抽屉原理典型习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抽屉原理

规律:用物体数除以抽屉数,若除数不为零,则“答案”为商加1;

若除数为零,则“答案”为商

抽屉原则一:把n个以上的物体放到n个抽屉中,无论怎么放,一定能找到一个抽屉,它里面至少有两个苹果。

抽屉原则二:把多于m x n 个物体放到n个抽屉中,无论怎么放,一定能找到一个抽屉,它里面至少有(m+1)个苹果。

一、基础训练。

1、把98个苹果放到10个抽屉里,无论怎么放,我们一定能找到一个含苹果最多的抽屉,

它里面至少有______个苹果。

2、1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面

至少有_______只鸽子。

3、从8个抽屉里拿出17个苹果,无论怎么拿,我们一定能拿到苹果最多的那个抽屉,从

它里面至少拿出______个苹果。

4、从______个抽屉中(填最大数)拿出25个苹果,才能保证一定能找出一个抽屉,从它

当中至少拿出7个苹果。

二、拓展训练。

1、六(1)班有49名学生,数学高老师了解到期中考试该班英语成绩除3人外,均在86

分以上后就说:“我可以断定,本班至少有4人成绩相同”。王老师说的对吗?为什么2、从1、2、3……,100这100个数中任意挑出51个数来,证明这51个数中,一定有

(1)2个数互质(2)有两个数的差是50

100个中,有50个奇数,50个偶数,而奇数和偶数必定互质,所以51个数字中,比有一对奇偶数是互质的。

3、圆周上有2000个点,在其上任意地标上0、1、2……、1999(每一点只标一个数,不同

的点标上不同的数),求证:必然存在一点,与它紧相邻的两个数和这点上所标的三个数之和不小于2999.

4、有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号,证明:在200个信号

中至少有四个信号完全相同。

解:四种颜色的小旗取出三面共可组成4×4×4=64种信号(注三面可以是同色的),则将200看作苹果,64种信号看作64个抽屉,由抽屉原则知至少有4个苹果在同一抽屉中,即至少有4个信号完全相同。

5、在圆周上放着100个筹码,其中有41个红的和59个蓝的,那么总可以找到两个红筹码,

在他们之间刚好有19个筹码,为什么?

6、试卷上有4道题,每题有3个可供选择的答案,一群学生参加考试,结果对于其中任何

三人都有一道题目的答案互不相同,问:参加考试的学生最多有多少人?

7、一次数学竞赛,有75人参加,满分为20分,参赛者得分都是整数,75人的总分是980

分,至少有几分得分相同?

8、某校六年级学生有31人是四月份出生的,请证明:至少有两人在同一天出生。

9、袋子里有四种不同颜色的小球,每次摸出2个,要保证10次所摸得的结果是一样的,

至少要摸多少次?

10、一副扑克牌共有54张,从中取出多少张,才能保证其中必有3种花色。

11、图书角剩下科技书和文艺书各4本,现在有4个学生来借阅,每人从中借2本,请你

证明,必有两名学生借阅的图书完全相同。

12、在一条长100米的小路一旁种上101棵小树,不管怎么种,至少有两棵树苗之间的距

离不超过1米。

13、六年级有男生57人,证明:至少有两名男生在同一个星期过生日。

14、19朵鲜花插入4个花瓶里,证明:至少有一个花瓶里要插入5朵或5朵以上的鲜花。

14、某旅行团一行50人,随意游览甲、乙、丙三地,至少要有多少人游览的地方完全相

同?

小升初“抽屉原理”讲解

例5 有一个生产天平上用的铁盘的车间,由于工艺上的原因,只能控制盘的重量在指定的20克到20.1克之间。现在需要重量相差不超过0.005克的两只铁盘来装配一架天平,问:最少要生产多少个盘子,才能保证一定能从中挑出符合要求的两只盘子?

解:把20~20.1克之间的盘子依重量分成20组:

第1组:从20.000克到20.005克;

第2组:从20.005克到20.010克;

……

第20组:从20.095克到20.100克。

这样,只要有21个盘子,就一定可以从中找到两个盘子属于同一组,这2个盘子就符合要求。

例6 在圆周上放着100个筹码,其中有41个红的和59个蓝的。那么总可以找到两个红筹码,在它们之间刚好放有19个筹码,为什么?

分析:此题需要研究“红筹码”的放置情况,因而涉及到“苹果”的具体放置方法,由此我们可以在构造抽屉时,使每个抽屉中的相邻“苹果”之间有19个筹码。

解:依顺时针方向将筹码依次编上号码:1,2,…,100。然后依照以下规律将100个筹码分为20组:

(1,21,41,61,81);

(2,22,42,62,82);

……

(20,40,60,80,100)。

将41个红筹码看做苹果,放入以上20个抽屉中,因为41=2×20+1,所以至少有一个抽屉中有2+1=3(个)苹果,也就是说必有一组5个筹码中有3个红色筹码,而每组的5个筹码在圆周上可看做两两等距,且每2个相邻筹码之间都有19个筹码,那么3个红色筹码中必有2个相邻(这将在下一个内容——第二抽屉原理中说明),即有2个红色筹码之间有19个筹码。

下面我们来考虑另外一种情况:若把5个苹果放到6个抽屉中,则必然有一个抽屉空着。这种情况一般可以表述为:

第二抽屉原理:把(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。

例7 在例6中留有一个疑问,现改述如下:在圆周上放有5个筹码,其中有3个是同色的,那么这3个同色的筹码必有2个相邻。

分析:将这个问题加以转化:

如右图,将同色的3个筹码A,B,C置于圆周上,看是否能用另外2个筹码将其隔开。

解:如图,将同色的3个筹码放置在圆周上,将每2个筹码之间的间隔看做抽屉,将其余2个筹码看做苹果,将2个苹果放入3个抽屉中,则必有1个抽屉中没有苹果,即有2个同色筹码之间没有其它筹码,那么这2个筹码必相邻。

例8 甲、乙二人为一个正方形的12条棱涂红和绿2种颜色。首先,甲任选3条棱并把它们涂上红色;然后,乙任选另外3条棱并涂上绿色;接着甲将剩下的6条棱都涂上红色。问:甲是否一定能将某一面的4条棱全部涂上红色?

解:不能。

如右图将12条棱分成四组:

第一组:{A1B1,B2B3,A3A4},

第二组:{A2B2,B3B4,A4A1},

第三组:{A3B3,B4B1,A1A2},

第四组:{A4B4,B1B2,A2A3}。

无论甲第一次将哪3条棱涂红,由抽屉原理知四组中必有一组的3条棱全未涂红,而乙只要将这组中的3条棱涂绿,甲就无法将某一面的4条棱全部涂红了。

下面我们讨论抽屉原理的一个变形——平均值原理。

我们知道n个数a1,a2,…,an的和与n的商是a1,a2,…,an这n个数的平均值。

平均值原理:如果n个数的平均值为a,那么其中至少有一个数不大于a,也至少有一个不小于a。

例9 圆周上有2000个点,在其上任意地标上0,1,2,…,1999(每一点只标一个数,不同的点标上不同的数)。求证:必然存在一点,与它紧相邻的两个点和这点上所标的三个数之和不小于2999。

相关文档
最新文档