非独立悬架的侧倾中心和纵倾中心如何确定

合集下载

悬架主要参数的确定

悬架主要参数的确定

悬架主要参数的确定悬架结构形式的选择汽车的悬架主要有独⽴悬架和⾮独⽴悬架,独⽴悬架的结构特点是,左右车轮通过各⾃的悬架与车架连接;⾮独⽴悬架的结构特点是,左右车轮⽤⼀根整体轴连接,再经过悬架与车架连接。

独⽴悬架与⾮独⽴悬架的优缺点对照见表1:表1 独⽴悬架与⾮独⽴悬架的优缺点对照所以前后轴都⽤⾮独⽴悬架。

从表格中可以看出可以可以⽅便维修,制造成本也低。

⽬前在客车上普遍应⽤的是空⽓弹簧做弹性元件的悬架。

悬架是连接车⾝和车轮之间⼀切传⼒装置的总称,主要由空⽓弹簧,减振器和导向机构三部分组成。

弹性元件⽤来传递垂直⼒,并和轮胎⼀起缓和路⾯不平引起的冲击和振动,减振器将振动迅速衰减。

导向机构⽤来确定车轮相对于车架或车⾝的运动,传递除垂直⼒以外的各种⼒矩和⼒。

空⽓弹簧与机械弹簧悬架的⽬的是⼀样的,都是为了保护车辆不受振动和路⾯冲击振动的影响。

但是,机械弹簧悬架也可能加强振动,因为⼀些⼩的来⾃路⾯的跳动都可能引起共振。

⽽空⽓弹簧消除振动的性能从⽽提⾼车辆的⾏驶平顺性-乘坐柔软性和舒适性是机械弹簧悬架系统所⽆法⽐拟的。

机械弹簧悬架的吸振相差太⼤,在俯仰摆动时,机械弹簧悬架的减振效果更差,只有空⽓弹簧悬架的25%。

空⽓悬架在客车的应⽤上具有许多优点,⽐如空⽓弹簧可以设计的⽐较柔软,可以得到较低的固有振动频率,同时空⽓弹簧的变刚度特性使得这⼀频率在较⼤的载荷变化范围内保持不变,从⽽提⾼汽车的⾏驶平顺性。

空⽓悬架的另⼀个优点在于通过调节车⾝⾼度使⼤客车的地板⾼度随载荷的变化基本保持不变。

空⽓弹簧的优点1.性能优点:由于空⽓弹簧可以设计得⽐较柔软,因⽽空⽓悬架可以得到较低的固有振动频率,同时空⽓弹簧的变刚度特性使得这⼀频率在较⼤的载荷变化范围内保持不变,从⽽提⾼了汽车的⾏驶平顺性。

空⽓悬架的另⼀个优点在于通过调节车⾝⾼度使⼤客车的地板⾼度随载荷的变化基本保持不变。

此外,空⽓悬架还具有空⽓弹簧寿命长,质量⼩以及噪⾳低等⼀些优点。

独立悬挂和非独立悬挂的知识及307悬挂介绍

独立悬挂和非独立悬挂的知识及307悬挂介绍

最初的汽车都采用两个车轮安装在一根整体式车桥上的非独立悬挂,因为它简单、坚固。

不过问题很快就出现了,采用非独立悬挂的汽车当一边车轮上升时,必然导致另一边车轮下降,所以车身不能造的很低,必须给这种悬挂以左摇右摆的空间。

底盘高,汽车转向时侧倾必然就比较严重,尤其当转向轮也采用非独立悬挂时,很容易发生侧翻的意外。

不久,在1928年,法国人配夸尔在他制造的一辆蒸汽牵引汽车上让两个前轮分别与车架弹性相接,这就是最早的独立悬挂,这种独立悬架的设计在当时具有划时代的意义。

很快,欧洲制造的轿车前轮即转向轮普遍开始采用独立悬挂,但后轮悬挂依然采用非独立式悬挂。

对于那些非运动轿车来说,这种结构很经济而且够用。

独立悬挂的种类诸如麦佛逊式、多连杆式、双连杆式、四连杆式、拖曳臂式等许多种前后悬挂系统。

简单来说,悬挂系统就是指由车身与轮胎间的弹簧和避震器组成整个支持系统。

悬挂系统应有的功能是支持车身,改善乘坐的感觉,不同的悬挂设置会使驾驶者有不同的驾驶感受。

外表看似简单的悬挂系统综合多种作用力,决定着轿车的稳定性、舒适性和安全性,是现代轿车十分关键的部件之一。

汽车的悬挂系统分为非独立悬挂和独立悬挂两种:非独立悬挂的车轮装在一根整体车轴的两端,当一边车轮跳动时,另一侧车轮也相应跳动,使整个车身振动或倾斜;独立悬挂的车轴分成两段,每只车轮由螺旋弹簧独立安装在车架下面,当一边车轮发生跳动时,另一边车轮不受影响,两边的车轮可以独立运动,提高了汽车的平稳性和舒适性。

目前的汽车基本都采用了前轮独立悬挂,而后轮却存在非独立悬挂和独立悬挂的区别。

法国车自富康、爱丽舍开始前轮、后轮均是独立悬挂。

大众PST等车采用后轮非独立或半独立悬挂,而现在很多车多是低档车非独立悬挂,中档车则复杂很多,什么样的设计都有,高档车是独立悬挂(主要是多连杆的)。

这里面不能不提日本的贡献,在八十年代,日本汽车由于在技术上与欧美相比处于落后态势,而竞争又迫使它采用新概念,底盘水平上的差异是所有技术中差距最大的一个(直到目前,日本高档车仍以是莲花等欧洲公司为他调教过底盘为荣),所以后轮独立悬架成为他们的选择之一。

第六章_悬架设计

第六章_悬架设计
第六章 悬架设计
第一节 概述
功用 1. 传递作用在车轮和车架(或车身)之间的一切力和力矩,并且缓和路面传给车架(或车身)的冲击载荷, 衰减由此引起的承载系统的振动,保证汽车的行驶平顺性; 2. 保证车轮在路面不平和载荷变化时有理想的运动特性;
三、双横臂式独立悬架导向机构设计
1.纵向平面内上、下横臂的布置方案 第1、2、6方案的主销后倾角变化规律是比较好的
2.横向平面内上、下横臂的布置方案
三、双横臂式独立悬架导向机构设计
3.水平面内上、下横臂动轴线的布置方案
三、双横臂式独立悬架导向机构设计
水平面内上、下横臂动轴线的布置方案
一、概述
功用 3. 保证汽车的操纵稳定性,使汽车获得高速行驶能力。 组成 由弹性元件、导向装置、减振器、缓冲块和横向稳定器等组成。
一、概述
二 各组成元件功用
弹性元件: 缓和路面传给车架(或车身)的冲击载荷。 导向装置:导向装置由导向杆系组成,用来决定车轮相对于车架(或车身)的运动特性并传递除弹性元件传递的垂直力以外的各种力和力矩。当用纵置钢板弹簧作弹性元件时,它兼起导向装置作用。
为了使轮胎在遇到凸起路障时能够使轮胎一面上跳,一面向后退让,以减少传到车身上的冲击力,还为了便于布置发动机,大多数前置发动机汽车的悬架下横臂轴M—M的斜置角α1为正,而上横臂轴N—N的斜置角α2则有正值、零值和负值三种布置方案,如车轮上跳、下横臂斜置角αl为正、上横臂斜置角α2为负值或零值时,主销后倾角随车轮的上跳而增大。如组合方案为上、下横臂斜置角α1、α2都为正值,如图6—33a所示,则主销后倾角随车轮的上跳较少增加甚至减少(当α1<α2时)。
它对簧上质量的侧倾角有影响: 此外,还要求汽车转弯行驶时,在0.4g的侧向加速度作用下,前、后轮侧偏角之差δ1-δ2应当在1°~3°范围内。 而前、后悬架侧倾角刚度的分配会影响前、后轮的侧偏角大小,从而影响转向特性,所以设计时还应考虑悬架侧倾角刚度在前、后轴上的分配。

详解纵臂扭转梁式非独立悬架

详解纵臂扭转梁式非独立悬架

详解纵臂扭转梁式非独立悬架纵臂扭转梁式非立悬架即“拖曳臂式非独立悬架”,某些厂家还称其为“H型纵向摆臂式悬架”。

目前,国内大多数A级以下和低端SUV车型的后悬一般都采用了这种结构的悬架系统,主要是因为其占用车身空间相对较小、制造成本低,并且不会让车身整体在运动中发生外倾角变化。

同时,减震器也不会发生应力弯曲而加剧轮胎磨损。

主要组成结构纵臂扭转梁式非立悬架是专为后轮设计的悬架结构,它的组成构成非常简单:用粗壮的上下摆动式拖臂实现车轮与车身或车架之间的硬性连接,再用液压减震器和螺旋弹簧来实现软性连接,以达到吸震和支撑车身的作用,而圆柱形或方形扭转横梁连接至左右车轮。

从其构造来看,由于左右纵摆臂被横梁连接,因此该悬架结构还保持着整体桥式悬架的特性,这就使得纵向拖臂所连接的车轮在运动过程中外倾角不会发生变化,因此会使前轮出现转向不足的现象,不过连接左右纵臂的横梁在连接处可转动,这便在一定程度上让左右车轮在小范围内分别运转而不干扰到另一侧车轮。

纵臂扭转梁式非独立悬架的优势与不足:优势:由于整个悬架系统只有一个大部件构成,因此相比复杂的双叉臂、多连杆等,结构要简单得多。

被焊接成H型的悬架整体安装在车身上,摇臂与车身只有两个连接点,所以装配起来也很简单,而成本低也这正是这个级别车型所需要的。

另外,悬架整体所占用空间也相对较小。

不足:承载性能差、抗侧倾能力较弱、减震性能差、舒适性有限。

纵臂扭转梁式非立悬架本身具有非独立悬挂的存在的缺点,但同时也兼有部分独立悬挂的优点。

而其最大优点便是左右两车轮的空间较大,而且车身的外倾角没有变化,避震器不发生弯曲应力,所以摩擦小。

然而,这种悬挂的舒适性和操控性均有限,当其刹车时除了车头较重会往下沉外,拖曳臂悬挂的后轮也会往下沉平衡车身,无法提供精准的几何控制。

这种悬挂结构不仅在A0级车上盛行,很多A级车也有采用。

比如我们熟悉的雪佛兰科鲁兹,其后悬就是纵臂扭转梁式非立悬架虽然纵臂扭转梁式非立悬架的结构方式非常简单,但千万不要认为它就一定比多连杆那种独立式悬挂好。

图文解说:独立悬挂与非独立悬挂

图文解说:独立悬挂与非独立悬挂

悬架在这个言必谈操控、论必说运动的年代里,几乎所有汽车品牌多在大力的宣传自己产品优秀的操控性能,从欧系的宝马、奥迪、SAAB到日系的讴歌、英菲尼迪等高端品牌无不在极力宣传自己良好的操控性和运动性,就连一向以舒适性能为取向的奔驰、凯迪拉克、雷克萨斯等高端品牌也在新近的设计中加入了更多的运动取向。

从以福克斯为代表的紧凑型轿车到以迈腾为代表的中级车到以宝马5系Li为代表的高档车无不标榜自己的运动性能。

『悬架在汽车底盘安放位置的示意图』●悬架的概念和分类首先让我们来了解一下什么是悬架:悬架是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,悬架的主要作用是传递作用在车轮和车身之间的一切力和力矩,比如支撑力、制动力和驱动力等,并且缓和由不平路面传给车身的冲击载荷、衰减由此引起的振动、保证乘员的舒适性、减小货物和车辆本身的动载荷。

典型的汽车悬架结构由弹性元件、减震器以及导向机构等组成,这三部分分别起缓冲,减振和力的传递作用。

绝大多数悬架多具有螺旋弹簧和减振器结构,但不同类型的悬架的导向机构差异却很大,这也是悬架性能差异的核心构件。

根据结构不同可分为非独立悬架和独立悬架两种。

悬架把车架与车轮弹性地联系起来,关系到汽车的多种使用性能,是汽车最重要的三大总成之一(其它两个分别是:又是相互矛盾的。

为了取得良好的舒适性,需要大大缓冲汽车的震动,这样弹簧就要设计得软些,但弹簧软了却容易使汽车发生刹车“点头”、加速“抬头”以及严重侧倾偏向,不利于汽车的转向,容易导致汽车操纵不稳定等。

『迈腾原型车大众帕萨特B6前麦弗逊、后多连杆悬架』悬架的构件虽然简单但参数的确定却相当的复杂,厂家不但要考虑汽车的舒适性,操控稳定性还要考虑到成本问题。

基于这三个问题不同厂家有不同的倾向性策略。

也就产生了国内现在比较常见的五种悬架:麦弗逊式独立悬架、双叉臂式独立悬架、单纵臂扭杆梁式半独立悬架、连杆支柱式独立悬架、多连杆式独立悬架。

独立悬架系统是每一侧的车轮都是单独地通过弹性悬架系统悬架在车架或车身下面的。

五连杆非独立后悬架侧倾性能研究

五连杆非独立后悬架侧倾性能研究

五连杆非独立后悬架侧倾性能研究潘筱;林逸;王冬成;王亚南【摘要】The rear suspension roll plane kinematics equations during steady state turning are established by means of kinetostatic method. The relation of the roll angle and the lateral rod direction angle is studied with the vector geometric method. With case study of a SUV, the change of roll angle, effective roll stiffness and central position of roll under different geometrical locations is obtained The results of the study show that during steady turning, length of lateral rod, direction angle, arrangement of upper link affect roll characteristic of suspension significantly; the simulation results are identical with road test results.%运用动静法创建了稳态回转时五连杆后悬架的侧倾平面模型运动方程,运用矢量几何法分析了车体侧倾角和横向推力杆方向角之间的关系.通过对某SUV车实例分析,得出了不同的几何位置下车体侧倾角、有效侧倾刚度及侧倾中心位置的变化.结果表明,当车辆稳态回转时,横向推力杆的长度及方向角、上拉杆的布置对悬架的侧倾特性有重要影响;仿真结果与道路试验结果在趋势上有较好的一致性.【期刊名称】《汽车技术》【年(卷),期】2012(000)002【总页数】4页(P15-18)【关键词】非独立后悬架;五连杆;侧倾性能【作者】潘筱;林逸;王冬成;王亚南【作者单位】北京理工大学;郑州日产汽车有限公司;北京理工大学;北汽控股研究总院;郑州日产汽车有限公司;郑州日产汽车有限公司【正文语种】中文【中图分类】U463.331 前言侧倾稳定性作为衡量汽车安全行驶性能的一个重要特征量,一直受到汽车设计师和研究者们的重视。

悬架特性参数

悬架特性参数

悬架是汽车中的一个重要总成,它把车架与车轮弹性地联系起来,关系到汽车的多种使用性能。

从外表上看,轿车悬架仅是由一些杆、筒以及弹簧组成,但千万不要以为它很简单,相反轿车悬架是一个较难达到完美要求的汽车总成,这是因为悬架既要满足汽车的舒适性要求,又要满足其操纵稳定性的要求,而这两方面又是互相对立的。

比如,为了取得良好的舒适性,需要大大缓冲汽车的震动,这样弹簧就要设计得软些,但弹簧软了却容易使汽车发生刹车“点头”、加速“抬头”以及左右侧倾严重的不良倾向,不利于汽车的转向,容易导致汽车操纵不稳定等。

比较重要的参数有:1.车轮外倾角前轮外倾角分零外倾角、正外倾角、负外倾角。

如果空车时车轮的安装正好垂直于路面,则满载时车桥因承载变形而可能出现车轮内倾,这样将加速车轮胎的磨损。

另外,路面对车轮的垂直反力沿轮毂的轴向分力将使轮毂压向外端的小轴承,加重了外端小轴承及轮毂紧固螺母的负荷,降低它们的寿命。

因此,前轮有一个外倾角,同时为防止车轮出现过大的不足转向或过度转向趋势,为防止车轮出现过大的不足转向或过度转向趋势, 一般希望车轮从满载位置起上下跳动40mm 的范围内, 车轮外倾角变化在1度左右。

车轮外倾角的变化与悬架的形式有关,车轮外倾角的设置影响到汽车的转向操作性能和直线行驶稳定性能。

汽车作曲线行驶时,车轮随车身一起倾斜,即车身外侧车轮向正的外倾角方向变化,从而降低了其侧偏性能。

为保证轮胎的侧偏性能,悬架设计要求上跳时外倾角向负值变化,下落时向正值变化。

但是从操纵稳定性来讲,要求前悬架设计成上跳时外倾角向增大方向变化,下落时向减小方向变化,后悬架设计成上跳时向减小方向变化,下落时向增大方向变化。

2.主销后倾角主销后倾角是指在车身侧视图主销轴与垂直轴的夹角,正的主销后倾角是指主销顶部向后倾的角度。

主销后倾角的主要作用是使车轮复位以提高车辆直线行驶的稳定性。

当行驶中的汽车遇到外力产生偏离时,后倾角产生回正力矩使车轮自动回复到原来位置。

汽车设计(悬架部分)

汽车设计(悬架部分)

前言本小组程设计的课题是悬架的设计。

在选择车型时我们参考以下几个要求:可靠,巩固,耐用,使用本钱较低,油耗处于国内中等水平,为当前主流技术水平,车型新颖等等。

所以,悬架的设计宜选用成熟技术,零部件,彻底的贯彻“三化〞原那么,较为合理的本钱控制。

选择参考车型为日产NV200。

悬架是现代汽车的重要组成局部之一。

因而悬架设计成功与否,极大的影响汽车的操纵稳定性和平顺性,对整车性能有着重要的影响。

在汽车市场竞争日益加剧的今天,人们对汽车的性能的认识更多的靠更为直接的感观感受,而这种感官感受都是由汽车悬架传递给驾驶者的,人们对汽车悬架的设计也是越来越重视。

因此,对汽车操纵稳定性﹑平顺性的提升成为了各大汽车厂商的共识。

与此关系密切的悬架系统也被不断改良,主动半主动悬架等具有反应的电控系统在高端车辆上的应用日趋广泛。

无论定位高端市场,还是普通家庭的经济型轿车,没有哪个厂家敢无视悬架系统与其在整车中的作用。

这一切,都是因为悬架系统对乘员的主观感受密切联系。

悬架系统的优劣,乘员在车上可以马上感受到。

现在悬架的设计也是国内汽车厂商一个重要提升的方向。

以前对汽车的要求相对较低,国人更注重外观和汽车配置方面的要求,因此对汽车悬架的概念与要求并没有很高的要求。

随着现在人们对汽车操纵稳定性﹑平顺性越来越重视,人们不仅需要一辆好看配置高的车,更需要一辆好开乘坐舒适的车。

因此现在国内出现很多汽车厂商将新汽车的悬架设计与调校交给国外一些有实力汽车厂商,这也实实在在的提升了自身车型的市场竞争力,不过从另一方面也反映出国内悬架设计与调校所存在的问题,也使我们知道悬架设计的重要性,从而让我们对汽车悬架设计更加重视。

悬架从无到有,是人们对汽车稳定性﹑平顺性不断追求下诞生。

悬架从简单到复杂,是人们对更高的汽车稳定性﹑平顺性和操纵稳定性的不断追求。

所以对悬架设计的重视,就能使整车性能得以提升,从而提高车型的竞争力,赢得更好的表现。

而悬架设计涉与到部件与整体的关系。

车身侧倾角

车身侧倾角

车身侧倾角计算一、非独立悬架的侧倾角刚度侧倾角刚度是指簧载质量所受侧倾力距与其侧倾角的比值,即产生单位侧倾角的侧倾力距。

见图1所示,M为车身侧倾时所受的侧倾力矩(单位:Nmm),其与弹簧所产生的恢复力矩相等;P为弹簧所产生的恢复力(单位:N),K0为单侧弹簧的刚度(单位:N/mm),B为弹簧中心距(单位:mm),Φ为车身侧倾角(单位:rad),它们之间有如下关系M=2P×B/2=PB (1)1P= K0f =K0BΦ(2)2式中f为在力P作用下弹簧所产生的挠度。

将式(2)带入式(1)得1M= B2K0Φ2因此悬架侧倾角刚度C为M 1C= = B2K0 (单位:Nmm/rad) (3)Φ 2由上式可见悬架的侧倾角刚度与弹簧中心距的平方成正比,增大弹簧中心距可显著提高侧倾角刚度。

二、横向稳定杆的侧倾角刚度1、对图2所示横向稳定杆的侧倾角刚度C h按下式计算:3 E I L2C h= ,Nmm/rad (4)2﹝L13-a3+(a+b)2L/2+4L22(b+c)﹞式中E——材料的弹性模量,E=2.1×105 MpaI ——稳定杆的截面惯性矩,mm4πd4I= (5)64d——稳定杆的直径,mmL——横向稳定杆两支撑端点间的距离,mma、b、c、L1、L2等的意义见图2,mm2、对图3所示横向稳定杆的侧倾角刚度C h按下式计算:3 E I L2C h= ,Nmm/rad (6)2L23+L12L+4L22 L三、横向稳定杆的设计根据整车侧倾角刚度的需要,给出横向稳定杆的侧倾角刚度C h后,可利用式(4)或(6)和式(5)求出稳定杆的直径d ,然后要进行应力校核。

1、最大扭转应力τ一般情况下,横向稳定杆的最大扭转应力τ在截面B(见图2、图3)的内侧,其大小与B处的圆角半径R有关。

计算公式如下:16QL2 K'τ = (单位:N/mm2)(7)πd3式中K'——曲度系数4C-1 0.615K'= +(8)4C-4 CC——弹簧指数C=(2R+d)/d (9)Q——作用在稳定杆端点A的力,NC hΦQ= (10)L稳定杆的最大扭转应力τ不应超过700N/mm2,通常为了减小扭转应力,推荐圆角半径R≥1.25d。

汽车设计复习答案 第四版

汽车设计复习答案 第四版

一、名词解释1.试制设计:开发新产品(汽车),试制前进行的设计工作2.概念设计:是指从产品创意开始,到构思草图、出模型和试制出概念样车等一系列活动的全过程。

3.整车整备质量:指车上带有全部装备(包括随车工具、备胎等),加满燃料、水,但没有装货和载人时的整车质量。

4.质量系数:指汽车载质量与整车整备质量的比值,即ηm0 =m e/m05.汽车轴荷分配:是指汽车在空载或满载静止状态下,各车轴对支承平面的垂直负荷。

也可以用占空载或满载总质量的百分比来表示。

6.汽车比功率:汽车所装发动机标定最大功率与汽车最大总质量之比,P b=P emax/ m a7.汽车比转矩:汽车所装发动机的最大转矩与汽车总质量之比,T b=T emax/m a8.汽车最小转弯直径:是指转向盘转至极限位置时,汽车前外转向轮轮辙中心在支承平面上的轨迹圆的直径。

9.汽车制动性:是指汽车在制动时,能在尽可能短的距离内停车且保持方向稳定,下长坡时能维持较低的安全车速并有在一定坡道上长期驻车的能力。

10.汽车燃油经济性:用汽车在水平的水泥或沥青路面上,以经济车速或多工况满载行驶百公里的燃油消耗量(L/100km)来评价。

11.离合器间隙:指离合器正常结合状态,分离套筒被回位弹簧拉到后极限位置时,为保证离合器摩擦片正常磨损过程中离合器仍能完全接合,在分离轴承和分离杠杆内端之间留有的间隙。

12.离合器后备系数:离合器所能传递最大静摩擦力矩与发动机最大转矩之比。

13.传动轴的临界转速:当传动轴的工作转速接近于其弯曲固有振动频率时即出现共振现象,以致振幅急剧增加而引起传动轴折断时的转速。

14.锁紧系数:差速器的内摩擦力矩与差速器壳接受的转矩之比。

15.锥齿轮螺旋角:锥齿轮节锥表面展开图上的齿形线任意一点的切线与该点和节锥顶点连线之间的夹角。

16.悬架动挠度:从满载静平衡位置开始悬架压缩到结构允许的最大变形时,车轮中心相对车架(或车身)的垂直位移。

17.悬架静挠度:指汽车满载静止时悬架上的载荷Fw与此时悬架刚度c之比,即fc=Fw/c18.悬架弹性特性:悬架受到的垂直外力F与由此引起的车轮中心相对于车身位移f(即悬架的变形)的关系曲线。

悬架系统计算报告..

悬架系统计算报告..

修订记录目次1 概述 (1)1.1 计算目的 (1)1.2 悬架系统基本方案介绍 (1)1.3 悬架系统设计的输入条件 (1)2 悬架系统的计算 (2)2.1 弹簧刚度 (2)2.2 悬架偏频的计算 (2)2.2.1 前悬架刚度计算 (3)2.2.2 前悬架偏频计算 (4)2.2.3 后悬架刚度计算 (4)2.2.4 后悬架偏频计算 (5)2.3 悬架静挠度的计算 (5)2.4 侧倾角刚度计算 (6)2.4.1 前悬架的侧倾角刚度 (6)2.4.2 后悬架的侧倾角刚度 (8)2.5 整车的侧倾角计算 (9)2.5.1悬架质量离心力引起的侧倾力矩 (9)2.5.2侧倾后,悬架质量引起的侧倾力矩 (9)2.5.3总的侧倾力矩 (10)2.5.4悬架总的侧倾角刚度 (10)2.5.5整车的侧倾角 (10)2.6 纵倾角刚度 (10)2.7 减振器参数 (11)2.7.1 减振器平均阻力系数的确定 (11)2.7.2 压缩阻尼和拉伸阻尼系数匹配 (13)2.7.3 减震器匹配参数 (13)3 悬架系统的计算结果 (14)4 结论及分析 (15)参考文献 (15)1 概述1.1 计算目的通过计算,求得反映MA02-ME100纯电动车悬架系统性能的基本特征,为零部件开发提供参考。

计算内容主要包括悬架刚度、悬架侧倾角刚度、刚度匹配、悬架偏频、静挠度和阻尼等。

1.2 悬架系统基本方案介绍MA02-ME100纯电动车前悬架采用麦弗逊式独立悬架带横向稳定杆结构,后悬架系统采用拖曳臂式非独立悬架结构。

前、后悬架系统的结构图如图1、图2:图1 前悬架系统图2 后悬架系统1.3 悬架系统设计的输入条件悬架系统设计输入参数如表1:表1 悬架参数列表2 悬架系统的计算 2.1 弹簧刚度根据KC 试验数据分析,选定弹簧刚度: 前悬架弹簧刚度为: mm N C sf /20=; 后悬架弹簧刚度为: mm N C sr /7.21=; 2.2 悬架偏频的计算悬架系统将车身与车轮弹性的连接起来,由此弹性元件与它所支承的质量组成的振动系统决定了车身的固有频率,这是影响汽车行驶平顺性的重要性能指标之一。

悬架系统计算报告

悬架系统计算报告

修订记录目次1 概述 (1)1。

1 计算目的 (1)1。

2 悬架系统基本方案介绍 (1)1.3 悬架系统设计的输入条件 (1)2 悬架系统的计算 (2)2。

1 弹簧刚度 (2)2。

2 悬架偏频的计算 (2)2。

2。

1 前悬架刚度计算 (3)2.2.2 前悬架偏频计算 (4)2。

2。

3 后悬架刚度计算 (4)2。

2。

4 后悬架偏频计算 (5)2.3 悬架静挠度的计算 (5)2.4 侧倾角刚度计算 (6)2.4。

1 前悬架的侧倾角刚度 (6)2.4.2 后悬架的侧倾角刚度 (8)2.5 整车的侧倾角计算 (9)2.5.1悬架质量离心力引起的侧倾力矩 (9)2.5.2侧倾后,悬架质量引起的侧倾力矩 (9)2。

5.3总的侧倾力矩 (10)2。

5.4悬架总的侧倾角刚度 (10)2。

5.5整车的侧倾角 (10)2.6 纵倾角刚度 (10)2.7 减振器参数 (11)2.7。

1 减振器平均阻力系数的确定 (11)2.7。

2 压缩阻尼和拉伸阻尼系数匹配 (13)2。

7.3 减震器匹配参数 (13)3 悬架系统的计算结果 (14)4 结论及分析 (15)参考文献 (15)1 概述1。

1 计算目的通过计算,求得反映MA02—ME100纯电动车悬架系统性能的基本特征,为零部件开发提供参考。

计算内容主要包括悬架刚度、悬架侧倾角刚度、刚度匹配、悬架偏频、静挠度和阻尼等。

1。

2 悬架系统基本方案介绍MA02—ME100纯电动车前悬架采用麦弗逊式独立悬架带横向稳定杆结构,后悬架系统采用拖曳臂式非独立悬架结构。

前、后悬架系统的结构图如图1、图2:图1 前悬架系统图2 后悬架系统1。

3 悬架系统设计的输入条件悬架系统设计输入参数如表1:表1 悬架参数列表2 悬架系统的计算 2。

1 弹簧刚度根据KC 试验数据分析,选定弹簧刚度: 前悬架弹簧刚度为: mm N C sf /20=; 后悬架弹簧刚度为: mm N C sr /7.21=; 2.2 悬架偏频的计算悬架系统将车身与车轮弹性的连接起来,由此弹性元件与它所支承的质量组成的振动系统决定了车身的固有频率,这是影响汽车行驶平顺性的重要性能指标之一。

【图】科普贴!独立悬挂与非独立悬挂,图文视频版

【图】科普贴!独立悬挂与非独立悬挂,图文视频版

【图】科普贴!独立悬挂与非独立悬挂,图文视频版视频介绍不是很完整,暂时先看看! 找到合适的继续补充.通常我们选车时,汽车销售员总会向我们介绍说这车是什么发动机,什么变速箱,什么悬架等等。

说起发动机大家都懂得许多,说起变速箱也无外乎是自动的,还是手动的,而说起悬架有时就有点让人发蒙。

一、什么是汽车悬架所谓悬架就是指连接车身(车架)和车轮(车轴)的弹性构件,这个构件虽为弹性结构,但它的刚度足以保证汽车的行驶舒适性和稳定性。

在汽车行驶过程中,悬架既能抵消减弱路面不平带来的生硬冲击,又能确保车身的横向和纵向稳定性,使车辆在悬架设计的自由行程内时刻都可以保持一个较大范围的动态可控姿态。

因此,悬架是关系到车辆操控性和舒适性的重要组成部件之一。

悬架结构形式和性能参数的选择合理与否,直接对汽车行驶平顺性、操纵稳定性和舒适性有很大的影响。

由此可见悬架系统在现代汽车上是重要的总成之一。

二、汽车悬架的分类按照汽车悬架的原理来说,现代汽车中的悬架有两种,一种是被动悬架,另一种是主动悬架。

被动悬架即传统式的悬架,是由弹簧、减振器(减振筒)、导向机构等组成,其中弹簧主要起减缓冲击力的作用,减振器的主要作用是衰减振动。

由于这种悬架是由外力驱动而起作用的,所以称为从动悬架。

主动悬架的控制环节中安装了能够产生抽动的装置,采用一种以力抑力的方式来抑制路面对车身的冲击力及车身的倾斜力。

由于这种悬架能够自行产生作用力,因此称为主动悬架。

主动悬架是由电脑控制的一种新型悬架,具有能够产生反作用力的动力源,主要用于高档轿车,这里不讨论。

根据汽车导向机构不同悬架种类又可分为独立悬架,非独立悬架。

如下图所示。

(半独立悬架单独介绍)非独立悬架如上图(a)所示其特点是两侧车轮安装于一整体式车桥上,当一侧车轮受冲击力时会直接影响到另一侧车轮上,当车轮上下跳动时定位参数变化小。

若采用钢板弹簧作弹性元件,它可兼起导向作用,使结构大为简化,降低成本。

目前广泛应用于货车和大客车上,有些轿车后悬架也有采用的。

汽车设计讲稿-第六章悬架设计

汽车设计讲稿-第六章悬架设计

汽车设计讲稿-第六章悬架设计第六章悬架设计§6-1 概述:一、功用:传力、缓冲、减振:保证平顺性、操纵稳定性二、组成:弹性元件:传递垂直力,评价指标为单位质量储能等导向装置:车轮运动导向,并传递垂直力以外的力和力矩减振器:减振缓冲块:减轻车轴对车架的撞击,防止弹性元件变形过大横向稳定器:减少转弯时车身侧倾太大和横向角振动三、设计要求:1)良好的行驶平顺性:簧上质量 + 弹性元件的固有频率低;前、后悬架固有频率匹配:乘:前悬架固有频率要低于后悬架尽量避免悬架撞击车架;簧上质量变化时,车身高度变化小。

2)减振性好:衰减振动、抑制共振、减小振幅。

3)操纵稳定性好:车轮跳动时,主销定位参数变化不大;前轮不摆振;稍有不足转向(δ1>δ2)4)制动不点头,加速不后仰,转弯时侧倾角合适5)隔声好6)空间尺寸小。

7)传力可靠、质量小、强度和寿命足够。

§6-2 悬架结构形式分析:一、非独立悬架和独立悬架:二、独立悬架结构形式分析:1、评价指标:1)侧倾中心高度:A、侧倾中心:车身在通过左、右车轮中心的横向垂直平面内发生侧倾时,相对于地面的瞬时转动中心,叫侧倾中心。

B、侧倾中心高度:侧倾中心到地面的距离。

C、侧倾中心位置影响:位置高:侧倾中心到质心的距离缩短,侧向力臂和侧倾力矩↓,车身侧倾角↓;过高:车身倾斜时轮距变化大,加速轮胎车轮外倾角α磨损。

2)车轮定位参数:车轮外倾角α,主销内倾角β,主销后倾角γ,车轮前束等会发生变化。

主销后倾角γ变化大→转向轮摆振车轮外倾角α化大→直线行驶稳定性;轮距变化,轮胎磨损3)悬架侧倾角刚度A、车厢侧倾角:车厢绕侧倾轴线转动的角度B、影响:车厢侧倾角与侧倾力矩和悬架总的侧倾角刚度有关,影响操纵稳定性和平顺性4)横向刚度:影响操纵稳定性转向轴上悬架横向刚度小,转向轮易摆振,5)空间尺寸:占用横向尺寸→影响发动机布置和拆装;占用高度尺寸→影响行李箱大小和油箱布置。

悬架设计、确定和计算

悬架设计、确定和计算

单横臂式独立悬架
•侧倾中心高度比较高; •车轮定位参数的变化车轮外倾角与主销内倾角 变化大; •轮距变化大,轮胎磨损速度快; •悬架侧倾角刚度较大,可不需横向稳定器; •横向刚度大; •空间尺寸占用较少; •结构简单,成本低,前悬架用得较少。
单纵臂式独立悬架
•侧倾中心高度比较低; •主销后倾角变化大; •轮距不变; •悬架侧倾角刚度较小,需横向稳定器; •横向刚度小; •几乎不占用高度空间; •结构简单,成本低;
悬架 双横臂式 单横臂式 单纵臂式 单斜臂式
侧倾中心 高
比较低
比较高
比较低
居单横臂和 单纵臂之间
车轮定位 车轮外倾角 参数的变 与主销内倾
化 角均有变化
车轮外倾角 与主销内倾 角变化大
主销后倾角 变化大
有变化
变化小,轮 变化大,轮
轮距 胎磨损速度 胎磨损速度


不变
变化不大
悬架侧倾 角
刚度
较小,需用 横向稳定器
件质量要小的同时,还要保证有足够的强度和寿命。
§6-2 悬架结构形式分析
一、非独立悬架和独立悬架
非独立悬架
悬架 独立悬架两类
左、右车轮用一根整体轴连接,再经过 悬架与车架(或车身)连接
左、右车轮通过各自的悬架与车架(或 车身)连接
非独立悬架
独立悬架
1、非独立悬架
纵置钢板弹簧为弹性元件兼作导向装置
得较多 上用得少
结构简单、成本低
结构简单、 悬架
各种独立悬架的比较
三、前、后悬架方案的选择
➢前轮和后轮均采用非独立悬架;
采用的方案 ➢前轮采用独立悬架,后轮采用非独立悬架; ➢前轮与后轮均采用独立悬架。

悬架系统计算报告材料

悬架系统计算报告材料
式中:
——弹簧中心线与后轴垂线间的夹角, =5.3°(见图4);
则:
考虑在悬架系统中橡胶块的变形,其刚度约为悬架刚度的15%~20%,此处取15%,
经计算:
2.2.4
后悬架偏频按式(4)计算:
…………………………………………(4)
式中:
——后悬架偏频;
K ——后悬架的刚度,N/mm;
——后悬架簧载质量,kg;
………………………………(6)
式中:
——前螺旋弹簧引起的侧倾角刚度,N·mm/rad;
b——前弹簧中心线与转向瞬时运动中心距离,mm;
p——车轮中心面距转向节瞬时运动中心距离,mm;
B——前轮距,mm;
——前螺旋弹簧刚度,N/mm。
根据图3得b=2435mm,p=2578mm,根据表1得B=1299 mm,并把 =20 N/mm带入式(6)得出螺旋弹簧的侧倾角刚度为:
一般要求前悬架侧倾角刚度要稍大于后悬架侧倾角刚度,以满足汽车稍有不足转向特性的要求,并且前、后悬架侧倾角刚度比值一般在1.4~2.6之间。根据以上计算结果得前、后悬架侧倾角刚度比值为2.5,显然开发目标车型满足要求。
2.5
车厢侧倾角 是和汽车操纵稳定性及平顺性有关的一个重要参数。侧倾角的数值影响到汽车的横摆角速度稳态响应和横摆角速度瞬态响应。以下质心及侧倾中心示意图各参数是从装载数模上测定的。
——后悬架满载簧载质量,kg;
——后悬架空载簧载质量,kg。
根据表1得
并把 带入(4)式得出:
后悬架满载偏频:
后悬架空载偏频:
2.3
静挠度也是表征悬架性能的参数,按式(5)计算:
………………………………(5)
式中:
——静挠度,mm;

悬架主要参数的确定(精)

悬架主要参数的确定(精)

第三节 悬架主要参数的确定一、悬架静挠度c f悬架静挠度凡是指汽车满载静止时悬架上的载荷Fw 与此时悬架刚度c 之比,即c f = Fw /c 。

汽车前、后悬架与其簧上质量组成的振动系统的固有频率,是影响汽车行驶平顺性的主要参数之一。

因现代汽车的质量分配系数ε近似等于1,于是汽车前、后轴上方车身两点的振动不存在联系。

因此,汽车前、后部分的车身的固有频率1n 和2n (亦称偏频)可用下式表示:π=2/111m c n π=2/222m c n (6-1)式中,1c 、2c 为前、后悬架的刚度(N /cm);1m 、2m 为前、后悬架的簧上质量(kg)。

当采用弹性特性为线性变化的悬架时,前、后悬架的静挠度可用下式表示111/c g m f c = 222/c g m f c =式中,g 为重力加速度(g=981 cm /s ²)。

将1c f 、2c f 代人式(6-1)得到 11/5c f n = 22/5c f n = (6-2)分析上式可知:悬架的静挠度c f 直接影响车身振动的偏频n 。

因此,欲保证汽车有良好的行驶平顺性,必须正确选取悬架的静挠度。

在选取前、后悬架的静挠度值1c f 和2c f 时,应当使之接近,并希望后悬架的静挠度2c f 比前悬架的静挠度1c f 小些,这有利于防止车身产生较大的纵向角振动。

理论分析证明:若汽车以较高车速驶过单个路障,21/n n <1时的车身纵向角振动要比21/n n >1时小,故推荐取2c f =(O .8~O .9) 1c f 。

考虑到货车前、后轴荷的差别和驾驶员的乘坐舒适性,取前悬架的静挠度值大于后悬架的静挠度值,推荐.2c f =(O.6~O.8) 1c f 。

为了改善微型轿车后排乘客的乘坐舒适性,有时取后悬架的偏频低于前悬架的偏频。

用途不同的汽车,对平顺性要求不一样。

以运送人为主的轿车对平顺性的要求最高,大客车次之,载货车更次之。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档