2021年高中数学 第二章 2.4等比数列(一)课时作业 新人教A版必修5
高中数学 第二章 数列 2.4.1 等比数列的概念及通项公式练习 新人教A版必修5-新人教A版高一必
第1课时等比数列的概念及通项公式课后篇巩固探究A组1.若a,b,c成等差数列,则一定()A.是等差数列B.是等比数列C.既是等差数列也是等比数列D.既不是等差数列也不是等比数列解析因为a,b,c成等差数列,所以2b=a+c,于是,所以一定是等比数列.答案B2.在等比数列{a n}中,a2 017=-8a2 014,则公比q等于()A.2B.-2C.±2D.解析由a2 017=-8a2 014,得a1q2 016=-8a1q2 013,所以q3=-8,故q=-2.答案B3.在等比数列{a n}中,a n>0,且a2=1-a1,a4=9-a3,则a4+a5的值为()A.16B.27C.36D.81解析由a2=1-a1,a4=9-a3,得a1+a2=1,a4+a3=9.设公比为q,则q2==9.因为a n>0,所以q=3,于是a4+a5=(a1+a2)q3=27.答案B4.已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2=()A.-4B.-6C.-8D.-10解析∵a4=a1+6,a3=a1+4,a1,a3,a4成等比数列,∴=a1·a4,即(a1+4)2=a1·(a1+6),解得a1=-8,∴a2=a1+2=-6.故选B.答案B5.已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n=()A.2n-1B.C.D.解析由S n=2a n+1,得S n=2(S n+1-S n),即2S n+1=3S n,.又S1=a1=1,所以S n=,故选B.答案B6.已知等比数列{a n},a3=3,a10=384,则该数列的通项a n=.解析设公比为q.∵=q7==27,∴q=2.∴a n=a3q n-3=3·2n-3.答案3·2n-37.在数列{a n}中,已知a1=3,且对任意正整数n都有2a n+1-a n=0,则a n=.解析由2a n+1-a n=0,得,所以数列{a n}是等比数列,公比为.因为a1=3,所以a n=3·.答案3·8.在等比数列{a n}中,若a1=,q=2,则a4与a8的等比中项是.解析依题意,得a6=a1q5=×25=4,而a4与a8的等比中项是±a6,故a4与a8的等比中项是±4.答案±49.导学号04994040已知数列{a n}是等差数列,且a2=3,a4+3a5=56.若log2b n=a n.(1)求证:数列{b n}是等比数列;(2)求数列{b n}的通项公式.(1)证明由log2b n=a n,得b n=.因为数列{a n}是等差数列,不妨设公差为d,则=2d,2d是与n无关的常数,所以数列{b n}是等比数列.(2)解由已知,得解得于是b1=2-1=,公比q=2d=24=16,所以数列{b n}的通项公式b n=·16n-1.10.已知数列{a n}满足a1=,且a n+1=a n+(n∈N*).(1)求证:是等比数列;(2)求数列{a n}的通项公式.(1)证明∵a n+1=a n+,∴a n+1-a n+.∴.∴是首项为,公比为的等比数列.(2)解∵a n-,∴a n=.B组1.若a,b,c成等差数列,而a+1,b,c和a,b,c+2都分别成等比数列,则b的值为()A.16B.15C.14D.12解析依题意,得解得答案D2.在等比数列{a n}中,a1=1,公比|q|≠1.若a m=a1a2a3a4a5,则m等于()A.9B.10C.11D.12解析∵a m=a1a2a3a4a5=q·q2·q3·q4=q10=1×q10,∴m=11.答案C3.已知等比数列{a n},各项都是正数,且a1,a3,2a2成等差数列,则=()A.3+2B.1-C.1+D.3-2解析由a1,a3,2a2成等差数列,得a3=a1+2a2.在等比数列{a n}中,有a1q2=a1+2a1q,即q2=1+2q,得q=1+或1-(舍去),所以=q2=(1+)2=3+2.答案A4.已知-7,a1,a2,-1四个实数成等差数列,-4,b1,b2,b3,-1五个实数成等比数列,则=. 解析由题意,得a2-a1==2,=(-4)×(-1)=4.又b2是等比数列中的第3项,所以b2与第1项同号,即b2=-2,所以=-1.答案-15.已知一个等比数列的各项均为正数,且它的任何一项都等于它的后面两项的和,则它的公比q=.解析依题意,得a n=a n+1+a n+2,所以a n=a n q+a n q2.因为a n>0,所以q2+q-1=0,解得q=(q=舍去).答案6.若数列a1,,…,,…是首项为1,公比为-的等比数列,则a5=.解析由题意,得=(-)n-1(n≥2),所以=-=(-)2,=(-)3,=(-)4,将上面的四个式子两边分别相乘,得=(-)1+2+3+4=32.又a1=1,所以a5=32.答案327.已知数列{a n}满足S n=4a n-1(n∈N*),求证:数列{a n}是等比数列,并求出其通项公式.解依题意,得当n≥2时,S n-1=4a n-1-1,所以a n=S n-S n-1=(4a n-1)-(4a n-1-1),即3a n=4a n-1,所以,故数列{a n}是公比为的等比数列.因为S1=4a1-1,即a1=4a1-1,所以a1=,故数列{a n}的通项公式是a n=.8.导学号04994041已知数列{a n}的前n项和S n=2a n+1,(1)求证:{a n}是等比数列,并求出其通项公式;(2)设b n=a n+1+2a n,求证:数列{b n}是等比数列.证明(1)∵S n=2a n+1,∴S n+1=2a n+1+1,S n+1-S n=a n+1=(2a n+1+1)-(2a n+1)=2a n+1-2a n,∴a n+1=2a n.由已知及上式可知a n≠0.∴由=2知{a n}是等比数列.由a1=S1=2a1+1,得a1=-1,∴a n=-2n-1.(2)由(1)知,a n=-2n-1,∴b n=a n+1+2a n=-2n-2×2n-1=-2×2n=-2n+1=-4×2n-1.∴数列{b n}是等比数列.。
2021学年高中数学人教A版必修5课件:课时作业+2-4-2+等比数列的性质
解:(1)设等比数列{an}的公比为 q, 因为 a23=9a2a6=9a24, 所以 q2=aa3422=19,因为 an>0, 所以 q>0,所以 q=13, 因为 2a1+3a2=2a1+3a1q=1,
所以 3a1=1,a1=13,所以 an=13n.
(2)bn=log3a1+log3a2+…+log3an =log3(a1·a2·…·an) =log3131+2+3+…+n=-nn2+1. 设数列b1n的前 n 项和为 Sn, 则 Sn=-21×1 2+2×1 3+…+nn1+1 =-21-12+12-13+…+1n-n+1 1 =-21-n+1 1=-n2+n1.
元.根据以上数据,2018 年该地区农民人均收入介于( B )
A.4 200 元~4 400 元 B.4 400 元~4 600 元 C.4 600 元~4 800 元 D.4 800 元~5 000 元
解析:将 2013 年记作第 1 年,该地区农民人均收入第 n 年为 an,
则 a1=3 150,a2=1 800×(1+6%)+1 350+160,…,an=1 800×(1+6%)n-1+1 350+(n-1)×160.
解析:等比数列{an}中,a3a11=a72=4a7,解得 a7=4,等差 数列{bn}中,b5+b9=2b7=2a7=8.
二、填空题 7.在等比数列{an}中,各项均为正数,且 a6a10+a3a5=41,
a4a8=5,则 a4+a8=____5__1___.
解析:因为 a6a10=a28,a3a5=a24, 所以 a28+a42=41. 又因为 a4a8=5, an>0, 所以 a4+a8= a4+a82= a24+2a4a8+a82= 51.
等比数列习题(有答案)第一课时-数学高一必修5第二章数列2.4人教A版
第二章 数列2.4等比数列测试题知识点一: 等比数列的概念及等比中项的求解1.下面有四个结论:①由第1项起乘相同常数得后一项,这样所得到的数列一定为等比数列;②常数列b ,…,b 一定为等比数列;③等比数列{a n }中,若公比q =1,则此数列各项相等;④等比数列中,各项与公比都不能为零.其中正确的结论的个数是( )A .0B .1C .2D .32.2+1与2-1,两数的等比中项是( )A .1B .-1C .±1 D.123.对任意等比数列{a n },下列说法一定正确的是( )A .a 1,a 3,a 9成等比数列B .a 2,a 3,a 6成等比数列C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9成等比数列知识点二: 等比数列的通项公式及运算4.已知一等比数列的前三项依次为x,2x +2,3x +3,那么-1312是此数列的第________项( )A .2B .4C .6D .85.(2014·东营高二检测)已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8=( ) A .1+ 2 B .1- 2C .3+2 2D .3-2 26.一个各项均为正数的等比数列,其任何项都是后面两项的和,则其公比是( )A.52B.1-52C.25D.5-12 7.若正项数列{a n }满足lg a n +1=1+lg a n ,且a 2 001+a 2 002+a 2 003+…+a 2 010=2 014,则a 2 011+a 2 012+a 2 013+…+a 2 020的值为( )A .2 014×1010B .2 014×1011C .2 015×1010D .2 015×10118.(2015·山西四校联考)等比数列{a n }满足a n >0,n ∈N *,且a 3·a 2n -3=22n (n ≥2),则当n ≥1时,log 2a 1+log 2a 2+…+log 2a 2n -1=( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)29.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________.10.等比数列{a n }中,a 1=98,a n =13,公比q =23,则n =________.11.数列{a n }为等比数列,a n >0,若a 1·a 5=16,a 4=8,则a n =________.知识点三: 等比数列通项的简单应用12.在6和768之间插入6个数,使它们组成共8项的等比数列,则这个等比数列的第6项是________.13.若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.14.在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.15.(2014·潍坊高二检测)在各项均为负的等比数列{a n }中,2a n =3a n +1,且a 2·a 5=827.(1)求数列{a n }的通项公式;(2)-1681是否为该数列的项?若是,为第几项?16.等比数列{a n }中,a 2=32,a 8=12,a n >a n +1.(1)求数列{a n }的通项公式;(2)设T n =log 2a 1+log 2a 2+log 2a 3+…+log 2a n ,求T n 的最大值.知识点四:等比数列的判断与证明17.已知等比数列{b n }与数列{a n }满足b n =3a n (n ∈N *).(1)判断{a n }是何种数列,并给出证明;(2)若a 8+a 13=m ,求b 1·b 2·…·b 20.18.已知数列{a n }满足a 1=78,且a n +1=12a n +13,n ∈N *.(1)求证:⎩⎨⎧⎭⎬⎫a n -23是等比数列; (2)求数列{a n }的通项公式.19.数列{a n }中,a 1=2,a 2=3,且{a n a n +1}是以3为公比的等比数列,记b n =a 2n -1+a 2n (n ∈N *).(1)求a 3,a 4,a 5,a 6的值;(2)求证:{b n }是等比数列.20.已知数列{a n }是首项为2,公差为-1的等差数列,令b n =⎝ ⎛⎭⎪⎫12a n ,求证数列{b n }是等比数列,并求其通项公式.【参考答案】。
高中数学 2.4等比数列(一)课时作业 新人教A版必修5
2.4 等比数列(一)课时目标1.理解等比数列的定义,能够利用定义判断一个数列是否为等比数列.2.掌握等比数列的通项公式并能简单应用.3.掌握等比中项的定义,能够应用等比中项的定义解决有关问题.1.如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示(q≠0).2.等比数列的通项公式:a n=a1q n-1.3.等比中项的定义如果a、G、b成等比数列,那么G叫做a与b的等比中项,且G=±ab.一、选择题1.在等比数列{a n}中,a n>0,且a2=1-a1,a4=9-a3,则a4+a5的值为( )A.16 B.27 C.36 D.81答案 B解析由已知a1+a2=1,a3+a4=9,∴q2=9.∴q=3(q=-3舍),∴a4+a5=(a3+a4)q=27.2.已知等比数列{a n}满足a1+a2=3,a2+a3=6,则a7等于( )A.64 B.81 C.128 D.243答案 A解析∵{a n}为等比数列,∴a2+a3a1+a2=q=2.又a1+a2=3,∴a1=1.故a7=1·26=64.3.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8等于( )A .1+ 2B .1- 2C .3+2 2D .3-2 2 答案 C解析 设等比数列{a n }的公比为q ,∵a 1,12a 3,2a 2成等差数列,∴a 3=a 1+2a 2,∴a 1q 2=a 1+2a 1q , ∴q 2-2q -1=0, ∴q =1± 2.∵a n >0,∴q >0,q =1+ 2. ∴a 9+a 10a 7+a 8=q 2=(1+2)2=3+2 2. 4.如果-1,a ,b ,c ,-9成等比数列,那么( )A .b =3,ac =9B .b =-3,ac =9C .b =3,ac =-9D .b =-3,ac =-9 答案 B解析 ∵b 2=(-1)×(-9)=9且b 与首项-1同号, ∴b =-3,且a ,c 必同号.∴ac =b 2=9.5.一个数分别加上20,50,100后得到的三个数成等比数列,其公比为( ) A.53 B.43 C.32 D.12 答案 A解析 设这个数为x ,则(50+x )2=(20+x )·(100+x ), 解得x =25,∴这三个数45,75,125,公比q 为7545=53.6.若正项等比数列{a n }的公比q ≠1,且a 3,a 5,a 6成等差数列,则a 3+a 5a 4+a 6等于( )A.5-12 B.5+12C.12D .不确定 答案 A解析 a 3+a 6=2a 5,∴a 1q 2+a 1q 5=2a 1q 4, ∴q 3-2q 2+1=0,∴(q -1)(q 2-q -1)=0 (q ≠1),∴q 2-q -1=0,∴q =5+12 (q =1-52<0舍)∴a 3+a 5a 4+a 6=1q =5-12. 二、填空题7.已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =________.答案 4·(32)n -1解析 由已知(a +1)2=(a -1)(a +4),得a =5,则a 1=4,q =64=32,∴a n =4·(32)n -1.8.设数列{a n }为公比q >1的等比数列,若a 4,a 5是方程4x 2-8x +3=0的两根,则 a 6+a 7=________. 答案 18解析 由题意得a 4=12,a 5=32,∴q =a 5a 4=3.∴a 6+a 7=(a 4+a 5)q 2=(12+32)×32=18.9.首项为3的等比数列的第n 项是48,第2n -3项是192,则n =________. 答案 5解析 设公比为q ,则⎩⎪⎨⎪⎧3q n -1=483q 2n -4=192⇒⎩⎪⎨⎪⎧q n -1=16q 2n -4=64⇒q 2=4,得q =±2.由(±2)n -1=16,得n =5.10.一个直角三角形的三边成等比数列,则较小锐角的正弦值是________.答案 5-12解析 设三边为a ,aq ,aq 2(q >1),则(aq 2)2=(aq )2+a 2,∴q 2=5+12.较小锐角记为θ,则sin θ=1q 2=5-12.三、解答题11.已知{a n }为等比数列,a 3=2,a 2+a 4=203,求{a n }的通项公式.解 设等比数列{a n }的公比为q ,则q ≠0.a 2=a 3q =2q,a 4=a 3q =2q ,∴2q +2q =203. 解得q 1=13,q 2=3.当q =13时,a 1=18,∴a n =18×⎝ ⎛⎭⎪⎫13n -1=2×33-n.当q =3时,a 1=29,∴a n =29×3n -1=2×3n -3.综上,当q =13时,a n =2×33-n;当q =3时,a n =2×3n -3.12.已知数列{a n }的前n 项和为S n ,S n =13(a n -1) (n ∈N *).(1)求a 1,a 2;(2)求证:数列{a n }是等比数列.(1)解 由S 1=13(a 1-1),得a 1=13(a 1-1),∴a 1=-12.又S 2=13(a 2-1),即a 1+a 2=13(a 2-1),得a 2=14.(2)证明 当n ≥2时,a n =S n -S n -1 =13(a n -1)-13(a n -1-1), 得a n a n -1=-12,又a 2a 1=-12, 所以{a n }是首项为-12,公比为-12的等比数列.能力提升13.设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则6q =________.答案 -9解析 由题意知等比数列{a n }有连续四项在集合{-54,-24,18,36,81}中,由等比数列的定义知,四项是两个正数、两个负数,故-24,36,-54,81,符合题意,则q =-32,∴6q =-9.14.已知数列{a n }满足a 1=1,a n +1=2a n +1, (1)求证:数列{a n +1}是等比数列; (2)求a n 的表达式.(1)证明 ∵a n +1=2a n +1, ∴a n +1+1=2(a n +1), ∴a n +1+1a n +1=2. ∴{a n +1}是等比数列,公比为2,首项为2. (2)解 由(1)知{a n +1}是等比数列. 公比为2,首项a 1+1=2.∴a n +1=(a 1+1)·2n -1=2n.∴a n =2n-1.。
2021年高中数学 第二章 2.5等比数列的前n项和(一)课时作业 新人教A版必修5
2021年高中数学第二章 2.5等比数列的前n项和(一)课时作业新人教A 版必修5课时目标1.掌握等比数列前n项和公式的推导方法.2.会用等比数列前n项和公式解决一些简单问题.1.等比数列前n项和公式:(1)公式:S n=⎩⎪⎨⎪⎧a11-q n1-q=a1-a n q1-qq≠1na1q=1.(2)注意:应用该公式时,一定不要忽略q=1的情况.2.若{a n}是等比数列,且公比q≠1,则前n项和S n=a11-q(1-q n)=A(q n-1).其中A=a1q-1.3.推导等比数列前n项和的方法叫错位相减法.一般适用于求一个等差数列与一个等比数列对应项积的前n项和.一、选择题1.设S n为等比数列{a n}的前n项和,8a2+a5=0,则S5S2等于( )A.11 B.5C.-8 D.-11答案 D解析由8a2+a5=0得8a1q+a1q4=0,∴q=-2,则S5S2=a11+25a11-22=-11.2.记等比数列{a n}的前n项和为S n,若S3=2,S6=18,则S10S5等于( ) A.-3 B.5C.-31 D.33答案 D解析由题意知公比q≠1,S6S3=a11-q61-qa11-q31-q=1+q3=9,∴q =2,S 10S 5=a 11-q 101-q a 11-q51-q=1+q 5=1+25=33.3.设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2等于( ) A .2 B .4 C.152 D.172 答案 C解析 方法一 由等比数列的定义,S 4=a 1+a 2+a 3+a 4=a 2q+a 2+a 2q +a 2q 2,得S 4a 2=1q +1+q +q 2=152. 方法二 S 4=a 11-q 41-q ,a 2=a 1q ,∴S 4a 2=1-q 41-q q =152. 4.设{a n }是由正数组成的等比数列,S n 为其前n 项和,已知a 2a 4=1,S 3=7,则S 5等于( )A.152B.314C.334D.172 答案 B解析 ∵{a n }是由正数组成的等比数列,且a 2a 4=1,∴设{a n }的公比为q ,则q >0,且a 23=1,即a 3=1.∵S 3=7,∴a 1+a 2+a 3=1q2+1q+1=7,即6q 2-q -1=0.故q =12或q =-13(舍去),∴a 1=1q2=4.∴S 5=41-1251-12=8(1-125)=314. 5.在数列{a n }中,a n +1=ca n (c 为非零常数),且前n 项和为S n =3n+k ,则实数k 的值为( )A .0B .1C .-1D .2 答案 C解析 当n =1时,a 1=S 1=3+k ,当n ≥2时,a n =S n -S n -1=(3n +k )-(3n -1+k ) =3n -3n -1=2·3n -1.由题意知{a n }为等比数列,所以a 1=3+k =2, ∴k =-1.6.在等比数列{a n }中,公比q 是整数,a 1+a 4=18,a 2+a 3=12,则此数列的前8项和为( )A .514B .513C .512D .510 答案 D解析 由a 1+a 4=18和a 2+a 3=12,得方程组⎩⎪⎨⎪⎧a 1+a 1q 3=18a 1q +a 1q 2=12,解得⎩⎪⎨⎪⎧a 1=2q =2或⎩⎪⎨⎪⎧a 1=16q =12.∵q 为整数,∴q =2,a 1=2,S 8=228-12-1=29-2=510.二、填空题7.若{a n }是等比数列,且前n 项和为S n =3n -1+t ,则t =________.答案 -13解析 显然q ≠1,此时应有S n =A (q n-1),又S n =13·3n+t ,∴t =-13.8.设等比数列{a n }的前n 项和为S n ,若a 1=1,S 6=4S 3,则a 4=________. 答案 3解析 S 6=4S 3⇒a 11-q 61-q =4·a 11-q 31-q⇒q 3=3(q 3=1不合题意,舍去).∴a 4=a 1·q 3=1×3=3. 9.若等比数列{a n }中,a 1=1,a n =-512,前n 项和为S n =-341,则n 的值是________. 答案 10解析 S n =a 1-a n q 1-q ,∴-341=1+512q1-q,∴q =-2,又∵a n =a 1q n -1,∴-512=(-2)n -1, ∴n =10.10.如果数列{a n }的前n 项和S n =2a n -1,则此数列的通项公式a n =________.答案 2n -1解析 当n =1时,S 1=2a 1-1,∴a 1=2a 1-1,∴a 1=1. 当n ≥2时,a n =S n -S n -1=(2a n -1)-(2a n -1-1) ∴a n =2a n -1,∴{a n }是等比数列,∴a n =2n -1,n ∈N *. 三、解答题11.在等比数列{a n }中,a 1+a n =66,a 3a n -2=128,S n =126,求n 和q .解 ∵a 3a n -2=a 1a n ,∴a 1a n =128,解方程组⎩⎪⎨⎪⎧a 1a n =128,a 1+a n =66,得⎩⎪⎨⎪⎧ a 1=64,a n =2,①或⎩⎪⎨⎪⎧a 1=2,a n =64.②将①代入S n =a 1-a n q 1-q ,可得q =12, 由a n =a 1q n -1可解得n =6.将②代入S n =a 1-a n q1-q,可得q =2,由a n =a 1qn -1可解得n =6.故n =6,q =12或2.12.求和:S n =x +2x 2+3x 3+…+nx n(x ≠0). 解 分x =1和x ≠1两种情况.(1)当x =1时,S n =1+2+3+…+n =n n +12.(2)当x ≠1时,S n =x +2x 2+3x 3+…+nx n, xS n =x 2+2x 3+3x 4+…+(n -1)x n +nx n +1,∴(1-x )S n =x +x 2+x 3+…+x n -nx n +1=x 1-x n 1-x-nx n +1.∴S n =x 1-x n 1-x 2-nx n +11-x. 综上可得S n =⎩⎪⎨⎪⎧n n +12 x =1x 1-xn1-x2-nx n +11-xx ≠1且x ≠0.能力提升13.已知S n 为等比数列{a n }的前n 项和,S n =54,S 2n =60,求S 3n . 解 方法一 由题意S n ,S 2n -S n ,S 3n -S 2n 成等比数列,∴62=54(S 3n -60),∴S 3n =1823.方法二 由题意得a ≠1,∴S n =a 11-q n1-q=54 ①S 2n =a 11-q 2n1-q=60 ②由②÷①得1+q n=109,∴q n=19,∴a 11-q =9×548,∴S 3n =a 11-q 3n 1-q =9×548(1-193)=1823.14.已知数列{a n }的前n 项和S n =2n +2-4. (1)求数列{a n }的通项公式;(2)设b n =a n ·log 2a n ,求数列{b n }的前n 项和T n .解 (1)由题意,S n =2n +2-4,n ≥2时,a n =S n -S n -1=2n +2-2n +1=2n +1,当n =1时,a 1=S 1=23-4=4,也适合上式,∴数列{a n }的通项公式为a n =2n +1,n ∈N *.(2)∵b n =a n log 2a n =(n +1)·2n +1,∴T n =2·22+3·23+4·24+…+n ·2n +(n +1)·2n +1, ①2T n =2·23+3·24+4·25+…+n ·2n +1+(n +1)·2n +2. ② ②-①得,T n =-23-23-24-25-…-2n +1+(n +1)·2n +2=-23-231-2n -11-2+(n +1)·2n +2=-23-23(2n -1-1)+(n +1)·2n +2=(n +1)·2n +2-23·2n -1=(n +1)·2n +2-2n +2=n ·2n +2.1.在等比数列的通项公式和前n项和公式中,共涉及五个量:a1,a n,n,q,S n,其中首项a1和公比q为基本量,且“知三求二”.2.前n项和公式的应用中,注意前n项和公式要分类讨论,即q≠1和q=1时是不同的公式形式,不可忽略q=1的情况.3.一般地,如果数列{a n}是等差数列,{b n}是等比数列且公比为q,求数列{a n·b n}的前n项和时,可采用错位相减的方法求和.j w23140 5A64 婤36451 8E63 蹣 39130 98DA 飚*238321 95B1 閱37875 93F3 鏳33856 8440 葀r:36620 8F0C 輌。
2021人教A版数学必修5配套课时跟踪训练:2.4 第1课时 等比数列的概念和通项公式
[A 组 学业达标]1.已知等比数列{a n }中,a 1=32,公比q =-12,则a 6等于( ) A .1 B .-1 C .2D.12解析:由题知a 6=a 1q 5=32×(-12)5=-1,故选B. 答案:B2.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7等于( ) A .64 B .81 C .128D .243解析:∵{a n }为等比数列,∴a 2+a 3a 1+a 2=q =2.又a 1+a 2=3,∴a 1=1.故a 7=1×26=64. 答案:A3.已知数列{a n }满足:a n +1a n +1+1=12,且a 2=2,则a 4等于( )A .-12B .23C .12D .11 解析:因为数列{a n }满足:a n +1a n +1+1=12,所以a n +1+1=2(a n +1),即数列{a n +1}是等比数列,公比为2.则a 4+1=22(a 2+1)=12,解得a 4=11. 答案:D4.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 3=( ) A .-10 B .-6 C .-8D .-4解析:因为等差数列{a n }的公差为2,且a 1,a 3,a 4成等比数列,所以a 23=a 1a 4,所以a 23=(a 3-4)(a 3+2),解得a 3=-4. 答案:D5.数列{a n }是公差不为0的等差数列,且a 1,a 3,a 7为等比数列{b n }的连续三项,则数列{b n }的公比为( ) A. 2 B .4 C .2D.12解析:因为a 1,a 3,a 7为等比数列{b n }中的连续三项,所以a 23=a 1·a 7,设{a n }的公差为d ,则d ≠0,所以(a 1+2d )2=a 1(a 1+6d ),所以a 1=2d ,所以公比q =a 3a 1=4d 2d =2. 答案:C6.首项为3的等比数列的第n 项是48,第2n -3项 是192,则n =________.答案:57.数列{a n }为等比数列,a n >0,若a 1·a 5=16,a 4=8,则a n =________.解析:由a 1·a 5=16,a 4=8,得a 21q 4=16,a 1q 3=8,所以q 2=4,又a n >0,故q =2,a 1=1,a n =2n -1. 答案:2n -18.在8和5 832之间插入5个数,使它们组成以8为首项的等比数列,则此数列的第5项是________.解析:设公比为q ,则8q 6=5 832,所以q 6=729,所以q 2=9,所以a 5=8q 4=648. 答案:6489.在各项均为负的等比数列{a n }中,2a n =3a n +1,且a 2·a 5=827. (1)求数列{a n }的通项公式;(2)-1681是否为该数列的项?若是,为第几项?解析:(1)∵2a n =3a n +1,∴a n +1a n=23,数列{a n }是公比为23的等比数列,又a 2·a 5=827,∴a 21⎝ ⎛⎭⎪⎫235=⎝ ⎛⎭⎪⎫233,由于各项均为负,故a 1=-32,a n =-⎝ ⎛⎭⎪⎫23n -2. (2)设a n =-1681,则-1681=-⎝ ⎛⎭⎪⎫23n -2,⎝ ⎛⎭⎪⎫23n -2=⎝ ⎛⎭⎪⎫234,∴n =6, ∴-1681是该数列的项,为第6项.10.已知各项均为正数的等比数列{a n }中,a 2=4,a 4=16. (1)求公比q ;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,求数列{b n }的通项公式. 解析:(1)由已知得⎩⎪⎨⎪⎧a 2=a 1q =4,a 4=a 1q 3=16,所以q 2=4,又q >0,所以q =2. (2)由(1)可得a n =2n . 所以b 3=a 3=8,b 5=a 5=32. 设等差数列{b n }的公差为d , 则d =32-85-3=12,所以b n =8+(n -3)×12=12n -28.[B 组 能力提升]11.等比数列{a n }中,a 3-3a 2=2,且5a 4为12a 3和2a 5的等差中项,则{a n }的公比等于( ) A .3 B .2或3 C .2D .6解析:由题意得⎩⎪⎨⎪⎧a 1q 2-3a 1q =2,2(5a 1q 3)=12a 1q 2+2a 1q 4,解得a 1=-1,q =2. 所以{a n }的公比等于2. 答案:C12.已知等比数列{a n }的各项都为正数,且a 3,12a 5,a 4成等差数列,则a 3+a 5a 4+a 6的值是( ) A.5-12B .5+12C.3-52D.3+52解析:设等比数列{a n }的公比为q ,且q >0, 因为a 3,12a 5,a 4成等差数列,所以2×12a 5=a 3+a 4,则a 3q 2=a 3+a 3q , 化简得,q 2-q -1=0,解得q =1±52, 则q =5+12,所以a 3+a 5a 4+a 6=a 3+a 5a 3q +a 5q =1q =25+1=5-12.答案:A13.在等比数列{a n }中,a n ∈R ,且a 3,a 11是方程3x 2-25x +27=0的两根,则a 7=________.解析:由题意得⎩⎨⎧a 3+a 11=253,a 3·a 11=9,所以a 3>0,a 11>0,且a 27=a 3a 11=9.所以a 7=3.答案:314.等比数列{a n }中,若a 2a 5=2a 3,a 4与a 6的等差中项为54,则a 1=________. 解析:设等比数列{a n }的公比为q , 因为a 2a 5=2a 3,所以a 21q 5=2a 1q 2,化为:a 1q 3=2=a 4.因为a 4与a 6的等差中项为54, 所以a 4+a 6=2×54, 所以a 4(1+q 2)=52. 所以q 2=14,解得q =±12. 则a 1×⎝ ⎛⎭⎪⎫±18=2,解得a 1=±16. 答案:±1615.已知数列{a n }的首项a 1=1,且a n +1=4a n a n +2(n ∈N *).(1)证明:数列⎩⎨⎧⎭⎬⎫1a n -12是等比数列; (2)求a n 的通项公式. 解析:(1)证明:∵a n +1=4a na n +2, ∴1a n +1=a n +24a n =14+12a n ,∴1a n +1-12=12⎝ ⎛⎭⎪⎫1a n -12.又a 1=1,∴1a 1-12=12,∴数列⎩⎨⎧⎭⎬⎫1a n -12是以12为首项,12为公比的等比数列.(2)由(1)可知1a n-12=(12)×(12)n -1,∴1a n=12n +12=1+2n -12n,∴a n =2n1+2n -1.16.已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明:{a n }是等比数列,并求其通项公式; (2)若a 5=132,求λ.解析:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n ,即(λ-1)a n +1=λa n ,由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1. (2)由(1)可知,a 5=-λ4(λ-1)5=132,∴λ=-1.。
高中数学第二章数列2.4等比数列第2课时等比数列的性质优化练习新人教A版必修5(2021年整理)
2017-2018学年高中数学第二章数列2.4 等比数列第2课时等比数列的性质优化练习新人教A版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第二章数列2.4 等比数列第2课时等比数列的性质优化练习新人教A版必修5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第二章数列2.4 等比数列第2课时等比数列的性质优化练习新人教A版必修5的全部内容。
第2课时等比数列的性质[课时作业][A组基础巩固]1.如果数列{a n}是等比数列,那么()A.数列{a错误!}是等比数列B.数列{2a n}是等比数列C.数列{lg a n}是等比数列D.数列{na n}是等比数列解析:设b n=a错误!,则错误!=错误!=错误!2=q2,∴{b n}为等比数列;2a n+12a n=2a n+1-a n≠常数;当a n〈0时,lg a n无意义;设c n=na n,则错误!=错误!=错误!·q≠常数.答案:A2.已知等差数列{a n}的公差为3,若a1,a3,a4成等比数列,则a2等于( )A.9 B.3C.-3 D.-9解析:a1=a2-3,a3=a2+3,a4=a2+3×2=a2+6,由于a1,a3,a4成等比数列,a错误!=a1a4,即 (a2+3)2=(a2-3)(a2+6),解得a2=-9。
答案:D3.在正项等比数列{a n}中,a1和a19为方程x2-10x+16=0的两根,则a8·a10·a12等于( )A.16 B.32C.64 D.256解析:由已知,得a1a19=16。
【创新设计】2022-2021学年高二数学人教A必修5学案:2.4 等比数列(一) Word版含答案
2.4 等比数列(一)[学习目标] 1.通过实例,理解等比数列的概念并会简洁应用.2.把握等比中项的概念并会应用.3.把握等比数列的通项公式了解其推导过程.[学问链接]下列推断正确的是________.(1)从第2项起,每一项与它前一项的差等同一个常数的数列是等差数列; (2)从第2项起,每一项与它前一项的比等同一个常数的数列是等差数列; (3)等差数列的公差d 可正可负,且可以为零; (4)在等差数列中,a n =a m +(n -m )d (n ,m ∈N *). 答案 (1)(3)(4) [预习导引]1.等比数列的概念:假如一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0).2.等比中项的概念:假如a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项,且G =±ab .3.等比数列的通项公式:已知等比数列{a n }的首项为a 1,公比为q ,该等比数列的通项公式为a n =a 1q n -1.要点一 等比数列通项公式的基本量的求解 例1 在等比数列{a n }中, (1)a 4=2,a 7=8,求a n ;(2)a 2+a 5=18,a 3+a 6=9,a n =1,求n . (3)a 3=2,a 2+a 4=203,求a n .解 (1)由于⎩⎪⎨⎪⎧a 4=a 1q 3,a 7=a 1q 6,所以⎩⎪⎨⎪⎧ a 1q 3=2,a 1q 6=8,①②由②①得q 3=4,从而q =34,而a 1q 3=2, 于是a 1=2q 3=12,所以a n =a 1q n -1=2532n -.(2)法一 由于⎩⎪⎨⎪⎧ a 2+a 5=a 1q +a 1q 4=18,a 3+a 6=a 1q 2+a 1q 5=9,③④由④③得q =12,从而a 1=32,又a n =1所以32×⎝⎛⎭⎫12n -1=1,即26-n =20,所以n =6. 法二 由于a 3+a 6=q (a 2+a 5),所以q =12.由a 1q +a 1q 4=18,知a 1=32. 由a n =a 1q n -1=1,知n =6.(3)设等比数列{a n }的公比为q ,则q ≠0. a 2=a 3q =2q ,a 4=a 3q =2q ,∴2q +2q =203. 解得q 1=13,q 2=3.当q =13时,a 1=18,∴a n =18×⎝⎛⎭⎫13n -1=2×33-n .当q =3时,a 1=29,∴a n =29×3n -1=2×3n -3.综上,当q =13时,a n =2×33-n ;当q =3时,a n =2×3n -3.规律方法 a 1和q 是等比数列的基本量,只要求出这两个基本量,其他量便可迎刃而解.此类问题求解的通法是依据条件,建立关于a 1和q 的方程组,求出a 1和q .跟踪演练1 (1)若等比数列{a n }的首项a 1=98,末项a n =13,公比q =23,求项数n .(2)在等比数列{a n }中,已知a 5-a 1=15,a 4-a 2=6,求a n . 解 (1)由a n =a 1·q n -1,得13=98⎝⎛⎭⎫23n -1,即⎝⎛⎭⎫23n -1=⎝⎛⎭⎫233,得n =4.(2)由于⎩⎪⎨⎪⎧ a 5-a 1=a 1q 4-a 1=15,a 4-a 2=a 1q 3-a 1q =6,①②由①②得q =12或q =2.当q =12时,a 1=-16;当q =2时,a 1=1.∴a n =-25-n 或a n =2n -1. 要点二 等比中项的应用例2 等差数列{a n }中,公差d ≠0,且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10等于多少?解 由题意知a 3是a 1和a 9的等比中项,∴a 23=a 1a 9,∴(a 1+2d )2=a 1(a 1+8d ),得a 1=d ,∴a 1+a 3+a 9a 2+a 4+a 10=13d 16d =1316.规律方法 由等比中项的定义可知:G a =bG ⇒G 2=ab ⇒G =±ab .这表明只有同号的两项才有等比中项,并且这两项的等比中项有两个,它们互为相反数.反之,若G 2=ab ,则G a =bG ,即a ,G ,b 成等比数列.所以a ,G ,b成等比数列⇔G 2=ab (ab ≠0).跟踪演练2 已知a ,-32,b ,-24332,c 这五个数成等比数列,求a ,b ,c 的值.解 由题意知b 2=⎝⎛⎭⎫-32×⎝⎛⎭⎫-24332=⎝⎛⎭⎫326, ∴b =±278.当b =278时,ab =⎝⎛⎭⎫-322,解得a =23; bc =⎝⎛⎭⎫-243322=⎝⎛⎭⎫-3210,解得c =⎝⎛⎭⎫327. 同理,当b =-278时,a =-23,c =-⎝⎛⎭⎫327. 综上所述,a ,b ,c 的值分别为23,278,⎝⎛⎭⎫327或-23,-278,-⎝⎛⎭⎫327. 要点三 等比数列的判定例3 数列{a n }满足a 1=-1,且a n =3a n -1-2n +3(n =2,3,…). (1)求a 2,a 3,并证明数列{a n -n }是等比数列;(2)求a n .解 (1)a 2=3a 1-2×2+3=-4, a 3=3a 2-2×3+3=-15. 下面证明{a n -n }是等比数列: 证明a n +1-(n +1)a n -n =3a n -2(n +1)+3-(n +1)a n -n=3a n -3na n -n=3(n =1,2,3,…). 又a 1-1=-2,∴{a n -n }是以-2为首项,以3为公比的等比数列. (2)由(1)知a n -n =-2·3n -1, ∴a n =n -2·3n -1.规律方法 推断一个数列是否是等比数列的常用方法有 (1)定义法:a n +1a n=q (q 为常数且不为零)⇔{a n }为等比数列.(2)等比中项法:a 2n +1=a n a n +2(n ∈N *且a n ≠0)⇔{a n }为等比数列.(3)通项公式法:a n =a 1q n -1(a 1≠0且q ≠0)⇔{a n }为等比数列.跟踪演练3 已知数列{a n }的前n 项和S n =2a n +1,求证{a n }是等比数列,并求出通项公式. 解 ∵S n =2a n +1, ∴S n +1=2a n +1+1.∴a n +1=S n +1-S n =(2a n +1+1)-(2a n +1)=2a n +1-2a n . ∴a n +1=2a n ,又∵S 1=2a 1+1=a 1,∴a 1=-1≠0. 又由a n +1=2a n 知a n ≠0, ∴a n +1a n =2,∴{a n }是等比数列.∴a n =-1×2n -1=-2n -1.要点四 由递推公式构造等比数列求通项例4 已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),且a n +S n =n .(1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式. (1)证明 ∵a n +S n =n ,① ∴a n +1+S n +1=n +1.② ②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12,∴{a n -1}是等比数列.∵首项c 1=a 1-1,又a 1+a 1=1. ∴a 1=12,∴c 1=-12,公比q =12.又c n =a n -1,所以q =12.∴{c n }是以-12为首项,公比为12的等比数列.(2)解 由(1)可知c n =⎝⎛⎭⎫-12·⎝⎛⎭⎫12n -1=-⎝⎛⎭⎫12n , ∴a n =c n +1=1-⎝⎛⎭⎫12n.∴当n ≥2时,b n =a n -a n -1=1-⎝⎛⎭⎫12n -⎣⎡⎦⎤1-⎝⎛⎭⎫12n -1 =⎝⎛⎭⎫12n -1-⎝⎛⎭⎫12n =⎝⎛⎭⎫12n .又b 1=a 1=12代入上式也符合,∴b n =⎝⎛⎭⎫12n . 规律方法 (1)已知数列的前n 项和,或前n 项和与通项的关系求通项,常用a n 与S n 的关系求解.(2)由递推关系a n +1=Aa n +B (A ,B 为常数,且A ≠0,A ≠1)求a n 时,由待定系数法设a n +1+λ=A (a n +λ)可得λ=B A -1,这样就构造了等比数列{a n +λ}. 跟踪演练4 已知数列{a n }中,a 1=1,a n +1=52-1a n ,b n =1a n -2,求数列{b n }的通项公式.解 a n +1-2=52-1a n -2=a n -22a n ,1a n +1-2=2a n a n -2=4a n -2+2,即b n +1=4b n +2,b n +1+23=4⎝⎛⎭⎫b n +23.又a 1=1,故b 1=1a 1-2=-1,所以⎩⎨⎧⎭⎬⎫b n +23是首项为-13,公比为4的等比数列,所以b n +23=-13×4n -1,b n =-4n -13-23.1.在等比数列{a n }中,a 1=8,a 4=64,则a 2等于( ) A .16 B. 16或-16 C. 32 D. 32或-32答案 A解析 由a 4=a 1q 3,得q 3=8,即q =2,所以a 2=a 1q =16.2.若等比数列的首项为4,末项为128,公比为2,则这个数列的项数为 ( ) A .4 B .8 C .6 D .32 答案 C解析 由等比数列的通项公式,得128=4×2n -1,2n -1=32,所以n =6. 3.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7等于( ) A .64 B .81 C .128 D .243 答案 A解析 ∵{a n }为等比数列,∴a 2+a 3a 1+a 2=q =2.又a 1+a 2=3,∴a 1=1. 故a 7=1·26=64.4.若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =________.答案 (-2)n -1解析 当n =1时,a 1=1;当n ≥2时, a n =S n -S n -1=23a n -23a n -1,故a na n -1=-2,故a n =(-2)n -1.1.等比数列定义的理解(1)由于等比数列的每一项都可能作分母,故每一项均不能为零,因此q 也不行能为零. (2)a n +1a n均为同一常数,由此体现了公比的意义,同时应留意分子、分母次序不能颠倒.(3)假如一个数列不是从第2项起,而是从第3项或第4项起每一项与它的前一项之比是同一个常数,那么这个数列不是等比数列. 2.等比中项的理解(1)当a ,b 同号时,a ,b 的等比中项有两个;当a ,b 异号时,没有等比中项.(2)在一个等比数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项. (3)“a ,G ,b 成等比数列”等价于“G 2=ab ”(a ,b 均不为0),可以用它来推断或证明三数是否成等比数列. 3.等比数列的通项公式(1)已知首项a 1和公比q ,可以确定一个等比数列.(2)在公式a n =a 1q n -1中有a n ,a 1,q ,n 四个量,已知其中任意三个量,可以求得第四个量.一、基础达标1.在等比数列{a n }中,a 4=4,则a 2·a 6等于( ) A .4 B. 8 C. 16 D. 32 答案 C解析 由于a 24=a 2·a 6,所以a 2·a 6=16.2.在等比数列{a n }中,a n >0,且a 1+a 2=1,a 3+a 4=9,则a 4+a 5的值为( ) A .16 B .27 C .36 D .81 答案 B解析 由已知a 1+a 2=1,a 3+a 4=9,∴q 2=9. ∴q =3(q =-3舍),∴a 4+a 5=(a 3+a 4)q =27. 3.等比数列x,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12 D .24答案 A解析 由(3x +3)2=x (6x +6),即x 2+4x +3=0,解得x =-1或x =-3.当x =-1时,前三项为-1,0,0不成立,舍掉.当x =-3时,前三项为-3,-6,-12,公比为2,所以第四项为-24,选A.4.假如-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B .b =-3,ac =9 C .b =3,ac =-9 D .b =-3,ac =-9答案 B解析 ∵b 2=(-1)×(-9)=9,且b 与首项-1同号, ∴b =-3,且a ,c 必同号. ∴ac =b 2=9.5.在等比数列{a n }中,a 3=3,a 10=384,则公比q =________. 答案 2解析 a 3=a 1q 2=3,a 10=a 1q 9=384,两式相除得,q 7=128,所以q =2.6.在160与5中间插入4个数,使它们同这两个数成等比数列,则这4个数依次为________. 答案 80,40,20,10解析 设这6个数所成等比数列的公比为q ,则5=160q 5,∴q 5=132,∴q =12.∴这4个数依次为80,40,20,10.7.已知等比数列{a n },若a 1+a 2+a 3=7,a 1a 2a 3=8,求a n .解 ∵a 1a 3=a 22,∴a 1a 2a 3=a 32=8,∴a 2=2.从而⎩⎪⎨⎪⎧a 1+a 3=5a 1a 3=4,解得a 1=1,a 3=4或a 1=4,a 3=1.当a 1=1时,q =2;当a 1=4时,q =12.故a n =2n -1或a n =23-n .8.在四个正数中,前三个成等差数列,和为48,后三个成等比数列,积为8 000,求这四个数. 解 设前三个数分别为a -d ,a ,a +d ,则有 (a -d )+a +(a +d )=48,即a =16. 设后三个数分别为bq,b ,bq ,则有bq·b ·bq =b 3=8 000,即b =20, ∴这四个数分别为m,16,20,n , ∴m =2×16-20=12,n =20216=25.即所求的四个数分别为12,16,20,25. 二、力量提升9.在等比数列{a n }中,a 1=1,公比|q |≠1.若a m =a 1a 2a 3a 4a 5,则m 等于( ) A .9 B .10 C .11 D .12 答案 C解析 在等比数列{a n }中,∵a 1=1,∴a m =a 1a 2a 3a 4a 5=a 51q 10=q 10.∵a m =a 1q m -1=q m -1, ∴m -1=10,∴m =11.10.已知a ,b ,c ,d 成等比数列,且曲线y =x 2-2x +3的顶点是(b ,c ),则ad 等于( ) A .3 B .2 C .1 D .-2 答案 B 解析∵y =(x -1)2+2,∴b =1,c =2.又∵a ,b ,c ,d 成等比数列,∴ad =bc =2.11.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则a 2-a 1b 2的值是________.答案 12解析 ∵-1,a 1,a 2,-4成等差数列,设公差为d , 则a 2-a 1=d =13[(-4)-(-1)]=-1,∵-1,b 1,b 2,b 3,-4成等比数列, ∴b 22=(-1)×(-4)=4,∴b 2=±2. 若设公比为q ,则b 2=(-1)q 2,∴b 2<0. ∴b 2=-2,∴a 2-a 1b 2=-1-2=12.12.设{a n }是各项均为正数的等比数列,b n =log 2a n ,若b 1+b 2+b 3=3,b 1b 2b 3=-3,求数列{a n }的通项公式. 解 设等比数列{a n }的公比为q (q >0),则a n =2b n , ∵b n -b n -1=log 2a n -log 2a n -1=log 2a na n -1=log 2q , ∴{b n }为等差数列,且d =log 2q ,而⎩⎪⎨⎪⎧b 1+b 2+b 3=3b 2=3(b 1+d )=3,b 1·b 2·b 3=b 1(b 1+d )(b 1+2d )=-3, ⇒⎩⎪⎨⎪⎧ b 1=-1,d =2或⎩⎪⎨⎪⎧b 1=3,d =-2.∴b n =2n -3或5-2n .∴a n =22n -3或a n =25-2n . 三、探究与创新13.已知数列{a n }满足a 1=1,a n +1=2a n +1,(1)求证:数列{a n +1}是等比数列; (2)求{a n }的表达式.(1)证明 法一 ∵a n +1=2a n +1,∴a n +1+1=2(a n +1), ∴a n +1+1a n +1=2,且a 1+1=2. ∴{a n +1}是等比数列,公比为2,首项为2. 法二 ∵a n +1+1a n +1=2a n +1+1a n +1=2(a n +1)a n +1=2(n ∈N *),∴数列{a n +1}是等比数列.(2)解 由(1)知{a n +1}是等比数列.公比为2,首项a 1+1=2. ∴a n +1=(a 1+1)·2n -1=2n .∴a n =2n -1.。
高中数学 第二章 数列 2.4 等比数列(第1课时)等比数列的概念及通项公式巩固提升(含解析)新人教
第1课时 等比数列的概念及通项公式[学生用书P105(单独成册)][A 基础达标]1.在数列{a n }中,若a n +1=3a n ,a 1=2,则a 4为( ) A .108 B.54 C .36D .18解析:选B.因为a n +1=3a n ,所以数列{a n }是公比为3的等比数列,则a 4=33a 1=54. 2.在等比数列{a n }中,a 1=18,q =2,则a 4与a 8的等比中项为( )A .±4 B.4 C .±14D .14解析:选A.由题意得(±a 6)2=a 4a 8,因为a 1=18,q =2,所以a 4与a 8的等比中项为±a 6=±4.3.如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B.b =-3,ac =9 C .b =3,ac =-9D .b =-3,ac =-9解析:选B.因为b 是-1,-9的等比中项,所以b 2=9,b =±3. 又等比数列奇数项符号相同,得b <0,故b =-3, 而b 又是a ,c 的等比中项, 故b 2=ac ,即ac =9.4.(2019·丰台高二检测)数列{a n }是公差不为0的等差数列,且a 1,a 3,a 7为等比数列{b n }的连续三项,则数列{b n }的公比为( )A. 2B.4 C .2D .12解析:选C.因为a 1,a 3,a 7为等比数列{b n }中的连续三项,所以a 23=a 1a 7,设{a n }的公差为d ,则d ≠0,所以(a 1+2d )2=a 1(a 1+6d ),所以a 1=2d ,所以公比q =a 3a 1=4d 2d=2.5.若正项数列{a n }满足a 1=2,a 2n +1-3a n +1a n -4a 2n =0,则{a n }的通项公式a n =( ) A .22n -1B.2nC .22n +1D .22n -3解析:选A.由a 2n +1-3a n +1a n -4a 2n =0,得(a n +1-4a n )·(a n +1+a n )=0.又{a n }是正项数列,所以a n +1-4a n =0,a n +1a n=4.由等比数列的定义知数列{a n }是以2为首项,4为公比的等比数列.由等比数列的通项公式,得a n =2×4n -1=22n -1.故选A.6.下面四个数列:①1,1,2,4,8,16,32,64;②在数列{a n }中,已知a 2a 1=2,a 3a 2=2; ③常数列a ,a ,…,a ,…; ④在数列{a n }中,a n +1a n=q (q ≠0),其中n ∈N *. 其中一定是等比数列的有________.解析:①不符合“每一项与它的前一项的比等于同一常数”,故不是等比数列. ②不一定是等比数列.当{a n }只有3项时,{a n }是等比数列;当{a n }的项数超过3时,不一定符合.③不一定.若常数列是各项都为0的数列,它就不是等比数列;当常数列各项不为0时,是等比数列.④等比数列的定义用式子的形式表示:在数列{a n }中,对任意n ∈N *,有a n +1a n=q (q ≠0),那么{a n }是等比数列.答案:④7.若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________. 解析:设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .因为a 1=b 1=-1,a 4=b 4=8,所以⎩⎪⎨⎪⎧-1+3d =8,-1·q 3=8,所以⎩⎪⎨⎪⎧d =3,q =-2. 所以a 2=2,b 2=2.所以a 2b 2=22=1.答案:18.等比数列{a n }中,若a 2a 5=2a 3,a 4与a 6的等差中项为54,则a 1=________.解析:设等比数列{a n }的公比为q , 因为a 2a 5=2a 3,所以a 21q 5=2a 1q 2,化简得a 1q 3=2=a 4. 因为a 4与a 6的等差中项为54,所以a 4+a 6=2×54,所以a 4(1+q 2)=52.所以q 2=14,解得q =±12.则a 1×⎝ ⎛⎭⎪⎫±18=2,解得a 1=±16. 答案:±169.在等比数列{a n }中,a 3=32,a 5=8. (1)求数列{a n }的通项公式a n ; (2)若a n =12,求n .解:(1)因为a 5=a 1q 4=a 3q 2,所以q 2=a 5a 3=14.所以q =±12.当q =12时,a n =a 1q n -1=a 1q 2·q n -3=a 3q n -3=32×⎝ ⎛⎭⎪⎫12n -3=28-n ;当q =-12时,a n =a 1q n -1=a 1q 2·q n -3=a 3q n -3=32×⎝ ⎛⎭⎪⎫-12n -3.所以a n =28-n或a n =32×⎝ ⎛⎭⎪⎫-12n -3.(2)当a n =12时,即28-n=12或32×⎝ ⎛⎭⎪⎫-12n -3=12,解得n =9.10.已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n -2)=5a n -1,求数列{a n }的通项公式.解:设数列{a n }的公比为q . 因为a 25=a 10,2(a n +a n -2)=5a n -1,所以⎩⎪⎨⎪⎧a 21·q 8=a 1·q 9①2(q 2+1)=5q ②, 由①,得a 1=q , 由②,得q =2或q =12,又数列{a n }为递增数列,所以a 1=q =2,所以a n =2n.[B 能力提升]11.在数列{a n }中,已知a 1=1,a n +1=2a n +1,则a n =( ) A .2n-1 B.2n -1-1C .2n -1D .2(n -1)解析:选A.等式两边同时加1,得a n +1+1=2(a n +1),所以数列{a n +1}是以a 1+1=2为首项,q =2为公比的等比数列,所以a n +1=2×2n -1=2n ,所以a n =2n-1.12.已知等比数列{a n }的各项均为正数,公比q ≠1,ka 1a 2·…·a k =a 11,则k =( ) A .12 B.15 C .18D .21解析:选D.ka 1a 2·…·a k =a 1q 1+2+3+…+(k -1)k=a 1q k -12=a 1q 10,因为a 1>0,q ≠1,所以k -12=10,所以k =21,故选D.13.已知数列{a n }是等差数列,且a 2=3,a 4+3a 5=56,若log 2b n =a n . (1)求证:数列{b n }是等比数列; (2)求数列{b n }的通项公式.解:(1)证明:由log 2b n =a n ,得b n =2a n .因为数列{a n }是等差数列,不妨设公差为d ,则b n b n -1=2a n 2a n -1=2a n -a n -1=2d ,2d 是与n 无关的常数, 所以数列{b n }是等比数列.(2)由已知,得⎩⎪⎨⎪⎧a 1+d =3,a 1+3d +3(a 1+4d )=56,解得⎩⎪⎨⎪⎧a 1=-1,d =4,于是b 1=2-1=12,公比q =2d =24=16,所以数列{b n }的通项公式b n =12·16n -1=24n -5.14.(选做题)已知数列{a n }的前n 项和为S n ,a n =3S n +1(n ∈N *). (1)求a 1,a 2;(2)求数列{a n }的通项公式.解:(1)由题意,知a 1=3S 1+1,即a 1=3a 1+1, 所以a 1=-12.又a 2=3S 2+1,即a 2=3(a 1+a 2)+1,解得a 2=14.(2)由a n =3S n +1,① 得a n -1=3S n -1+1(n ≥2),② 由①-②,得a n -a n -1=3(S n -S n -1)=3a n ,得a n a n -1=-12,所以数列{a n }是首项为-12,公比为-12的等比数列,所以a n =⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-12n -1=⎝ ⎛⎭⎪⎫-12n.。
2020_2021学年高中数学第二章数列2.4.2等比数列的性质课时作业含解析新人教A版必修5
高中数学新人教A 版必修5第二章数列:课时作业14 等比数列的性质时间:45分钟——基础巩固类——一、选择题1.等比数列{a n }中,a 2=4,a 7=116,则a 3a 6+a 4a 5的值是( C )A .1B .2 C.12D.14解析:a 3a 6=a 4a 5=a 2a 7=4×116=14,所以a 3a 6+a 4a 5=12. 2.已知等比数列{a n }的公比q =-13,则a 1+a 3+a 5+a 7a 2+a 4+a 6+a 8=( B )A .-13B .-3 C.13D .3解析:a 1+a 3+a 5+a 7a 2+a 4+a 6+a 8=a 1+a 3+a 5+a 7a 1q +a 3q +a 5q +a 7q =1q=-3,所以选B.3.公比为32的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 16=( B ) A .4 B .5 C .6D .7解析:a 3a 11=16⇒a 27=16⇒a 7=4(负值舍去)⇒a 16=a 7×q 9=32⇒log 2a 16=5.4.已知各项均为正数的等比数列{a n }中,lg(a 3a 8a 13)=6,则a 1a 15的值为( A ) A .10 000 B .1 000 C .100D .10解析:根据等比数列的性质得a 3a 13=a 28, 所以a 3a 8a 13=a 38.又lg(a 3a 8a 13)=lg a 38=6,所以a 8=100. 所以a 1a 15=a 28=10 000.故选A.5.已知{a n },{b n }都是等比数列,那么( C )A .{a n +b n },{a n ·b n }都一定是等比数列B .{a n +b n }一定是等比数列,但{a n ·b n }不一定是等比数列C .{a n +b n }不一定是等比数列,但{a n ·b n }一定是等比数列D .{a n +b n },{a n ·b n }都不一定是等比数列解析:当两个数列都是等比数列时,这两个数列的和不一定是等比数列,比如取两个数列是互为相反数的数列,两者的和就不是等比数列.两个等比数列的积一定是等比数列.6.已知等比数列{a n }中,a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于( C )A .2B .4C .8D .16解析:等比数列{a n }中,a 3a 11=a 27=4a 7,解得a 7=4,等差数列{b n }中,b 5+b 9=2b 7=2a 7=8.二、填空题7.在等比数列{a n }中,各项均为正数,且a 6a 10+a 3a 5=41,a 4a 8=5,则a 4+a 8=51.解析:因为a 6a 10=a 28,a 3a 5=a 24, 所以a 28+a 24=41.又因为a 4a 8=5, a n >0, 所以a 4+a 8=(a 4+a 8)2=a 24+2a 4a 8+a 28=51.8.在3和一个未知数间填上一个数,使三数成等差数列,若中间项减去6,则成等比数列,则此未知数是3或27.解析:设此三数为3,a ,b ,则⎩⎪⎨⎪⎧2a =3+b ,(a -6)2=3b ,解得⎩⎪⎨⎪⎧ a =3,b =3或⎩⎪⎨⎪⎧a =15,b =27.所以这个未知数为3或27.9.画一个边长为2厘米的正方形,再以这个正方形的对角线为边画第2个正方形,以第2个正方形的对角线为边画第3个正方形,这样一共画了10个正方形,则第10个正方形的面积等于2_048平方厘米.解析:这10个正方形的边长构成以2为首项,2为公比的等比数列{a n }(1≤n ≤10,n ∈N *),则第10个正方形的面积S =a 210=22·29=211 =2 048.三、解答题10.等比数列{a n }中,已知a 1=2,a 4=16. (1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式. 解:(1)设等比数列{a n }的公比为q ,由已知得16=2q 3,解得q =2,a n =a 1q n -1=2n . (2)由第一问得a 3=8,a 5=32,则b 3=8,b 5=32.设数列{b n }的公差为d ,首项为b 1,则有⎩⎪⎨⎪⎧b 1+2d =8,b 1+4d =32.解得⎩⎪⎨⎪⎧b 1=-16,d =12.从而b n =-16+12(n -1)=12n -28.11.已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n -2)=5a n -1,求数列{a n }的通项公式.解:设数列{a n }的首项为a 1,公比为q . 因为a 25=a 10,2(a n +a n -2)=5a n -1,所以⎩⎪⎨⎪⎧a 21·q 8=a 1·q 9,①2(q 2+1)=5q ,②由①,得a 1=q , 由②,得q =2或q =12,又数列{a n }为递增数列, 所以a 1=q =2,所以a n =2n .——能力提升类——12.数列{a n }的首项为1,数列{b n }为等比数列,且b n =a n +1a n ,若b 10·b 11=2,则a 21=( D )A .20B .512C .1 013D .1 024解析:因为b n =a n +1a n ,且b 10·b 11=2,又{b n }是等比数列,所以b 1·b 20=b 2·b 19=…=b 10·b 11=2,则a 2a 1·a 3a 2·a 4a 3…a 21a 20=b 1b 2b 3…b 20=210,即a 21a 1=1 024,从而a 21=1 024a 1=1 024.13.农民收入由工资性收入和其他收入两部分构成.2013年某地区农民人均收入为3 150元(其中工资性收入为1 800元,其他收入为1 350元),预计该地区自2014年起的5年内,农民的工资性收入将以每年6%的年增长率增长,其他收入每年增加160元.根据以上数据,2018年该地区农民人均收入介于( B )A .4 200元~4 400元B .4 400元~4 600元C .4 600元~4 800元D .4 800元~5 000元解析:将2013年记作第1年,该地区农民人均收入第n 年为a n ,则a 1=3 150,a 2=1 800×(1+6%)+1 350+160,…,a n =1 800×(1+6%)n -1+1 350+(n -1)×160.2018年该地区农民人均收入为a 6=1 800×(1+6%)6-1+1 350+(6-1)×160≈4 558.81.故选B. 14.已知递增的等比数列{a n },a 2+a 8=3,a 3·a 7=2,则a 13a 10= 2.解析:设公比为q .∵{a n }是递增的等比数列,∴a 3a 7=a 2a 8=2.又a 2+a 8=3, ∴a 2,a 8是方程x 2-3x +2=0的两根,则a 2=1,a 8=2, ∴q 6=a 8a 2=2,∴q 3=2,∴a 13a 10=q 3= 2.15.等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6. (1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列⎩⎨⎧⎭⎬⎫1b n (n ≥2,n ∈N *)的前n 项和.解:(1)设等比数列{a n }的公比为q ,因为a 23=9a 2a 6=9a 24,所以q 2=a 24a 23=19,因为a n >0,所以q >0,所以q =13,因为2a 1+3a 2=2a 1+3a 1q =1, 所以3a 1=1,a 1=13,所以a n =⎝⎛⎭⎫13n . (2)b n =log 3a 1+log 3a 2+…+log 3a n =log 3(a 1·a 2·…·a n )=log 3⎝⎛⎭⎫131+2+3+…+n =-n (n +1)2. 设数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和为S n ,则S n =-2⎣⎢⎡⎦⎥⎤11×2+12×3+…+1n (n +1)=-2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=-2⎝ ⎛⎭⎪⎫1-1n +1=-2n n +1.。
高中数学第二章数列2.4.1等比数列的概念及通项公式人教A版必修5
2.等比中项 如果在 a 与 b 中间插入一个数 G,使 a,G,b 成等比数列,那么 G 叫做 a 与 b 的等比中项,这三个数满足关系式 ab=G2.
思考 1 若 G2=ab,则 a,G,b 一定成等比数列吗?
提示:不一定.因为若 G=0,则 a,b 中至少有一个为 0,使 G2=ab,根据等比 数列的定义,a,G,b 不成等比数列.当 a,G,b 全不为零时,若 G2=ab,则 a,G,b 成
探究四
探究二 等比中项的应用
若 a,G,b 成等比数列,则 G 叫做 a 与 b 的等比中项,此时 G=± ������������. 注意:(1)在 a,b 同号时,a,b 的等比中项有两个,异号时,没有等比中项. (2)在一个等比数列中,从第 2 项起,每一项(有穷数列的末项除外)都是 它的前一项与后一项的等比中项. (3)“a,G,b 成等比数列”等价于“G2=ab”(a,b 均不为 0),可以用它来判断 或证明三个数成等比数列. 同时还要注意到“a,G,b 成等比数列”与“G= ������������”不是等价的.
探究一
探究二
探究三
探究四
解:(1)∵a1=-1,an=3an-1-2n+3,∴a2=3a1-2×2+3=-4,a3=3a2-2×3+3=-15.
下面证明{an-n}是等比数列:
������������+1-(n + ������������-n
1)
=
3������������-2(n
+ 1) + ������������-n
是等比数列. (3)通项公式法:若数列{an}的通项公式为 an=a1qn-1(a1≠0,q≠0),则数列
高中数学第二章数列2.4.1等比数列的概念及通项公式练习(含解析)新人教A版必修5
第13课时等比数列的概念及通项公式知识点一等比数列的定义1.数列m,m,m,…一定( )A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列C.是等差数列,但不一定是等比数列D.既是等差数列,又是等比数列答案 C解析当m=0时,数列是等差数列,但不是等比数列;当m≠0时,数列既是等差数列,又是等比数列.故选C.2.若正数a,b,c依次成公比大于1的等比数列,则当x>1 时,log a x,log b x,log c x( ) A.依次成等差数列B.依次成等比数列C.各项的倒数依次成等差数列D.各项的倒数依次成等比数列答案 C解析1log a x+1log c x=log x a+log x c=log x(ac)=log x b2=2log x b=2log b x,∴1log a x,1log b x,1log c x成等差数列.知识点二等比数列的通项公式3.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,则n年后这批设备的价值为( )A.na(1-b%) B.a(1-nb%)C.a(1-b%)n D.a[1-(b%)n]答案 C解析依题意可知第一年后的价值为a(1-b%),第二年后的价值为a(1-b%)2,依此类推形成首项为a(1-b%),公比为1-b%的等比数列,则可知n年后这批设备的价值为a(1-b %)n .故选C .4.在等比数列{a n }中,a n >0,且a 2=1-a 1,a 4=9-a 3,则a 4+a 5的值为( ) A .16 B .27 C .36 D .81 答案 B解析 由已知,得⎩⎪⎨⎪⎧a 1+a 2=1,a 3+a 4=9.∴q 2(a 1+a 2)=9,∴q 2=9.∵a n >0,∴q =3. ∴a 4+a 5=q (a 3+a 4)=3×9=27.知识点三 等比数列的证明5.已知数列{a n }的首项a 1=t >0,a n +1=3a n 2a n +1,n ∈N *,若t =35,求证1a n-1是等比数列并求出{a n }的通项公式.解 由题意知a n >0,1a n +1=2a n +13a n , 1a n +1=13a n +23, 1a n +1-1=131a n -1,1a 1-1=23, 所以数列1a n -1是首项为23,公比为13的等比数列.1a n -1=2313n -1=23n ,a n =3n3n +2.知识点四 等比中项及应用6.已知一等比数列的前三项依次为x ,2x +2,3x +3,那么-1312是此数列的第________项( )A .2B .4C .6D .8 答案 B解析 由x ,2x +2,3x +3成等比数列,可知(2x +2)2=x (3x +3),解得x =-1或-4,又当x =-1时,2x +2=0,这与等比数列的定义相矛盾.∴x =-4.∴该数列是首项为-4,公比为32的等比数列,其通项a n =-4×32n -1,由-4×32n -1=-1312,得n =4.7.若互不相等的实数a ,b ,c 成等差数列,a 是b ,c 的等比中项,且a +3b +c =10,则a 的值是( )A .1B .-1C .-3D .-4 答案 D解析 由题意,得⎩⎪⎨⎪⎧2b =a +c ,a 2=bc ,a +3b +c =10,解得a =-4,b =2,c =8.8.在等比数列{a n }中,若a 4a 5a 6=27,则a 3与a 7的等比中项是________. 答案 ±3解析 由等比中项的定义知a 25=a 4a 6,∴a 35=27. ∴a 5=3,∴a 1q 4=3,∴a 3a 7=a 21q 8=32,因此a 3与a 7的等比中项是±3.易错点一 忽略对等比中项符号的讨论9.若1,x ,y ,z ,16这五个数成等比数列,则y 的值为( ) A .4 B .-4 C .±4 D.2易错分析 对于本题的求解,若仅注意到y 是1与16的等比中项,会很快得出y 2=16,进一步得出y =±4,从而导致错解.答案 A解析 由于⎩⎪⎨⎪⎧x 2=1·y ,y 2=1×16⇒y =4,故选A .易错点二 忽略等比数列中公比可正可负10.已知一个等比数列的前4项之积为116,第2项与第3项的和为2,则这个等比数列的公比为________.易错分析 本题易错设四个数分别为a q 3,a q,aq ,aq 3公比为q 2相当于规定了这个等比数列各项要么同正,要么同负而错算出公比为3±22.答案 3±22或-5±2 6解析 设这4个数为a ,aq ,aq 2,aq 3(其中aq ≠0),由题意得⎩⎪⎨⎪⎧a ·aq ·aq 2·aq 3=116,aq +aq 2=2,所以⎩⎪⎨⎪⎧a 2q 3=±14,a 2q +q 22=2.所以a 2q 3a 2q +q 22=±18, 整理得q 2-6q +1=0或q 2+10q +1=0, 解得q =3±22或q =-5±26.一、选择题1.若等比数列{a n }满足a n a n +1=16n,则公比为( ) A .2 B .4 C .8 D .16 答案 B解析 由a n a n +1=16n ,知a 1a 2=16,a 2a 3=162,后式除以前式得q 2=16,∴q =±4.∵a 1a 2=a 21q =16>0,∴q >0,∴q =4.2.在数列{a n }中,a 1=1,点(a n ,a n +1)在直线y =2x 上,则a 4的值为( ) A .7 B .8 C .9 D .16 答案 B解析 ∵点(a n ,a n +1)在直线y =2x 上,∴a n +1=2a n .∵a 1=1≠0,∴a n ≠0.∴{a n }是首项为1,公比为2的等比数列,∴a 4=1×23=8.3.已知等比数列a 1,a 2,…a 8各项为正,且公比q ≠1,则( ) A .a 1+a 8=a 4+a 5 B .a 1+a 8<a 4+a 5 C .a 1+a 8>a 4+a 5D .a 1+a 8与a 4+a 5大小关系不能确定 答案 C解析 由题意可知,a 1>0,q >0,a 1+a 8-a 4-a 5=a 1(1+q 7-q 3-q 4)=a 1[1-q 3-q 4(1-q 3)]=a 1[(1-q 3)(1-q 4)]>0.∴a 1+a 8>a 4+a 5.故选C .4.一个数分别加上20,50,100后得到的三个数成等比数列,其公比为( ) A .53 B .43 C .32 D .12 答案 A解析 设这个数为x ,则(50+x )2=(20+x )·(100+x ),解得x =25.∴这三个数分别为45,75,125,公比q 为7545=53.5.在如下表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则a +b +c 的值为( )A .1B .2C .3D .98答案 D解析 按题意要求,每一横行成等差数列,每一纵列成等比数列填表如图,故a =12,b =38,c =14,则a +b +c =98.故选D .二、填空题6.一个直角三角形的三边成等比数列,则较小锐角的正弦值是________. 答案5-12解析 设该直角三角形的三边分别为a ,aq ,aq 2(q >1),则(aq 2)2=(aq )2+a 2,∴q 2=5+12.较小锐角记为θ,则sin θ=1q 2=5-12. 7.我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金几何”其意思为“今有人持金出五关,第1关收税金12,第2关收税金13,第3关收税金14,第4关收税金15,第5关收税金16,5关所收税金之和,恰好1斤重,设这个人原本持金为x ,按此规律通过第8关”,则第8关需收税金为________.答案172x 解析 第1关收税金:12x ;第2关收税金:13⎝ ⎛⎭⎪⎫1-12x =12×3x ;第3关收税金:14⎝ ⎛⎭⎪⎫1-12-16x =13×4x ;…,可得第8关收税金:18×9x ,即172x . 8.各项均为正数的等比数列{a n }中,a 2-a 1=1.当a 3取最小值时,数列{a n }的通项公式a n =________.答案 2n -1解析 设等比数列的公比为q (q >0), 由a 2-a 1=1,得a 1(q -1)=1,所以a 1=1q -1. a 3=a 1q 2=q 2q -1=1-1q 2+1q(q >0), 而-1q 2+1q =-⎝ ⎛⎭⎪⎫1q -122+14, ①当q =2时①式有最大值14,所以当q =2时a 3有最小值4. 此时a 1=1q -1=12-1=1. 所以数列{a n }的通项公式a n =2n -1.故答案为2n -1.三、解答题9.等比数列{a n }中,已知a 1=2,a 4=16. (1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解 (1)设{a n }的公比为q , 由已知得16=2q 3,解得q =2, ∴a n =a 1qn -1=2n.(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32,设{b n }的公差为d ,则有⎩⎪⎨⎪⎧b 1+2d =8,b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.从而b n =-16+12(n -1)=12n -28, ∴数列{b n }的前n 项和S n =n -16+12n -2=6n 2-22n .10.数列{a n }满足a 1=-1,且a n =3a n -1-2n +3(n =2,3,…). (1)求a 2,a 3,并证明数列{a n -n }是等比数列; (2)求a n .解 (1)a 2=3a 1-2×2+3=-4,a 3=3a 2-2×3+3=-15.下面证明{a n -n }是等比数列: 证明:由a n =3a n -1-2n +3可得a n -n =3[a n -1-(n -1)],因为a 1-1=-2≠0,所以a n -n ≠0, 所以a n +1-n +a n -n=3a n -n ++3-n +a n -n=3a n -3na n -n=3(n =1,2,3,…). 又a 1-1=-2,所以{a n -n }是以-2为首项,3为公比的等比数列. (2)由(1)知a n -n =-2·3n -1,所以a n =n -2·3n -1.。
【人教A版】高中数学必修5同步辅导与检测:第二章2.4第1课时等比数列的概念与通n项公式(含答案)
第二章 数列2.4 等比数列第1课时 等比数列的概念与通n 项公式A 级 基础巩固一、选择题1.在数列{a n }中,对任意n ∈N *,都有a n +1-2a n =0,则2a 1+a 22a 3+a 4的值为( )A.14B.13C.12D .1 解析:a 2=2a 1,a 3=2a 2=4a 1,a 4=8a 1,所以2a 1+a 22a 3+a 4=4a 116a 1=14. 答案:A2.公差不为0的等差数列的第2,3,6项构成等比数列,则公比是( )A .1B .2C .3D .4解析:设等差数列的第2项是a 2,公差是d ,则a 3=a 2+d ,a 6=a 2+4d .由等差数列的第2,3,6项构成等比数列,得(a 2+d )2=a 2(a 2+4d ),则d =2a 2,公比q =a 3a 2=a 2+d a 2=a 2+2a 2a 2=3.答案:C3.若正数a ,b ,c 组成等比数列,则log 2a ,log 2b ,log 2c 一定是( )A .等差数列B .既是等差数列又是等比数列C .等比数列D .既不是等差数列也不是等比数列解析:由题意得b 2=ac (a ,b ,c >0),所以log 2b 2=log 2ac即2log 2b =log 2a +log 2c ,所以log 2a ,log 2b ,log 2c 成等差数列.答案:A4.已知a 是1,2的等差中项,b 是-1,-16的等比中项,则ab 等于( )A .6B .-6C .±6D .±12解析:a =1+22=32, b 2=(-1)(-16)=16,b =±4,所以ab =±6.答案:C5.(2016·四川卷)某公司为激励创新,计划逐步加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)A .2018年B .2019年C .2020年D .2021年解析:设第n 年的研发投资资金为a n ,a 1=130,则a n =130×1.12n -1,由题意,需a n =130×1.12n -1≥200,解得n ≥5,故从2019年该公司全年的投入的研发资金超过200万,选B.答案:B二、填空题6.等比数列{a n }中,a 1=18,q =2,则a 4与a 8的等比中项为________.解析:a 4=a 1q 3=18×23=1, a 8=a 1q 7=18×27=16, 所以a 4与a 8的等比中项为±16=±4.答案:±47.设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:设等比数列的公比为q ,由⎩⎨⎧a 1+a 3=10,a 2+a 4=5得⎩⎨⎧a 1(1+q 2)=10,a 1q (1+q 2)=54,解得⎩⎪⎨⎪⎧a 1=8,q =12,所以a 1a 2…a n =a n 1q 1+2+…+(n -1)=8n ×⎝ ⎛⎭⎪⎫12n (n -1)2=2-12n 2+72n ,于是当n =3或4时,a 1a 2…a n 取得最大值26=64.答案:648.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 6+a 7a 8+a 9等于________. 解析:设等比数列{a n }的公比为q ,由于a 1,12a 3,2a 2成等差数列, 则2⎝ ⎛⎭⎪⎫12a 3=a 1+2a 2,即a 3=a 1+2a 2, 所以a 1q 2=a 1+2a 1q .由于a 1≠0,所以q 2=1+2q ,解得q =1±2.又等比数列{a n }中各项都是正数,所以q >0,所以q =1+ 2.所以a 6+a 7a 8+a 9=a 1q 5+a 1q 6a 1q 7+a 1q 8=1q 2=1(1+2)2=3-2 2. 答案:3-2 2三、解答题9.已知{a n }为等比数列,a 3=2,a 2+a 4=203,求{a n }的通项公式. 解:设等比数列{a n }的公比为q ,则q ≠0.a 2=a 3q =2q,a 4=a 3.q =2q , 所以2q +2q =203. 解得q =13或q =3. 当q =13时,a 1=18, 所以a n =18×⎝ ⎛⎭⎪⎫13n -1=2×33-n . 当q =3时,a 1=29, 所以a n =29×3n -1=2×3n -3. 综上,当q =13时,a n =2×33-n ; 当q =3时,a n =2×3n -3.10.在各项均为负数的数列{a n }中,已知2a n =3a n +1,且a 2·a 5=827. (1)求证:{a n }是等比数列,并求出其通项.(2)试问-1681是这个等比数列中的项吗?如果是,指明是第几项;如果不是,请说明理由.解:(1)因为2a n =3a n +1,所以a n +1a n =23. 又因为数列{a n }的各项均为负数,所以a 1≠0,所以数列{a n }是以23为公比的等比数列. 所以a n =a 1·q n -1=a 1·⎝ ⎛⎭⎪⎫23n -1. 所以a 2=a 1·⎝ ⎛⎭⎪⎫232-1=23a 1, a 5=a 1·⎝ ⎛⎭⎪⎫235-1=1681a 1, 又因为a 2·a 5=23a 1·1681a 1=827, 所以a 21=94. 又因为a 1<0,所以a 1=-32. 所以a n =⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫23n -1=-⎝ ⎛⎭⎪⎫23n -2(n ∈N *). (2)令a n =-⎝ ⎛⎭⎪⎫23n -2=-1681, 则n -2=4,n =6∈N *,所以-1681是这个等比数列中的项,且是第6项. B 级 能力提升1.若互不相等的实数a ,b ,c 成等差数列,c ,a ,b 成等比数列,且a +3b +c =10,则a =( )A .-4B .-2C .2D .4答案:A2.已知等比数列{a n },若a 3a 4a 8=8,则a 1a 2…a 9=________. 答案:5123.设关于x 的二次方程a n x 2-a n +1x +1=0(n =1,2,3,…)有两根α和β,且满足6α-2αβ+6β=3.(1)试用a n 表示a n +1;(2)求证:⎩⎨⎧⎭⎬⎫a n -23是等比数列;(3)当a 1=76时,求数列{a n }的通项公式及项的最值.(1)解:根据根与系数的关系,得⎩⎪⎨⎪⎧α+β=an +1a n ,αβ=1a n .代入题设条件6(α+β)-2αβ=3,得6a n +1a n -2a n =3.所以a n +1=12a n +13.(2)证明:因为a n +1=12a n +13,所以a n +1-23=12⎝ ⎛⎭⎪⎫a n -23.若a n =23,则方程a n x 2-a n +1x +1=0可化为23x 2-23x +1=0,即2x 2-2x +3=0.此时Δ=(-2)2-4×2×3<0,所以a n ≠23,即a n -23≠0. 所以数列⎩⎨⎧⎭⎬⎫a n -23是以12为公比的等比数列. (3)解:当a 1=76时,a 1-23=12, 所以数列⎩⎨⎧⎭⎬⎫a n -23是首项为12,公比为12的等比数列. 所以a n -23=12×⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n , 所以a n =23+⎝ ⎛⎭⎪⎫12n ,n =1,2,3,…, 即数列{a n }的通项公式为a n =23+⎝ ⎛⎭⎪⎫12n ,n =1,2,3,…. 由函数y =⎝ ⎛⎭⎪⎫12x 在(0,+∞)上单调递减知,当n =1时,a n 的值最大,即最大值为a 1=76.。
2021_2022学年高中数学第二章数列2.4等比数列作业1含解析新人教A版必修5
2.4 等比数列一、选择题1.在等比数列{a n }中,a 1=4,公比q =3,则通项公式a n 等于( )A .3nB .4nC .3·4n -1D .4·3n -1解析:a n =a 1·q n -1=4·3n -1.答案:D2.在等比数列{a n }中,已知a 1a 2a 12=64,则a 4a 6的值为( )A .16B .24C .48D .128解析:设公比为q ,则a 1a 2a 12=a 31q 12=64,所以a 1q 4=4.所以a 4a 6=(a 1q 4)2=16.答案:A3.已知等比数列{a n }的公比为正数,且a 3·a 9=2a 25,a 2=1,则a 1等于( ) A.12B.22C. 2 D .2解析:设公比为q ,由已知得a 1q 2a 1q 8=2(a 1q 4)2,则q 2=2,因为等比数列{a n }的公比为正数,所以q = 2.所以a 1=a 2q =12=22. 答案:B4.已知等差数列{a n }的公差d ≠0,它的第1、5、17项顺次成等比数列,则这个等比数列的公比是( )A .4B .3C .2 D.12解析:设公差为d ,则a 25=a 1a 17,即(a 1+4d )2=a 1(a 1+16d ),整理,得a 1=2d . 所以a 5a 1=a 1+4d a 1=2d +4d 2d=3.答案:B5.若a 、b 、c 成等比数列,则函数y =ax 2+2bx +c 的图象与x 轴的交点个数为( )A .0B .1C .2D .不确定解析:∵a 、b 、c 成等比数列,∴b 2=ac ,函数y =ax 2+2bx +c 的二次项系数a ≠0,且Δ=(2b )2-4ac =4(b 2-ac ),∴Δ=4(b 2-ac )=4(ac -ac )=0.故函数y =ax 2+2bx +c 的图象与x 轴只有一个交点.故选B.答案:B6.等差数列{a n }中,公差d ≠0,若a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10的值为() A.1316 B.316C.1516D.1116解析:∵a 23=a 1·a 9,∴(a 1+2d )2=a 1(a 1+8d ),∴a 1=d .∴原式=13d16d =1316.故选A.答案:A二、填空题7.2和4的等比中项等于________.解析:设x 是2和4的等比中项,则x 2=2×4=8,∴x =±2 2.答案:±2 28.若等比数列{a n }中,a 3=3,a 5=9,则此数列的公比为________.解析:q 2=a 5a 3=93=3,∴q =±3,故应填±3.答案:±39.等比数列{a n }的各项均为正,公比q 满足q 2=4,则a 3+a 4a 4+a 5=________.解析:∵{a n }为各项为正的等比数列,∴q =2.∴a 3+a 4a 4+a 5=a3+a 3·q a 4+a 4·q =a 3a 4=1q =12.故应填 12.答案:12 三、解答题10.{a n }为等比数列,求下列各值:(1)a 6-a 4=24,a 3a 5=64,求a n ;(2)已知a 2·a 8=36,a 3+a 7=15,求公比q .解:(1)设数列{a n }的公比为q ,由题意得⎩⎨⎧a 6-a 4=a 1q 3q 2-1=24, ①a 3a 5=a 1q 32=64. ②由②得a 1q 3=±8,将a 1q 3=-8代入①中得q 2=-2(舍去).将a 1q 3=8代入①中,得q 2=4,q =±2.当q =2时,a 1=1,∴a n =a 1q n -1=2n -1.当q =-2时,a 1=-1,∴a n =a 1q n -1=-(-2)n -1.∴a n =2n -1或a n =-(-2)n -1.(2)∵a 2·a 8=36=a 3·a 7,而a 3+a 7=15, ∴⎩⎨⎧ a 3=3,a 7=12或⎩⎨⎧a 3=12,a 7=3. ∴q 4=a 7a 3=4或14. ∴q =±2或q =±22. 11.已知数列{a n }满足:lg a n =3n +5,求证:{a n }是等比数列.证明:由lg a n =3n +5,得a n =103n +5,∴a n +1a n =103n +1+5103n +5=1000=常数. ∴{a n }是等比数列.12.(2009·江苏卷)设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…).若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则6q =________.解析:∵b n =a n +1,∴a n =b n -1,而{b n }有连续四项在集合{-53,-23,19,37,82}中,∴{a n }有连续四项在集合{-54,-24,18,36,81}中.∵{a n }是公比为q 的等比数列,|q |>1,∴{a n }中的连续四项依次为-24,36,-54,81,∴q =-3624=-32,∴6q =-9. 答案:-913.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列. (1)解:由已知,得⎩⎨⎧ a 1=2+1,3a 1+3d =9+32,解得d =2, 则a n =2+1+(n -1)2=2n -1+2,S n =n (2+1)+n n -122=n (n +2). (2)证明:由(1)得b n =S n n=n + 2. 假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r, 即(q +2)2=(p +2)(r +2).∴(q 2-pr )+(2q -p -r )2=0.∵p ,q ,r ∈N *,∴⎩⎨⎧ q 2-pr =0,2q -p -r =0.∴(p +r 2)2-pr =0.∴(p -r )2=0. ∴p =r 与p ≠r 矛盾.∴数列{b n }中任意不同的三项都不可能成等比数列.。
人教版高中数学必修五课时作业26:§2.4 等比数列(一)
§2.4 等比数列(一)基础过关1.在等比数列{a n}中,a4=4,则a2·a6等于()A.4B.8C.16D.32解析由于a24=a2·a6,所以a2·a6=16.答案 C2.在等比数列{a n}中,a n>0,且a1+a2=1,a3+a4=9,则a4+a5的值为()A.16B.27C.36D.81解析由已知a1+a2=1,a3+a4=9,∴q2=9.∴q=3(q=-3舍去),∴a4+a5=(a3+a4)q=27.答案 B3.等比数列x,3x+3,6x+6,…的第4项等于()A.-24B.0C.12D.24解析由x,3x+3,6x+6成等比数列得,(3x+3)2=x(6x+6).解得x1=-3或x2=-1(不合题意,舍去).第3项为-12,公比为-12-6=2,故数列的第四项为-24. 答案 A4.等比数列{a n }中,a 1=18,q =2,则a 4与a 8的等比中项为________.解析 a 4=a 1q 3=18×23=1,a 8=a 1q 7=18×27=16, ∴a 4与a 8的等比中项为±16=±4.答案 ±45.设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________.解析 由{a n }为等比数列,设公比为q .⎩⎪⎨⎪⎧a 1+a 2=-1,a 1-a 3=-3,即⎩⎪⎨⎪⎧a 1+a 1q =-1,①a 1-a 1q 2=-3,②显然q ≠1,a 1≠0,②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.答案 -86.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n (n =1,2,3,…).证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列; (2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ).整理,得nS n +1=2(n +1)S n ,∴S n +1n +1=2S n n .故⎩⎨⎧⎭⎬⎫S n n 是以2为公比的等比数列. (2)由(1)知S n +1n +1=4·S n -1n -1(n ≥2).于是S n +1=4(n +1)·S n -1n -1=4a n (n ≥2), 又∵a 2=3S 1=3,故S 2=a 1+a 2=4.因此对于任意正整数n ≥1,都有S n +1=4a n .7.设{a n }是各项均为正数的等比数列,b n =log 2a n ,若b 1+b 2+b 3=3,b 1b 2b 3=-3,求数列{a n }的通项公式.解 设等比数列{a n }的公比为q (q >0),则a n =2bn ,∵b n -b n -1=log 2a n -log 2a n -1=log 2a n a n -1=log 2q ,为常数, ∴{b n }为等差数列,且公差d =log 2q ,而⎩⎨⎧b 1+b 2+b 3=3b 2=3(b 1+d )=3,b 1·b 2·b 3=b 1(b 1+d )(b 1+2d )=-3,⇒⎩⎨⎧b 1=-1,d =2或⎩⎨⎧b 1=3,d =-2.∴b n =2n -3或b n =5-2n .∴a n =22n -3或a n =25-2n .能力提升8.在等比数列{a n }中,a 1=1,公比满足|q |≠1.若a m =a 1a 2a 3a 4a 5,则m 等于( )A.9B.10C.11D.12解析 在等比数列{a n }中,∵a 1=1,∴a m =a 1a 2a 3a 4a 5=a 51q 10=q 10. ∵a m =a 1q m -1=q m -1,∴m -1=10,∴m =11.答案 C9.已知a ,b ,c ,d 成等比数列,且曲线y =x 2-2x +3的顶点是(b ,c ),则ad 等于( )A.3B.2C.1D.-2解析 ∵y =(x -1)2+2,∴b =1,c =2. 又∵a ,b ,c ,d 成等比数列,∴ad =bc =2.答案 B10.在160与5中间插入4个数,使它们同这两个数成等比数列,则这4个数依次为________.解析 设这6个数所成等比数列的公比为q ,则5=160q 5,∴q 5=132,∴q =12.∴这4个数依次为80,40,20,10.答案 80,40,20,1011.在正项等比数列{a n }中,若3a 1,12a 3,2a 2成等差数列,则a 2 016-a 2 017a 2 018-a 2 019=________.解析 设正项等比数列{a n }的公比为q >0,∵3a 1,12a 3,2a 2成等差数列,∴2×12a 3=3a 1+2a 2,即a 1q 2=3a 1+2a 1q ,∴q 2-2q -3=0,q >0,解得q =3.则a 2 016-a 2 017a 2 018-a 2 019=a 2 016-a 2 017q 2(a 2 016-a 2 017)=19. 答案 1912.已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *).(1)求a 1,a 2,a 3的值;(2)设b n =a n +3,证明数列{b n }为等比数列,并求通项公式a n .解 (1)∵数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *).∴n =1时,由a 1=S 1=2a 1-3×1,解得a 1=3,n =2时,由S 2=2a 2-3×2,得a 2=9,n =3时,由S 3=2a 3-3×3,得a 3=21.(2)∵S n =2a n -3×n ,∴S n +1=2a n +1-3×(n +1),两式相减,得a n +1=2a n +3,*把b n =a n +3及b n +1=a n +1+3,代入*式,得b n +1=2b n (n ∈N *),且b 1=6, ∴数列{b n }是以6为首项,2为公比的等比数列,∴b n =6×2n -1,∴a n =b n -3=6×2n -1-3=3(2n -1).创新突破13.设关于x 的二次方程a n x 2-a n +1x +1=0(n =1,2,3,…)有两根α和β,且满足6α-2αβ+6β=3.(1)试用a n 表示a n +1;(2)求证:⎩⎨⎧⎭⎬⎫a n -23是等比数列; (3)当a 1=76时,求数列{a n }的通项公式.(1)解根据根与系数的关系,得⎩⎪⎨⎪⎧α+β=a n +1a n ,αβ=1a n . 代入题设条件6(α+β)-2αβ=3,得6a n +1a n -2a n=3. 所以a n +1=12a n +13.(2)证明 因为a n +1=12a n +13,所以a n +1-23=12⎝ ⎛⎭⎪⎫a n -23. 若a n =23,则方程a n x 2-a n +1x +1=0,可化为23x 2-23x +1=0,即2x 2-2x +3=0.此时Δ=(-2)2-4×2×3<0,所以a n ≠23,即a n -23≠0. 所以数列⎩⎨⎧⎭⎬⎫a n -23是以12为公比的等比数列. (3)解 当a 1=76时, a 1-23=12, 所以数列⎩⎨⎧⎭⎬⎫a n -23是首项为12,公比为12的等比数列. 所以a n -23=12×⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n , 所以a n =23+⎝ ⎛⎭⎪⎫12n ,n =1,2,3,…, 即数列{a n }的通项公式为a n =23+⎝ ⎛⎭⎪⎫12n ,n =1,2,3,….。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高中数学 第二章 2.4等比数列(一)课时作业 新人教A 版必修5
课时目标
1.理解等比数列的定义,能够利用定义判断一个数列是否为等比数列.
2.掌握等比数列的通项公式并能简单应用.
3.掌握等比中项的定义,能够应用等比中项的定义解决有关问题.
1.如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0).
2.等比数列的通项公式:a n =a 1q n -1.
3.等比中项的定义
如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项,且G =±ab .
一、选择题
1.在等比数列{a n }中,a n >0,且a 2=1-a 1,a 4=9-a 3,则a 4+a 5的值为( )
A .16
B .27
C .36
D .81
答案 B
解析 由已知a 1+a 2=1,a 3+a 4=9,∴q 2=9.
∴q =3(q =-3舍),∴a 4+a 5=(a 3+a 4)q =27.
2.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7等于( ) A .64 B .81 C .128 D .243
答案 A
解析 ∵{a n }为等比数列,
∴a 2+a 3a 1+a 2
=q =2. 又a 1+a 2=3,∴a 1=1.故a 7=1·26=64.
3.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8
等于( ) A .1+ 2 B .1- 2
C .3+2 2
D .3-2 2
答案 C
解析 设等比数列{a n }的公比为q ,
∵a 1,12
a 3,2a 2成等差数列, ∴a 3=a 1+2a 2,
∴a 1q 2=a 1+2a 1q ,
∴q 2-2q -1=0,
∴q =1± 2.
∵a n >0,∴q >0,q =1+ 2.
∴
a 9+a 10a 7+a 8
=q 2=(1+2)2=3+2 2. 4.如果-1,a ,b ,c ,-9成等比数列,那么( )
A .b =3,ac =9
B .b =-3,ac =9
C .b =3,ac =-9
D .b =-3,ac =-9 答案 B
解析 ∵b 2=(-1)×(-9)=9且b 与首项-1同号,
∴b =-3,且a ,c 必同号.
∴ac =b 2=9.
5.一个数分别加上20,50,100后得到的三个数成等比数列,其公比为( ) A.53 B.43 C.32 D.12
答案 A
解析 设这个数为x ,则(50+x )2=(20+x )·(100+x ),
解得x =25,
∴这三个数45,75,125,公比q 为7545=53
. 6.若正项等比数列{a n }的公比q ≠1,且a 3,a 5,a 6成等差数列,则a 3+a 5a 4+a 6
等于( ) A.5-12 B.5+12
C.12
D .不确定 答案 A
解析 a 3+a 6=2a 5,∴a 1q 2+a 1q 5=2a 1q 4,
∴q 3-2q 2+1=0,∴(q -1)(q 2-q -1)=0 (q ≠1),
∴q 2-q -1=0,∴q =5+12 (q =1-52
<0舍) ∴a 3+a 5a 4+a 6=1q =5-12
. 二、填空题
7.已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =________.
答案 4·(32
)n -1 解析 由已知(a +1)2=(a -1)(a +4),
得a =5,则a 1=4,q =64=32
, ∴a n =4·(32
)n -1. 8.设数列{a n }为公比q >1的等比数列,若a 4,a 5是方程4x 2-8x +3=0的两根,则
a 6+a 7=________.
答案 18
解析 由题意得a 4=12,a 5=32,∴q =a 5a 4
=3. ∴a 6+a 7=(a 4+a 5)q 2=(12+32
)×32=18. 9.首项为3的等比数列的第n 项是48,第2n -3项是192,则n =________. 答案 5
解析 设公比为q ,
则⎩⎪⎨⎪⎧ 3q n -1=483q 2n -4=192⇒⎩
⎪⎨⎪⎧ q n -1=16q 2n -4=64⇒q 2=4, 得q =±2.由(±2)n -1=16,得n =5.
10.一个直角三角形的三边成等比数列,则较小锐角的正弦值是________.
答案 5-12
解析 设三边为a ,aq ,aq 2 (q >1),
则(aq 2)2=(aq )2+a 2,∴q 2=5+12
. 较小锐角记为θ,则sin θ=1q 2=5-12
. 三、解答题
11.已知{a n }为等比数列,a 3=2,a 2+a 4=203
,求{a n }的通项公式. 解 设等比数列{a n }的公比为q ,则q ≠0.
a 2=a 3q =2q
,a 4=a 3q =2q , ∴2q +2q =203
. 解得q 1=13
,q 2=3. 当q =13
时,a 1=18, ∴a n =18×⎝ ⎛⎭
⎪⎫13n -1=2×33-n . 当q =3时,a 1=29
, ∴a n =29
×3n -1=2×3n -3. 综上,当q =13
时,a n =2×33-n ; 当q =3时,a n =2×3n -3.
12.已知数列{a n }的前n 项和为S n ,S n =13
(a n -1) (n ∈N *). (1)求a 1,a 2;(2)求证:数列{a n }是等比数列.
(1)解 由S 1=13(a 1-1),得a 1=13
(a 1-1), ∴a 1=-12.又S 2=13
(a 2-1), 即a 1+a 2=13(a 2-1),得a 2=14
. (2)证明 当n ≥2时,a n =S n -S n -1
=13(a n -1)-13
(a n -1-1), 得a n a n -1=-12,又a 2a 1=-12
, 所以{a n }是首项为-12,公比为-12
的等比数列.
能力提升
13.设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则6q =________.
答案 -9
解析 由题意知等比数列{a n }有连续四项在集合{-54,-24,18,36,81}中,由等比数列的定义知,
四项是两个正数、两个负数,故-24,36,-54,81,符合题意,则q =-32
,∴6q =-9.
14.已知数列{a n }满足a 1=1,a n +1=2a n +1,
(1)求证:数列{a n +1}是等比数列;
(2)求a n 的表达式.
(1)证明 ∵a n +1=2a n +1,
∴a n +1+1=2(a n +1),
∴a n +1+1a n +1
=2. ∴{a n +1}是等比数列,公比为2,首项为2.
(2)解 由(1)知{a n +1}是等比数列.
公比为2,首项a 1+1=2.
∴a n +1=(a 1+1)·2n -1=2n .
∴a n =2n -1.
1.等比数列的判断或证明
(1)利用定义:
a n +1a n
=q (与n 无关的常数). (2)利用等比中项:a 2n +1=a n a n +2 (n ∈N *).
2.等比数列{a n }的通项公式a n =a 1q n -1共涉及a n ,a 1,q ,n 四个量.已知其中三个量可求得第四个.36504 8E98 躘-^od 26681 6839 根31061 7955 祕32932 80A4 肤^B35888 8C30 谰WHK。