抽屉问题经典练习题
抽屉考试题
抽屉考试题一、选择题(每题2分,共10分)1. 抽屉原理中,如果有n个抽屉和n+1个物品,那么至少有一个抽屉里至少有____个物品。
A. 1B. 2C. 3D. 42. 在一个有10个抽屉的柜子里,每个抽屉最多可以放3个物品。
如果总共有35个物品,那么至少有一个抽屉里至少有多少个物品?A. 3B. 4C. 5D. 63. 如果有5个抽屉和7个物品,根据抽屉原理,至少有一个抽屉里至少有____个物品。
A. 1B. 2C. 3D. 44. 一个班级有40名学生,每个学生至少参加一个兴趣小组,如果班级有5个兴趣小组,那么至少有一个兴趣小组至少有多少名学生参加?A. 8B. 9C. 10D. 115. 一个图书馆有100本书,这些书被随机放入10个书架上,每个书架最多放20本书。
根据抽屉原理,至少有一个书架上至少有多少本书?A. 10B. 11C. 12D. 13二、填空题(每题3分,共15分)6. 如果有m个抽屉和n个物品,且n > m,那么至少有一个抽屉里至少有____个物品。
7. 在一个有8个抽屉的柜子里,每个抽屉最多可以放5个物品。
如果总共有45个物品,那么至少有一个抽屉里至少有____个物品。
8. 一个学校有6个班级,每个班级至少有30名学生。
如果学校总共有180名学生,那么至少有一个班级至少有____名学生。
9. 如果有9个抽屉和12个物品,根据抽屉原理,至少有一个抽屉里至少有____个物品。
10. 一个办公室有20个文件柜,每个文件柜最多可以放50份文件。
如果总共有1000份文件,那么至少有一个文件柜里至少有____份文件。
三、解答题(每题10分,共20分)11. 一个工厂有50台机器,这些机器需要被分配到5个车间中。
如果每个车间至少需要分配到10台机器,那么至少有一个车间至少有多少台机器?12. 一个学校有7个班级,每个班级至少有25名学生。
如果学校总共有175名学生,那么至少有一个班级至少有多少名学生?并解释你的推理过程。
抽屉原理十个例题
抽屉原理十个例题抽屉原理,又称鸽巢原理,是数学中一个非常重要的概念。
它指的是如果有n+1个或更多的物体放入n个抽屉中,那么至少有一个抽屉中会有两个或更多的物体。
这个原理在数学证明和计算概率等领域中有着广泛的应用。
下面我们来看看抽屉原理在实际问题中的应用,通过十个例题来深入理解这一概念。
例题1,班上有30名学生,其中有29名学生的生日不在同一天,那么至少有两名学生的生日在同一天。
例题2,某个班级有25名学生,其中有23名学生的身高不相同,那么至少有两名学生的身高相同。
例题3,在一个班级里,有10名男生和9名女生,那么至少有一个班级有两名同性别的学生。
例题4,某公司有36名员工,其中每个员工的年龄都不相同,那么至少有两名员工的年龄相差不超过1岁。
例题5,一家商店有40件商品,其中有39件商品的价格都不相同,那么至少有两件商品的价格相同。
例题6,在一个班级里,有15名学生,每个学生都选修了2门不同的课程,那么至少有一门课程有两名学生选修。
例题7,某个班级有20名学生,他们每个人的体重都不相同,那么至少有两名学生的体重相差不超过1千克。
例题8,某个班级的学生参加了一次考试,考试成绩都不相同,那么至少有两名学生的成绩相差不超过5分。
例题9,在一个班级里,有12名男生和13名女生,那么至少有一名学生和另一名学生同性别并且同年龄。
例题10,某公司的40名员工中,每个员工的工作经验都不相同,那么至少有两名员工的工作经验相差不超过1年。
通过以上十个例题的分析,我们可以看到抽屉原理在实际问题中的应用。
无论是生日、身高、性别、价格还是其他属性,只要物体的数量超过抽屉的数量,就一定会存在重复的情况。
这个原理在解决排列组合、概率统计等问题时都有着重要的作用,希望通过这些例题的学习,大家能更加深入地理解抽屉原理的应用。
抽屉原理数学练习题
抽屉原理数学练习题抽屉原理是数学中一个重要的基本理论,也称为鸽巢原理或猴子选香蕉。
其主要含义是将n个物品放入n个抽屉中,至少有一个抽屉中会有2个物品,这是因为n个物品放在n-1个抽屉中,至少有一个抽屉中放了至少2个物品。
抽屉原理在日常生活和学习中都有着广泛的应用,在数学中也有着许多的练习题。
下面将介绍几道有关抽屉原理的数学练习题,以帮助大家更好地理解和掌握抽屉原理的应用。
1. 有7个苹果和10个梨子,现将它们放入4个抽屉中,至少有一个抽屉中放了至少3个水果,请问这是可能的吗?解析:按照抽屉原理,将7个苹果和10个梨子分别放入4个抽屉中,每个抽屉中的果子数目不一定相等,但是总数目为17个,由于4不能整除17,所以必然有一个抽屉中的水果数目是大于等于5个的。
因此,在放入水果的时候,必然存在一个抽屉中放了至少3个苹果和至少1个梨子,或者至少1个苹果和至少3个梨子,所以答案是可能的。
2. 在一个由20个数字组成的序列中,所有的数字都是1或-1。
证明:这个序列中有一个长度不小于15的连续子序列,使得其中所有数字的和等于0。
解析:该问题可以转化为将20个数字组成的序列划分成15个长度为2的子序列,由于每个数字只有两个取值,所以总共有$2^{20}$ 种可能,而只有15个序列,根据抽屉原理,必然存在两个相同的子序列,这两个子序列一定在原序列中相连,且包含的数字相同,因此它们的差值为0,即它们的数字之和为0。
3. 在一个有20个球的盒子中,其中有16个红球和4个绿球。
现从盒中取出10个球,问其中至少有两个颜色相同的概率是多少?解析:当取出的10个球中有3个及以上的绿球时,必然存在两个颜色相同的球。
对于取出0个或1个绿球的情况,可按照抽屉原理,将10个球分成10组,其中最多只有一个组中有一颗绿球,总共只有10种情况,因此概率为0. 若取出2个绿球,则可以将10个球分为${16\choose8}+{16\choose9}+{16\choose10}$ 种情况,其中每种情况中至少有两个红球,因此存在两个颜色相同的球。
抽屉原则练习题
抽屉原则练习题抽屉原则,也被称为鸽笼原理,是数学中的一个重要原理。
它指的是,如果有 n+1 个物体放入 n 个抽屉中,那么至少有一个抽屉中必定放入了两个或以上的物体。
这个原理在现实生活中也有很多应用,例如物品分类、待办事项等。
下面是一些抽屉原则的练习题,帮助你更好地理解和应用这个原理。
练习题一:假设某个班级有 40 名学生,每位学生喜欢各异的运动项目,包括足球、篮球、乒乓球和羽毛球。
根据抽屉原则,如果每个学生只能选择一种运动项目,并且任意两个学生不选择相同的项目,那么必然有至少一种运动项目被至少两名学生选择。
请你利用抽屉原理,解答以下问题:1. 最少有几个学生选择足球?2. 最多有几个学生选择羽毛球?3. 如果有 27 名学生选择了篮球,那么至少还有几名学生选择了乒乓球?练习题二:某个班级的学生总数为 n,假设每位学生参加了 m 个俱乐部活动,并且每个俱乐部活动至少有两名学生参加。
请你回答以下问题:1. 如果 n=30,m=4,那么俱乐部活动的总数最多是多少?2. 如果只有两个俱乐部活动的总数达到最大值,那么 n 至少有多少个学生?3. 如果 n=25,俱乐部活动的总数为 40,那么 m 至少是多少?练习题三:某个超市有 n 种商品,每种商品的库存量不同。
根据抽屉原则,如果每个商品的库存量都不超过 m 个,那么必然存在至少一个商品的库存量超过了 m 个。
请你运用抽屉原理,回答以下问题:1. 如果有 15 种商品,每种商品的库存量都不超过 6 个,那么至少有几种商品的库存量是相同的?2. 如果有 20 种商品,每种商品的库存量都不超过 10 个,那么至多有几种商品的库存量是相同的?3. 如果有 12 种商品,至少有 8 种商品的库存量超过 5 个,那么最多有几种商品的库存量不超过 5 个?以上是关于抽屉原理的练习题,通过解答这些题目,相信你对抽屉原理的应用有了更深入的理解。
抽屉原理在数学、计算机科学以及日常生活中都具有广泛的应用价值。
初中抽屉原理试题及答案
初中抽屉原理试题及答案1. 有10个苹果和5个抽屉,如果每个抽屉最多只能放2个苹果,那么至少需要多少个抽屉才能确保所有的苹果都能被放入抽屉中?答案:至少需要3个抽屉。
因为10个苹果除以每个抽屉最多放2个苹果,结果是5个抽屉,但还剩下0个苹果,所以需要再加一个抽屉来确保所有的苹果都能被放入。
2. 一个班级有45名学生,如果每个学生至少有一支铅笔,那么至少有多少名学生会有相同颜色的铅笔?答案:至少有5名学生会有相同颜色的铅笔。
根据抽屉原理,如果有n 个抽屉和n+1个物品,那么至少有一个抽屉里会有两个或更多的物品。
在这个问题中,假设有4种颜色的铅笔,那么45名学生除以4种颜色,结果是11余1,这意味着至少有一个颜色的铅笔会被至少12名学生拥有。
3. 有15本书和3个书架,如果每个书架上放的书的数量不能超过4本,那么至少需要多少个书架才能放完所有的书?答案:至少需要4个书架。
首先,3个书架每个放4本书,可以放12本书。
剩下的3本书需要至少1个书架来放置,所以总共需要4个书架。
4. 如果一个盒子里有7个红球,8个蓝球和9个绿球,那么至少需要取出多少个球才能保证取出的球中至少有2个是同一种颜色的?答案:至少需要取出4个球。
最坏的情况是前三次取出的球分别是红、蓝、绿三种颜色各一个,那么第四次取出的球无论是什么颜色,都能保证至少有2个球是同一种颜色的。
5. 一个学校有100名学生,如果每个学生至少参加一项体育活动,那么至少有多少名学生会参加相同的体育活动?答案:至少有2名学生会参加相同的体育活动。
假设有100种不同的体育活动,那么根据抽屉原理,至少有一个活动会被至少2名学生选择参加。
抽屉原理练习题
抽屉原理练习题一、选择题1. 抽屉原理是指,如果有n+1个或更多的物品放入n个抽屉中,至少有一个抽屉中会有2个或更多的物品。
以下哪项不是抽屉原理的表述?A. 每个抽屉至少有一个物品B. 至少有一个抽屉包含多个物品C. 物品数量总是比抽屉数量多1D. 物品和抽屉的数量关系导致至少一个抽屉有多个物品2. 如果有10个苹果要放入9个抽屉中,根据抽屉原理,至少有几个苹果会放在同一个抽屉里?A. 1B. 2C. 3D. 43. 一个班级有50名学生,如果至少有5名学生在同一天过生日,根据抽屉原理,这个班级至少有多少名学生的生日是在同一个月?A. 5B. C. 6D. 7二、填空题4. 如果有13个球要放入12个盒子中,至少有一个盒子里会有______个或更多的球。
5. 一年有12个月,如果有25个人的生日在一年中的不同月份,根据抽屉原理,至少有______个人的生日在同一个月。
6. 一个学校有100名学生,如果至少有10名学生在同一天参加考试,根据抽屉原理,至少有______名学生的考试日期是在同一天。
三、解答题7. 一个班级有36名学生,他们要参加7个不同的兴趣小组。
请证明至少有一个兴趣小组有6名或更多的学生参加。
解答:设有7个兴趣小组,每个小组最多可以有5名学生。
如果每个小组都只有5名学生,那么总共会有7*5=35名学生参加兴趣小组。
但班级有36名学生,这意味着至少有1名学生必须加入到已经满员的小组中,使得至少有一个小组有6名学生。
8. 一个图书馆有10个书架,每个书架最多可以放100本书。
如果图书馆有1000本书需要放置,根据抽屉原理,至少有一个书架上会有多少本书?解答:如果每个书架都放满100本书,那么10个书架可以放1000本书。
但根据抽屉原理,至少有一个书架上会有101本书,因为如果每个书架都只有100本书,那么总共只有1000本书,而实际上有1001本书需要放置。
9. 一个学校有365名学生,他们的生日分布在一年中的不同天。
抽屉问题经典练习题
抽屉问题经典练习题1.木箱里装有红色球3个、黄色球5个、蓝色球7个;若蒙眼去摸;为保证取出的球中有两个球的颜色相同;则最少要取出多少个球42.一幅扑克牌有54张;最少要抽取几张牌;方能保证其中至少有2张牌有相同的点数163.11名学生到老师家借书;老师是书房中有A、B、C、D四类书;每名学生最多可借两本不同类的书;最少借一本..试证明:必有两个学生所借的书的类型相同..10个抽屉5.体育用品仓库里有许多足球、排球和篮球;某班50名同学来仓库拿球;规定每个人至少拿1个球;至多拿2个球;问至少有几名同学所拿的球种类是一致的66.某校有55个同学参加数学竞赛;已知将参赛人任意分成四组;则必有一组的女生多于2个人;又知参赛者中任何10人中必有男生;则参赛男生的人生为__________人..467、证明:从1;3;5;……;99中任选26个数;其中必有两个数的和是100..25个抽屉8.. 某旅游车上有47名乘客;每位乘客都只带有一种水果..如果乘客中有人带梨;并且其中任何两位乘客中至少有一个人带苹果;那么乘客中有______人带苹果..469.. 一些苹果和梨混放在一个筐里;小明把这筐水果分成了若干堆;后来发现无论怎么分;总能从这若干堆里找到两堆;把这两堆水果合并在一起后;苹果和梨的个数是偶数;那么小明至少把这些水果分成了_______堆.. 解析:要求把其中两堆合并在一起后;苹果和梨的个数一定是偶数;那么这两堆水果中;苹果和梨的奇偶性必须相同..对于每一堆苹果和梨;奇偶可能性有4种:奇;奇;奇;偶;偶;奇;偶;偶;所以根据抽屉原理可知最少分了4+1筐..10.. 有黑色、白色、蓝色手套各5只不分左右手;至少要拿出_____只拿的时候不许看颜色;才能使拿出的手套中一定有两双是同颜色的..1013.从1、2、3、4……、12这12个自然数中;至少任选几个;就可以保证其中一定包括两个数;他们的差是714.某幼儿班有40名小朋友;现有各种玩具122件;把这些玩具全部分给小朋友;是否会有小朋友得到4件或4件以上的玩具是15.一个布袋中有40块相同的木块;其中编上号码1;2;3;4的各有10块..问:一次至少要取出多少木块;才能保证其中至少有3块号码相同的木块92. 在边长为1的正方形内;任意放入9个点;证明在以这些点为顶点的三角形中;必有一个三角形的面积不超过1/8.解:分别连结正方形两组对边的中点;将正方形分为四个全等的小正方形;则各个小正方形的面积均为1/4 ..把这四个小正方形看作4个抽屉;将9个点随意放入4个抽屉中;据抽屉原理;至少有一个小正方形中有3个点..显然;以这三个点为顶点的三角形的面积不超过1/8 ..4.在一条长100米的小路一旁植树101棵;不管怎样种;总有两棵树的距离不超过1米..解:把这条小路分成每段1米长;共100段;每段看作是一个抽屉;共100个抽屉;把101棵树看作是1 01个苹果;于是101个苹果放入100个抽屉中;至少有一个抽屉中有两个苹果;即至少有一段有两棵或两棵以上的树 .3.六年级有100名学生;他们都订阅甲、乙、丙三种杂志中的一种、二种或三种..问:至少有多少名学生订阅的杂志种类相同分析与解:首先应当弄清订阅杂志的种类共有多少种不同的情况..订一种杂志有:订甲、订乙、订丙3种情况;订二种杂志有:订甲乙、订乙丙、订丙甲3种情况;订三种杂志有:订甲乙丙1种情况..总共有3+3+1=7种订阅方法..我们将这7种订法看成是7个“抽屉”;把100名学生看作100件物品..因为100=14×7+2..根据抽屉原理2;至少有14+1=15人所订阅的报刊种类是相同的..4.篮子里有苹果、梨、桃和桔子;现有81个小朋友;如果每个小朋友都从中任意拿两个水果;那么至少有多少个小朋友拿的水果是相同的分析与解:首先应弄清不同的水果搭配有多少种..两个水果是相同的有4种;两个水果不同有6种:苹果和梨、苹果和桃、苹果和桔子、梨和桃、梨和桔子、桃和桔子..所以不同的水果搭配共有4+6=10种..将这10种搭配作为10个“抽屉”..81÷10=8……1个..根据抽屉原理2;至少有8+1=9个小朋友拿的水果相同..5.学校开办了语文、数学、美术三个课外学习班;每个学生最多可以参加两个可以不参加..问:至少有多少名学生;才能保证有不少于5名同学参加学习班的情况完全相同分析与解:首先要弄清参加学习班有多少种不同情况..不参加学习班有1种情况;只参加一个学习班有3种情况;参加两个学习班有语文和数学、语文和美术、数学和美术3种情况..共有1+3+3=7种情况..将这7种情况作为7个“抽屉”;根据抽屉原理2;要保证不少于5名同学参加学习班的情况相同;要有学生7×5-1+1=29名..6. 在1;4;7;10;…;100中任选20个数;其中至少有不同的两对数;其和等于104..分析:解这道题;可以考虑先将4与100;7与97;49与55……;这些和等于104的两个数组成一组;构成16个抽屉;剩下1和52再构成2个抽屉;这样;即使20个数中取到了1和52;剩下的18个数还必须至少有两个数取自前面16个抽屉中的两个抽屉;从而有不同的两组数;其和等于104;如果取不到1和52;或1和52不全取到;那么和等于104的数组将多于两组..解:1;4;7;10;……;100中共有34个数;将其分成{4;100};{7;97};……;{49;55};{1};{52}共18个抽屉;从这18个抽屉中任取20个数;若取到1和52;则剩下的18个数取自前16个抽屉;至少有4个数取自某两个抽屉中;结论成立;若不全取1和52;则有多于18个数取自前16个抽屉;结论亦成立..1. 任意5个自然数中;必可找出3个数;使这三个数的和能被3整除..分析:解这个问题;注意到一个数被3除的余数只有0;1;2三个;可以用余数来构造抽屉..解:以一个数被3除的余数0、1、2构造抽屉;共有3个抽屉..任意五个数放入这三个抽屉中;若每个抽屉内均有数;则各抽屉取一个数;这三个数的和是3的倍数;结论成立;若至少有一个抽屉内没有数;那么5个数中必有三个数在同一抽屉内;这三个数的和是3的倍数;结论亦成立..3.班上有50名学生;将书分给大家;至少要拿多少本;才能保证至少有一个学生能得到两本或两本以上的书..解:把50名学生看作50个抽屉;把书看成苹果;根据原理1;书的数目要比学生的人数多;即书至少需要50+1=51本.。
抽屉原理练习题(精选3篇)
抽屉原理练习题〔精选3篇〕篇1:抽屉原理练习题抽屉原理练习题抽屉原理练习题1.木箱里装有红色球3个、黄色球5个、蓝色球7个,假设蒙眼去摸,为保证取出的球中有两个球的颜色一样,那么最少要取出多少个球?2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有3张牌有一样的点数?3.有11名学生到教师家借书,教师的书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。
试证明:必有两个学生所借的书的类型一样4.有50名运发动进展某个工程的单循环赛,假如没有平局,也没有全胜。
试证明:一定有两个运发动积分一样。
5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?6.某校有55个同学参加数学竞赛,将参赛人任意分成四组,那么必有一组的女生多于2人,又知参赛者中任何10人中必有男生,那么参赛男生的人数为多少人?7.有黑色、白色、蓝色手套各5只〔不分左右手〕,至少要拿出多少只〔拿的时候不许看颜色〕,才能使拿出的手套中一定有两双是同颜色的。
8.一些苹果和梨混放在一个筐里,小明把这筐水果分成了假设干堆,后来发现无论怎么分,总能从这假设干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了多少堆?9.从1,3,5,……,99中,至少选出多少个数,其中必有两个数的和是100。
10.某旅游车上有47名乘客,每位乘客都只带有一种水果。
假如乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有多少人带苹果。
11.某个年级有202人参加考试,总分值为100分,且得分都为整数,总得分为01分,那么至少有多少人得分一样?12.名营员去游览长城,颐和园,天坛。
规定每人最少去一处,最多去两处游览,至少有几个人游览的地方完全一样?13.某校派出学生204人上山植树15301株,其中最少一人植树50株,最多一人植树100株,那么至少有多少人植树的株数一样?答案:1.将红、黄、蓝三种颜色看作三个抽屉,为保证取出的球中有两个球的颜色一样,那么最少要取出4个球。
小学数学抽屉原理例题
小学数学抽屉原理例题篇一:抽屉原理公式及例题抽屉原理公式及例题“至少??才能保证(一定)?最不利原则抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:抽屉原则二:如果把n个物体放在m个抽屉里,其中nm,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
例1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。
例2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。
这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。
15+1=16 例3:从一副完整的扑克牌中,至少抽出()张牌,才能保证至少6张牌的花色相同? A.21 B.22 C.23 D.24 解:完整的扑克牌有54张,看成54个“苹果”,抽屉就是6个(黑桃、红桃、梅花、方块、大王、小王),为保证有6张花色一样,我们假设现在前4个“抽屉”里各放了5张,后两个“抽屉”里各放了1张,这时候再任意抽取1张牌,那么前4个“抽屉”里必然有1个“抽屉”里有6张花色一样。
答案选C.例4:2013年国考:某单位组织4项培训A、B、C、D,要求每人参加且只参加两项,无论如何安排,都有5人参加培训完全相同,问该单位有多少人?每人一共有6种参加方法(4个里面选2个)相当于6个抽屉,最差情况6种情况都有4个人选了,所以4*6=1=25 例5:有300名求职者参加高端人才专场招聘会,其中软件设计类、市场营销类、财务管理类和人力资源管理类分别有100、80、70和50人。
抽屉原理十个例题
抽屉原理十个例题1.有5个红球和7个蓝球放在一个抽屉里,如果随机取出3个球,那么至少会拿到两个是同色球的概率是多少?解析:使用反面计算。
首先,计算取出3个球都是不同色球的概率。
当第一个球被取出后,有5个红球和7个蓝球剩下。
那么取出第二个球时就只剩下4个红球和7个蓝球,概率为(5/12)*(7/11)。
同理,取出第三个球时只剩下3个红球和7个蓝球,概率为(5/12)*(4/11)。
因此,取出3个球都是不同色球的概率为(5/12)*(7/11)*(4/11)。
所以,至少会拿到两个是同色球的概率为1-(5/12)*(7/11)*(4/11)。
2.一组音乐会有10个乐手,其中3个会弹钢琴,4个会吹号,2个会弹吉他,1个会敲鼓。
从中随机选出4个人组成一个小号乐队,求至少会有一位会弹钢琴和一位会吹号的概率是多少?解析:首先,计算四个人都不弹钢琴的概率。
在10个乐手中,只能选出7个人(除去3个弹钢琴的乐手),然后从这7个人中选出4个组成小号乐队,概率为(7选择4)/(10选择4)。
同理,计算四个人都不会吹号的概率为(6选择4)/(10选择4)。
然后计算四个人都不弹钢琴且不会吹号的概率为(4选择4)/(10选择4)。
所以,至少会有一位会弹钢琴和一位会吹号的概率为1-[(7选择4)/(10选择4)+(6选择4)/(10选择4)-(4选择4)/(10选择4)]。
3.有一个箱子里有10双袜子,其中5双是黑色的,3双是蓝色的,2双是灰色的。
如果从箱子中随机取出3只袜子,那么至少会拿到一双是蓝色的概率是多少?解析:计算没有蓝色袜子的概率。
当从箱子中取出第一只袜子后,有10只袜子剩下,其中3只是蓝色的。
所以,没有蓝色袜子的概率为(7/10)*(6/9)*(5/8)。
所以,至少会拿到一双是蓝色的概率为1-(7/10)*(6/9)*(5/8)。
4.一个袋子里有20个糖果,其中3个是巧克力的,7个是草莓味的,10个是薄荷味的。
如果从袋子中随机取出5个糖果,那么至少会拿到两个是草莓味的概率是多少?解析:计算没有草莓味糖果的概率。
抽屉原理专题练习(含答案)2023-2024学年下学期小学数学六年级 人教版
2023-2024学年下学期小学数学人教新版六年级专题练习之抽屉原理一.选择题(共5小题)1.在一副扑克牌中取出大小王,从剩余的52张牌中至少要抽出()张,才能保证其中有3张红桃.A.9B.13C.422.李叔叔给正方体的六个面涂上不同的颜色,结果至少有两个面的颜色一致,颜料的颜色至少有()种.A.3B.4C.53.把7本书放进2个抽屉,有一个抽屉至少放()本书.A.3B.4C.54.教室里有10名学生正在写作业,今天有语文、数学、英语和科学四科作业,至少有( )名学生在做同一科作业。
A.3B.4C.65.把红、黄、蓝、绿四种同样大小的小球各5个放在同一箱子里,一次至少要摸出()个球才能保证摸出2个红球.A.5B.20C.17二.填空题(共5小题)6.黑、白两种颜色的袜子各8只混在一起,闭上眼睛随便拿,至少要拿只,才能保证一定有一双同色袜子;至少要拿只才能保证有4只同色袜子。
7.英才小学六(2)班有29名男同学,20 名女同学,至少有名同学是同一个月过生日。
8.黑桃、梅花两种花色的扑克牌各8张混放在一起,从中至少取出张,才能保证取出的牌中一定有梅花。
9.盒子有相同大小的红和蓝球各4个,要摸出的球一定有2个同色,至少要摸出个。
10.用红、黄、蓝、白四种颜色的球各4个,把它们放在一个不透明的盒子里,至少摸出个球,可以保证摸到两个颜色相同的球。
摸到红球的概率为%。
三.解答题(共5小题)11.把16支铅笔最多放入几个铅笔盒里,才能保证至少有一个铅笔盒里的笔不少于6支?12.把5只兔子放进3个笼子里,可以怎样放?我发现:无论怎样放,总有一个笼子里至少放进只兔子。
13.盒子里有同样大小的红球和黄球各10个.(1)要想摸出的球一定有2种颜色,至少要摸出几个球?(2)要想摸出的球一定有3个颜色相同,至少要摸出几个球?(3)要想摸出的球一定有5个颜色相同,至少要摸出几个球?14.在一个盒子里有30个红色、30个蓝色和30个绿色的圆球,它们除颜色外都相同。
抽屉问题练习题及答案
抽屉问题练习题及答案1.把红、黄、蓝三种颜色的球各5个放到一个袋子里,至少取多少个球可以保证取到两个颜色相同的球?请简要说明理由.2.某校有201人参加数学竞赛,按百分制计分且得分均为整数,若总分为9999分,则至少有人的分数相同. 3.有99个单人间,有100个旅客入住,这100名旅客每次有99个人同时入住,管理员给每人配了一些钥匙,他想让每人都能入住,且不用找别人借钥匙,问他至少一共需要配多少把钥匙?4.有13个箱子,现在往里面装苹果,要求每个箱子里装的苹果都是奇数个,无论这些苹果怎么放,总能找到4个箱子的苹果个数是一样的,问:最多有多少个苹果?5.有红、黄、白三种颜色的小球各10个,每个人从中任意选择两个,那么至少需要几个人选择小球,才能保证必有两人或两人以上选择的小球的颜色完全相同?6.五班有56个学生,能否有2个人在同一周过生日?7.有红、黄、蓝、绿、白五种颜色的球各5个,至少取多少个球,可以保证有两个颜色相同的球?8.在一只鱼缸里,放有很多条鱼,其中有红帽鱼,珍珠鱼,紫龙井鱼,绒球等四个品种;问至少捞出多少鱼才能保证有10条相同的?9.有红、黄、绿、黑5种颜色的小球各若干个,一些同学从中取球,每个人可以任选2个,至少有多少人才能保证有2人选的小球完全相同?10.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?11.从1、2…100中最多可以取出多少个不同的数,使得每个数都不是另一个数的倍数?12.在一个口袋中有10个黑球、6个白球、4个红球,至少从中取出多少个球才能保证其中有白球?爸爸、哥哥、妹妹现在的年龄和是64岁.当爸爸的年龄是哥哥的3倍时,妹妹是9岁;当哥哥的年龄是妹妹的2倍时,爸爸34岁.现在爸爸的年龄是多少岁?13.32只鸽子飞回7个鸽舍,至少有几只鸽子要飞进同一个鸽舍?14.李明要把13本连环画放进2个抽屉至少要放进7本,为什么?15.聪聪:袋里有红、白、蓝、黑四种颜色的单色球,从袋中任意取出若干个球.明明问:至少要取出多少个球,才能保证有三个球是同一颜色的?16.布袋里有4支红铅笔和3支蓝铅笔,如果闭上眼睛摸,一次必须摸出支蓝铅笔.17.叔叔参加飞镖比赛,投了5镖,成绩是42环.张叔叔至少有一镖不低于9环.为什么?第 1 页共 1 页18.五年级有49名学生参加一次数学竞赛,成绩都是整数,满分是100分.已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间,问至少有多少名学生的成绩相同.19.在如图所示的8行8列的方格表中,每个空格分别填上1,2,3这三个数字中的任一个,使得每行、每列及两条对角线上的各个数字的和互不相等,能不能做到?20.纸箱中有同样的红、黄色圆锥体各5个,至少拿出几个,才能保证一定有2个圆锥体都是红色?21.跳绳练习中,一分钟至少跳多少次才能保证某一秒钟内至少跳了两次?22.有黑色、白色、黄色的小棒各8根,混放在一起,从这些小棒之中至少要取出才能保证有4根颜色相同的小棒子?23.2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34.24.红、黄、蓝三种颜色的球各6个,混合后放在一个布袋里,一次至少摸出几只,才能保证有两只是同色的?25.冀英学校五、六年级共有学生370人,在这些学生中,至少两个人在同一天过生日,为什么?26.有红、黄、蓝、白四种颜色的小球各10个,混合后放到一个布袋里.问一次至少摸出多少个,才能保证有两个球是同色球?27.一副扑克牌共54张,至少从中摸出多少张牌,才能保证有4张牌的花色情况是相同的?28.把280个桃子分给若干只猴子,每只猴子不超过10个,无论怎样分,至少有几只猴子得到的桃子一样多? 29.从1、2、3、…、1998、1999这些自然数中,最多可以取多少个数,才能使其中每两个数的差不等于4?30.学校开设了书法、舞蹈、棋类、乐器四个课外学习班,每个学生最多可以参加两个学习班.某班有52名同学,至少有几名同学参加课外学习班的情况完全相同?31.学校开设了书法、舞蹈、棋类、乐器四个课外学习班,每个学生最多可以参加两个学习班.某班有52名同学,至少有几名同学参加课外学习班的情况完全相同?32.某小学六年级师生去游玩,74人共租了4辆车,不管怎么坐,总有一辆车至少要坐多少人?33.一个盒子里有9个蓝球、5个黑球、6个白球和3个红球,如果闭上眼睛,从盒子中摸球,每次只许摸一个球,至少要摸出多少个才能保证摸出的这几个球中至少有两个颜色相同?34.箱子里放有红、黄、蓝三种颜色的小球各10只,要求闭着眼睛保证一次摸出不少于四只同色的小球,那么需要摸出的只数至少是多少只?第页共页第九讲抽屉原理一、知识点:1.把27个苹果放进4个抽屉中,能否使每个抽屉中苹果数均小于等于6?那么至少有一个抽屉中的苹果数大于等于几?2.把25个苹果放进5个抽屉中,能否使每个抽屉中苹果数均小于等于4?那么至少有一个抽屉中的苹果数大于等于几?上述两个结论你是如何计算出来的?★规律:用苹果数除以抽屉数,若余数不为零,则“答案”为商加1,若余数为零,则“答案”为商。
抽屉原理练习题(打印版)
抽屉原理练习题(打印版)# 抽屉原理练习题## 一、基础题目1. 题目一:有5个苹果,要分给4个孩子,至少有一个孩子能得到至少几个苹果?2. 题目二:一个班级有35名学生,如果他们每人至少参加一个兴趣小组,那么至少有多少名学生参加的是同一个兴趣小组?3. 题目三:有7个不同的球,要放入6个相同的盒子中,至少有一个盒子里至少有几个球?## 二、进阶题目4. 题目四:一个篮子里有100个鸡蛋,需要将它们分成9组,每组至少有几个鸡蛋?5. 题目五:有24个不同的球,要放入5个不同的盒子中,每个盒子至少有一个球,那么至少有一个盒子里至少有几个球?6. 题目六:有36个不同的球,要放入10个相同的盒子中,至少有一个盒子里至少有几个球?## 三、应用题目7. 题目七:一个学校有365名学生,如果他们每人至少参加一个课外活动,那么至少有多少名学生参加的是同一个课外活动?8. 题目八:一个图书馆有1000本书,要将它们平均分配给10个书架,每个书架至少有100本书,那么至少有一个书架上至少有多少本书?9. 题目九:有50个不同的球,要放入4个不同的盒子中,每个盒子至少有一个球,那么至少有一个盒子里至少有几个球?## 四、拓展题目10. 题目十:一个班级有40名学生,如果他们每人至少参加一个兴趣小组,那么至少有多少名学生参加的是同一个兴趣小组?11. 题目十一:有31个不同的球,要放入4个相同的盒子中,至少有一个盒子里至少有几个球?12. 题目十二:一个篮子里有200个鸡蛋,需要将它们分成5组,每组至少有几个鸡蛋?## 五、挑战题目13. 题目十三:有49个不同的球,要放入7个不同的盒子中,每个盒子至少有一个球,那么至少有一个盒子里至少有几个球?14. 题目十四:一个学校有400名学生,如果他们每人至少参加一个课外活动,那么至少有多少名学生参加的是同一个课外活动?15. 题目十五:有56个不同的球,要放入8个相同的盒子中,至少有一个盒子里至少有几个球?解题提示:抽屉原理,又称鸽巢原理,是数学中的一个基本概念,它指出如果有更多的物品(鸽子)需要放入较少的容器(巢穴)中,那么至少有一个容器必须包含多于一个的物品。
初中抽屉原理试题及答案
初中抽屉原理试题及答案一、选择题1. 如果有n+1个苹果放进n个抽屉中,那么至少有一个抽屉里至少有()个苹果。
A. 1B. 2C. 3D. 4答案:B2. 一个班级有45名学生,如果每个学生至少参加一项兴趣小组,那么至少有()名学生参加了相同的兴趣小组。
A. 5B. 6C. 7D. 8答案:B二、填空题1. 有10个苹果,要放入3个抽屉中,那么至少有一个抽屉里至少有______个苹果。
答案:42. 一个学校有36个学生,如果每个学生至少参加一个社团,那么至少有______个学生参加了同一个社团。
答案:4三、解答题1. 有15个不同的球,要放入4个不同的盒子中,证明至少有一个盒子里至少有5个球。
答案:根据抽屉原理,如果有15个球放入4个盒子中,那么每个盒子至少有3个球,因为15除以4等于3余3。
这意味着至少有一个盒子里会有3个球加上余下的3个球中的至少1个,即至少有4个球。
由于我们有15个球,至少有一个盒子里会有4个球加上余下的1个球,即至少有5个球。
2. 一个班级有50名学生,每个学生至少参加了一个兴趣小组,兴趣小组有5种不同的类型。
证明至少有11名学生参加了同一个兴趣小组。
答案:根据抽屉原理,如果有50名学生参加5种不同的兴趣小组,那么每个兴趣小组至少有10名学生,因为50除以5等于10。
这意味着每个兴趣小组至少有10名学生。
由于我们有50名学生,至少有一个兴趣小组会有10名学生加上余下的0名学生中的至少1名,即至少有11名学生参加了同一个兴趣小组。
抽屉原理经典题型
抽屉原理例:把22名“三好学生”的名额分配给4个班级,那么至少一个班级分得的名额多于5名。
为什么?练习:把15人安排在7个房间里休息,那么肯定总有一个房间里至少有3人。
为什么?例:给一个正方体木块的6个面分别涂上蓝、黄两种颜色。
无论怎么涂至少有3个面涂的颜色相同.为什么?例:从2、4、6、8、。
.。
.24,26这13个连续偶数中,任取8个不同的数,其中必有两个数的和为28。
你能说明这是为什么吗?例:在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米。
为什么?例:有50名运动员进行某个项目的单循环赛,如果没有平局也没有全胜,试证明:一定有两个运动员积分相同。
例:一个口袋里有红、白两种颜色的球各10个,取出多少个球才能保证至少有2个球的颜色是相同的?练习:袋子里与红、黄、蓝、绿四种颜色的球各5个,最少要摸多少个球才能保证摸出的球中有两个颜色相同?例:一副扑克牌,拿走大、小王后,还有52张牌。
请你任意抽出其中的5张牌,那么至少有几张牌的花色是相同的?例:六(4)班有40名学生,男、女生人数比是1:1,随机选取,至少选多少人才能保证选出的人中男生和女生都有?例:篮子里有苹果、梨、桃子和桔子,现有81个小朋友都从中任意拿两个水果,那么至少有多少个小朋友拿的水果是相同的?练习:体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿一个球至多拿2个球,问至少有几名同学所拿的球种类是一致的?练习:有4个运动员练习投篮,一共投进了30个球,一定有1个运动员至少投进几个球?例:一个盒子里有黑、白两种颜色的围棋棋子各5枚,至少取出多少枚棋子才能保证有4枚棋子的颜色是相同的?例:某班同学的语文考试成绩都是整数,其中最高分是95分,最低分是82分。
已知全班至少有4人的成绩相同,这个班至少有多少名学生?例:学校开办了语文、数学、美术三个课外学习班,每个学生最多可以参加两个(可以不参加)问:至少有多少名学生,才能保证有不少于5名同学参加学习班的情况完全相同。
抽屉原理十个例题
抽屉原理十个例题
1. 一张桌子上有8个抽屉,每个抽屉里都放着相同的颜色的袜子。
根据抽屉原理,至少有两个抽屉里放着相同的数量的袜子。
2. 一本书架上有12本书,每本书的厚度不同。
根据抽屉原理,至少存在两本书的厚度相同。
3. 一辆公交车上共有30个座位,并且每个座位只能坐一个人。
根据抽屉原理,至少有两个座位上坐着相同数量的人。
4. 有10个人参加一个比赛,每个人的年龄都不相同。
根据抽
屉原理,至少有两个人的年龄相差不超过3岁。
5. 一家饭店里供应了12种不同的菜肴。
根据抽屉原理,至少
有两种菜肴的售价相同。
6. 某班级有32名学生,每个学生都有自己的出生月份。
根据
抽屉原理,至少有两名学生的出生月份相同。
7. 一个购物网站上有100种不同的商品,每种商品的价格都不同。
根据抽屉原理,至少有两种商品的价格相同。
8. 一辆公交车上共有50个座位,并且每个座位只能坐一个人。
根据抽屉原理,至少有两个座位上坐着相同的性别。
9. 在一个花园里有20棵不同种类的花树。
根据抽屉原理,至
少有两棵花树的花朵颜色相同。
10. 在一张桌子上有6只袜子,都是黑色的。
根据抽屉原理,至少有两只袜子的长度相同。
抽屉原理小练习及答案
简单抽屉原理练习题1、从五年级学生中任意挑选13名学生,那么在这13名学生中至少有()人属相相同。
2.有黑、白、黄筷子各8只,不用眼睛看,任意地取出筷子来,使得至少有两双筷子不同色,那么至少要取出()只筷子才能做到.3.任意写一个由数字1,2,3组成的30位数,从这30位数任意截取相邻三位,可得一个三位数,证明:在从各个不同位置上截得的三位数中至少有两个相等.4.用2种颜色涂3行9列共27个小方格,证明:不论如何涂色,其中必至少有两列,它们的涂色方式相同.抽屉原理2以9 个抽屉为例:把9 个苹果放进9 个抽屉,这时苹果个数不多于抽屉个数,如果苹果平均放进抽屉中,则每个抽屉都只放了1 个苹果.但如果把10 个苹果放进9 个抽屉,这时苹果个数多于抽屉个数,一定能找到一个抽屉,里面至少有2 个苹果类似的,把99个苹果放进9 个抽屉,如果平均放进9个抽屉中,每个抽屉里放99÷11 =9(个)苹果,如果放得不平均,则肯定有某个抽屉里的苹果多于11个.但如果把100个苹果放进9个抽屉,即使每个抽屉都放11个苹果,只能放99个苹果,剩下1 个苹果再放进抽屉中,一定会使得某个抽屉至少有12 个苹果.下面是更全面的抽屉原理抽屉原理把 m 个苹果放入 n 个抽屉(m大于 n),结果有两种可能:(1)如果m ÷ n没有余数,那么就一定有抽屉至少放了“m÷n ”个苹果;(2)如果m ÷n 有余数,那么就一定有抽屉至少放了“m ÷n 的商再加1”个苹果.练一练:1.如果把 96 个苹果放入 8 个抽屉,那么一定有抽屉至少放了 ________ 个苹果.2.如果把 97 个苹果放入 8 个抽屉,那么一定有抽屉至少放了 ________ 个苹果.3.如果把98 个苹果放入 8 个抽屉,那么一定有抽屉至少放了 ________ 个苹果.4.任意25个人,至少______个人属相相同。
小学数学抽屉原理题型训练例题+练习+作业带详细答案
小学数学抽屉原理题型训练例题+练习+作业带详细答案抽屉问题题型训练【例题1】、在一只口袋中有红色、黄色、蓝色球若干个,小聪明和其他六个小朋友一起做游戏,每人可以从口袋中随意取出2个球,那么不管怎样挑选,总有两个小朋友取出的两个球的颜色完全一样.你能说明这是为什么吗?从三种颜色的球中挑选两个球,可能情况只有下面6种:红、红;黄、黄;蓝、蓝;红、黄;红、蓝;黄、蓝,我们把6种搭配方式当作6个“抽屉”,把7个小朋友当作个“苹果”,根据抽屉原理,至少有两个“苹果”要放进一个“抽屉”中,也就是说,至少有两个人挑选的颜色完全一样.【巩固】在一只口袋中有红色与黄色球各4只,现有4个小朋友,每人从口袋中任意取出2个小球,请你证明:必有两个小朋友,他们取出的两个球的颜色完全一样.小朋友从口袋中取出的两个球的颜色的组成只有以下3种可能:红红、黄黄、红黄,把这3种情况看作3个“抽屉”,把4位小朋友看作4只“苹果”,根据抽屉原理,必有两个小朋友取出的两个球的颜色完全一样.【例题2】学校里买来数学、英语两类课外读物若干本,规定每位同学可以借阅其中两本,现有4位小朋友前来借阅,每人都借了2本.请问,你能保证,他们之中至少有两人借阅的图书属于同一种吗?每个小朋友都借2本有三种可能:数数,英英,数英.第4个小朋友无论借什么书,都可能是这三种情况中的一种,这样就有两个同学借的是同一类书,所以可以保证,至少有2位小朋友,他们所借阅的两本书属于同类.总结:此题如用简单乘法原理的话,有难度,因为涉及到简单加法原理,所以推荐使用列表法。
与之前不同的是,本题借阅的书只说了两本并没说其他要求,所以可以拿2本同样的书.【巩固】11名学生到老师家借书,老师的书房中有文学、科技、天文、历史四类书,每名学生最多可借两本不同类的书,最少借一本.试说明:必有两个学生所借的书的类型相同设不同的类型书为A、B、C、D四种,若学生只借一本书,则不同的类型有A、B、C、D四种;若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种.共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”.如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同.【例题3】体育用品的仓库里有许多足球、排球和篮球,有66个同学来仓库拿球,要求每个人至少拿一个,最多拿两个球,问至少有多少名同学所拿的球的种类是完全一样的?以拿球配组的方式为抽屉,每人拿一个或两个球,所以抽屉有:足、排、篮、足足、排排、篮篮、足排、足篮、排篮共9种情况,即有9个抽屉,则:66÷9-7...3,7+1=8,即至少有8名同学所拿球的种类是一样的.【巩固】幼儿园买来很多玩具小汽车、小火车、小飞机,每个小朋友任意选择两件不同的,那么至少要有几个小朋友才能保证有两人选的玩具是相同的?根据题意列下表:有3个小朋友就有三种不同的选择方法,当第四个小朋友准备拿时,不管他怎么选择都可以跟前面三个同学其中的一个选法相同.所以至少要有4个小朋友才能保证有两人选的玩具是相同的.【例题4】红、蓝两种颜色将一个2×5方格图中的小方格随意涂色(见下图),每个小方格涂一种颜色.是否存在两列,它们的小方格中涂的颜色完全相同?第二行第一行第五列第四列第三列第二列第一列用红、蓝两种颜色给每列中两个小方格随意涂色,只有下面四种情形:蓝蓝红蓝蓝红红红将上面的四种情形看成四个“抽屉”,把五列方格看成五个“苹果”,根据抽屉原理,将五个苹果放入四个抽屉,至少有一个抽屉中有不少于两个苹果,也就是至少有一种情形占据两列方格,即这两列的小方格中涂的颜色完全相同.【巩固】将每一个小方格涂上红色、黄色或蓝色.(每一列的三小格涂的颜色不相同),不论如何涂色,其中至少有两列,它们的涂色方式相同,你同意吗?这道题是例题的拓展提高,通过列举我们发现给这些方格涂色,要使每列的颜色不同,最多有6种不同的涂法,蓝黄红蓝黄红蓝黄红蓝黄红蓝黄红红黄蓝涂到第六列以后,就会跟前面的重复.所以不论如何涂色,其中至少有两列它们的涂色方式相同.【例题5】从2、4、6、8......50这25个偶数中至少任意取出多少个数,才能保证有2个数的和是52?构造抽屉:(2,50),(4,48),(6,46),(8,44),...,(24,28),(26),共13种搭配,即13个抽屉,所以任意取出14个数,无论怎样取,有两个数必同在一个抽屉里,这两数和为52,所以应取出14个数.或者从小数入手考虑,2、4、6......26,当再取28时,与其中的一个去陪,总能找到一个数使这两个数之和为52.【巩固】证明:在从1开始的前10个奇数中任取6个,一定有2个数的和是20.将10个奇数分为五组(1、19),(3、17),(5、15),(7、13),(9、11),任取6个必有两个奇数在同一组中,这两个数的和为20.【例题6】从1,2,3,4,...100这100个数中任意挑出51个数来,证明在这51个数中,一定有两个数的差为50。
抽屉原理十个例题及解答
抽屉原理十个例题及解答1. 鸽巢原理假设有10只鸽子,但只有9个巢。
根据抽屉原理,必然会有至少一个巢里有2只鸽子。
解答:根据鸽巢原理,至少有一个巢里有2只鸽子。
2. 生日相同在一个教室里,有30个学生。
根据抽屉原理,至少有两个学生生日相同。
解答:根据抽屉原理,在30个学生中至少有两个学生生日相同。
3. 手套颜色有9副黑色手套和8副白色手套,手套放在一个抽屉里。
如果你在黑暗中随机拿出两只手套,那么至少有一只手套是黑色的。
解答:根据抽屉原理,至少有一副手套是黑色的。
4. 扑克牌颜色一副扑克牌共有52张,其中有26张红桃牌。
根据抽屉原理,在任意抓取5张扑克牌的情况下,至少有两张牌是红桃牌。
解答:根据抽屉原理,至少有两张牌是红桃牌。
5. 课程选择一个学生需要在10门不同的课程中选择5门,其中至少有两门课程是相同的。
根据抽屉原理,不同的选课组合情况中至少有两个选课组合是相同的。
解答:根据抽屉原理,至少有两门课程是相同的。
6. 彩票中奖彩票有100个号码,其中只有1个号码中奖。
如果你购买10张彩票,那么至少有一张彩票中奖。
解答:根据抽屉原理,至少有一张彩票中奖。
7. 字母排列字母表中有26个字母,如果你随机选择4个字母,那么至少有两个字母是相同的。
解答:根据抽屉原理,至少有两个字母是相同的。
8. 物品盛放一个抽屉只能容纳5件物品。
如果有6件物品要放入抽屉,那么至少有两件物品会放在同一个抽屉里。
解答:根据抽屉原理,至少有两件物品会放在同一个抽屉里。
9. 邮票问题有10种不同面值的邮票,邮票的面值分别为1元、2元、3元…10元。
如果你随机选择6张邮票,那么至少有两张邮票的面值相同。
解答:根据抽屉原理,至少有两张邮票的面值相同。
10. 青蛙跳跃在一个长度为10米的地面上,一只青蛙每次跳1米或2米。
如果青蛙从起点开始跳,那么至少有一个点被跳过两次。
解答:根据抽屉原理,至少有一个点被跳过两次。
以上是抽屉原理的十个例题及解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽屉问题经典练习题
1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?(4)
2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?(16)
3.11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。
试证明:必有两个学生所借的书的类型相同。
(10个抽屉)
5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?(6)
6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2个人,又知参赛者中任何10人中必有男生,则参赛男生的人生为__________人。
(46)
7、证明:从1,3,5,……,99中任选26个数,其中必有两个数的和是100。
(25个抽屉)
8。
某旅游车上有47名乘客,每位乘客都只带有一种水果。
如果乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有______人带苹果。
(46)
9。
一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了_______堆。
解析:要求把其中两堆合并在一起后,苹果和梨的个数一定是偶数,那么这两堆水果中,苹果和梨的奇偶性必须相同。
对于每一堆苹果和梨,奇偶可能性有4种:(奇,奇),(奇,偶),(偶,奇),(偶,偶),所以根据抽屉原理可知最少分了4+1筐。
10。
有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出_____只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的。
(10)
13.从1、2、3、4……、12这12个自然数中,至少任选几个,就可以保证其中一定包括两个数,他们的差是7?
14.某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具?(是)
15.一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。
问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块?(9)
2. 在边长为1的正方形内,任意放入9个点,证明在以这些点为顶点的三角形中,必有一个三角形的面积不超过1/8.
解:分别连结正方形两组对边的中点,将正方形分为四个全等的小正方形,则各个小正方形的面积均为1/4 。
把这四个小正方形看作4个抽屉,将9个点随意放入4个抽屉中,据抽屉原理,至少有一个小正方形中有3个点。
显然,以这三个点为顶点的三角形的面积不超过1/8 。
4.在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米。
解:把这条小路分成每段1米长,共100段,每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果,于是101个苹果放入100个抽屉中,至少有一个抽屉中有两个苹果,即至少有一段有两棵或两棵以上的树 .
3.六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种。
问:至少有多少名学生订阅的杂志种类相同?
分析与解:首先应当弄清订阅杂志的种类共有多少种不同的情况。
订一种杂志有:订甲、订乙、订丙3种情况;
订二种杂志有:订甲乙、订乙丙、订丙甲3种情况;
订三种杂志有:订甲乙丙1种情况。
总共有3+3+1=7(种)订阅方法。
我们将这7种订法看成是7个“抽屉”,把100名学生看作10 0件物品。
因为100=14×7+2。
根据抽屉原理2,至少有14+1=15(人)所订阅的报刊种类是相同的。
4.篮子里有苹果、梨、桃和桔子,现有81个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友拿的水果是相同的?
分析与解:首先应弄清不同的水果搭配有多少种。
两个水果是相同的有4种,两个水果不同有6种:苹果和梨、苹果和桃、苹果和桔子、梨和桃、梨和桔子、桃和桔子。
所以不同的水果搭配共有4+6=10(种)。
将这10种搭配作为10个“抽屉”。
81÷10=8……1(个)。
根据抽屉原理2,至少有8+1=9(个)小朋友拿的水果相同。
5.学校开办了语文、数学、美术三个课外学习班,每个学生最多可以参加两个(可以不参加)。
问:至少有多少名学生,才能保证有不少于5名同学参加学习班的情况完全相同?
分析与解:首先要弄清参加学习班有多少种不同情况。
不参加学习班有1种情况,只参加一个学习班有3种情况,参加两个学习班有语文和数学、语文和美术、数学和美术3种情况。
共有1+3+3=7(种)情况。
将这7种情况作为7个“抽屉”,根据抽屉原理2,要保证不少于5名同学参加学习班的情况相同,要有学生7×(5-1)+1=29(名)。
6. 在1,4,7,10,…,100中任选20个数,其中至少有不同的两对数,其和等于104。
分析:解这道题,可以考虑先将4与100,7与97,49与55……,这些和等于104的两个数组成一组,构成16个抽屉,剩下1和52再构成2个抽屉,这样,即使20个数中取到了1和52,剩下的1 8个数还必须至少有两个数取自前面16个抽屉中的两个抽屉,从而有不同的两组数,其和等于104;如果取不到1和52,或1和52不全取到,那么和等于104的数组将多于两组。
解:1,4,7,10,……,100中共有34个数,将其分成{4,100},{7,97},……,{49,55},{1},{52}共18个抽屉,从这18个抽屉中任取20个数,若取到1和52,则剩下的18个数取自前16个抽屉,至少有4个数取自某两个抽屉中,结论成立;若不全取1和52,则有多于18个数取自前16个抽屉,结论亦成立。
1. 任意5个自然数中,必可找出3个数,使这三个数的和能被3整除。
分析:解这个问题,注意到一个数被3除的余数只有0,1,2三个,可以用余数来构造抽屉。
解:以一个数被3除的余数0、1、2构造抽屉,共有3个抽屉。
任意五个数放入这三个抽屉中,若每个抽屉内均有数,则各抽屉取一个数,这三个数的和是3的倍数,结论成立;若至少有一个抽屉内没有数,那么5个数中必有三个数在同一抽屉内,这三个数的和是3的倍数,结论亦成立。
3.班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。
解:把50名学生看作50个抽屉,把书看成苹果,根据原理1,书的数目要比学生的人数多,即书至少需要50+1=51本.。