二元一次方程组难题

合集下载

二元一次方程组求解难题

二元一次方程组求解难题

二元一次方程组求解难题背景二元一次方程组是一组具有以下形式的方程:ax + by = cdx + ey = f其中,`a`、`b`、`c`、`d`、`e`、`f` 表示已知的系数,`x` 和 `y` 表示待求解的变量。

解决二元一次方程组可以帮助我们找到变量 `x` 和 `y` 的值,从而满足方程组中的所有方程。

但有时候,求解二元一次方程组可能会变得复杂和困难。

难题描述难题是指具有以下特点的二元一次方程组:1. 方程的系数 `a`、`b`、`c`、`d`、`e`、`f` 可能包含复杂的数学表达式或变量。

2. 方程的个数可能很多,超过一般的二元一次方程组。

这种情况下,求解二元一次方程组可能需要使用更复杂的数学技巧和方法。

求解方法对于复杂的二元一次方程组,我们可以考虑以下求解方法:1. 代入法:将其中一个方程中的一个变量表示为另一个方程中的变量的表达式,然后代入到另一个方程中,从而得到一个只包含一个变量的方程。

通过解这个方程得到的变量值,再代回到原方程组中,可以逐步求解出所有变量的值。

代入法:将其中一个方程中的一个变量表示为另一个方程中的变量的表达式,然后代入到另一个方程中,从而得到一个只包含一个变量的方程。

通过解这个方程得到的变量值,再代回到原方程组中,可以逐步求解出所有变量的值。

2. 消元法:通过将方程组中的一个方程乘以适当的倍数,使得两个方程中的某个变量的系数相等或倍数关系,从而消去这个变量。

通过逐步消去变量,最终得到一个只包含一个变量的方程,通过解这个方程得到变量值,再代回到原方程组中求解其他变量的值。

消元法:通过将方程组中的一个方程乘以适当的倍数,使得两个方程中的某个变量的系数相等或倍数关系,从而消去这个变量。

通过逐步消去变量,最终得到一个只包含一个变量的方程,通过解这个方程得到变量值,再代回到原方程组中求解其他变量的值。

3. 矩阵法:将方程组的系数矩阵表示为增广矩阵形式,利用矩阵的行变换和高斯消元法来求解方程组。

方程与不等式之二元一次方程组难题汇编及答案

方程与不等式之二元一次方程组难题汇编及答案
方程与不等式之二元一次方程组难题汇编及答案
一、选择题
1.若关于
x,y
的方程组
4x 5y 10 kx (k 1) y
8

x
的值比
y
的相反数大
2,则
k
是(

A.-3
B.-2
C.-1
D.1
【答案】A
【解析】
【分析】
根据“x 的值比 y 的相反数大 2”得出“x=-y+2”,再代入到方程组的第一个方程得到 y 的值,

x x
y y
1 5
0 0

解得:
x
y
2 3

故选:A.
【点睛】
本题主要考查了非负数的性质和二元一次方程组的解法,根据两个非负数的和为零则这两
个数均为零得出方程组是解决此题的的关键.
10.下列方程组中,是二元一次方程组的是( )
A.
x
1 3
1
y x2
【答案】D
【解析】
3x y 5 B. 2y z 6
【点睛】
此主要考查了与二元一次方程组的解有关的问题,解题的关键是列出等式“x=-y+2”.
ax 3y 9 2.如果方程组 2x y 1 无解,则 a 为( )
A.6
B.-6
C.9
D.-9
【答案】B 【解析】
【分析】
用代入法或加减法把未知数 y 消去,可得方程 (a 6)x 12 ,由原方程无解可得
设小长方形的长为 x,宽为 y,根据题意列出方程组,解方程组求出 x,y 的值,进而可求小长 方形的周长.
【详解】
设小长方形的长为 x,宽为 y,根据题意有

(易错题精选)初中数学方程与不等式之二元一次方程组难题汇编含答案

(易错题精选)初中数学方程与不等式之二元一次方程组难题汇编含答案
因为y为负数
所以9-m<0
解得m>9
故选:A.
点睛:此题主要考查了非负数的应用,关键是根据平方数和绝对值的非负性构造二元一次方程组.
2.二元一次方程 的正整数解有()
A.1组B.2组C.3组D.4组
【答案】A
【解析】
【分析】
通过将方程变形,得到以 的代数式,利用倍数逻辑关系,枚举法可得.
【详解】
∵由 可得, , 是正整数.
16.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是( )
A.106cmB.110cmC.114cmD.116cm
【答案】A
【解析】
【分析】
通过观察图形,可知题中有两个等量关系:单独一个纸杯的高度加上3个纸杯叠放在一起高出单独一个纸杯的高度等于9,单独一个纸杯的高度加上8个纸杯叠放在一起高出单独一个纸杯的高度等于14.根据这两个等量关系,可列出方程组,再求解.
x-y=-1.
故选A.
【点睛】
本题考查了二元一次方程的解法,利用整体思想可以是本题解决过程变得简单.
12.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,若每人出8钱,则多了3钱;若每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为()
A. B. C. D.
【答案】A
【解析】
【分析】
设有x人,物品价值y钱,根据题意相等关系:①8×人数﹣3=物品价值,②7×人数+4=物品价值,可列方程组.

二元一次方程实际问题(难题)

二元一次方程实际问题(难题)

二元一次方程实际问题(难题)二元一次方程是数学中常见的一种形式,也是很多实际问题中的重要数学工具之一。

本文将讨论几个二元一次方程实际问题难题,并通过解决问题的方法来加深对这种方程的理解。

难题1:两人捐款的问题问题描述:小明和小张一起为一所学校捐款。

小明捐了300元,小张捐了150元。

他们的捐款总数是450元。

如果另外一个人也和他们一起捐款,那么这个人至少要捐多少钱?解决办法:假设第三个人捐x元钱,则根据题目描述,我们可以列出如下的二元一次方程:300 + 150 + x = 450将其简化为标准形式:x = 450 - 300 - 150计算可得第三个人至少要捐100元。

难题2:两条直线的交点问题问题描述:已知两条直线的方程分别为y = 3x - 1和y = -2x + 5,请问它们在哪个点相交?解决办法:将两条直线的方程转化为标准形式:y - 3x = -1y + 2x = 5将其表示成增广矩阵形式并进行初等行变换,可得:[ 1 -3 | -1 ][ 1 2 | 5 ]再进行高斯消元,得到:[ 1 0 | 2 ][ 0 1 | 1 ]因此,两条直线在点(2, 1)相交。

难题3:矩形的面积问题问题描述:一个矩形的长和宽分别为x和y,它的面积为42平方米。

如果把长和宽都增加3米,它的面积就会增加27平方米。

请问这个矩形的长和宽各是多少?解决办法:根据题目描述,可以列出如下的二元一次方程组:xy = 42(x + 3)(y + 3) = 42 + 27将后一个方程式展开可得:xy + 3x + 3y + 9 = 69xy + 3x + 3y - 27 = 0将第二个式子变形并代入第一个式子,可得:xy + 3(x + y - 9) = 0因为xy不为0,所以可以除掉,得到:x + y - 9 = 0将其代入第一个方程,可得:x(9 - x) = 42解这个方程可得:x = 6y = 3所以这个矩形的长和宽分别为6米和3米。

二元一次方程组应用题(难题训练)

二元一次方程组应用题(难题训练)

二元一次方程组应用题(难题训练)二元一次方程组应用题(难题训练)在高中数学课程中,二元一次方程组是一个重要的概念。

它涉及到两个未知数的线性方程组,通常用于解决实际问题。

本文将通过几个难题的训练来加深我们对二元一次方程组的理解和应用。

问题一:商务旅行小明去国外出差,在旅途中经过两个城市A和城市B。

他从城市A出发时速度为60公里/小时,在路上停留了2小时,然后以70公里/小时的速度继续行驶到达城市B。

如果整个旅程共耗时8小时,求两个城市之间的距离。

解析:设A到B的距离为d公里,则小明在A停留2小时后行驶的时间为(8-2)=6小时。

根据速度公式,我们得到以下两个方程:d = 60 * t1 + 70 * t2t1 + t2 = 6其中,t1为小明从A到B的行驶时间,t2为小明从B到A的行驶时间。

根据第二个方程,我们可以得到t1 = 6 - t2。

将其代入第一个方程中,整理得到:d = 60 * (6 - t2) + 70 * t2化简后得到:d = 420 + 10t2由于距离不能为负数,所以可以得到t2的取值范围为0 ≤ t2 ≤ 6。

将此范围代入上述方程,我们可以得到两个城市之间的距离d的取值范围为420 ≤ d ≤ 480。

因此,两个城市之间的距离为420到480公里之间。

问题二:环形跑道一个环形跑道的内侧是一个长为800米的椭圆,外侧是一个长为1000米的椭圆。

有两名运动员在该环形跑道上同时从同一起点开始跑,一圈跑完所用时间相差1分钟。

求解两名运动员的速度。

解析:设第一个运动员的速度为v1米/分钟,第二个运动员的速度为v2米/分钟。

根据题意,我们可以得到以下两个方程:800 = 2π * (800 / v1)1000 = 2π * (1000 / v2)其中,第一个方程表示内侧椭圆的周长,第二个方程表示外侧椭圆的周长。

令t1为第一个运动员跑一圈所用的时间,t2为第二个运动员跑一圈所用的时间。

根据题意,我们有t2 = t1 + 1。

精品-二元一次方程组难题集

精品-二元一次方程组难题集

二元一次方程组
1.已知:方程组⎩⎨⎧=+=+11
35y x m y x 的解是正整数,试求整数m 的值。

2.试问当a 为何值时,关于x 、y 的方程组⎩⎨⎧=-++=+3
)1(2212y a x a y ax 无解.
3.三个质因数(均为正数)的积恰好等于它们的和的11倍,试求这三个因数的和。

4.若⎪⎩⎪⎨⎧-=-==312z y x ,是方程组⎪⎩
⎪⎨⎧=++=--=--k z y x mz y nx z ny mx 52327,的解,试计算k n m 372+-的值.
5.两个凸多边形的边数之和为12,它们的对角线的条数之和为19,试确定这两个多边形的边数.
6.已知:关于x 、y 的方程组⎩
⎨⎧=+=-7462y x ay x 的解是整数,试求所有满足条件的整数a 的和.
7.已知:取值在60-到30-之间的整数m ,使得关于x 、y 的方程组 ⎩⎨⎧=---=-m
y x y x 73532有整数解,试求m 的取值及y x +2的值。

8.已知正整数a 、b 使得b a 2940420+为完全平方数,试求b a +的最小值。

9.已知关于x ,y 的方程组
分别求出当a 为何值时,方程组(1)有唯一一组解;(2)无解;(3)有无穷多组解.
10.将式子5232-+x x 写成c 1)b(x 1)a(x 2++++的形式,试求
11.解下列方程组:
(1)
(2)
(3)
(4)。

二元一次方程组难题

二元一次方程组难题

二元一次方程组难题15、如果方程组begin{cases}x-y=a \\3x+2y=4end{cases}的解都是正数,那么$a$的取值范围是()A)$a>2$;(B)$a<-2$;(C)$-2<a<\frac{4}{3}$;(D)$a<-\frac{4}{3}$。

16、关于$x$、$y$的方程组begin{cases}x-y=9m \\3x+2y=34end{cases}的解是方程$3x+2y=34$的一组解,那么$m$的值是()A)$m=2$;(B)$m=-1$;(C)$m=1$;(D)$m=-2$。

17、在下列方程中,只有一个解的是()A)begin{cases}x+y=1 \\3x+3y=4end{cases}B)begin{cases}x+y=-2 \\3x+3y=-2end{cases}C)begin{cases}x+y=1 \\3x+3y=3end{cases}D)begin{cases}x+y=-2 \\3x+3y=4end{cases} 20、已知方程组begin{cases}x-y=5 \\ax+3y=b-1end{cases}有无数多个解,则$a$、$b$的值等于()A)$a=-3$,$b=-14$;(B)$a=3$,$b=-7$;(C)$a=-1$,$b=9$;(D)$a=-3$,$b=14$。

21、若$5x-6y=0$,且$xy\neq 0$,则$\frac{5x-4y}{5x-3y}$的值等于()A)$\frac{2}{3}$;(B)$\frac{3}{2}$;(C)$1$;(D)$-1$。

22、若$x$、$y$均为非负数,则方程$6x=-7y$的解的情况是()A)无解;(B)有唯一一个解;(C)有无数多个解;(D)不能确定。

23、若$|3x+y+5|+|2x-2y-2|=0$,则$2x-3xy$的值是()A)$14$;(B)$-4$;(C)$-12$;(D)$12$。

(易错题精选)初中数学方程与不等式之二元一次方程组难题汇编含答案解析

(易错题精选)初中数学方程与不等式之二元一次方程组难题汇编含答案解析

(易错题精选)初中数学方程与不等式之二元一次方程组难题汇编含答案解析一、选择题1.下面几对数值是方程组233,22x y x y +=⎧⎨-=-⎩的解的是( )A .1,x y =⎧⎨=⎩B .1,2x y =⎧⎨=⎩C .0,1x y =⎧⎨=⎩D .2,1x y =⎧⎨=⎩【答案】C 【解析】 【分析】利用代入法解方程组即可得到答案. 【详解】23322x y x y +=⎧⎨-=-⎩①②, 由②得:x=2y-2③,将③代入①得:2(2y-2)+3y=3, 解得y=1,将y=1代入③,得x=0, ∴原方程组的解是01x y =⎧⎨=⎩, 故选:C. 【点睛】此题考查二元一次方程组的解法:代入法或加减法,根据每个方程组的特点选择恰当的解法是解题的关键.2.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩ C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩【答案】B 【解析】 【分析】本题的等量关系是:绳长-木长 4.5=;木长12-绳长1=,据此可列方程组求解. 【详解】设绳长x尺,长木为y尺,依题意得4.5112x yy x-=⎧⎪⎨-=⎪⎩,故选B.【点睛】此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.3.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y尺,则符合题意的方程组是()A.5{152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==【答案】A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.4.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x,乙数为y,由题意得方程组()A.4243y xx y+=⎧⎨=⎩B.4243x yx y+=⎧⎨=⎩C.421134x yx y-=⎧⎪⎨=⎪⎩D.4234x yx y+=⎧⎨=⎩【答案】D【解析】【分析】按照题干关系分别列出二元一次方程,再组合行成二元一次方程组即可.【详解】解:由甲、乙两数之和是42可得,42x y +=;由甲数的3倍等于乙数的4倍可得,34x y =,故由题意得方程组为:4234x y x y +=⎧⎨=⎩, 故选择D. 【点睛】本题考查了二元一次方程组的应用,理清题干关系,分别列出两个二元一次方程即可.5.甲乙两人同解方程 2{78ax by cx y +=-= 时,甲正确解得 3{2x y ==- ,乙因为抄错c 而得2{2x y =-= ,则a+b+c 的值是( )A .7B .8C .9D .10【答案】A 【解析】 【分析】根据题意可以得到a 、b 、c 的三元一次方程组,从而可以求得a 、b 、c 的值,本题得以解决. 【详解】解:根据题意可知,∴3a-2b=2,3c+14=8,-2a+2b=2 ∴c=-2,a=4,b=5 ∴a+b+c=7. 故答案为:A. 【点睛】此题考查二元一次方程组的解,解题的关键是明确题意,找出所求问题需要的条件.6.若方程组5133x y a x y a -=+⎧⎨+=-⎩的解x 与y 的差为3,则a 的值为( )A .0B .7C .7-D .8【答案】B 【解析】 【分析】先利用加减消元法解方程组得到37838a x a y -⎧=⎪⎪⎨+⎪=-⎪⎩,再根据已知条件列出关于参数a 的方程,然后解一元一次方程即可得解. 【详解】解:∵5133x y a x y a -=+⎧⎨+=-⎩①②②-①×3得,38a y +=- ①+②×5得,378a x -=∴方程组的解为:37838a x a y -⎧=⎪⎪⎨+⎪=-⎪⎩∵方程组5133x y a x y a -=+⎧⎨+=-⎩的解x 与y 的差为3,即3x y -=∴373388a a -+⎛⎫--= ⎪⎝⎭ ∴7a =. 故选:B 【点睛】本题考查了解含参数的二元一次方程组、列一元一次方程并解一元一次方程,能得到关于参数a 的方程是解决问题的关键.7.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有120张白铁皮,设用x 张制盒身,y 张制盒底,得方程组 ( )A .1204010x y y x +=⎧⎨=⎩B .1201040x y y x +=⎧⎨=⎩C .1204020x y y x +=⎧⎨=⎩D .1202040x y y x +=⎧⎨=⎩【答案】C 【解析】 【分析】首先根据题意可以得出以下两个等量关系:①制作盒身的白铁皮张数+制作盒底的白铁皮的张数=120,②盒身的个数×2=盒底的个数,据此进一步列出方程组即可. 【详解】∵一共有120张白铁皮,其中x 张制作盒身,y 张制作盒底, ∴120x y +=,又∵每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒, ∴4020y x =, ∴可列方程组为:1204020x y y x+=⎧⎨=⎩,故选:C. 【点睛】本题主要考查了二元一次方程组的实际应用,根据题意正确找出相应的等量关系是解题关键.8.若关于x ,y 的方程组4510(1)8x y kx k y +=⎧⎨--=⎩中x 的值比y 的相反数大2,则k 是( )A .-3B .-2C .-1D .1【答案】A 【解析】 【分析】根据“x 的值比y 的相反数大2”得出“x=-y+2”,再代入到方程组的第一个方程得到y 的值,进而得出x 的值,把x ,y 的值代入方程组中第二方程中求出k 的值即可. 【详解】∵x 的值比y 的相反数大2, ∴x=-y+2,把x=-y+2代入4x+5y=10得,-4y+8+5y=10, 解得,y=2, ∴x=0,把x=0,y=2代入kx-(k-1)y=8,得k=-3. 故选A. 【点睛】此主要考查了与二元一次方程组的解有关的问题,解题的关键是列出等式“x=-y+2”.9.方程组的解为,则被遮盖的前后两个数分别为( )A .1、2B .1、5C .5、1D .2、4【答案】C 【解析】 【分析】把x=2代入x+y=3求出y ,再将x ,y 代入2x+y 即可求解. 【详解】 根据,把x=2代入x+y=3.解得y=1.把x=2,y=1代入二元一次方程组中2x+y=5 故被遮盖的两个数分别为5和1.【点睛】主要考查学生对二元一次方程组知识点的掌握.将已知解代入其中x+y=3求出y 值为解题关键.10.某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种玩具零件x 天,生产乙种玩具零件y 天,则有( )A .30200100x y x y +=⎧⎨=⎩B .30100200x y x y +=⎧⎨=⎩C .302200100x y x y +=⎧⎨⨯=⎩D .302100200x y x y +=⎧⎨⨯=⎩【答案】C 【解析】 【分析】根据题意可以列出相应的二元一次方程组,本题得以解决.【详解】 由题意可得,{x y 302200x 100y+=⨯=,故答案为C 【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.11.已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则+a b 的值是( ) A .﹣1 B .1C .﹣5D .5【答案】A 【解析】 【分析】把32x y =⎧⎨=-⎩代入方程组,可得关于a 、b 的方程组,继而根据二元一次方程组的解法即可求出答案. 【详解】将32x y =⎧⎨=-⎩代入23ax by bx ay +=⎧⎨+=-⎩,可得:322323a b b a -=⎧⎨-=-⎩,两式相加:1a b +=-, 故选A .本题考查二元一次方程组的解,解题的关键是熟练运用二元一次方程组的解法.12.已知关于x y 、的方程组135x y a x y a +=-⎧⎨-=+⎩,满足12x y ≥,则下列结论:①2a ≥-;②53a =-时,x y =;③当1a =-时,关于x y 、的方程组135x y a x y a +=-⎧⎨-=+⎩的解也是方程2x y +=的解;④若1y ≤,则1a ≤-,其中正确的有( ) A .1个 B .2个C .3个D .4个【答案】C 【解析】 【分析】 ①解方程组得322x a y a =+⎧⎨=--⎩,由12x y ≥得到关于a 的不等式,解之可得答案;②将x =y代入方程组,求出a 的值,即可做出判断;③将x =y 代入322x a y a =+⎧⎨=--⎩求出x 、y 的值,从而依据x =y 得出答案;④由y≤1得出关于a 的不等式,解之可得. 【详解】解:关于x 、y 的方程组135x y ax y a +=-⎧⎨-=+⎩,解得:322x a y a =+⎧⎨=--⎩.①∵12x y ≥, ∴a +3≥−a−1, 解得a≥−2,故①正确;②将x =y 代入322x a y a =+⎧⎨=--⎩,得:4353x a ⎧=⎪⎪⎨⎪=-⎪⎩,即当x =y 时,a =53-,此结论正确; ③当a =−1时,20x y =⎧⎨=⎩,满足x +y =2,此结论正确;④若y≤1,则−2a−2≤1,解得a≥−32,此结论错误;故选:C .本题考查了二元一次方程组的解,解题的关键是牢记二元一次方程组的解题方法.13.若12xy=⎧⎨=-⎩是关于x和y的二元一次方程1ax y+=的解,则a的值等于()A.3 B.1 C.1-D.3-【答案】A【解析】【分析】将方程的解代入所给方程,再解关于a的一元一次方程即可.【详解】解:将12xy=⎧⎨=-⎩代入1ax y+=得,21a-=,解得:3a=.故选:A.【点睛】本题考查的知识点是二元一次方程的解以及解一元一次方程,比较基础,难度不大.14.二元一次方程3x+y=7的正整数解有()组.A.0 B.1 C.2 D.无数【答案】C【解析】【分析】分别令x=1、2进行计算即可得【详解】解:方程3x+y=7,变形得:y=7-3x,当x=1时,y=4;当x=2时,y=1,则方程的正整数解有二组故本题答案应为:C【点睛】本题考查了二元一次方程的解,给出一个未知数的值求出另一个未知数的值即可.15.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种【答案】B【解析】【分析】设购买篮球x个,排球y个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x、y的方程,由x、y均为非负整数即可得.【详解】设购买篮球x个,排球y个,根据题意可得120x+90y=1200,则y=4043x-,∵x、y均为正整数,∴x=1、y=12或x=4、y=8或x=7、y=4,所以购买资金恰好用尽的情况下,购买方案有3种,故选B.【点睛】本题考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.16.如果21xy=-⎧⎨=⎩是二元一次方程mx+y=3的一个解,则m的值是()A.-2 B.2 C.-1 D.1【答案】C【解析】【分析】把x与y的值代入方程计算即可求出m的值.【详解】把21xy=-⎧⎨=⎩代入方程得:-2m+1=3,解得:m=-1,故选:C.17.A地至B地的航线长9360km,一架飞机从A地顺风飞往B地需12h,它逆风飞行同样的航线要13h,则飞机无风时的平均速度是()A.720km/h B.750 km/h C.765 km/h D.780 km/h【答案】B【解析】【分析】设飞机无风时的平均速度为x千米/时,风速为y千米/时,根据飞机顺风速度×时间=路程,飞机逆风速度×时间=路程,列方程组进行求解.【详解】设飞机无风时的平均速度为x千米/时,风速为y千米/时,由题意得,12()9360 13()9360x yx y+=⎧⎨-=⎩,解得,75030x y =⎧⎨=⎩,答:飞机无风时的平均速度为750千米/时, 故选B . 【点睛】本题考查二元一次方程组的应用,熟练掌握顺风速度=静风速度+风速,逆风速度=静风速度-风速是解题的关键.18.图①的等臂天平呈平衡状态,其中左侧秤盘有一袋石头,右侧秤盘有一袋石头和2个各10克的砝码.将左侧袋中一颗石头移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图②所示.则被移动石头的重量为( )A .5克B .10克C .15克D .20克【答案】A 【解析】 【分析】 【详解】解:设左天平的一袋石头重x 克,右天平的一袋石头重y 克,被移动的石头重z 克,由题意,得:2010x y x z y z =+⎧⎨-=++⎩解得z=5答:被移动石头的重量为5克. 故选A . 【点睛】本题考查了列三元一次方程组解实际问题的运用,三元一次方程组的解法的运用,解答时理解图象天平反映的意义找到等量关系是关键.19.某商店对一种商品进行促销,促销方式:若购买不超过10件,按每件a 元付款:若一次性购买10件以上,超出部分按每件b 元付款.小明购买了14件付款90元;小聪购买了19件付款115元,则a ,b 的值为( ) A .7,5a b == B .5,7a b == C .8,5a b == D .7,4a b ==【答案】A 【解析】 【分析】根据题意可列出关于a 、b 的二元一次方程组,解方程组即可.【详解】解:由题意得:10490109115a b a b +=⎧⎨+=⎩①②, 由②−①得:525=b ,解得:5b =,将5b =代入①得:104590+⨯=a ,解得:7a =,∴方程组的解为75a b =⎧⎨=⎩, 故选:A .【点睛】此题考查了二元一次方程组的应用,解题的关键是读懂题意,找出题目中的数量关系,列出方程组.20.若方程6ax by +=的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩,则,a b 的值为( ) A .42a b =⎧⎨=⎩B .24a b =⎧⎨=⎩C .24a b =-⎧⎨=-⎩D .42a b =-⎧⎨=-⎩【答案】A【解析】【分析】将方程的两组解代入6ax by +=中,可以得到一个关于a,b 的二元一次方程组,解方程组即可.【详解】 ∵方程6ax by +=的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩, ∴626a b a b +=⎧⎨-=⎩解得42a b =⎧⎨=⎩, 故选:A .【点睛】本题主要考查二元一次方程的解,掌握二元一次方程组的解法是解题的关键.。

二元一次方程组应用题(难题训练)

二元一次方程组应用题(难题训练)

二元一次方程组应用题(难题训练) 在我们的日常生活中,二元一次方程组的应用非常广泛。

今天,我们就来探讨一下二元一次方程组在实际问题中的应用,以及如何解决这些难题。

一、生活中的实际问题1.1 购物优惠假设你在一个商场购物,商家为了吸引顾客,给你提供了两种商品。

第一种商品的价格是x元,第二种商品的价格是y元。

如果你购买这两种商品的总金额达到一定数额,你可以享受到一定的优惠。

例如,总金额达到100元时,你可以享受到5%的优惠;总金额达到200元时,你可以享受到10%的优惠。

请问这两种商品的价格分别是多少?解答:设第一种商品的价格为x元,第二种商品的价格为y元。

根据题意,我们可以得到以下两个方程:x + y = 总金额(1 优惠百分比) * (x + y) = 总金额 * (1 优惠百分比)将第一个方程代入第二个方程,我们可以得到:(1 优惠百分比) * 总金额 = 总金额 * (1 优惠百分比)解这个方程,我们可以得到:优惠百分比 = 1 总金额 / 原价总额由于优惠百分比是一个小于1的小数,所以总金额必须大于原价总额。

因此,我们可以得出结论:当购买这两种商品的总金额达到原价总额时,可以享受到最大的优惠。

而要计算出具体的价格,我们需要知道原价总额和优惠百分比的具体数值。

1.2 行程问题假设你有两段路程需要走,第一段路程的距离是x千米,第二段路程的距离是y千米。

已知从第一段路程的起点出发走到第二段路程的起点所需的时间是t小时,同时已知从第二段路程的起点出发走到第一段路程的终点所需的时间也是t小时。

请问这两段路程的具体距离分别是多少?解答:设第一段路程的距离为x千米,第二段路程的距离为y千米。

根据题意,我们可以得到以下两个方程:x = vt + a1y = vt + a2其中v表示速度,a1表示第一段路程的起点到终点的水平距离,a2表示第二段路程的起点到终点的水平距离。

将第一个方程代入第二个方程,我们可以得到:y = x + a2 a1由于从第二段路程的起点出发走到第一段路程的终点所需的时间是t小时,所以我们可以得出结论:a1 = x y。

二元一次方程组的应用难题10道

二元一次方程组的应用难题10道

二元一次方程组的应用难题10道1、甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇.问甲、乙两人每小时各走多少千米?2、小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由。

3、李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?4、小明的爸爸为了给他筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期存取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期存取,这种存款银行利率为年息2.70%.三年后同时取出共得利息303.75元.问小明的爸爸两种存款各存入了多少元?5、现用190张铁皮做盒,一张可以做8个盒身或22个盒底,1个盒身与2个盒底配一个盒子,问用多少张铁皮制盒身、多少张铁皮制盒底,可制成一批完整的盒子?6、某城市现有人口42万人.计划一年后城镇人口增加0.8%,农村人中增加1.1%,这样全市人口得增加1%,求这个城市现有城镇人口和农村人口分别是多少人?7、一个两位数的十位数字与个位数字和为6,十位数字比个位数字大4,求这个两位数字.8、用长48厘米的铁丝弯成一个矩形,若将此矩形的长边分别折3厘米,补较短边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?9、今年,小李的年龄是他爷爷的1/5,小李发现,12年后,他的年龄变成爷爷的1/3,求今年小李的年龄。

10、某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同类型的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。

二元一次方程组及不等式典型压轴题

二元一次方程组及不等式典型压轴题

二元一次方程组及不等式难题(一)一.选择题(共11小题)1.(•大兴安岭)为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买()A.11支B.9支C.7支D.4支2.(•苏州)某县响应国家“退耕还林”号召,将一部分耕地改为林地,改还后,林地面积和耕地面积共有180km2,耕地面积是林地面积的25%,设改还后耕地面积为xkm2,林地面积为ykm2,则下列方程组中正确的是()A.B.C.D.3.(•潍坊)对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=5,则x的取值可以是()A.40 B.45 C.51 D.564.(•大庆校级模拟)若max{S1,S2,…,Sn}表示实数S1,S2,…,Sn中的最大者.设A=(a1,a2,a3),b=,记A⊗B=max{a1b1,a2b2,a3b3},设A=(x﹣1,x+1,1),,若A⊗B=x﹣1,则x的取值范围为()A.B.C.D.5.(•攀枝花模拟)现规定一种运算:a※b=ab+a﹣b,其中a、b为常数,若2※3+m※1=6,则不等式<m的解集是()A.x<﹣2 B.x<﹣1 C.x<0 D.x>26.(•河池)若a>b>0,则下列不等式不一定成立的是()A.a c>bc B.a+c>b+c C.D.a b>b2 7.(•常州)已知a、b、c、d都是正实数,且<,给出下列四个不等式:①<;②<;③;④<其中不等式正确的是()A.①③B.①④C.②④D.②③8.(•恩施州)某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40% B.33.4% C.33.3% D.30%9.(•模拟)某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少共需要()A.12120元B.12140元C.12160元D.12200元10.(•鼓楼区一模)若关于x的不等式整数解共有2个,则m的取值范围是()A.3≤m<4 B.3<m<4 C.3<m≤4 D.3≤m≤4 11.(•菏泽)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折二.填空题(共6小题)12.若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是.13.(•温州模拟)已知x、y满足方程组,则x﹣y的值为.14.(春•厦门校级期中)已知关于x、y的方程组,则x:y=.15.(•温州)有一条长度为359mm的铜管料,把它锯成长度分别为59mm和39mm两种不同规格的小铜管(要求没有余料),每锯一次损耗1mm的铜管料,为了使铜管料的损耗最少,应分别锯成59mm的小铜管段,39mm的小铜管段.16.(秋•工业园区校级期末)已知:,且3a+2b﹣4c=9,则a+b+c的值等于.17.(填“是”或“不是”)三元一次方程组.三.解答题(共13小题)18.(•上海)以来,我国曾五次实施药品降价,累计降价的总金额为269亿元,五次药品降价的年份与相应降价金额如表二所示,表中缺失了、相关数据.已知药品降价金额是药品降价金额的6倍,结合表中信息,求和的药品降价金额.年份降价金额(亿元)54 35 4019.(•吉林)王阿姨和李奶奶一起去超市买菜,王阿姨买西红柿、茄子、青椒各1kg,共花12.8元;李奶奶买西红柿2kg、茄子1.5kg,共花15元.已知青椒每千克4.2元,请你求出每千克西红柿、茄子各多少元?20.(秋•钟山区期末)某公园的门票价格如下表:购票人数1﹣50人51﹣100人100人以上每人门票数13元11元9元实验学校初二(1)、二(2)两个班的学生共104人去公园游玩,其中二(1)班的人数不到50人,二(2)班的人数有50多人,经估算,如果两个班都以班为单位分别购票,则一共应付1240元,如果两班联合起来,作为一个团体购票,则可节省不少钱,你能否求出两个班共有多少名学生联合起来购票能省多少钱?21.(•汕头)某商场按定价销售某种电器时,每台可获利50元,按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等.求该电器每台的进价、定价各是多少元?22.(•常州)甲、乙两个班的学生到超市上购买苹果,苹果的价格如下:购苹果数不超过30kg 30kg以上但不超过50kg 50kg以上每千克价格 3元 2.5元 2元甲班分两次共购买苹果70千克(第二次多于第一次),共付出189元,乙班则一次购买苹果70千克.(1)乙班比甲班少付出多少元?(2)甲班第一次、第二次分别购买苹果多少千克?23.(•泰州)某球迷协会组织36名球迷拟租乘汽车赴比赛场地,为首次打进世界杯决赛圈的国家足球队加油助威.可租用的汽车有两种:一种每辆可乘8人,另一种每辆可乘4人,要求租用的车子不留空座,也不超载.(1)请你给出不同的租车方案(至少三种);(2)若8个座位的车子的租金是300元/天,4个座位的车子的租金是200元/天,请你设计出费用最少的租车方案,并说明理由.24.(•泗县校级模拟)甲对乙说:“当我的岁数是你现在的岁数时,你才4岁”.乙对甲说:“当我的岁数是你现在的岁数时,你将61岁”.请你算一算,甲、乙现在各多少岁.25.(秋•新洲区期末)某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.26.(秋•越城区校级期末)某校七年级甲、乙两个班共103人(其中甲班超过50人,乙班不足50人)去景点游玩,如果两班都以班为单位分别购票,那么一共需付486元.(1)两班分别有多少名学生?(2)若两班联合起来,作为一个团体购票,可以节约多少钱?购票人数(人)1﹣50人51﹣100人100人以上每人门票单价5元 4.5元4元27.(春•海口期末)小颖和她的爸爸一起玩投篮球游戏.两人商定规则为:小颖投中1个得3分,爸爸投中1个得1分,结果两人一共投中了20个,一计算,发现两人的得分刚好相等,你知道他们两人各投中几个吗?28.(•重庆)某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元,为了减少环境污染,市场推出一种叫“CNG”的改烧汽油为天然气的装置,每辆车改装价格为4000元.公司第一次改装了部分车辆后核算:已改装后的车辆每天的燃料费占剩下的未改装车辆每天燃料费用的,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费占剩下未改装车辆每天的燃料费用的.问:(1)公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少?(2)若公司一次性将全部出租车改装,多少天后就可以从节省的燃料费中收回成本?29.(秋•巢湖期末)一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16s,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?30.(•哈尔滨)“利海”通讯器材商场,计划用60000元从厂家购进若新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买;(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量.二元一次方程组及不等式难题参考答案一.选择题(共11小题)1.D 2.A 3.C 4.B 5.C 6.A 7.A 8.B 9.C 10.C 11.B二.填空题(共6小题)12.2或3 13.14.3:2 15.43 16.15 17.是三.解答题(共13小题)18.19.20.21.22.23.24.25.26.27.28.29.30.。

二元一次方程组难题

二元一次方程组难题

1、甲、乙两人分别从相距30千米的A、B两地同时相向而行,经过3小时后相距3千米,再经过2小时,甲到B地所剩路程是乙到A地所剩路程的2倍,求甲、乙两人的速度.解析:设甲、乙的速度分别为x千米/时和y千米/时.第一种情况:甲、乙两人相遇前还相距3千米.根据题意,得第二种情况:甲、乙两人是相遇后相距3千米.根据题意,得答:甲、乙的速度分别为4千米/时和5千米/时;或甲、乙的速度分别为千米/时和千米/时.2、甲乙两人做加法,甲在其中一个数后面多写了一个0,得和为2342,乙在同一个加数后面少写了一个0,得和为65,你能求出原来的两个加数吗?解析:设两个加数分别为x、y.根据题意,得解得所以原来的两个加数分别为230和42.3、一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问两人每天各做多少个机器零件?解析:由题意得甲做12天,乙做8天能够完成任务;而甲做9天,乙做13天也能完成任务,由此关系我们可列方程组求解.设甲每天做x个机器零件,乙每天做y个机器零件,根据题意,得答:甲每天做50个机器零件,乙每天做30个机器零件4、师傅对徒弟说“我像你这样大时,你才4岁,将来当你像我这样大时,我已经是52岁的人了”.问这位师傅与徒弟现在的年龄各是多少岁?解析:由“我像你这样大时,你才4岁”可知师傅现在的年龄等于徒弟现在的年龄加上徒弟现在的年龄减4,由“当你像我这样大时,我已经是52岁的人了”可知52等于师傅现在的年龄加上师傅现在的年龄减去徒弟的年龄.由这两个关系可列方程组求解.设现在师傅x 岁,徒弟y岁,根据题意,得答:现5、有两个长方形,第一个长方形的长与宽之比为5∶4,第二在师傅36岁,徒弟20岁.个长方形的长与宽之比为3∶2,第一个长方形的周长比第二个长方形的周长大112cm,第一个长方形的宽比第二个长方形的长的2倍还大6cm,求这两个长方形的面积.解析:设第一个长方形的长与宽分别为5xcm和4xcm,第二个长方形的长与宽分别为3ycm 和2ycm.从而第一个长方形的面积为:5x×4x=20x2=1620(cm2);第二个长方形的面积为:3y×2y=6y2=150(cm2).答:这两个长方形的面积分别为1620cm2和150cm2.6、一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用共3480元.若只选一个组单独完成,从节约开支角度考虑,这家商店应选择哪个组?解析:由甲乙混做的时间和钱数我们可求出甲乙各自单独做需要的时间和费用,然后再进行比较.解:设甲组单独完成需x天,乙组单独完成需y天,则根据题意,得经检验,符合题意.即甲组单独完成需12天,乙组单独完成需24天.再设甲组工作一天应得m元,乙组工作一天应得n元.经检验,符合题意.所以甲组单独完成需300×12=3600(元),乙组单独完成需140×24=3360(元).故从节约开支角度考虑,应选择乙组单独完成.答:这家店应选择乙组单独完成.。

南阳市初中数学方程与不等式之二元一次方程组难题汇编含答案解析

南阳市初中数学方程与不等式之二元一次方程组难题汇编含答案解析

南阳市初中数学方程与不等式之二元一次方程组难题汇编含答案解析一、选择题1.已知关于x,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩ 的解适合方程25x y -=,则m 的值为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】整理方程为3x+7y=2,与25x y -=组成新的方程组,求解得31x y =⎧⎨=-⎩,代入原方程组中任意一个方程即可求出m. 【详解】解:将m=2x+3y 代入3232x y m +=-中得,3x+7y=2, ∵x,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩ 的解适合方程25x y -=,∴联立方程组25372x y x y -=⎧⎨+=⎩,解得:31x y =⎧⎨=-⎩, ∴23m x y =+=3, 故选C. 【点睛】本题考查解二元一次方程组的方法,属于简单题,熟练掌握加减消元和代入消元的方法是解题关键.2.若是关于x 、y 的方程组的解,则(a+b)(a ﹣b)的值为( ) A .15 B .﹣15C .16D .﹣16【答案】B 【解析】 【分析】把方程组的解代入方程组可得到关于a 、b 的方程组,解方程组可求a ,b ,再代入可求(a+b )(a-b )的值. 【详解】 解:∵是关于x 、y 的方程组的解,∴解得∴(a+b)(a-b)=(-1+4)×(-1-4)=-15.故选:B.【点睛】本题考查方程组的解的概念,掌握方程组的解满足方程组中的每一个方程是解题关键.3.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套,现有120张白铁皮,设用x张制盒身,y张制盒底,得方程组()A.1204016x yy x+=⎧⎨=⎩B.1204332x yy x+=⎧⎨=⎩C.12040210x yy x+=⎧⎨=⨯⎩D.以上都不对【答案】C【解析】【分析】根据题意可知,本题中的等量关系是(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,从而列方程组.【详解】解:根据题意,盒身的个数×2=盒底的个数,可得;2×10x=40y;制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,可得x+y=120,故可得方程组120 40210x yy x+=⎧⎨=⨯⎩.故选:C.【点睛】本题考查了根据实际问题抽象二元一次方程组的知识,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.4.若关于x,y的方程组2{x y mx my n-=+=的解是2{1xy==,则m n-为()A.1 B.3 C.5 D.2【答案】D【解析】解:根据方程组解的定义,把21xy=⎧⎨=⎩代入方程,得:412mm n-=⎧⎨+=⎩,解得:35mn=⎧⎨=⎩.那么|m-n|=2.故选D.点睛:此题主要考查了二元一次方程组解的定义,以及解二元一次方程组的基本方法.5.如果230x y z +-=,且20x y z -+=,那么xy的值为( ) A .15B .15-C .13D .13-【答案】D 【解析】 【分析】将题目中的两个方程相加,即可求得3x +y =0的值,根据x 与y 的关系代入即可求出x y的值. 【详解】解:2x +3y −z =0 ① ,x −2y +z =0 ② , ①+②,得 3x +y =0, 解得,1=-3x y , 故选D . 【点睛】本题主要考查解三元一次方程组,解答本题的关键是明确题意,求出所求式子的值.6.若关于x y 、的方程组ax by c ex fy d +=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,则方程组()()132132a x by c e x fy d ⎧-+=⎪⎨-+=⎪⎩的解是 ( )A .223x y =⎧⎪⎨=⎪⎩B .343x y =⎧⎪⎨=⎪⎩C .243x y =⎧⎪⎨=-⎪⎩D .323x y =⎧⎪⎨=⎪⎩【答案】B 【解析】 【分析】根据整体思想和方程组ax by c ex fy d +=⎧⎨+=⎩的解可得:112x -=和322=y,分别求解方程即可得出结果. 【详解】解:方程组()()132132a x by c e x fy d ⎧-+=⎪⎨-+=⎪⎩可化为:()()13221322a x byc e x fyd ⎧-+=⎪⎪⎨-⎪+=⎪⎩,令12-=x m ,32=yn ,则am bn c em fn d +=⎧⎨+=⎩,∵方程组ax by c ex fy d +=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,∴方程组am bn c em fn d +=⎧⎨+=⎩的解为12m n =⎧⎨=⎩,即112322x y -⎧=⎪⎪⎨⎪=⎪⎩,解得:343x y =⎧⎪⎨=⎪⎩,故选:B . 【点睛】本题主要考查了解二元一次方程组中的同解方程组问题,能把二元一次方程组转化成关于m ,n 的方程组是解此题的关键.7.如果方程组4x y mx y m+=⎧⎨-=⎩的解是二元一次方程3x ﹣5y ﹣30=0的一个解,那么m 的值为( ) A .7 B .6C .3D .2【答案】D 【解析】 【分析】理解清楚题意,运用三元一次方程组的知识,把x ,y 用含m 的代数式表示出来,代入方程3x-5y-30=0求得a 的值. 【详解】()()142x y m x y m ⎧+⎪⎨-⎪⎩== (1)+(2)得x=52m , 代入(1)得y=-32m ,把x ,y 代入方程3x-5y-30=0得:3×52m +5×32m -30=0,解得m=2; 故选D . 【点睛】本题的实质是解三元一次方程组,用加减法或代入法来解答.8.已知a,b满足方程组2226a ba b-=⎧⎨+=⎩,则3a+b的值是()A.﹣8 B.8 C.4 D.﹣4【答案】B【解析】【分析】方程组中的两个方程相加,即可得出答案.【详解】解:2226a ba b-=⎧⎨+=⎩①②,①+②,得:3a+b=8,故选B.【点睛】本题考查了解二元一次方程组和二元一次方程的解等知识点,能选择适当的方法求出解是解题的关键.9.方程组的解为,则被遮盖的前后两个数分别为()A.1、2 B.1、5 C.5、1 D.2、4【答案】C【解析】【分析】把x=2代入x+y=3求出y,再将x,y代入2x+y即可求解.【详解】根据,把x=2代入x+y=3.解得y=1.把x=2,y=1代入二元一次方程组中2x+y=5故被遮盖的两个数分别为5和1.故选C.【点睛】主要考查学生对二元一次方程组知识点的掌握.将已知解代入其中x+y=3求出y值为解题关键.10.已知关于x,y的方程组34{3x y ax y a+=--=,其中-3≤a≤1,给出下列结论:①当a=1时,方程组的解也是方程x+y=4-a的解;②当a=-2时,x、y的值互为相反数;③若x≤1,则1≤y≤4;④5{1xy==-是方程组的解,其中正确的是()A.①②B.③④C.①②③D.①②③④【答案】C【解析】【分析】【详解】解:解方程组34{3x y ax y a+=--=,得12{1x ay a=+=-,∵-3≤a≤1,∴-5≤x≤3,0≤y≤4,①当a=1时,x+y=2+a=3,4-a=3,方程x+y=4-a两边相等,结论正确;②当a=-2时,x=1+2a=-3,y=1-a=3,x,y的值互为相反数,结论正确;③当x≤1时,1+2a≤1,解得a≤0,故当x≤1时,且-3≤a≤1,∴-3≤a≤0∴1≤1-a≤4∴1≤y≤4结论正确,④5{1xy==-不符合-5≤x≤3,0≤y≤4,结论错误;故选:C.【点睛】本题考查二元一次方程组的解;解一元一次不等式组.11.甲仓库与乙仓库共存粮450 吨、现从甲仓库运出存粮的60%.从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30 吨。

二元一次方程奥数难题

二元一次方程奥数难题

二元一次方程组难题训练二元一次方程组难题训练第 1 篇一、判断1、是方程组的解…………()2、方程组的解是方程3x-2y=13的一个解()3、由两个二元一次方程组成方程组一定是二元一次方程组()4、方程组,可以转化为()5、若(a2-1)x2+(a-1)x+(2a-3)y=0是二元一次方程,则a的值为±1()6、若x+y=0,且|x|=2,则y的值为2…………()7、方程组有唯一的`解,那么m的值为m≠-5…………()8、方程组有无数多个解…………()9、x+y=5且x,y的绝对值都小于5的整数解共有5组…………()10、方程组的解是方程x+5y=3的解,反过来方程x+5y=3的解也是方程组的解………()11、若|a+5|=5,a+b=1则………()12、在方程4x-3y=7里,如果用x的代数式表示y,则()二、选择:13、任何一个二元一次方程都有()(A)一个解;(B)两个解;(C)三个解;(D)无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有()(A)5个(B)6个(C)7个(D)8个15、如果的解都是正数,那么a的取值范围是()(A)a<2;(B);(C);(D);16、关于x、y的方程组的解是方程3x+2y=34的一组解,那么m的值是()(A)2;(B)-1;(C)1;(D)-2;17、在下列方程中,只有一个解的是()(A)(B)(C)(D)18、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是()(A)15x-3y=6(B)4x-y=7(C)10x+2y=4(D)20x-4y=319、下列方程组中,是二元一次方程组的是()(A)(B)(C)(D)20、已知方程组有无数多个解,则a、b的值等于()(A)a=-3,b=-14(B)a=3,b=-7(C)a=-1,b=9(D)a=-3,b=1421、若5x-6y=0,且xy≠0,则的值等于()(A)(B)(C)1(D)-1二元一次方程组难题训练第 2 篇一.教学目标:1.认知目标:1)了解二元一次方程组的概念。

初中二元一次方程组应用题专项练习(含部分难题答案)

初中二元一次方程组应用题专项练习(含部分难题答案)

1、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?3、初三(、初三(22)班的一个综合实践活动小组去A,B两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其他两位同学交流的情况..根据他们的对话,请你分别求的销售情况,下图是调查后小敏与其他两位同学交流的情况出A,B两个超市今年“五一节”期间的销售额期间的销售额..4、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。

(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?7、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元(1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?8、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。

已知45座客车每日租金每辆220元,元,6060座客车每日租金为每辆300元。

元。

(1)初一年级人数是多少?原计划租用45座汽车多少辆?座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?)若租用同一种车,要使每个学生都有座位,怎样租用更合算?9、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天元,两人间每人每天 35 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?元,求两种客房各租了多少间?1111、、一条船顺水行驶36千米和逆水行驶24千米的时间都是3小时,求船在静水中的速度与水流的速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

创作编号:BG7531400019813488897SX 创作者: 别如克*
15、如果⎩

⎧=+=-423y x a
y x 的解都是正数,那么a 的取值范围是( )
(A )a <2;
(B )34-
>a ; (C )342<<-a ; (D )34
-<a ; 16、关于x 、y 的方程组⎩
⎨⎧=-=+m y x m
y x 932的解是方程3x +2y =34的一组解,那么m 的值是
( )
(A )2; (B )-1; (C )1; (D )-2;
17、在下列方程中,只有一个解的是( ) (A )⎩

⎧=+=+0331
y x y x
(B )⎩

⎧-=+=+2330
y x y x
(C )⎩
⎨⎧=-=+4331
y x y x
(D )⎩

⎧=+=+3331
y x y x
20、已知方程组⎩

⎧-=+=-135
b y ax y x 有无数多个解,则a 、b 的值等于( )
(A )a =-3,b =-14
(B )a =3,b =-7 (C )a =-1,b =9
(D )a =-3,b =14 21、若5x -6y =0,且xy ≠0,则y x y
x 3545--的值等于( )
(A )
3
2 (B )
2
3 (C )1 (D )-1
22、若x 、y 均为非负数,则方程6x =-7y 的解的情况是( ) (A )无解 (B )有唯一一个解 (C )有无数多个解 (D )不能确定
23、若|3x +y +5|+|2x -2y -2|=0,则2x 2
-3xy 的值是( )
(A )14 (B )-4 (C )-12 (D )12 24、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52
y x 都是方程y =kx +b 的解,则k 与b 的值为( ) (A )21
=k ,b =-4 (B )2
1
-=k ,b =4 (C )2
1
=
k ,b =4
(D )2
1
-
=k ,b =-4 31、已知方程组⎩⎨
⎧-=+=+m
y x ay x 2643
2有无数多解,则a =______,m =______;
38、⎪⎪⎩⎪⎪⎨⎧=++=+12
5
432y x y
x y x 37、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+;
45、当a 、b 满足什么条件时,方程(2b 2
-18)x =3与方程组⎩

⎧-=-=-5231
b y x y ax 都无解;
46、a 、b 、c 取什么数值时,x 3-ax 2
+bx +c 程(x -1)(x -2)(x -3)恒等? 47、m 取什么整数值时,方程组⎩

⎧=-=+024
2y x my x 的解:
(1)是正数;
(2)是正整数?并求它的所有正整数解。

3、解关于x 的方程)1(2)4)(1(+-=--x a x a a
4、已知方程组⎩⎨⎧=+=+c y ax y x 27
,试确定c a 、的值,使方程组:
(1)有一个解;(2)有无数解;(3)没有解
5、某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?
9某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元. 当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,
每天可以加工16吨;如果进行细加工,每天可加工6吨. 但两种加工方式不能同时进行. 受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研制了三种加工方案
方案一:将蔬菜全部进行粗加工;
方案二:尽可能多的对蔬菜进行精加工,没来得及加工的蔬菜在市场上直接销售;
方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天完成
你认为选择哪种方案获利最多?为什么?
【变式】某商场计划拨款9万元从厂家购进50台电视机,已知厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。

(1)若商场同时购进其中两种不同型号的电视机50台,用去9万元,请你研究一下商场的进货方案;
(2)若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元,在以上的方案中,为使获利最多,你选择哪种进货方案?
思路点拨:如何对蔬菜进行加工,获利最大,是生产经营者一直思考的问题. 本题正是基于这一点,对绿色蔬菜的精、粗加工制定了三种可行方案,供同学们自助探索,互相交流,尝试解决,并在探索和解决问题的过程中,体会应用数学知识解决实际问题的乐趣.
解:方案一获利为:4500×140=630000(元).
方案二获利为:7500×(6×15)+1000×(140-6×15)=675000+50000=725000(元).
方案三获利如下:
设将吨蔬菜进行精加工,吨蔬菜进行粗加工,则根据题意,得:
,解得:
所以方案三获利为:7500×60+4500×80=810000(元).
因为630000<725000<810000,所以选择方案三获利最多
答:方案三获利最多,最多为810000元。

总结升华:优化方案问题首先要列举出所有可能的方案,再按题的要求分别求出每个方案的具体结果,再进行比较从中选择最优方案.
二、13、D;14、B; 15、C;16、A; 17、C;18、A;
创作编号:BG7531400019813488897SX 创作者: 别如克*
19、C ; 20、A ;21、A ; 22、B ; 23、B ; 24、A ; 三、25、
47
,8,⎩⎨⎧==14y x ; 26、2; 27、4
12
5+=
y x ; 28、a =3,b =1;
29、⎩⎨
⎧==2
0b a ⎩⎨⎧==1
1b a ⎩⎨
⎧==0
2
b a 30、
2
1; 31、3,-4 32、1; 33、20; 34、a 为大于或等于3的奇数;
35、4:3,7:9
36、0;
四、37、⎩⎨⎧==204162n m ; 38、⎪⎩

⎨⎧==22a
y a
x ; 39、⎩⎨⎧-==13y x ; 40、⎩

⎧==11
y x ;
五、47、⎩⎨⎧-=-=+2941358y x y x ,⎪⎪⎩
⎪⎪⎨⎧
==231792
107y x ;
48、a =-1 49、11x 2
-30x +19;
50、3
1
=
a ; 51、2
3
=
a ,
b =±3 52、a =6, b =11,
c =-6;
53、(1)m 是大于-4的整数,(2)m =-3,-2,0,⎩⎨⎧==48y x ,⎩⎨⎧==24y x ,⎩⎨⎧==1
2
y x ; 54、⎩⎨⎧=-=91y x 或⎩
⎨⎧==95
y x ;
创作编号:BG7531400019813488897SX
创作者: 别如克*。

相关文档
最新文档