(整理)微分算子法
微分算子法中d的运算[整理版]
![微分算子法中d的运算[整理版]](https://img.taocdn.com/s3/m/b67eea3e4a73f242336c1eb91a37f111f1850d4b.png)
微分算子法中D 的运算D :微分的意思,如Dx 2=2x , D 3x 2=0D 1:积分的意思,如D 1x=2x 2*******************************************************************************定理1:)()(F k F e e D kx kx = 注意使用公式时的前后顺序例: x x x x e e k e e D 22222225)12()1()1(=+=+=+推论:)(1)(F 1k F e e D kxkx = (F(k)≠0)例:xe y y 2=+''x e y D 22)1(=+ x xx e e e D y 22222*51121)1(1=+=+=******************************************************************************定理2:)(sin sin )(F 22a F ax ax D -⋅=)(c o s c o s )(F 22a F ax ax D -⋅= 注意使用公式时的前后顺序推论:)(1sin sin )(F 122a F ax ax D -⋅= (F(-a 2) ≠0)例:xy y 3cos 24=+)(x y D 3c o s 2)1(4=+xx x x D x D y 3cos 4113cos 82121)3(13cos 23cos 1)(123cos )1(1222224*=⋅⋅=+-⋅⋅=⋅+⋅=⋅+⋅=遇到sinax,cosax 时,要凑出D 2来。
F(D)里有D 2,即可代换为-a 2,代换后继续算F(D)。
*******************************************************************************定理3: )()()()(F x v k D F e x v e D kxkx += 注意使用公式时的前后顺序推论:)()(1)()(F 1x v k D F e x v e D kx kx +=例:xe x y y 22y 44⋅=+'-''x e x y D D 222)44(⋅=+- 42222222222*1211)2)2((1)2(1x e x D e x D e x e D y x x x x ⋅=⋅⋅=⋅-+=⋅-=例:x e y y y =-'+''-'''y 33x e y D =-3)1( xe D y 3*)1(1-=此时不能用定理1,故3333*61111)1)1((1x e D e D e D e y x x x x⋅⋅=⋅=⋅=-+= ******************************************************************************例: xy y e 4=-)(x e D e D e eD e D e D D e D D D e D y x x x x x x x x ⋅==-+⋅=-⋅=+⋅⋅⋅-=⋅⋅+⋅-=⋅+⋅-⋅+=⋅-=411411114111411112111211111111111)1(12224*例:22+-=+''x x y y2)1(22+-=+x x y D )2()1(122*+-+=x x D y 用长除法:按幂次增加排列,至得出的D 的最高幂次与x 的最高幂次相同。
微分算子法
![微分算子法](https://img.taocdn.com/s3/m/15cd300db90d6c85ed3ac61c.png)
高阶常微分方程的微分算子法撰写摘自《大学数学解题法诠释》 .徐利治,.冯克勤,.方兆本,.徐森林,.1999高阶方程的求解自然要比一阶方程更为困难,即使是对于线性微分方程。
但是有一个例外:常系数线性微分方程。
我们可以完整的求出它的通解来,所以常系数线性方程的求解,主要精力是集中在讨论对应的非齐次方程的特解。
本节主要讨论微分算子法。
1.求方程230y y y ''''''--=的通解. 解 记()n n yD y =,将方程写成32230D y D y Dy --=或32(23)0D D D y --=我们熟知,其实首先要解特征方程32230D D D --=得0,1,3D =-故知方程有三特解31,,x xe e -,由于此三特解为线性无关,故立得通解3123x xy C C e C e -=++注:本题方程为齐次常系数三阶常微分方程,线性常微分方程的一般形状是1111()()()()()n n n n n n n d y d y dy L y a x a x dx dx dx a x y f x ---=++++=L 其中系数1(),,()n a x a x L 是某区间(,)a b 上的连续函数,上述方程又可写成11()(()())n n n L y D a x D a x y -≡+++L()f x =可以把上面括号整体看作一种运算,常称为线性微分算子。
本题中各()i a x 均为实常数,今后也仅对实常系数的情形来进一步发展线性微分算子方法。
2.求解 61160y y y y ''''''-+-=解 写成 32(6116)0D D D y -+-=从特征方程3206116D D D =-+-(1)(2)(3)D D D =---解得 1,2,3D =共三实根,故可立即写成特解23123x x xy C e C e C e =++3.求解 39130y y y y ''''''-++=解 写成 32(3913)0D D D y -++= 或 2(1)(413)0D D D y +-+= 特征方程 2(1)(413)0D D D +-+=有根1,23D i =-±,故对应的特解是x e -,2cos3xe x ,2sin 3x e x 从而通解是22123cos3sin 3x x xy C e C e x C e x -=++4.求(4)45440yy y y y ''''''-+-+=之通解.解 写成432(4544)0D D D D y -+-+=或 22(2)(1)0D D y -+=特征根是2,2,D i =±,对应的特解应是22,,cos ,sin x x e xe x x ,故写成通解21234()()cos sin x y x e C C x C x C x =+++5.求1(cos )y y x -''+=的通解解 本题为非齐次方程,先求出对应的齐次方程0y y ''+=的通解,写成2(1)0D y +=,可知特征根为i ±,相应的通解为112cos sin y C x C x =+设原方程有特解形为*12()cos ()sin y C x x C x x =+其中12,C C 为待定函数,常数变异告诉我们,应求解下面的方程组12112()cos ()sin 0()(cos )()(sin )(cos )C x x C x x C x x C x x x -⎧''+=⎪⎨''''+=⎪⎩或12112()cos ()sin 0()sin ()cos (cos )C x x C x x C x x C x x x -⎧''+=⎪⎨''-+=⎪⎩(方程组右端为原方程非齐次项1(cos )x -),解得1sin ()cos xC x x'=-,2()1C x '=或 1()ln cos C x x =,2()C x x =最后得通解为1*()()()y x y x y x =+12cos sin cos ln cos sin C x C x x x x x=+++ 注 对常系数方程,在应用上,不常运用常数变异法,对于特殊非齐次项的常系数方程,下文将提供更简捷的办法。
微分方程的算子算法【精选】
![微分方程的算子算法【精选】](https://img.taocdn.com/s3/m/963d8809a5e9856a56126034.png)
(1) P(D)( f1( x) f2 ( x)) P(D) f1(x) P(D) f2 (x)
(2) [P1(D) p2 (D)] f ( x) P1(D) f ( x) p2 (D) f ( x)
(3) P(D) P1(D)P2 (D),则
P(D) f (x) P1(D)[P2 (D) f (x)] P2 (D)[P1(D) f (x)]
10
常系数线性微分方程的算子解法
1
9.算子 P ( D)的基本性质及运算法则
(1)
1 (
P(D)
f1( x)
f2 ( x))
1 P(D)
f1( x)
1 P(D)
f2 ( x)
(2) P(D) P1(D)P2 (D),则
1 f ( x) 1 [ 1 f ( x)] 1 [ 1 f ( x)]
, D2
d2 dx 2
,L
, Dn
DDn1
dn dx n
P(D) Dn p1Dn1
P(D) y 0
3
常系数线性微分方程的算子解法
2.解的结构
线性算子 P(D)( y1 y2 ) P(D) y1 P(D) y2 定理1 方程(1)的通解为:y y(x) y *(x) ,其中y(x)
cos x
cos x P(2 )
(P(2 )
0)
12
常系数线性微分方程的算子解法
1
10.算子 P ( D) 的运算公式
(4)
1 [exv( x)] ex 1 v( x)
P(D)
P( D)
(5) 设fk ( x) b0 b1x L bk xk , P(0) pn 0,则
第四节 微分算子法
![第四节 微分算子法](https://img.taocdn.com/s3/m/8ea02a3a31126edb6f1a10b5.png)
3 xy 0,
2
u2 ( x, y, z , t ) 3 xyt B( x, y, z )t 代入方程u tt a u xx , 得到:
2
3
6Bt a 0 Bt
2
2
B( x, y, z ) 0 令 B ( x, y , z ) 0
2
故u ( x, y, z, t ) x 3xy 5 xyz a t 2 6 x 10 xy
2 2 2 2
A( x, y, z ) 0 令 A( x, y, z ) a 2 2 6 x 10 xy
二、波动方程Cauchy问题的解法
utt a 2uxx 0 ( x R, t 0) u( x,0) ( x),ut ( x,0) ( x) ( x R) 1 shat u ( x, t ) chat ( x) ( x) a
2
2
k 0
2
a t [ x
2 k k
2
k!
3 xy 5 xyz ]
2 2
at 2 2 2 x 3xy 5 xyz x 3xy 5 xyz 0 1!2 x 2 3 xy 2 5 xyz 2 a t 2 6 x 10 xy
at k [ ( x)] 1 at k [ ( x)] 2k 1! 2k ! a k 0 k 0
2k 2 k 1
( x)
t k 1
2k
A2k ( x) ( x)t
u1
t k 1
微分算子法实用整理总结
![微分算子法实用整理总结](https://img.taocdn.com/s3/m/6343321db84ae45c3b358cc2.png)
x
=
1
ex
பைடு நூலகம்
(D -1)(1+1)(12 +1)
=
1 D -1
•
1 2
•
1 2
ex
= 1 1 ex
D-1 4
= 1 ex
4
1 D +1-1
• 1=
1 4
xex
(性质一、二、
五)
例 8、
d2y dx 2
+y=x2-x+2
,
则(D2+1)y= x2-x+2
5
特解
y*=
D
1 2 +1
(x2-x+2)
=(1-D2)(x2-x+2)=x2-x (性质四)
1
F(D) (xp+b1xp-1+b2xp-2+...+bp-1x+bp)
= Q(D)(xp+b1xp-1+b2xp-2+...+bp-1x+bp)
注:Q(D)为商式,按 D 的升幂排列,且 D 的最高次幂为 p 。
(5)性质五(分解因式):
1 F(D)
f
(x) = 1
F1(D) •F2 (D)
f (x) =
e d 2 y
例 9、 dx2 +2
dy dx
+2y=x2
-x
,则(D2+2D+2)y=x2e-x
特解
y*=
(D
1 +1)2
+1
x2e-x=e-x
(D
1 -1+1)2
+1
x2
微分算子法中D的运算
![微分算子法中D的运算](https://img.taocdn.com/s3/m/7489d7fd6edb6f1afe001faf.png)
微分算子法中D 的运算D :微分的意思,如Dx 2=2x , D 3x 2=0D 1:积分的意思,如D 1x=2x 2*******************************************************************************定理1:)()(F k F e e D kx kx = 注意使用公式时的前后顺序例: x x x x e e k e e D 22222225)12()1()1(=+=+=+推论:)(1)(F 1k F e e D kx kx = (F(k )≠0) 例:x e y y 2=+''x e y D 22)1(=+x x x e e e D y 22222*51121)1(1=+=+= ******************************************************************************定理2:)(sin sin )(F 22a F ax ax D -⋅=)(cos cos )(F 22a F ax ax D -⋅= 注意使用公式时的前后顺序 推论:)(1sin sin )(F 122a F ax ax D -⋅= (F (—a 2) ≠0) 例:x y y 3cos 24=+)(x y D 3cos 2)1(4=+ x x x x D x D y 3cos 4113cos 82121)3(13cos 23cos 1)(123cos )1(1222224*=⋅⋅=+-⋅⋅=⋅+⋅=⋅+⋅=遇到sinax,cosax 时,要凑出D 2来。
F(D)里有D 2,即可代换为-a 2,代换后继续算F(D )。
*******************************************************************************定理3: )()()()(F x v k D F e x v e D kx kx += 注意使用公式时的前后顺序 推论:)()(1)()(F 1x v k D F e x v e D kx kx +=例:x e x y y 22y 44⋅=+'-''x e x y D D 222)44(⋅=+-42222222222*1211)2)2((1)2(1x e x D e x D e x e D y x x x x ⋅=⋅⋅=⋅-+=⋅-= 例:x e y y y =-'+''-'''y 33x e y D =-3)1(x e D y 3*)1(1-= 此时不能用定理1,故 3333*61111)1)1((1x e D e D e D e y x x x x ⋅⋅=⋅=⋅=-+= ******************************************************************************例: x y y e 4=-)(x e D e D e e D e D e D D e D D D e D y x x x x x x x x ⋅==-+⋅=-⋅=+⋅⋅⋅-=⋅⋅+⋅-=⋅+⋅-⋅+=⋅-=411411114111411112111211111111111)1(12224*例:22+-=+''x x y y2)1(22+-=+x x y D)2()1(122*+-+=x x D y 用长除法:按幂次增加排列,至得出的D 的最高幂次与x 的最高幂次相同。
算子法解微分方程
![算子法解微分方程](https://img.taocdn.com/s3/m/a4d22dc6bb4cf7ec4afed0e1.png)
常系数非齐次线性微分方程的解法有很多,例如笔者的教材(《高等数学第六版》)所述的待定系数法和接下来给出的称之为“算子法”以及另一种同样使用算子的方法。
1、首先介绍一种使用算子求解的方法:考察二阶常系数非齐次线性微分方程d2x/dt2+a1dx/dt+a0x=b(t)相应的齐次方程的通解是已知的,所以只须求出方程的一个特解(由微分方程解的结构给出)。
设该方程的特征多项式q(λ)=λ2+a1λ+a0分解为q(λ)=(λ-λ1) (λ-λ2)则算子多项式q(D)也分解为q(D)=(D-λ1) (D-λ2)则原微分方程可写成 (D-λ1) (D-λ2)=b(t)依次解以下两个方程(D-λ2) x1=b(t)(D-λ1) x=x1就可求得方程的特解。
(其中x1看成是中间变量,只要通过求解x1来求解x)对于λ1和λ2是共轭虚数的情形,按上述步骤求得的方程特解有可能是一个复值函数z(t)=x(t)+iy(t)。
这时应有恒等式d2z(t)/dt2+a1dz(t)/dt+a0z(t)=b(t)比较上式两边的实部,我们得到d2x(t)/dt2+a1dx(t)/dt+a0x(t)=b(t)这样,不论λ1和λ2是实数或者是共轭虚数,我们都可能够求出方程在实数范围内的特解,从而完全解决了这方程的求解问题。
给出教材上一个例子:求微分方程y``-5y`+6y=xe2x.(《高等数学》P343)解:该微分方程的算子多项式分解为 q(D)=(D-2) (D-3)设y1=(D-2)y,代入知(D-3)y1=xe2x(该式子是一阶常系数微分方程),易求得y1=﹣(x+1) e2x+Ce3x(其中C为任意常数).所以 (D-2)y=﹣(x+1) e2x+Ce3x.得y=C1e2x+C2e3x-(x2+2x) e2x/2.2、下面来说另一种更简便的方程,也就是“算子法”。
不过在使用算子法的时候,很多性质是必须了解的,在这里不作说明。
“算子法”是一个能直接求出常系数非齐次线性微分方程的特解的一个简单的方法,也就是得到我们需要求的y*。
高等数学中用微分算子法求常微分方程的特解的问题
![高等数学中用微分算子法求常微分方程的特解的问题](https://img.taocdn.com/s3/m/966494ff29ea81c758f5f61fb7360b4c2f3f2a5b.png)
高等数学中用微分算子法求常微分方程的特解的问题微分算子法是解决常微分方程特解的一种重要方法,近年来在数学科学领域内凭借其特有的优势,被越来越多地用于各类理论研究和实践应用。
首先,《高等数学》中微分算子法用于求解常微分方程的特解,比如作为幂微分方程的特解的计算,依靠它来进行方程的解算可以极大简化计算过程,可以提高处理效率。
其具体的基本步骤如下:
1. 将拟合函数的特解的基本思想转换为形如导数的数学模型;
2. 将该模型转换为微分方程,在此步骤中,可以采用不同的算子,例如偏微分算子h和k,将存在微分方程中的求解变量独立化;
3. 通过微积分的定义公式,结合已知参数及边界条件,将求解变量的表达式转化为实际的函数表达式,从而得到常微分方程特解。
微分算子法有很多特点,例如它有着高精度的数值解计算,反应灵敏,运算简单。
在该方法中,所需要解决的参数数目少,微分计算量小,求解效率高,容易于理解,易于运用,可以抽象出满足不同条件的不同微分算子,使用多元或多变量分析技术,从而改变方程维度,帮助数学研究者解决复杂的问题。
总而言之,微分算子法是一种求解常微分方程特解的有效方法,其在常微分方程的解决中扮演着重要角色。
因此,在解决复杂的常微分方程特解问题时,可以采用微分算子的计算方法,以降低运算复杂度,提高求解效率,增加研究的可视性,从而得到准确、有效的解。
微分算子法求微分方程的特解2022
![微分算子法求微分方程的特解2022](https://img.taocdn.com/s3/m/539a992ace2f0066f433228f.png)
二阶常系数微分方程的微分算子法求特解二阶常系数非齐次微分方程求特解,在一般的本科教材中均采用设特解再用待定系数法求出待定的系数,计算量往往偏大,考生若掌握了微分算子法,则可以起到事半功倍的效果。
具体做法如下:引入微分算子222222d d d d d d ,,,,,,d d d d d d ====== nn n n n n y y y D Dy D D y D D y x x x x x x因此,n 阶常系数线性非齐次方程()(1)11()−−′++++= n n n n y a y a y a y f x()111()−−⇒++++= n n n n D a D a D a y f x令111()n n n n F D D a D a D a −−=++…++称为算子多项式,则 方程*1()()()()⇒=⇒=F D y f x y f x F D【评注】D 表示求导,1D 表示积分.如()21111,cos 2sin 222==x x x x D D ,不要常数.类型1 ()=e kx f x1.若()0F k ≠,则()()11e e ∗==kx kx y F D F k , 2.若()=0F k ,k 为()0F k =的m 重根,则 ()()()()11e e ∗==m kx m kx m m y x x F D F k ,【例1】求223e x y y y ′′′+−=的一个特解【解析】()2222221111e e e e 2322235x x x x y F D D D ∗====+−+×−【例2】求323e x y y y −′′′+−=的一个特解【解析】由与()3=0F −,3−为()0F k =的单根, ()()()3333311111e e e e e 222324∗−−−−−=====−′+×−+x x x x x y x x x x F D F D D ,【例3】求2+e xy y y ′′′−=的一个特解【解析】由于()1=0F ,1为()0F k =的二重根, ()()2221111e e =e e 22∗===′′x x x x y x x x F D F D .类型2 ()=cos f x ax 或()=sin f x ax1.若2()0F a −≠,则()()2211sin sin y ax ax F D F a ∗==− 或()()2211cos cos y ax ax F D F a ∗==−2.若2()=0F a −,则()()2211sin sin y ax x ax F D F D ∗==′ 或()()2211cos cos ∗==′y ax x ax F D F D【评注】()()212211111sin sin cos n n n ax ax ax D D a a a + ==− −− ()()212211111cos cos sin n n n ax ax ax D D a a a +==−− 由此()()11sin cos ax ax F D F D ,可求,例如 221111sin sin sin 2112121x x x D D D D ==+−−+−− ()()21111sin =1sin cos sin 2144D x D x x x D +=−+=−+−【例4】求+4+5sin 2y y y x ′′′=的一个特解【解析】()22111sin 2sin 2sin 245245y x x x F D D D D ∗===++−++ ()21411sin 2sin 28cos 2sin 24116165D x x x x D D −===−−+−【例5】求+4cos 2y y x ′′=的一个特解【解析】()220F −=()21111cos 2cos 2cos 2sin 24222x y x x x x x F D D D ∗====+类型三 ()()=m f x P x 即自由项为x 的m 次多项式 ()()()()1m m y P x Q D P x F D ∗==,其中()Q D 为1除以()F D 按升幂()1n n n aa D D −+++ (即从低次往高次排列)所得商式,其最高次为m 次,超过m 次的求导后全为零,故略去.【例6】求232231y y y x x ′′′−+=−+的一个特解【解析】()()21231y x x F D ∗=−+()22137231248D D x x =++−+ ()()2137231+434248x x x −+−+×23724x x =++ ()()()2221123123132∗=−+=−+−+y x x x x F D D D ()2211231312122−+ −− x x D D()222231311123122222 =+−+−+−+D D D D x x ()222319112312242=+−++−+ D D D x x ()223711231242=+++−+ D D x x ,下同【例7】求233y y x ′′′−=−的一个特解【解析】1)()()()()22113=33y x x F D D D ∗=−−− ()222111111225=3=39273927D D x x x D D −−−−−+−321125=+9927x x x −−2)()()()()()222111113=33333∗ =−−=−− −− y x x x F D D D D D ()()()22223111111133133939393313=−−−−=−++−−−−D D x x x x x D D 2332122111251253393933927981 =−−++−−=−+−+x x x x x x x【评注】数字1除以23D D −是没法直接除的,因为分母没有最低次常数项.类型四 ()()=e kx f x u x ,其中()u x 为x 的多项式或()sin cos ax ax 【移位定理】()()()()11e =e kx kx v x v x F D F D k +【例8】求+32e sin 2x y y y x −′′′−=的一个特解【解析】()()()211e sin 2=e sin 21312x x y x x F D D D ∗−−=−+−− 2211+8=e sin 2e sin 2e sin 24864x x x D x x x D D D D −−−==+−−−()()11e 2cos 28sin 2e cos 24sin 26834x x x x x x −− =−+=−+【例9】求+3+2ex y y y x −′′′=的一个特解【解析】()()()211e =e 1+312∗−−=−−+x x y x x F D D D ()21111=e e e 11−−−==−++xx x x x D x D D D D D ()211e 1e 2−− −=− xx x x x D类型五 ()()=sin m f x P x ax 或()cos m P x ax【评注】此种情况考试考到的概率几乎为零. (可以不看). 为不加重考生负担,仅讨论()=m P x x ,且()20F a −≠否则,要用到欧拉公式,且计算量不比待定系数法简单! 记()()sin cos u x ax ax =,则()()()()()()11F D x u x x u x F D F D F D ′⋅=−【例10】求+cos 2y y x x ′′=的一个特解【解析】()211cos 2cos 21y x x x x F D D ∗==+2222112cos 2cos 21131D D x x x xD D D=−=−− +++1214cos 2+cos 2cos 2sin 233339Dx x x x x x=−⋅=−+−。
张宇微分算子法
![张宇微分算子法](https://img.taocdn.com/s3/m/d8bb0615b5daa58da0116c175f0e7cd184251883.png)
张宇微分算子法1. 引言微分算子是数学中的一个重要概念,它在微积分和偏微分方程等领域有着广泛的应用。
在这些领域中,我们经常需要对函数进行求导操作,而微分算子就是用来描述这种操作的工具。
张宇微分算子法是一种基于张宇教授提出的方法来求解微分方程的技术。
本文将详细介绍张宇微分算子法的原理、应用以及相关实例。
2. 原理张宇微分算子法是一种基于特征方程和特征根的方法来求解线性常系数齐次线性微分方程的技术。
对于给定的线性常系数齐次线性微分方程:a n y(n)(x)+a n−1y(n−1)(x)+⋯+a1y′(x)+a0y(x)=0其中,y(x)是未知函数,a i是常数,y(n)(x)表示对函数y(x)求n阶导数。
首先,我们可以将上述微分方程转化为一个特征方程:a n s n+a n−1s n−1+⋯+a1s+a0=0其中,s是特征根。
解这个特征方程可以得到n个互不相同的特征根s1,s2,…,s n。
然后,我们可以根据这些特征根来构造一个微分算子:D=(D−s1)(D−s2)…(D−s n)其中,D表示对函数求导的微分算子。
这样,原微分方程的通解可以表示为:y(x)=Ce s1x+Ce s2x+⋯+Ce s n x其中,C是常数。
3. 应用张宇微分算子法在求解线性常系数齐次线性微分方程时具有广泛的应用。
它可以解决各种类型的微分方程,包括一阶、二阶、高阶等。
3.1 一阶线性常系数齐次微分方程对于一阶线性常系数齐次微分方程:a1y′(x)+a0y(x)=0我们可以将其转化为特征方程:a1s+a0=0解得特征根s=−a0a1。
然后构造微分算子:D=D+a0 a1最后得到通解:y(x)=Ce−a0 a1x3.2 二阶线性常系数齐次微分方程对于二阶线性常系数齐次微分方程:a2y″(x)+a1y′(x)+a0y(x)=0我们可以将其转化为特征方程:a2s2+a1s+a0=0解得特征根s1和s2。
然后构造微分算子:D=(D−s1)(D−s2)最后得到通解:y(x)=C1e s1x+C2e s2x其中,C1和C2是常数。
微分算子法求解二阶常系数非齐次线性微分方程的特解.docx
![微分算子法求解二阶常系数非齐次线性微分方程的特解.docx](https://img.taocdn.com/s3/m/289995164693daef5ff73d1d.png)
微分算子法求解二阶常系数非齐次线性微分方程的特解李绍刚段复建徐安农(桂林电子科技大学,计算科学与数学系,广西桂林,541004)摘要:木文主要介绍了二阶微分算子的性质及其它在一些求解二阶常系数非齐次线性微分方程的常见运算公式,并对其中的大部分重要公式给出了详细的较为简单的证明,并通过具体而翔实的例子加以说明它在解题中的具体应用,大大简化了二阶常系数非齐次线性微分方程的特解的求法。
关犍词:线性微分算子非齐次微分方程特解中图分类号:0175.1 引言对于微分方程,尤其是常系数非齐次线性微分方程,算了法求其特解一肓是研究的热点问题,见参考文献[3・9],有一些是针对一般高阶的常系数非齐次线性微分方程[3-61,文献⑹ 研究了高阶的变系数非齐次线性微分方程的算子特解算法,而[7]是针对二阶的常系数非齐次线性微分方程的算子特解解法,但是理论不是很完善,而微分级数法以及复常系数非齐次线性微分方程在一般教科书很少出现,针对性不够强。
因为在高等数学中,二阶非齐次常系数线性微分方程特解的求法在微分方程屮占有很重要的地位,也是学习的重点和难点,人多高数教材采用待定系数法来求其特解,根据不同情况记忆特解的设法对人多数学生而言述是很有难度的,而且有些题目计算过程非常复朵,本文就针对微分算子法在求解二阶常系数非齐次线性微分方程特解方而的应用做一些讨论,给出理论的详细证明,并通过例子说明理论的的一些具体应用。
我们考虑如下的二阶常系数非齐次线性微分方程的一般形式y"+py'+q = f(x)其中p,q 为常数。
(1)2 2引入微分算子—= D,^ = D2,则有:y=型二Dydx dx" dx dx~于是(1)式可化为:D’y + pDy + qy = f(x) 即:(D2 + pD + q)y = f(x) (2)令F(D) = D24-pD + q 称其为算子多项式。
则(2)式即为:F(D)y = f(x) 其特解为:y = ^—f(x),在这里我们称为逆算子。
微分方程算子法总结
![微分方程算子法总结](https://img.taocdn.com/s3/m/5e1948c8240c844769eaee9d.png)
1 1 1 f ( x) = f ( x) f ( x) = F(D) F2 (D) • F1 ( D) F1 (D) • F2 ( D)
(6)性质六:
1 1 1 f1 ( x) + f 2 ( x) ( f1 ( x) + f 2 ( x)) = F(D) F(D) F(D)
三、例题练习 例 1.
n n-1 n-2 n-3 n n-1 n-2 n-3 n n-1 n-2 n-3
记 F(D)=D +a1D +a2D +a3D + ... +an-1D+an 规定特解:y 3、
*
= F(D)
1
f ( x)
1 的性质 F(D)
(1)性质一:
kx 1 F(D)
e = F(k) ekx
1
1
(F(k) 不等于 0)
取实部为特解 四)
1
1
y*= 4 (xcosx+x2sinx)
1
(性质二、三、
6
2
x d2y +4y = dx 2
e
则(D +4)y=e
(4)
x
,特解 y*=
1 D2
x x x 1 e = e = e (性质一) 5 1 +4 +4
2
4
1
例 2、 y +y=2cos(3x) ,则(D +1)y= 2cos(3x) 特解 y
*
=
1 D 4 +1
2cos(3x)= 2 cos(3x)=
e
-y=sinx
ix 1 3 D -1
,则(D -1)y=sinx ,特解 y*=
微分方程算子法总结
![微分方程算子法总结](https://img.taocdn.com/s3/m/def55e9927fff705cc1755270722192e4436584e.png)
微分方程算子法总结微分方程算子法是微分方程的一种解法方法,通过将微分方程中的微分算子用代数符号表示,转化为代数方程的形式来求解微分方程。
这种方法在微分方程的解法中起到了重要的作用。
下面是对微分方程算子法的总结,包括定义、基本原理、解题步骤和应用等方面的内容。
一、定义二、基本原理三、解题步骤1.将微分方程中的微分算子用代数符号表示,一般用p(D)来表示D^k 的形式,其中D表示微分算子,k为一个正整数。
2.对代数符号p(D)进行运算,根据微分算子的运算性质进行替换、展开、相乘等运算。
3.将运算后得到的代数方程转化为普通的代数方程,消去代数符号后求解。
4.最后,根据求得的代数方程解,通过对代数解进行逆运算,将代数解转化为函数解,即为微分方程的解。
四、应用1.线性常微分方程的解法,如齐次线性常微分方程、非齐次线性常微分方程等。
2.偏微分方程的解法,如一维波动方程、一维热传导方程等。
通过微分方程算子法,可以将偏微分方程转化为常微分方程的形式进行求解。
3.变系数微分方程的解法,如变系数线性常微分方程等。
通过微分方程算子法,可以将变系数微分方程转化为常系数微分方程的形式进行求解。
4.高阶微分方程的解法,如二阶、三阶及更高阶微分方程等。
通过微分方程算子法,可以将高阶微分方程转化为一阶微分方程的形式进行求解。
五、优缺点1.能够将微分方程转化为代数方程进行求解,简化了计算过程。
2.适用范围广泛,能够解决多种类型的微分方程问题。
3.理论基础扎实,运算性质清晰,易于理解和应用。
1.对于非线性微分方程或特殊形式的微分方程,微分方程算子法可能不太适用。
2.运算过程中需要进行大量的代数计算,可能存在繁琐的计算步骤。
3.求解过程中可能会出现复杂的代数式,需要一定的代数知识和计算技巧。
六、总结微分方程算子法是一种重要的微分方程解法方法,通过将微分方程转化为代数方程,简化了微分方程的求解过程。
它在数学和工程领域具有广泛的应用和重要的意义。
微分算子法
![微分算子法](https://img.taocdn.com/s3/m/d2036e25aaea998fcc220ee3.png)
������ ������ ������������������ ������ ������������ + ������
这里−������������ = ������������
������ ������ ������������������ ������ −������ + ������
������
������������������ (������ + ������)
这里是将������������������ 前移,D 应该加上 m ������∗ = ������������������ ������∗ = ������������������ ������ ∗ (������ + ������) (������ − ������ + ������)������ ������ ∗ (������ + ������) ������������
= ������������������ ������
例题������′′ − ������������′ + ������������ = ������������������������ ������ ,求������∗ ������∗ = ������∗ = ������∗ = ������∗ = ������∗ = ������∗ = ������ ������������������������ ������ ������������ − ������������ + ������ ������ ������������������������ ������ −������ − ������������ + ������ ������ ������������������������ ������ ������ − ������������ ������ + ������������ ������������������������ ������ ������ − ������������������ ������ + ������������ ������������������������ ������ ������������ ������ (������������������������ ������ + ������ ������������������ ������������) ������������
常微分方程算子法
![常微分方程算子法](https://img.taocdn.com/s3/m/b3920e61bc64783e0912a21614791711cc797929.png)
常微分方程的算子法,也称为微分算子法或特征根法,是求解线性常微分方程的一种常用方法。
它基于线性常微分方程的解具有叠加性质和特征根的性质,通过引入一个算子来将微分方程转化为代数方程,从而求解微分方程。
下面以一阶线性常微分方程为例进行说明。
考虑形如:a(x) * y'(x) + b(x) * y(x) = 0其中 a(x) 和 b(x) 是已知函数,y(x) 是未知函数。
我们可以定义一个算子 L 来操作未知函数 y(x):L[y] = a(x) * y'(x) + b(x) * y(x)那么原方程可以写为 L[y] = 0 的形式。
接下来,我们要找到这个算子 L 的特征根。
特征根可以通过求解一个特征方程得到,特征方程的形式为:L[exp(rx)] = 0其中 r 是待定的特征根。
将 exp(rx) 带入算子 L 中,我们可以得到:L[exp(rx)] = a(x) * r * exp(rx) + b(x) * exp(rx)要满足 L[exp(rx)] = 0,就需要满足上式成立。
这就得到了一个代数方程,我们可以通过求解这个代数方程得到特征根 r。
一旦得到了特征根 r,我们就可以构建对应的特解。
假设 r 是一个特征根,那么对应的特解为 exp(rx)。
通过叠加特解,我们可以得到原微分方程的通解。
需要注意的是,算子法只适用于线性常微分方程,且要求系数函数 a(x) 和 b(x) 在求解范围内是已知的。
对于非线性或高阶微分方程,算子法可能不适用。
总结起来,算子法是一种通过引入算子和特征根来转化微分方程为代数方程,并求解特征根从而得到微分方程的通解的方法。
这是常微分方程中的一种重要技巧,可以简化求解过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高阶常微分方程的微分算子法撰写摘自《大学数学解题法诠释》 .徐利治,.冯克勤,.方兆本,.徐森林,.1999高阶方程的求解自然要比一阶方程更为困难,即使是对于线性微分方程。
但是有一个例外:常系数线性微分方程。
我们可以完整的求出它的通解来,所以常系数线性方程的求解,主要精力是集中在讨论对应的非齐次方程的特解。
本节主要讨论微分算子法。
1.求方程230y y y ''''''--=的通解. 解 记()n n yD y =,将方程写成32230D y D y Dy --=或32(23)0D D D y --=我们熟知,其实首先要解特征方程32230D D D --=得0,1,3D =-故知方程有三特解31,,x xe e -,由于此三特解为线性无关,故立得通解3123x xy C C e C e -=++注:本题方程为齐次常系数三阶常微分方程,线性常微分方程的一般形状是1111()()()()()n n n n n n n d y d y dy L y a x a x dx dx dx a x y f x ---=++++=其中系数1(),,()n a x a x 是某区间(,)a b 上的连续函数,上述方程又可写成11()(()())n n n L y D a x D a x y -≡+++()f x =可以把上面括号整体看作一种运算,常称为线性微分算子。
本题中各()i a x 均为实常数,今后也仅对实常系数的情形来进一步发展线性微分算子方法。
2.求解 61160y y y y ''''''-+-=解 写成 32(6116)0D D D y -+-=从特征方程3206116D D D =-+-(1)(2)(3)D D D =---解得 1,2,3D =共三实根,故可立即写成特解23123x x xy C e C e C e =++3.求解 39130y y y y ''''''-++=解 写成 32(3913)0D D D y -++= 或 2(1)(413)0D D D y +-+= 特征方程 2(1)(413)0D D D +-+=有根1,23D i =-±,故对应的特解是x e -,2cos3xe x ,2sin 3x e x 从而通解是22123cos3sin 3x x xy C e C e x C e x -=++4.求(4)45440yy y y y ''''''-+-+=之通解.解 写成432(4544)0D D D D y -+-+= 或 22(2)(1)0D D y -+=特征根是2,2,D i =±,对应的特解应是22,,cos ,sin x x e xe x x ,故写成通解21234()()cos sin x y x e C C x C x C x =+++5.求1(cos )y y x -''+=的通解解 本题为非齐次方程,先求出对应的齐次方程0y y ''+=的通解,写成2(1)0D y +=,可知特征根为i ±,相应的通解为112cos sin y C x C x =+设原方程有特解形为*12()cos ()sin y C x x C x x =+其中12,C C 为待定函数,常数变异告诉我们,应求解下面的方程组12112()cos ()sin 0()(cos )()(sin )(cos )C x x C x x C x x C x x x -⎧''+=⎪⎨''''+=⎪⎩或12112()cos ()sin 0()sin ()cos (cos )C x x C x x C x x C x x x -⎧''+=⎪⎨''-+=⎪⎩(方程组右端为原方程非齐次项1(cos )x -),解得1s i n ()cos xC x x'=-,2()1C x '=或 1()ln cos C x x =,2()C x x =最后得通解为1*()()()y x y x y x =+12cos sin cos ln cos sin C x C x x x x x=+++ 注 对常系数方程,在应用上,不常运用常数变异法,对于特殊非齐次项的常系数方程,下文将提供更简捷的办法。
6.求解下列方程(1)(4)24250y y y y y ''''''++--= (2)4850y y y '''-+=解 (1)12x xy C e C e -=+34(cos 2sin 2)xe C x C x -++(2)12(cossin )22xx x y e C C =+ 7.求解下列cauchy 问题(1)330;y y y y ''''''-+-=(0)1,(0)2,(0)3y y y '''===(2)0;(0)1,(0)0,(0)1y y y y y ''''''''+====解 (1) (1)xy e x =+(2) xy x e -=+8.求解非齐次方程21(0)y y y x x x'''++=≠ 解 本题不是常系数方程,为求通解需先知道齐次方程20y y y x'''++=的两个线性无关的特解。
现设用观察法得到两个特解 12sin cos ,x xy y x x== 令12sin cos ()()()x xy x C x C x x x=+ 考虑方程组1212sin cos ()()0sin cos 1()()()()x x C x C x x xx x C x C x x x x ⎧''+=⎪⎪⎨⎪''''+=⎪⎩最后解得1()sin C x x =,2()cos C x x = 故原方程的通解为 12sin cos 1()x x y x C C x x x=++ 注 我们说过,高阶方程中最重要、研究得最彻底的是线性方程,因此我们就从它开始。
因为有了常数变易法,所以重点似乎应放在齐次方程的求解,但是,齐次常系数线性方程的求解来的太容易(只需要解代数方程),这就构成了这一单元的特点:我们着力于求解具有特殊右端(物理学中称此种项为强迫项)的任意高阶非齐次常系数线性方程。
这样做既是为了避免使用繁复的常数变易法,也是为了让解题者掌握一种最实用的技巧——微分算子法9.求解256y y y x '''++= 解 写成 2(2)(3)D D y x ++=故对应齐次方程(2)(3)0D D y ++=的通解为23112()x xy x C e C e --=+今用下法求原方程的一个特解*()y x ,显然*()y x 满足*2(2)(3)D D y x ++= 今用下法求出*()y x*21()(2)(3)y x x D D =++222222222222222222222211()23112311112311231(1)2241(1)31(1)2241(1)3111(()())224111(()())33911122()()223391561x D D x x D D x x D DD D x D D x D D x D D xx x x x x x x x x x x =-++=-++=-++=-+---+-=-+--+'''=-+'''--+=-+--+=- 39 39 198108x +通解为*123212()()()1519618108xxy x y x y x C eC ex x --=+=++-+ 注 本题所用的方法即微分算子法,此法核心内容是将求导运算D 同时当作数与运算来处理,上法中1(2)(3)D D ++视为(2)(3)D D ++的逆运算,经分层部分分式后,又将D 作为数,将11D+展开或读作除数,最后,又将2,,D D 恢复其运算功能。
至此,积分微分方程问题已变为求导问题。
上述方法有其严密的理论根据,但本法早在20世纪30~40年代已在工程师中间广为流传,理论工作于20世纪50年代初才完成。
10.给定一个微分算子111n n n n n L D a D a D a --=++++(,1,2,,i a i n =为常数则对任一有n 次导数的函数()g x ,得到唯一的函数()f x(())()n L g x f x = 今定义逆运算1(())()nf xg x L = g 恰为微分方程(())()n L g x f x =的一个特解。
证明下列事实:(1)给定f 后,g 不唯一(2)对任一常数,a b 及连续函数(),()h x g x ,有下式成立111(()())(())(())n n nah x bg x a h x b g x L L L +=+ (3)设有另一微分算子11mm m LD a D-=++m a +,则1111(())(())m m n ng x g x L L L L = (4)有下式成立1111(())(())()()kn k g x g x L D D ρρλλ=-- 证明 (1)设1()g x 是方程()0n L y =的特解,则有 1(()())(())()n n L g x g x L g x f x +== 故11(())()()nf xg x g x L =+ (2)与(3)直接从定义推出;(4)从(3)以及定义推出+()kx kx f x e =()kx kxe f x e =为偶次多项式,F 1sin kx )())(1()n n kxD D e F k ρρ---= )()kxe g x ρ ()ρ)2)()D k -还有另一性质,我们述而不论:1))n m m a D b b -++++++++0=时,此时宜用12.求下面方程的特解2226x d yy e dx-= 解 2222211()(6)62121x x x y x e e e D ===-- 13.求方程2442xy y y e '''-+=的一个特解解 221()244x y x e D D =-+ 22222212(2)121(22)121xx x e D e D e D=-=+-= 设211()g x D=,则2()1D g x =,即可知 21()2g x x =故最后可得 22()xy x x e = 也可以直接安照文登考研书的解法即222222221()24412(2)122xxx x y x eD D e D x e x e=-+=-== 14.解xy y e ''-=解 2111()1(1)(1)x x y x e e D D D ==--+ 1111112122x x x e e xe D D ===-得通解为 121()2xx x y x xe C e C e -=++ 15.求下面方程特解2552y y x x '''-=-+解 221()(52)5y x x x D D =-+- 2222222311(52)5111()(52)51511()[1()](52)555111()[52(102)551(10)]2511()[5]5113x x D D x x DD D Dx x D x x x D x D x x D =-+-=--+-=-++-+=--++-++-=--== 16.求26535x y y y e x '''-+=-+ 解 显然12()()()y x y x y x =+其中121()(3)65x y x e D D =--+1(3)(1)(5)x e D D ---221()(5)(1)(5)y x x D D =--今有11111()(3)(3)15115x xy x e e D D D =-=-----3131314144x x x e e xe D D ===- 22111()()(5)415y x x D D =-+--222221111()(5)415111(1(1))(5)455256212255x D D D DD D x x x =---=++--+=++ 最后得236212()4255x y x xe x x =+++ 17.求6cos 23sin 2y y x x ''+=+的特解 解 12()()()y x y x y x =+2222116cos 23sin 211116cos 23sin 2(2)1(2)12cos 2sin 2x x D D x x i i x x=+++=+++=-- 18.求下面方程的特解13s i n 2y y y x '''++=- 解21()(13sin 2)1y x x D D =-++22224224221[()1]()11(13)sin 211[1](13)sin 211(13)(1)sin 2(2)(2)1(1)sin 23sin 22cos 2D D D D xD D D D xD D D D xi i D D x x x=--+--+⨯-++=-+-++=--+++=--+=+ 19.求下面方程的特解44c o s 2y y y x '''++=解 2()[(2)]y x D =-+2211cos (2)(2)x D D -++2221(2)cos 2(4)D x D =-- 222cos 1(2)sin 2((2)4)8x D x i =-=- 20.求2sin y y x ''+=的特解解 因2()10i +=,上法无效,今取1sin []2ix ixx e e i -=-(*) 则特解 211()([])1ix ixy x e e D i -=-+ 2222111([])11111[11]()1()111111[11]22111[]2212[]2ix ix ix ix ix ix ix ix ix e e i D D e e i D i D i e e i D i D D i D e x e x i D i D ilm e x D i----=-++=-++-+=-+-=-+-=+ l m z 表示复数zi 虚部,今1112212ixix ex e x D D i i i=++ 111[1]()222211cos sin (cos sin )422ix ix D e x e x i i i i x x x i x x x =-=-=--+故1()cos sin 2y x x x x =--21.求下面方程的特解cos xy y e x x ''-= 解 今有 (1)(1)1c o s ()2xi x i x ex x x e x e +-=+(1)Re()i xxe+=(Re z 表示复数z 的实部)故可写成 (1)21()Re()1i x y x e x D +=- 而(1)(1)22111(1)1i xi x e x e x D D i ++=-++-(1)i xe +=)(1(1)11412(cos sin )[()(2)[]21152]55i xx i x e x e x e x i x x i i i x ++==-+-++=---故1422()[()c o s ()s i n ]525525xx y x e x x x =-+++22.求解方程33(5)x y y y y e x -''''''+++=-解 3311()(5)(5)(1)x x y x e x e x D D --=-=-+ 设31()(5)g x x D=-,则3()5D g x x =-故知435()246x g x x =- 最后得通解32123()(20)24xxxxx y x C e C xe C x e e x ----=+++- 注 这一批例题充分反映出算子方法的特点,简捷,灵巧,清楚。