发动机进气道的优化仿真
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发动机进气道的优化仿真
【摘要】通过对进气道内气体流动的三维数值模拟计算,可获得流量系数,气道内压力、流速等参数的空间分布,并建立气道形状、安装位置与气体流动特性(包括流量系数等)的关系,为汽车发动机进、排气道的设计与改进提供依据。
【关键词】进气道;模型;仿真
1.引言
进气道气流流动状态最终直接影响发动机经济性、排放性以及动力性。因此,发动机进气道的理论研究和实际工程的设计成为发动机研究者的重要课题之一。传统的进气道设计流程是经验设计加稳流试验台上的反复试验。在设计开发中存在着较大的盲目性与局限性,不仅设计开发期长,耗费大,而且较难得到理想的方案。通过对进气道内气体流动的三维数值模拟计算,可获得流量系数,气道内压力、流速等参数的空间分布,并建立气道形状、安装位置与气体流动特性(包括流量数等)的关系,为汽车发动机进、排气道的设计与改进提供依据。
2.工作流程
工作流程如图1所示。基本控制方程通常包括质量守恒方程、能量守恒方程、动量守恒方程,以及这些方程相应的定解条件。确定离散化方法。即确定高精度、高效率的离散化方法,具体的说就是确定针对控制方程的离散化法,如有限差分法、有限元法、有限体积法等。这里的离散方法不仅包括微分方程的离散方法及求解方法,还包括贴体坐标的建立、边界条件的处理等。
图1 工作流程图
3.模型的建立
气缸直径取68mm,气缸的长度为170mm。在进气道进口处增加一个稳压箱,作用时使进气道入口处的气流流动状态稳定,这样便在计算入口边界条件中施加了一个稳定的压力条件。发动机进气道如图2所示,气缸简化为圆柱体,气缸盖如图3所示,进气道-气门-气缸如图4所示,最终计算用模型如图5所示。
本文采用六面体和四面体的混合网格,在稳压箱及气缸内采用六面体网格,在进气道、气门、气缸盖处采用非结构化网格。这样既节省了运算时间,又解决了进气道处外形结构复杂区的网格划分。将入口、出口、气缸壁面等分别创建PART,以增加边界条件;将进气道-气门-气缸盖所在空间创建BODY命名为LIVE1并保证该点在各个棉所围成的空间内,如图6所示。由于四面体网格生成是以BODY为单位进行的,将稳压箱、气缸部分创建块,利用约束、拉伸块等工具创建、分割块,以适应本部分体积结构。并在此部分生成六面体网格,对局部网格进行加密,并检查网格质量。生成四面体网格。生成四面体网格时需要对
边界处进行加密,以便观察近壁面处,且确保壁面函数法有效,如图7所示。
图6 创建PART及BODY 图7 生成的网格
网格数目、类型及体积如表1所示。
4.气道模拟仿真结果与分析
图8是当气门升程为8mm时,截面a上的速度分布图,由图可知排气门处(即图中1)、喉口位置(即图中2和3处)及气门下方可以很明显的看见此气道存在明显的滞止回流区,以上地方会造成缸内混合不均匀,极大的影响发动机的排放性能机动力性能,设计时需要对以上地方进行修改。图中4处气流与气门头部发生碰撞,气流流动方向发生改变,并消耗了气流流动动能。其流动能的减小与流动方向的变化导致4处气流速度减小。在三维建模时尽量增大4处的圆角,这样就能减小交接处的碰撞。
图8 截面a处的速度矢
图9为当气门升程为8mm时,截面a的速度等值线云图。由图可知在气门喉口位置的速度等值线分布很不均匀。其中速度等值线在喉口位置相对进气道等其他地方要密,表明喉口位置速度比进气道其他位置速度要大。气门下方有两个地方速度比气道其他地方速度等值线要密(图中1和2处),其分布是以这两处为中心成漩涡状。这也可以说明上述位置会产生很强的滚流。
图9 截面a的速度等值线云图
5.结论
运用三维造型软件Auto CAD,建立气道-气门-气缸实体模型,利用Ansys,建立包括气道一气门一气缸在内的计算域网格,利用Ansys对Auto CAD建立好的计算模型划分网格,进行三维模拟计算。通过三维数值模拟找出了气道几何不合理的部分,采用CAD/CFD进行优化,为汽车发动机进、排气道的设计与改进提供依据。
参考文献
[1]周光桐.流体力学[M].北京:高等教育出版社(2版),2000.
[2]石皓天.GDI发动机进气系统的数值模拟研究[D].天津:天津大学,2008.
[3]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004.
[4]张师帅.计算流体动力学及其应用—CFD软件的原理与应用[M].武汉:华
中科技大学出版社,2011,1.