抽屉原理典型习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽屉原理
规律:用物体数除以抽屉数,若除数不为零,则“答案”为商加1;
若除数为零,则“答案”为商
抽屉原则一:把n个以上的物体放到n个抽屉中,无论怎么放,一定能找到一个抽屉,它里面至少有两个苹果。
抽屉原则二:把多于m x n 个物体放到n个抽屉中,无论怎么放,一定能找到一个抽屉,它里面至少有(m+1)个苹果。
一、基础训练。
1、把98个苹果放到10个抽屉里,无论怎么放,我们一定能找到一个含苹果最多的抽屉,
它里面至少有______个苹果。
2、1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面
至少有_______只鸽子。
3、从8个抽屉里拿出17个苹果,无论怎么拿,我们一定能拿到苹果最多的那个抽屉,从
它里面至少拿出______个苹果。
4、从______个抽屉中(填最大数)拿出25个苹果,才能保证一定能找出一个抽屉,从它
当中至少拿出7个苹果。
二、拓展训练。
1、六(1)班有49名学生,数学高老师了解到期中考试该班英语成绩除3人外,均在86
分以上后就说:“我可以断定,本班至少有4人成绩相同”。
王老师说的对吗?为什么2、从1、2、3……,100这100个数中任意挑出51个数来,证明这51个数中,一定有
(1)2个数互质(2)有两个数的差是50
100个中,有50个奇数,50个偶数,而奇数和偶数必定互质,所以51个数字中,比有一对奇偶数是互质的。
3、圆周上有2000个点,在其上任意地标上0、1、2……、1999(每一点只标一个数,不同
的点标上不同的数),求证:必然存在一点,与它紧相邻的两个数和这点上所标的三个数之和不小于2999.
4、有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号,证明:在200个信号
中至少有四个信号完全相同。
解:四种颜色的小旗取出三面共可组成4×4×4=64种信号(注三面可以是同色的),则将200看作苹果,64种信号看作64个抽屉,由抽屉原则知至少有4个苹果在同一抽屉中,即至少有4个信号完全相同。
5、在圆周上放着100个筹码,其中有41个红的和59个蓝的,那么总可以找到两个红筹码,
在他们之间刚好有19个筹码,为什么?
6、试卷上有4道题,每题有3个可供选择的答案,一群学生参加考试,结果对于其中任何
三人都有一道题目的答案互不相同,问:参加考试的学生最多有多少人?
7、一次数学竞赛,有75人参加,满分为20分,参赛者得分都是整数,75人的总分是980
分,至少有几分得分相同?
8、某校六年级学生有31人是四月份出生的,请证明:至少有两人在同一天出生。
9、袋子里有四种不同颜色的小球,每次摸出2个,要保证10次所摸得的结果是一样的,
至少要摸多少次?
10、一副扑克牌共有54张,从中取出多少张,才能保证其中必有3种花色。
11、图书角剩下科技书和文艺书各4本,现在有4个学生来借阅,每人从中借2本,请你
证明,必有两名学生借阅的图书完全相同。
12、在一条长100米的小路一旁种上101棵小树,不管怎么种,至少有两棵树苗之间的距
离不超过1米。
13、六年级有男生57人,证明:至少有两名男生在同一个星期过生日。
14、19朵鲜花插入4个花瓶里,证明:至少有一个花瓶里要插入5朵或5朵以上的鲜花。
14、某旅行团一行50人,随意游览甲、乙、丙三地,至少要有多少人游览的地方完全相
同?
小升初“抽屉原理”讲解
例5 有一个生产天平上用的铁盘的车间,由于工艺上的原因,只能控制盘的重量在指定的20克到20.1克之间。
现在需要重量相差不超过0.005克的两只铁盘来装配一架天平,问:最少要生产多少个盘子,才能保证一定能从中挑出符合要求的两只盘子?
解:把20~20.1克之间的盘子依重量分成20组:
第1组:从20.000克到20.005克;
第2组:从20.005克到20.010克;
……
第20组:从20.095克到20.100克。
这样,只要有21个盘子,就一定可以从中找到两个盘子属于同一组,这2个盘子就符合要求。
例6 在圆周上放着100个筹码,其中有41个红的和59个蓝的。
那么总可以找到两个红筹码,在它们之间刚好放有19个筹码,为什么?
分析:此题需要研究“红筹码”的放置情况,因而涉及到“苹果”的具体放置方法,由此我们可以在构造抽屉时,使每个抽屉中的相邻“苹果”之间有19个筹码。
解:依顺时针方向将筹码依次编上号码:1,2,…,100。
然后依照以下规律将100个筹码分为20组:
(1,21,41,61,81);
(2,22,42,62,82);
……
(20,40,60,80,100)。
将41个红筹码看做苹果,放入以上20个抽屉中,因为41=2×20+1,所以至少有一个抽屉中有2+1=3(个)苹果,也就是说必有一组5个筹码中有3个红色筹码,而每组的5个筹码在圆周上可看做两两等距,且每2个相邻筹码之间都有19个筹码,那么3个红色筹码中必有2个相邻(这将在下一个内容——第二抽屉原理中说明),即有2个红色筹码之间有19个筹码。
下面我们来考虑另外一种情况:若把5个苹果放到6个抽屉中,则必然有一个抽屉空着。
这种情况一般可以表述为:
第二抽屉原理:把(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。
例7 在例6中留有一个疑问,现改述如下:在圆周上放有5个筹码,其中有3个是同色的,那么这3个同色的筹码必有2个相邻。
分析:将这个问题加以转化:
如右图,将同色的3个筹码A,B,C置于圆周上,看是否能用另外2个筹码将其隔开。
解:如图,将同色的3个筹码放置在圆周上,将每2个筹码之间的间隔看做抽屉,将其余2个筹码看做苹果,将2个苹果放入3个抽屉中,则必有1个抽屉中没有苹果,即有2个同色筹码之间没有其它筹码,那么这2个筹码必相邻。
例8 甲、乙二人为一个正方形的12条棱涂红和绿2种颜色。
首先,甲任选3条棱并把它们涂上红色;然后,乙任选另外3条棱并涂上绿色;接着甲将剩下的6条棱都涂上红色。
问:甲是否一定能将某一面的4条棱全部涂上红色?
解:不能。
如右图将12条棱分成四组:
第一组:{A1B1,B2B3,A3A4},
第二组:{A2B2,B3B4,A4A1},
第三组:{A3B3,B4B1,A1A2},
第四组:{A4B4,B1B2,A2A3}。
无论甲第一次将哪3条棱涂红,由抽屉原理知四组中必有一组的3条棱全未涂红,而乙只要将这组中的3条棱涂绿,甲就无法将某一面的4条棱全部涂红了。
下面我们讨论抽屉原理的一个变形——平均值原理。
我们知道n个数a1,a2,…,an的和与n的商是a1,a2,…,an这n个数的平均值。
平均值原理:如果n个数的平均值为a,那么其中至少有一个数不大于a,也至少有一个不小于a。
例9 圆周上有2000个点,在其上任意地标上0,1,2,…,1999(每一点只标一个数,不同的点标上不同的数)。
求证:必然存在一点,与它紧相邻的两个点和这点上所标的三个数之和不小于2999。
解:设圆周上各点的值依次是a1,a2,…,a2000,则其和
a1+a2+…+a2000=0+1+2+…+1999=1999000。
下面考虑一切相邻三数组之和:
(a1+a2+a3)+(a2+a3+a4)+…+(a1998+a1999+a2000)+(a1999+a2000+a1)+(a2000+a1+a2)
=3(a1+a2+…+a2000)
=3×1999000。
这2000组和中必至少有一组和大于或等于
但因每一个和都是整数,故有一组相邻三数之和不小于2999,亦即存在一个点,与它紧相邻的两点和这点上所标的三数之和不小于2999。
例10 一家旅馆有90个房间,住有100名旅客,如果每次都恰有90名旅客同时回来,那么至少要准备多少把钥匙分给这100名旅客,才能使得每次客人回来时,每个客人都能用自己分到的钥匙打开一个房门住进去,并且避免发生两人同时住进一个房间?
解:如果钥匙数小于990,那么90个房间中至少有一个房间的钥匙数少房间就打不开,因此90个人就无法按题述的条件住下来。
另一方面,990把钥匙已经足够了,这只要将90把不同的钥匙分给90个人,而其余的10名旅客,每人各90把钥匙(每个房间一把),那么任何90名旅客返回时,都能按要求住进房间。
最后,我们要指出,解决某些较复杂的问题时,往往要多次反复地运用抽屉原理,请看下面两道例题。
例11 设有4×28的方格棋盘,将每一格涂上红、蓝、黄三种颜色中的任意一种。
试证明:无论怎样涂法,至少存在一个四角同色的长方形。
证明:我们先考察第一行中28个小方格涂色情况,用三种颜色涂28个小方格,由抽屉原理知,至少有10个小方格是同色的,不妨设其为红色,还可设这10个小方格就在第一行的前10列。
下面考察第二、三、四行中前面10个小方格可能出现的涂色情况。
这有两种可能:
(1)这三行中,至少有一行,其前面10个小方格中,至少有2个小方格是涂有红色的,那么这2个小方格和第一行中与其对应的2个小方格,便是一个长方形的四个角,这个长方形就是一个四角同是红色的长方形。
(2)这三行中每一行前面的10格中,都至多有一个红色的小方格,不妨设它们分别出现在前三列中,那么其余的3×7个小方格便只能涂上黄、蓝两种颜色了。
我们先考虑这个3×7的长方形的第一行。
根据抽屉原理,至少有4个小方格是涂上同一颜色的,不妨设其为蓝色,且在第1至4列。
再考虑第二行的前四列,这时也有两种可能:
(1)这4格中,至少有2格被涂上蓝色,那么这2个涂上蓝色的小方格和第一行中与其对应的2个小方格便是一个长方形的四个角,这个长方形四角同是蓝色。
(2)这4格中,至多有1格被涂上蓝色,那么,至少有3格被涂上黄色。
不妨设这3个小方格就在第二行的前面3格。
下面继续考虑第三行前面3格的情况。
用蓝、黄两色涂3个小方格,由抽屉原理知,至少有2个方格是同色的,无论是同为蓝色或是同为黄色,都可以得到一个四角同色的长方形。
总之,对于各种可能的情况,都能找到一个四角同色的长方形。