件、随机事件、不可能发生的事件的特点,结合具体问题情境,引领学生设计提出必然发生的事件、随机事件、不可能发生的事件,具有相当的开放度,鼓励学生的逆向思维与创新思维,在一定程度上满足了不同层次学生的学习需要。

概率知识点总结

概率知识点总结

概率知识点总结概率基础概念:随机事件:在一定条件下并不总是发生的事件。

样本空间:随机试验所有可能结果的集合。

样本点:样本空间中的每一个元素。

必然事件:在每次试验中都会发生的事件。

不可能事件:在每次试验中都不会发生的事件。

概率的基本公式:逆事件的概率。

加法公式。

减法公式。

条件概率。

乘法公式。

全概率公式。

贝叶斯公式。

独立与互斥事件:独立事件:一个事件的发生不影响另一个事件的发生概率。

互斥事件:两个事件不能同时发生。

常见的分布:0-1分布(伯努利分布)。

二项分布。

泊松分布。

几何分布。

均匀分布。

指数分布。

正态分布(高斯分布)。

期望:一维离散型随机变量的期望。

一维连续型随机变量的期望。

二维离散型随机变量的期望。

二维连续型随机变量的期望。

期望的性质。

方差:方差的定义。

方差的性质。

协方差和相关系数:协方差的定义。

相关系数的定义和性质。

大数定律:依概率收敛的概念。

频率与概率:在大量重复试验中,事件的频率趋于稳定,这个稳定值就是事件的概率。

频率的性质:非负性、规范性、有限可加性。

求复杂事件的概率:当一个随机事件难以用树状图或列表法求解时,可以通过大量实验和统计的方法估计其发生的概率。

进行大量实验时,应当注意实验条件的一致性、实验次数的充足性、实验结果的准确记录和分析。

判断游戏公平性:游戏公平性通常通过比较双方获胜的概率来判断,如果双方获胜的概率相同或接近,则游戏被认为是公平的。

这些知识点构成了概率论的基本框架,对于理解随机现象、预测未来事件、以及做出基于概率的决策具有重要意义。

《概率》知识点总结+典型例题+练习(含答案)

《概率》知识点总结+典型例题+练习(含答案)

概率考纲要求1.了解随机现象和概率的统计定义,理解必然事件和不可能事件的意义.2.知道概率的性质,理解古典概率模型的含义,掌握求古典概型的方法,并会求古典概型的概率.3.知道互斥事件,会用概率加法公式求互斥事件的概率.4.认识n 次独立重复实验模型,并记住n 次独立重复实验中恰好发生k 次的概率公式,并会简单应用.5.了解随机变量、离散型随机变量及其概率分布;能写出简单的离散型随机变量的概率分布.6.了解二项分布,能写出简单的二项分布. 知识点一:随机事件的概率 1.随机事件的相关概念随机现象:在相同条件下具有多种可能结果,而事先又无法确定会出现哪种结果的现象称为随机现象.随机试验:研究随机现象所进行的观察和试验称为随机试验.随机事件:随机试验的结果称为随机事件,简称事件,常用大写字母A ,B ,C 等来表示. 必然事件:在一定条件下,必然发生的事件称为必然事件,用Ω来表示. 不可能事件:在一定条件下,不可能发生的事件称为不可能事件,用∅来表示. 基本事件:在随机试验中不能再分的最简单的随机事件称为基本事件. 复合事件:可以用基本事件来描述的随机事件称为复合事件. 2.频率与概率频数:设在n 次重复试验中,事件发A 生了m 次(0 ≤m ≤n ),m 称为事件A 的频数. 频率:事件A 的频数在试验的总次数中所占的比例mn,称为事件A 发生的频率. 事件A 发生的概率:当试验次数充分大时,如果事件发A 生的频率mn总稳定在某个常数附近,那么就把这个常数叫做事件A 发生的概率,记作)(A P . 事件A 发生的概率的性质:(1)对于必然事件Ω,()1=P Ω; (2)对于不可能事件∅,0)(=∅P ; (3)0≤P (A )≤1. 知识点2: 古典概型 1. 古典概型:(1)定义:如果一个随机试验的基本事件只有有限个,并且各个基本事件发生的可能性都相等,那么称这个随机试验属于古典概型.特征:试验的所有可能结果的个数是有限的;每个结果出现的机会均等.(2)在古典概型中,若试验共包含有n 个基本事件,并且每一个事件发生的可能性都相同,事件A 包含m 个基本事件,那么事件A 发生的概率()m P A n =2.互斥事件:(1)定义:在随机试验中,不可能同时发生的两个事件称为互斥事件或互不相容事件 (2)和事件:在随机试验中,若事件C 发生意味着事件A 与事件B 中至少有一个发生,则把事件C 称为事件A 与事件B 的和事件,记作C AB =(3)互斥事件的概率加法公式:互斥的事件A 和事件B 中至少有一个发生的概率()()()P A B P A P B =+知识点3:离散型随机变量及其分布 1.随机变量的概念如果随机试验的结果可以用一个变量的取值来表示,这个变量的取值带有随机性,并且取这些值的概率是确定的,那么这个变量叫做随机变量,通常用小写希腊字母ξ、η等表示,或用大写英文字母,,,X Y Z 等表示. 2.离散型随机变量的概念如果随机变量的所有可能取值可以一一列出,则这种随机变量称为离散型随机变量. 3.离散型随机变量的概率分布(1)离散型随机变量的概率分布的定义离散型随机变量ξ的所有可能取值1x ,2x ,3x …,i x …与其对应的概率(x )i i P p ξ==(i =1,2,3,…)所有组成的表叫做随机变量ξ的概率分布(分布列). 离散型随机变量概率分布的性质. ① 0(1,2,3,)i p i =≥;②1231i p p p p +++⋅⋅⋅++⋅⋅⋅=.(2)计算离散型随机变量的概率分布的主要步骤为 ①写出随机变量的所有取值;②计算出各个取值对应的随机事件的概率; ③列出表格.注意验证0(1,2,3,)i p i =≥以及121i p p p ++⋅⋅⋅++⋅⋅⋅=.知识点4:二项分布 1.n 次独立重复实验定义:在相同条件下,重复进行n 次试验,如果每次试验的结果与其他各次试验的结果无关,那么这n 次重复试验叫做n 次独立重复试验. 2.n 次伯努利实验定义:在n 次独立重复试验中,如果每次试验的可能结果只有两个,且它们相互对立,即只考虑两个事件A 和A ,并且在每次试验中事件A 发生的概率都相同,这样的n 次独立重复试验叫做n 次伯努利试验. 3.伯努利公式如果在每次试验中事件A 发生的概率()P A p =,事件A 不发生的概率()1P A p =-,那么在n 次伯努利试验中,事件A 恰好发生k 次的概率为k n k k n n p p k P --=)1(C )((其中0,1,2,,k n =⋅⋅⋅).4.二项分布如果在一次试验中某事件A 发生的概率的p ,随机变量ξ为n 次独立试验中事件发A 生的次数,那么随机变量ξ的概率分布为其中n k p ,,2,1,0,10 =<<我们将这种形式的随机变量ξ的概率分布叫做二项分布.称随机变量ξ服从参数为n 、p 的二项分布,记为(,)B n p ξ.二项分布是以伯努利试验为背景的重要分布. 题型一 基本概念例1 一口袋中有10个小球,其中有8个白球、2个黑球,从中任取3个小球,有以下事件:①3个都是白球. ②至少有一个是黑球. ③3个都是黑球. ④至少有一个白球.其中随机事件是 ;必然事件是 ;不可能事件是 . 分析:本题考察定义的理解及“至少”的含义. 随机事件有①②; 必然事件有④; 不可能事件有③. 解答:①②,④,③ 题型二 古典概型例2 同时抛掷两颗骰子,则所得点数之和为7的概率为 .分析:本题考查古典概型,试验发生包含的事件是抛掷两颗骰子,共有6⨯6=36种结果,满足条件的事件是点数之和为7,可以列举出所有的事件:(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)共有6种结果,根据古典概型概率公式得到61=P . 解答:61. 题型三 互斥事件例3 某地区年降水量在50~100mm 范围内的概率为0.21,在100~150mm 范围内的概率为0.22,则年降水量在50~155mm ,范围内的概率为多少? 分析:应用互斥事件的概率加法公式 解答:0.43题型四 独立重复试验及概率例4 一枚硬币连续抛掷3次,恰好有两次正面向上的概率为( ).A.18B.38C.12 D.23分析:设事件A ={正面向上},则()P A =12,抛掷3次相当于做3次独立重复试验,恰好有两次正面向上的概率为2123113(2)228P C ξ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭. 解答:B .题型五 离散型随机变量的概率分布例5 从含有8个正品、2个次品的产品中,不放回地抽取3次,每次抽取一个,用ξ表示抽到次品的次数,求: (1) ξ的概率分布.(2) 至多有一次抽到次品的概率.解答:(1)随机变量ξ的所有可能取值为0,1,2,且383107(0)15C P C ξ===, 1228310715C C P C ξ=(=1)=, 21283101(2)15C C P C ξ===. 所以ξ的概率分布为(2)至多有一次抽到次品的概率为715+715=1415. 题型六 二项分布例6 在人寿保险中,设一个投保人能活到65岁的概率为0.6,求三个投保人中活到65岁的人数ξ的概率分布.解答:记A ={一个投保人能活到65岁},则A ={一个投保人活不到65岁}.于是()0.6,()10.60.4P A P A ==-=.且随机变量(3,0.6)B ξ.因此0333(0)0.6(10.6)0.064P C =⋅⋅-=, 11233(1)0.6(10.6)0.288P C =⋅⋅-=,22133(2)0.6(10.6)0.432P C =⋅⋅-=,33033(3)0.6(10.6)0.216P C =⋅⋅-=.所以,三个投保人中能活到65岁的人数ξ的概率分布为一、选择题1.在10张奖券中,有1张一等奖,2张二等奖,从中任意抽取1张,则中一等奖的概率为( ). A.310 B.15 C.110 D.132.甲乙两人进行一次射击,甲击中目标的概率为0.7,乙击中的概率为0.2,那么甲乙两人都没击中的概率为( ).A. 0.24 B .0.56 C. 0.06 D. 0.863.某人从一副不含大小王扑克牌中(52张)任意取一张出来,他抽到黑桃或是红桃的概率为( ).A. 0B.152 C. 1352 D. 124.书包里有中文书5本,英文书3本,从中任集抽取2本,则都抽到中文书的概率是( ). A.15 B.25 C.12 D.5145.一个口袋中有5个红球,7个白球,每次取出一个,有放回取三次,观察球的颜色属于( ).A.重复试验B.古典概型C. 3次独立重复试验概率模型D.以上都不是 6.同时抛掷三枚硬币,三枚出现相同一面的概率为( ).A12 B 14 C 16 D 187.某品牌种子的发芽率是0.8,在试验的5粒种子中恰有4粒发芽的概率是( ). A.410.8(10.8)- B.140.8(10.8)-C.41450.8(10.8)C -D.44150.8(10.8)C -8.下列变量中不是随机变量的是( ). A. 射手射击一次的环数 B. 在一个标准大气压下100时会沸腾 C. 城市夏季出现的暴雨次数 D. 某班期末考试数学及格人数9.若从标有3,4,5,6,7的5张卡片中任取3张,取得奇数的个数为ξ,则随机变量ξ的可能取值的个数是( ).A .0 B. 1 C. 2 D .3 10.已知离散型随机变量ξ的概率分布为则n 的值为( ).A .0.31 B. 0.25 C. 0.26 D. 0.2 二、判断题:1. 某人参加射击比赛,一次射击命中的环数为(奇数环)是随机事件( )2. 在重复进行同一试验时,随着试验总次数的增加,事件A 发生的频率一般会越来越接近概率. ( )3. 任一事件A ,其发生的概率为()P A ,则有0≤P (A )≤1 . ( )4. 必然事件的概率为0.( )5. 袋子里有3颗红球6颗白球,从中任取一颗是白球的概率是13.( ) 6. 盒内装有大小相同的3个白球1个黑球,从中摸出2个球,则两个球全是白球的概率是12. ( )7. 同时抛掷3枚硬币,三枚出现相同一面的概率是18. ( )8. 同宿舍8人抓阄决定谁负责周一值日是随机试验.( )9. 运动员进行射击训练,考察一次射击命中的环数,命中2环的概率是110. ()10. 甲、乙两台机床,它们因故障停机的概率分别为0.01和0.02,则这两台机床同时因故障停机的概率为0.03. ( )三、填空题1.在10件产品中有3件次品,若从中任取2件,被抽到的次品数用ξ表示,则2ξ=表示的随机事件为.2.盒中有3个白色的球和5个红色的球,任取出一个球,取出的是红色的概率为.3.10件产品中有2件次品,任取3件,设取出的3件产品中所含正品数为随机变量ξ,则ξ的可能取值为.4.从甲、乙、丙3人中,任选2人参加社会实践,甲被选中的概率为.5.某气象站天气预报的准确率为0.8,一周中播报准确的次数为ξ,则2ξ=的概率为.(用式子表示)四、解答1.口袋里装有3个黑球与2个白球,任取3个球,求取到的白球的个数ξ的概率分布.2.口袋里装有4个黑球与1个白球,每次任取1个球,有放回地取3次,求所取过的3个球中恰有两个黑球的概率.高考链接1.(2014年) 已知离散型随机变量ξ的概率分布为则(1)Pξ==( ).A .0.24 B. 0.28 C.0.48 D.0.522.(2019年) 一口袋里装有4个白球和4个红球现在从中任取3个球,则取到既有白球又有红球的概率 .3.(2018年) 若将一枚硬币抛3次,则至少出现一次正面的概率为 .4.(2016年) 从1,2,3,4,5中任选3个数字组成一个无重复数字的三位数,则这个三位数是偶数的概率为 .5.(2017年) 取一个正方形及其外接圆,在圆内随机取一点,该点取自正方形内的概率为.积石成山1.某单选题要求从A 、B 、C 、D 四个选项中,选择一个正确答案,假设考生不会,随机地选择了一个答案,则他答对此题的概率是().A.1B.12C.13D.142. 某乐队有11名乐师,其中男乐师7人,现该乐队要选出一名指挥,则选出的指挥为女乐师的概率为().A.711B14C.47D.4113. 已知A 、B 是互斥事件,若1()5P A=,1()2P A B+=,则()P B的值是().A .45B.710C.310D.1104. 袋中装有3个黑球和2个白球一次取出两个球,恰好是黑白球各一个的概率().A. 15B.310C.25D.355. 5人站成一排照相,其中甲乙二人相邻的概率为().A. 25B.35C.15D.146. 一个箱子中有6个除了颜色之外完全一样的球,其中2个是红色的,4个是黑色的,那么在里面随机拿出一个是红色的概率是多少?().A. 12B.13C.14D.167. 掷一枚质地均匀且六面上分别有1,2,3,4,5,6点的骰子,则向上一面点数大于4的概率为().A. 12B.13C.23D.148. 抛掷一枚质地均匀的骰子,则向上一面出现偶数点概率是().A.12B.13C.16D.19.把一枚均匀的硬币连抛5次,得到5次国徽向上的概率为().A. 132B.532C.316D.313210.一副扑克牌去掉大小王,任意抽出一张不是黑桃的概率为().A. 14B .13C.12D.34概率答案一、选择题二、判断题三、填空题1.{任抽2件,有2件次品}.2. 58解析:151858CpC==.3. 1,2,3.4. 23解析:枚举法:选派方法有(甲,乙),(甲,丙),(乙,丙)共3种,其中甲被选中有2种,故所求概率为 23P =.5. 22570.8(10.8)C ⨯⨯-解析:设A ={播报一次,准确},则()0.8P A =,所以2257(2)0.8(10.8)P C ξ==⨯⨯-四、解答题1. 分析:任取3球属于古典概型,服从的分布为离散型随机变量的概率分布. 解:随机变量ξ的所有可能取值为0,1,2,则3032351(0)10C C P C ξ===, 2132353(1)5C C P C ξ===, 1232353(2)10C C P C ξ===. 所以概率分布为2. 分析:本题为有放回的抽取,是伯努利试验,服从二项分布. 解:设所取过的3个球中含有黑球的个数为随机变量ξ,则43,5B ξ⎛⎫⎪⎝⎭,于是 21234148(2)55125P C ξ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭ .高考链接1.B2.67解析:古典概率模型,则从中任意取3个球,取到既有白球又有红球的概率为122144443867C C C C C +=.3.78解析:试验发生包含的事件是将一枚硬币抛掷三次,共有328=(种)结果,满足条件的事件的对立事件是三枚硬币都是反面,有1种结果,则至少一次正面向上的概率是17188-=.4.25解析:从1,2,3,4,5这5个数字中任取3个数字组成没有重复的三位数,基本事件总数3560n P ==,这个三位数是偶数包含的基本事件个数122424m C P ==,∴这个三位数是偶数的概率为242605mPn===.5. 2π解析:设正方形的边长为11S=正方形,∴222Sππ⎛=⨯=⎝⎭外接圆∴该点取自正方形内部的概率为122Pππ==.积石成山。

根据概率理论知识点归纳总结(精华版)

根据概率理论知识点归纳总结(精华版)

根据概率理论知识点归纳总结(精华版)1. 概率的定义和基本概念概率是指某个事件发生的可能性,通常用一个介于0和1之间的数值来表示。

概率的基本概念包括样本空间、事件、事件的概率和事件的互斥与独立关系。

2. 概率的常用计算方法常用的概率计算方法包括古典概型、几何概型和统计概率。

古典概型是指在样本空间中,每个元素出现的可能性相等;几何概型是指在几何空间中,通过几何图形计算概率;统计概率是指通过统计数据计算概率。

3. 概率的性质和运算法则概率具有加法法则、乘法法则和补法则等基本性质。

加法法则指若事件A和事件B互斥,则事件A或事件B发生的概率等于事件A的概率加上事件B的概率;乘法法则指若事件A和事件B相互独立,则事件A和事件B同时发生的概率等于事件A的概率乘以事件B的概率;补法则指事件A发生的概率加上事件A不发生的概率等于1。

4. 随机变量与概率分布随机变量是指在随机试验中可能取不同值的变量。

概率分布是随机变量取各个值的概率分布情况,包括离散型随机变量和连续型随机变量。

5. 常用的离散型随机变量分布常用的离散型随机变量分布包括伯努利分布、二项分布、泊松分布等。

伯努利分布是指试验只有两个可能结果的情况下的分布;二项分布是指重复进行伯努利试验的情况下的分布;泊松分布是指在一段时间或一定空间内某个事件发生的次数的分布情况。

6. 常用的连续型随机变量分布常用的连续型随机变量分布包括均匀分布、正态分布和指数分布等。

均匀分布是指在某个区间内各个数值出现的可能性相等的分布;正态分布是统计学中常见的分布,具有钟形曲线特点;指数分布是指事件发生的间隔时间服从指数分布的情况。

以上为对概率理论相关知识点的归纳总结,可以作为概率理论学习的精华版。

概率与统计基本知识点总结

概率与统计基本知识点总结

概率与统计基本知识点总结1.概率理论:概率的定义:概率是描述随机事件发生可能性的数值,通常用介于0和1之间的数表示。

概率的基本性质:概率值在0到1之间,且所有可能事件的概率之和为1事件的独立性:两个或多个事件相互独立,意味着一个事件的发生不受其他事件发生与否的影响。

加法法则:若A和B是两个事件,则它们联合发生的概率等于它们各自发生的概率之和减去它们同时发生的概率。

乘法法则:对于两个独立事件A和B,它们同时发生的概率等于它们各自发生的概率之积。

条件概率:事件A在事件B发生的条件下发生的概率,表示为P(A,B)。

贝叶斯定理:根据已知的条件概率,求解另一个条件概率的计算公式。

2.随机变量与概率分布:随机变量:将随机事件的结果映射到实数上的变量。

离散型随机变量:取有限个或可数个值的随机变量。

连续型随机变量:取任意实数值的随机变量。

概率分布:描述随机变量取各个值的概率的函数。

离散型概率分布:包括离散均匀分布、二项分布、泊松分布等。

连续型概率分布:包括连续均匀分布、正态分布、指数分布等。

期望:随机变量的平均值,反映其分布的中心位置。

方差:随机变量偏离其均值的程度,反映其分布的离散程度。

3.统计推断:总体与样本:总体是指研究对象的全体,样本是从总体中抽取的一部分个体。

参数与统计量:总体的数值特征称为参数,样本的数值特征称为统计量。

抽样分布:样本统计量的概率分布。

中心极限定理:在一定条件下,样本容量足够大时,样本的均值近似服从正态分布。

置信区间:用样本统计量作为总体参数的估计范围。

假设检验:通过对样本数据的分析,判断总体参数是否满足其中一种假设。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率知识点总结
1、确定性现象:在一定条件下必然出现的现象。

2、随机现象:在一定条件下可能发生也可能不发生的现象。

3、概率论:是研究随机现象统计规律的科学。

4、随机试验:对随机现象进行的观察或实验统称为随机试验。

5、样本点:随机试验的每个可能出现的实验结果称为这个试验的一个样本点。

6、样本空间:所有样本点组成的集合称为这个试验的样本空间。

7、随机事件:如果在每次试验的结果中,某事件可能发生,也可能不发生,则这一事件称为随机事件。

8、必然事件:某事件一定发生,则为必然事件。

9、不可能事件:某事件一定不发生,则为不可能事件。

10、基本事件:有单个样本点构成的集合称为基本事件。

11、任一随机事件都是样本空间的一个子集,该子集中任一样本点发生,则该事件发生。

利用集合论之间的关系和运算研究事件之间的关系和运算。

(1)事件的包含A B

(2)事件的并(和)A B
(3)事件的交(积)A B
(4)事件的差A B A B
-=-=
AB A
(5)互不相容事件(互斥事件)A Bφ
=
(6)对立事件(互逆事件)A B Ω=,A B φ=,记B A = (7)完备事件组:事件12,,,n A A A 两两互不相容,且1n A A A
Ω=
(8)事件之间的运算规律:交换律、结合律、分配率、De Morgan 定理 12、概率
()1P Ω=,()0P φ=
如果12,,,n A A A 两两互不相容,则112()()()()n n P A A
P A P P A A A =++
+
如果,A B 是任意两个随机事件,则()()()P A B P A P AB -=- 如果B A ⊂,则()()()P A B P A P B -=-
()()()()P A B P A P B P AB =+-
()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+ 1
111
12
1()()()()
()()(1())
()
n
n j i j i n
i n j k n i i i j k n
P A A
P A P A P A P A P A P A P A A A A ≤<≤=-≤<<≤=-
+
--
+∑
∑∑
12、古典概型
每次试验中,所有可能发生的结果只有有限个,即样本空间是有限集 每次试验中,每一个结果发生的可能性相同
()A P A =
包含的基本事件数
试验的基本事件总数
13、条件概率:()
(|)()
P AB P A B P B =为事件B 发生的条件下,事件A 发生的条件概率
加法公式:()()()()P A B P A P B P AB =+-,若,A B 互斥,则()()()P A B P A P B =+
乘法公式:()()(|)()(|)P AB P A P B A P B P A B ==,若,A B 独立,则()()()P AB P A P B = 全概率公式:1221()()(|)()(|)()(|)n n P A P B P A B P B P A B P B P A B =+++
贝叶斯公式:11()()(|)
(|)()()(|)()(|)
k k k n n k P AB P B P A B P B A P A P B P A B P B P A B =+=+
14、事件独立:如果(|)()P B A P B =,则称事件B 对于事件A 独立,此时,事件A 对于事件B 独立,称,A B 相互独立。

,A B 相互独立的充要条件是
()()()P AB P A P B =。

A 与B ,A 与B ,A 与B ,A 与B 具有相同的独立性。

15、随机变量:如果对每一个样本点ω,都有唯一的实数()X ω与之对应,则称()X X ω=为样本空间上的随机变量。

离散型随机变量:随机变量的取值是有限个或可列多个。

表示方法:用概率分布(分布律)表示。

公式法()k k P X x p ==,1,2,k =;列表法。

16、常见的离散型随机变量:
(1)0-1分布(两点分布):随机变量只能取到0和1两个值
(2)二项分布:将试验独立重复进行n 次,每次实验中,事件A 发生的概率为p ,则称这n 次试验为n 重Bernoulli 试验。

以X 表示n 重Bernoulli 试验中事件A 发生的此时,则X 服从参数为,n p 的二项分布,记作~(,)X B n p ,分布律为()(1)k k n k k n P X x C p p -==-,0,1,,2,k n =。

二项分布随机变量可以分解成n 个0-1分布随机变量之和。

(3)泊松分布:若随机变量的分布律为
()!
k
k P X x k e λλ-==
,0,1,,2,k n =,则称X 服从参数为λ的泊松分布,记作
~()X πλ。

泊松定理:lim ()li !
m (1)
k
k k
n k
n k n n
P X x C p e k p λλ--→∞→∞==-=
当n 较大,p 较小,np 适中时,可以用泊松分布公式近似替换二项分布公式。

17、随机变量的分布函数:()()F x P X x ≤=
18、离散型随机变量:取值有限或无限可列,用分布律刻画。

连续性随机变量:取值充满一个区间,用概率密度函数刻画。

概率密度函数(密度函数):若存在非负可积函数()f x ,使得
)(()()x x d F P X f t t x -∞
==≤⎰
则称X 为连续型随机变量,()f x 为X 的概率密度函数,若()f x 在x 处连续,则'()()F x f x =
19、连续型随机变量X 取任意单点值的概率为0,即()0P X a ==
()()()(())b
a X
b X P a X a P a P a P a b X b f t dt ≤≤≤≤<<<==<==⎰
()()()a
P X a P X a f t dt +∞
≥>==⎰
20、常见的连续型随机变量:
(1)均匀分布:,()0,
1
x x b a a b
f ⎧⎪=-⎪⎩≤⎨
≤其他
则称X 在[,]a b 上服从均匀分布,记为~(,)X U a b
(2)指数分布:,()0,0
x e x f x λλ-⎨>⎧=⎩
其他
则称X 服从参数为λ的指数分布,记为~()X E λ (3)正态分布:
22
()2()x f x μσ--=
,则称X 服从参数为,μσ的正态分布,记为2~(,)N X μσ
标准正态分布:~(0,1)X N
,2
2()x f x -=
,分布函数2
2
()t dt x +∞-Φ=⎰ 设2~(,)N X μσ,则X 的分布函数()x F x μσ⎛⎫
=Φ ⎪⎝⎭
-
21、随机变量函数的分布:设随机变量X 的分布已知,()Y g X =,求随机变量Y 的分布。

相关文档
最新文档