三角形全等的判定教案
北师大2024八年级数学下册 1.2 第2课时 直角三角形全等的判定 教案
1.2 直角三角形第1课时直角三角形的性质与判定教学内容第1课时直角三角形的性质与判定课时1核心素养目标1.经历猜想、操作、观察、证明等活动,获得判定直角三角形全等的“斜边、直角边”定理,并运用“斜边、直角边”定理解决问题.2.经历探索直角三角形全等条件的过程,进一步掌握推理证明的方法,发展演绎推理能力.3.有意识地培养学生对文字语言、符号语言和图形语言的转换能力,关注证明过程及其表达的合理性.知识目标1.探索并理解直角三角形全等的判定方法“HL”.2.会用直角三角形全等的判定方法“HL”判定两个直角三角形全等.教学重点探索并理解直角三角形全等的判定方法“HL”.教学难点会用直角三角形全等的判定方法“HL”判定两个直角三角形全等.教学准备课件教学过程主要师生活动设计意图一、情境导入二、探究新知一、创设情境,导入新知问题1 :我们学过哪些判定三角形全等的方法?问题2 :两边分别相等且其中一组等边的对角相等的两个三角形全等吗如果其中一组等边所对的角是直角呢?师生活动:学生举手回答问题.师追问:如何用数学语言来描述两边分别相等且其中一组等边的对角是直角的两个三角形全等吗?二、小组合作,探究概念和性质知识点一:全等三角形的判定和性质问题:如果这两个三角形都是直角三角形,即∠B=∠E = 90°,且AC = DF,BC = EF,现在能判定△ABC≌△DEF吗?设计意图:从学生已有的知识出发,激发学生强烈的好奇心和求知欲.设计意图:教学时,如果有学生提出仿照七年级探索三角形全等条件的方法,通过赋予两边特殊值、画直角三角形、与同伴所画的直角三角形进行比较,进而归纳出结论,教师也应给予鼓励,同时,教师可由此引导学生考虑用尺规一般作出直角三角形,从而转入下面“做一做”环节.做一做:已知一条直角边和斜边,求作一个直角三角形.已知:如图,线段a,c (a<c),直角α.求作:Rt△ABC,使∠C = ∠α,BC = a,AB = c.(1) 先画∠MCN=∠α=90°.(2) 在射线CM上截取CB=a.(3) 以点B为圆心,线段c的长为半径作弧,交射线CN于点A.(4) 连接AB,得到Rt∠ABC.师生活动:学生先独立在纸上画图,然后小组交流想法,保证学生的参与度,最终派代表对问题进行讲解.验证结论:已知:如图,在∠ABC与∠A′B′C′ 中,∠C′ =∠C = 90°,AB = A′B′,AC = A′C′.求证:∠ABC∠∠A′B′C′证明:在∠ABC中,∠∠C=90°,∠ BC2=AB2-AC2 (勾股定理).同理,B'C' 2=A'B' 2-A'C' 2.∠AB=A'B',AC=A'C',∠ BC=B'C'.∠ ∠ABC∠∠A'B'C'( SSS ) .归纳总结;“斜边、直角边”判定方法文字语言:斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).几何语言:设计意图:1.掌握三角形的尺规作图,从实践中体会三角形全等的条件.2.操作探究活动的设计不仅让学生直观地感受了“斜边、直角边”可以确定一个直角三角形的大小和形状,而且也让学生较好地感悟到“斜边、直角边可以判定两个直角三角形全等.3培养学生的识图能力,并规范证明过程的书写格式.设计意图:学生经历了定理的发现、提出和证明的全过程,感受了合情推理与演绎推理的紧密联系.设计意图:培养学生逻辑思维能力,学会用“HL”条件判定三角形全等.典例精析例1如图,AC∠BC,BD∠AD,垂足分别为C,D,AC = BD. 求证BC = AD.证明:∠ AC∠BC,BD∠AD,∠∠C与∠D都是直角.在Rt∠ABC和Rt∠BAD中,AB = BA,AC = BD.∠ Rt∠ABC∠Rt∠BAD (HL).∠ BC = AD.师生活动:教师给出例题后,让学生独立作业,同时分别选派四名同学上黑板演算. 教师巡视,对学生演算过程中的失误及时予以指正,最后师生共同评析.变式1:如图,∠ACB=∠ADB=90°,要证明∠ABC ∠∠BAD,还需一个什么条件?把这些条件都写出来,并在相应的括号内填写出判定它们全等的理由.(1) AD=BC( HL )(2) BD=AC( HL )(3) ∠DAB=∠CBA( AAS)(4) ∠DBA=∠CAB( AAS)师生活动:学生独立思考,然后举手回答问题,老师针对有问题的给与解释,或者大家一起探讨错误的原因.例2 如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相设计意图:巩固所学的“斜边、直角边”定理,使学生对本节课所形成的概念有更深刻的理解.三、当堂练习,巩固所学等,两个滑梯的倾斜角∠B和∠F的大小有什么关系?师生活动:教学时,给几分钟时间先让学生尝试着解决问题,在学生出现思维盲区时,教师给予详细分析,边讲边演示,在思维的激烈碰撞过程中,逐渐形成对“HL”判定方法证明三角形全等解决实际问题的认识.练一练1.如图,已知AD,AF分别是两个钝角∠ABC和∠ABE的高,若AD=AF,AC=AE,求证:BC=BE.证明:∠ AD,AF分别是两个钝角∠ABC和∠ABE的高,且AD=AF,AC=AE,∠ Rt∠ADC ∠ Rt∠AFE (HL).∠ CD=EF.∠ AD=AF,AB=AB,∠ Rt∠ABD∠Rt∠ABF (HL).∠ BD=BF.∠ BD-CD=BF-EF,即BC=BE.三、当堂练习,巩固所学1. 判断两个直角三角形全等的方法不正确的有( )A. 两条直角边对应相等B. 斜边和一锐角对应相等C. 斜边和一条直角边对应相等D. 两个锐角对应相等2.如图,∠ABC中,AB = AC,AD是高,则∠ADB与∠ADC(填“全等”或“不全等”),依设计意图:及时运用知识解决问题,提高学生分析问题和解决问题的能力,增强应用意识、参与意识,巩固所学的“斜边、直角边”定理.设计意图:规范使用“HL”判定方法证明三角形全等的书写格式.在证明两个直角三角形全等时,要防止学生使用“SSA”来证明.设计意图:考查对使用“HL”证明两个直角三角形全等的使用条件的理解.据是(用简写法).3.如图,在∠ABC中,已知BD∠AC,CE∠AB,BD = CE.求证:∠EBC∠∠DCB.能力拓展4. 如图,有一直角三角形ABC,∠C=90°,AC=10 cm,BC=5 cm,一条线段PQ=AB,P、Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时∠ABC才能和∠APQ全等?设计意图:考查对使用“HL”证明两个直角三角形全等的使用条件的运用.板书设计1.2.2 直角三角形的性质与判定“斜边、直角边”判定方法文字语言:斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).几何语言:课后小结。
12.2三角形全等的判定(教案)
1.理论介绍:首先,我们要了解三角形全等的基本概念。全等三角形指的是在大小和形状上完全相同的两个三角形。它在几何学中具有重要的地位,可以帮助我们解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何利用SSS、SAS、ASA判定方法判断两个三角形是否全等,并应用于解决实际问题。
4.理解并掌握全等三角形的判定与证明过程,提高逻辑推理能力。
二、核心素养目标
《12.2三角形全等的判定》
1.培养学生的空间想象能力和几何直观,通过对全等三角形的学习,使其能够形成对几何图形的深入认识和理解;
2用严谨的逻辑推理解决问题;
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形全等在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
同时,我也注意到,在小组讨论环节,有些学生较为内向,不太愿意表达自己的观点。为了鼓励他们,我在课堂上多次强调了每个人都有自己的独特见解,都值得被倾听。在今后的教学中,我需要更加关注这部分学生,创造更多机会让他们参与到课堂讨论中来。
此外,通过对学生作业的批改,我发现有些同学在应用全等三角形的判定方法时,仍然会出现混淆的情况,尤其是在区分SAS和ASA时。这让我意识到,在课堂上,我应该更加针对性地进行对比讲解,并设计更多具有针对性的练习题,帮助他们更好地理解和掌握这些判定方法。
12.2三角形全等的判定(教案)
一、教学内容
《三角形全等的判定》(边边边)参考教案
三角形全等的判定(一)教学目标1.三角形全等的“边边边”的条件.2.了解三角形的稳定性.3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程. 教学重点三角形全等的条件.教学难点寻求三角形全等的条件.教学过程Ⅰ.创设情境,引入新课出示投影片,回忆前面研究过的全等三角形.已知△ABC ≌△A′B′C′,找出其中相等的边与角.C 'B 'A 'C B A图中相等的边是:AB=A′B 、BC=B′C′、AC=A′C .相等的角是:∠A=∠A′、∠B=∠B′、∠C=∠C′.展示课作前准备的三角形纸片,提出问题:你能画一个三角形与它全等吗?怎样画?(可以先量出三角形纸片的各边长和各个角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对应角相等.这样作出的三角形一定与已知的三角形纸片全等).这是利用了全等三角形的定义来作图.那么是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题.Ⅱ.导入新课1.只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.①三角形一内角为30°,一条边为3cm .②三角形两内角分别为30°和50°.③三角形两条边分别为4cm 、6cm .学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流. 结果展示:1.只给定一条边时:只给定一个角时:2.给出的两个条件可能是:一边一内角、两内角、两边.①3cm 3cm 3cm 30︒30︒30︒②50︒50︒30︒30︒③6cm4cm 4cm6cm可以发现按这些条件画出的三角形都不能保证一定全等.给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即:三内角、三条边、两边一内角、两内有一边.在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索其余的三种情况.已知一个三角形的三条边长分别为6cm 、8cm 、10cm .你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗?1.作图方法:先画一线段AB ,使得AB=6cm ,再分别以A 、B 为圆心,8cm 、10cm 为半径画弧,•两弧交点记作C ,连结线段AC 、BC ,就可以得到三角形ABC ,使得它们的边长分别为AB=6cm ,AC=8cm ,BC=10cm .2.以小组为单位,把剪下的三角形重叠在一起,发现都能够重合.•这说明这些三角形都是全等的.3.特殊的三角形有这样的规律,要是任意画一个三角形ABC ,根据前面作法,同样可以作出一个三角形A′B′C′,使AB=A′B′、AC=A′C′、BC=B′C′.将△A′B′C′剪下,发现两三角形重合.这反映了一个规律:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”.用上面的规律可以判断两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.所以“SSS”是证明三角形全等的一个依据.请看例题.[例]如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .[分析]要证△ABD ≌△ACD ,可以看这两个三角形的三条边是否对应相等. 证明:因为D 是BC 的中点所以BD=DC在△ABD 和△ACD 中(AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩公共边)所以△ABD ≌△ACD (SSS ).生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状是固定不变的,•而用四根木条钉成的框架,它的形状是可以改变的.三角形的这个性质叫做三角形的稳定性.所以日常生活中常利用三角形做支架.就是利用三角形的稳定性.•例如屋顶的人字梁、大桥钢架、索道支架等.Ⅲ.随堂练习如图,已知AC=FE 、BC=DE ,点A 、D 、B 、F 在一条直线上,AD=FB .要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC=FE ,BC=DE 以外,还应该有什么条件?怎样才能得到这个条件?F DC BE A2.课本练习.Ⅳ.课时小结本节课我们探索得到了三角形全等的条件,•发现了证明三角形全等的一个规律SSS .并利用它可以证明简单的三角形全等问题.Ⅴ.作业1. 习题11.2 复习巩固1、2.Ⅵ.活动与探索如图,一个六边形钢架ABCDEF 由6条钢管连结而成,为使这一钢架稳固,请你用三条钢管连接使它不能活动,你能找出几种方法?C本题的目的是让学生能够进一步理解三角形的稳定性在现实生活中的应用. 结果:(1)可从这六个顶点中的任意一个作对角线,•把这个六边形划分成四个三角形.如图(1)为其中的一种.(2)也可以把这个六边形划分成四个三角形.如图(2).板书设计(1)(2)。
2 三角形全等的判定 一等奖创新教案 人教版八年级上册
2 三角形全等的判定一等奖创新教案人教版八年级上册《三角形全等的判定》的教案教材分析1、教材地位本节教材是九年义务教育课程标准实验教科书,人教版八年级上册第十二章第二节三角形全等的判定。
在我们的周围,经常可以看到形状、大小完全相同的图形,这样的图形叫全等形。
研究两个图形全等的方法,是几何学的一个重要内容。
2、教学目标分析(1)知识与技能目标:理解并掌握三角形全等的判定的边边边定理,能够灵活运用边边边定理来证明三角形全等。
通过观察几何图形,发展学生识图能力,提高学生多方位审视问题的创造技巧和逻辑思维能力。
(2)过程与方法:在探索三角形全等的过程中,让学生经历“观察—画图—应用”的数学过程。
(3)情感态度价值观:在探究三角形全等的过程中,培养学生的合作交流意识和探索精神,增进学习数学的信心。
培养学生对数学的兴趣和对科学的热爱,能够在生活中感受到数学的乐趣,能灵活运用数学知识解决生活中实际问题。
3、教学重难点(1)重点:理解并掌握三角形全等判定的边边边定理。
(2)难点:三角形全等边边边定理的灵活运用。
(3)突破:通过折、剪和画等活动激发学生的兴趣,变抽象为形象,通过自学引导学生主动思考,从而使课堂更高效。
4、教学用具:直尺、卡纸教法分析教学方式的改变是新课标改革的目标,新课标要求教师从知识的传授者转变为学生学习的引导者和学习发展的促进者,也就是把过去单纯的老师讲学生接受的教学方式,转变为师生互动式教学。
1、讲授法通过提问、评价、解答问题等手段引导学生像当初数学家发现定律那样去发现三角形全等的判定方法,以发展他们进行研究、探讨和创新能力。
创设问题情境,激发学生学习的积极性和主动性。
完善问题解答,总结学生思路方法。
进行知识综合,充实和改善学生的知识结构。
2、演示法与学生一起动手剪纸剪或画出三角形用于教学演示。
3、讨论法在我的启发下,学生积极思考,对照材料,回忆有关知识和方法,进行分析,综合开展不同观点的思考,然后进行小组讨论,直到发现结论,探索到解决问题的途径和方法。
12-2《三角形全等的判定》(共4课时)教案
12-2三角形全等的判定(4课时)第1课时“边边边”判定三角形全等1.掌握“边边边”条件的内容.2.能初步应用“边边边”条件判定两个三角形全等.3.会作一个角等于已知角.重点“边边边”条件.难点探索三角形全等的条件.一、复习导入多媒体展示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形的对应边相等,对应角相等.反之,这六个元素分别相等,这样的两个三角形一定全等.思考:三角形的六个元素分别相等,这样的两个三角形一定全等吗?二、探究新知根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?出示探究1:先任意画出一个△ABC,再画一个△A′B′C′,使△ABC与△A′B′C′满足上述六个条件中的一个或两个.你画出的△A′B′C′与△ABC一定全等吗?(1)三角形的两个角分别是30°,50°.(2)三角形的两条边分别是4 cm,6 cm.(3)三角形的一个角为30°,一条边为3 cm.学生剪下按不同要求画出的三角形,比较三角形能否和原三角形重合.引导学生按条件画三角形,再通过画一画,剪一剪,比一比的方式得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.出示探究2:先任意画出一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?让学生充分交流后,教师明确已知三边画三角形的方法,并作出△A′B′C′,通过比较得出结论:三边分别相等的两个三角形全等.强调在应用时的简写方法:“边边边”或“SSS”.实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.明确:三角形的稳定性.三、举例分析例1 如右图,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架.求证:△ABD≌△ACD.引导学生应用条件分析结论,寻找两个三角形的已有条件,学会观察隐含条件.让学生独立思考后口头表达理由,由教师板演推理过程.教师引导学生作图.已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB.讨论尺规作图法,作一个角等于已知角的理论依据是什么?教师归纳:(1)什么是尺规作图;(2)作一个角等于已知角的依据是“边边边”.四、巩固练习教材第37页练习第1,2题.学生板演.教师巡视,给出个别指导.五、小结与作业回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律.进一步明确:三边分别相等的两个三角形全等.布置作业:教材习题12.2第1,9题.本节课的重点是探索三角形全等的“边边边”的条件;运用三角形全等的“边边边”的条件判别两个三角形是否全等.在课堂上让学生参与到探索的活动中,通过动手操作、实验、合作交流等过程,学会分析问题的方法.通过三角形稳定性的实例,让学生产生学数学的兴趣,学会用数学的眼光去观察、分析周围的事物,为下一节内容的学习打下基础.第2课时“边角边”判定三角形全等1.掌握“边角边”条件的内容.2.能初步应用“边角边”条件判定两个三角形全等.重点“边角边”条件的理解和应用.难点指导学生分析问题,寻找判定三角形全等的条件.一、复习引入1.什么是全等三角形?2.全等三角形有哪些性质?3.“SSS”具体内容是什么?二、新知探究已知△ABC,画一个三角形△A′B′C′,使AB=A′B′∠B=∠B′,BC=B′C′.教师画一个三角形△ABC.先让学生按要求讨论画法,再给出正确的画法. 操作:(1)把画好的三角形剪下和原三角形重叠,观察能重合在一起吗? (2)上面的探究说明什么规律? 总结:判定两个三角形全等的方法:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“SAS ”.三、举例分析多媒体出示教材例2.例2 如图,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B.连接AC 并延长到点D ,使CD =CA.连接BC 并延长到点E ,使CE =CB.连接DE ,那么量出DE 的长就是A ,B 的距离,为什么?分析:如果证明△ABC ≌△DEC ,就可以得出AB =DE. 证明:在△ABC 和△DEC 中,⎩⎨⎧CA =CD ,∠1=∠2,CB =CE ,∴△ABC ≌△DEC(SAS ). ∴AB =DE.归纳解决实际问题的一般方法是:分析实际问题,按要求画出图形,根据图形及已知条件选择对应的方法.四、课堂练习如图,已知AB =AC ,点D ,E 分别是AB 和AC 上的点,且DB =EC.求证:∠B =∠C.学生先独立思考,然后讨论交流,用规范的书写完成证明过程. 五、小结与作业 1.师生小结:(1)“边角边”判定两个三角形全等的方法.(2)在判定两个三角形全等时,要注意使用公共边和公共角. 2.布置作业:教材习题12.2第3,4题.本节课的重点是让学生认识掌握运用“边角边”判定两个三角形全等的方法,让学生自己动手操作,合作交流,通过学生之间的质疑讨论,发现此定理中角必为夹角,从而得出“边角边”的判定方法.不仅学习了知识,也训练了思维能力,对三角形全等的判定(SAS)掌握的也好,但要强调书写的格式的规范,同时让学生感受到在证明分别属于两个三角形的线段或角相等的问题时,通常通过证明这两个三角形全等来解决.第3课时“角边角”和“角角边”判定三角形全等1.掌握“角边角”及“角角边”条件的内容.2.能初步应用“角边角”及“角角边”条件判定两个三角形全等.重点“角边角”条件及“角角边”条件.难点分析问题,寻找判定两个三角形全等的条件.一、复习导入1.复习旧知:(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判定两三角形全等的方法有几种?各是什么?2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,我们接着探究已知两角一边是否可以判定两三角形全等.二、探究新知1.[师]三角形中已知两角一边有几种可能?[生](1)两角和它们的夹边;(2)两角和其中一角的对边.做一做:三角形的两个内角分别是60°和80°,它们的夹边为4 cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?学生活动:自己动手操作,然后与同伴交流,发现规律.教师活动:检查指导,帮助有困难的同学.活动结果展示:以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.提炼规律:两角和它们的夹边分别相等的两个三角形全等.(可以简写成“角边角”或“ASA”)[师]我们刚才做的三角形是一个特殊三角形,随意画一个△ABC,能不能作一个△A′B′C′,使∠A=∠A′,∠B=∠B′,AB=A′B′呢?[生]能.学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解.[生](1)先用量角器量出∠A 与∠B 的度数,再用直尺量出AB 的边长; (2)画线段A ′B ′,使A ′B ′=AB ;(3)分别以A ′,B ′为顶点,A ′B ′为一边作∠DA ′B ′,∠EB ′A ′,使∠DA ′B ′=∠CAB ,∠EB ′A ′=∠CBA ;(4)射线A ′D 与B ′E 交于一点,记为C ′. 即可得到△A ′B ′C ′.将△A ′B ′C ′与△ABC 重叠,发现两三角形全等. [师]于是我们发现规律:两角和它们的夹边分别相等的两三角形全等.(可以简写成“角边角”或“ASA ”)这又是一个判定两个三角形全等的条件. 2.出示探究问题:如图,在△ABC 和△DEF 中,∠A =∠D ,∠B =∠E ,BC =EF ,△ABC 与△DEF 全等吗?能利用角边角条件证明你的结论吗?证明:∵∠A +∠B +∠C =∠D +∠E +∠F =180°, ∠A =∠D ,∠B =∠E , ∴∠A +∠B =∠D +∠E. ∴∠C =∠F.在△ABC 和△DEF 中,⎩⎨⎧∠B =∠E ,BC =EF ,∠C =∠F ,∴△ABC ≌△DEF(ASA ). 于是得规律:两角和其中一个角的对边分别相等的两个三角形全等.(可以简写成“角角边”或“AAS ”)例 如下图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C.求证:AD =AE.[师生共析]AD 和AE 分别在△ADC 和△AEB 中,所以要证AD =AE ,只需证明△ADC ≌△AEB 即可.学生写出证明过程.证明:在△ADC 和△AEB 中,⎩⎨⎧∠A =∠A ,AC =AB ,∠C =∠B ,∴△ADC ≌△AEB(ASA ). ∴AD =AE. [师]到此为止,在三角形中已知三个条件探索两个三角形全等问题已全部结束.请同学们把两个三角形全等的判定方法作一个小结.学生活动:自我回忆总结,然后小组讨论交流、补充. 三、随堂练习1.教材第41页练习第1,2题. 学生板演. 2.补充练习图中的两个三角形全等吗?请说明理由.四、课堂小结有五种判定两个三角形全等的方法: 1.全等三角形的定义 2.边边边(SSS ) 3.边角边(SAS ) 4.角边角(ASA ) 5.角角边(AAS )推证两个三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径.五、课后作业教材习题12.2第5,6,11题.在前面研究“边边边”和“边角边”两个判定方法的前提下,本节研究“角边角”和“角角边”对于学生并不困难,让学生通过直观感知、操作确认的方式体验数学结论的发现过程,在这节课的教学中,学生也了解了分类思想和类比思想.第4课时 “斜边、直角边”判定三角形全等1.探索和了解直角三角形全等的条件:“斜边、直角边”.2.会运用“斜边、直角边”判定两个直角三角形全等.重点探究直角三角形全等的条件.难点灵活运用直角三角形全等的条件进行证明.一、情境引入(显示图片)舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?方法一:测量斜边和一个对应的锐角(AAS);方法二:测量没遮住的一条直角边和一个对应的锐角(ASA或AAS).工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗?二、探究新知多媒体出示教材探究5.任意画出一个Rt△ABC,使∠C=90°.再画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB.把画好的Rt△A′B′C′剪下来,放到Rt△ABC 上,它们全等吗?画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB.想一想,怎么样画呢?按照下面的步骤作一作:(1)作∠MC′N=90°;(2)在射线C′M上截取线段B′C′=BC;(3)以B′为圆心,AB为半径画弧,交射线C′N于点A′;(4)连接A′B′.△A′B′C′就是所求作的三角形吗?学生把画好的△A′B′C′剪下放在△ABC上,观察这两个三角形是否全等.由探究5可以得到判定两个直角三角形全等的一个方法:斜边和一条直角边分别相等的两个直角三角形全等.简写成“斜边、直角边”或“HL”.多媒体出示教材例5如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证:BC=AD.证明:∵AC ⊥BC ,BD ⊥AD , ∴∠C 与∠D 都是直角. 在Rt △ABC 和Rt △BAD 中, ⎩⎨⎧AB =BA ,AC =BD ,∴Rt △ABC ≌Rt △BAD(HL ). ∴BC =AD. 想一想:你能够用几种方法判定两个直角三角形全等? 直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法:SAS ,ASA ,AAS ,SSS ,还有直角三角形特殊的判定全等的方法——“HL ”.三、巩固练习如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由.学生独立思考完成.教师点评. 四、小结与作业1.判定两个直角三角形全等的方法:斜边、直角边. 2.直角三角形全等的所有判定方法: 定义,SSS ,SAS ,ASA ,AAS ,HL .思考:两个直角三角形只要知道几个条件就可以判定其全等? 3.作业:教材习题12.2第7题.本节课教学,主要是让学生在回顾全等三角形判定的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解.在教学过程中,让学生充分体验到实验、观察、比较、猜想、归纳、验证的数学方法,一步步培养他们的逻辑推理能力.。
数学全等三角形教案8篇
数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。
初中数学《全等三角形》教案优秀6篇
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、
全等三角形教学设计优秀4篇
全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。
遵循启发式教学原则,采用引探式教学方法。
用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。
全等三角形的判定教案
全等三角形的判定教案一、教学目标1. 理解全等三角形的定义和性质。
2. 掌握判定全等三角形的方法。
3. 能够应用所学方法判断两个三角形是否全等。
二、教学重点1. 全等三角形的定义和性质。
2. 判定全等三角形的方法。
三、教学准备1. 教学投影仪和投影幕布。
2. 教材中关于全等三角形的知识点和例题。
3. 白板、彩色粉笔和橡皮擦。
四、教学过程1. 导入(5分钟)在班级中提问:“大家都知道什么是全等三角形吗?全等三角形有什么性质?”等待学生回答,并进行适当纠正和补充。
2. 概念讲解(10分钟)通过投影仪展示教材中有关全等三角形的定义和性质的内容,并结合具体的图例进行讲解。
全等三角形的定义:如果两个三角形的对应边相等,对应角相等,则这两个三角形是全等的。
全等三角形的性质:全等三角形的对应边相等,对应角相等。
3. 判定方法(15分钟)介绍几种判定全等三角形的方法,并对每种方法进行详细解释和演示。
方法一:SSS判定法(边边边判定法)如果两个三角形的三边分别相等,则这两个三角形是全等的。
方法二:SAS判定法(边角边判定法)如果两个三角形的一对边和夹角分别相等,则这两个三角形是全等的。
方法三:ASA判定法(角边角判定法)如果两个三角形的一对角和夹边分别相等,则这两个三角形是全等的。
方法四:AAS判定法(角角边判定法)如果两个三角形的两对角和一对非夹边分别相等,则这两个三角形是全等的。
4. 练习与应用(20分钟)提供一些相关的练习题,让学生分组进行讨论和解答,并在白板上进行展示和讲解。
教师及时给予指导和纠正。
例题1:已知△ABC和△XYZ,已知AC=XY,∠BAC=∠ZXY,∠ACB=∠YXZ,试判断△ABC和△XYZ是否全等。
例题2:已知△DEF和△MNP,已知DM=MP,∠D=∠M,DM⊥DF,MP⊥NP,试判断△DEF和△MNP是否全等。
5. 拓展(10分钟)引导学生思考在实际生活中如何应用全等三角形的判定方法,例如建筑设计、图案制作等方面。
全等三角形教案6篇
全等三角形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!全等三角形教案6篇我们的教案需要定期更新以反映新的教育趋势,教师编写教案不仅促进了自我管理,还增强了他们的教育专业素养,以下是本店铺精心为您推荐的全等三角形教案6篇,供大家参考。
三角形全等的判定教案 三角形全等的判定教学设计
三角形全等的判定教案三角形全等的判定教学设计角形全等的判定教案三角形全等的判定教学设计篇一目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。
重点:sss公理、灵活地应用学过的各种判定方法判定三角形全等。
难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中较适当的方法判定两个三角形全等。
用具:直尺,微机方法:自学辅导过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你较少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。
于是要引导学生,抓住问题的本质:三角形的三个元素――三条边。
2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。
然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。
(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。
应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)(3)、此公理与前面学过的公理区别与联系(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。
在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
全等三角形教案(5篇)
全等三角形教案(5篇)全等三角形教案(5篇)全等三角形教案范文第1篇教学目标:1、学问目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能娴熟找出两个全等三角形的对应角、对应边。
2、力量目标:(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析力量;(2)通过找出全等三角形的对应元素,培育同学的识图力量。
3、情感目标:(1)通过感受全等三角形的对应美激发同学喜爱科学勇于探究的精神;(2)通过自主学习的进展体验猎取数学学问的感受,培育同学勇于创新,多方位端详问题的制造技巧。
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发觉这两个三角形有什么奇妙的关系吗?一般同学都能发觉这两个三角形是完全重合的。
(2)同学自己动手画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学协作,把两个三角形放在一起重合。
(3)猎取概念让同学用自己的语言叙述:全等三角形、对应顶点、对应角以及有关数学符号。
2、全等三角形性质的发觉:(1)电脑动画显示:问题:对应边、对应角有何关系?由同学观看动画发觉,两个三角形的三组对应边相等、三组对应角相等。
3、找对应边、对应角以及全等三角形性质的应用(1)投影显示题目:D、AD∥BC,且AD=BC分析:由于两个三角形完全重合,故面积、周长相等。
至于D,由于AD 和BC是对应边,因此AD=BC。
C符合题意。
说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是简单找错对应角。
分析:对应边和对应角只能从两个三角形中找,所以需将从简单的图形中分别出来说明:依据位置元素来找:有相等元素,其即为对应元素:然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
三角形全等的判定教案
三角形全等的判定教案教学目标1。
通过实际操作理解“学习三角形全等的四种判定方法”的必要性。
2。
比较熟练地掌握应用边角边公理时寻找非已知条件的方法和证明的分析法,初步培养学生的逻辑推理能力。
3。
初步掌握“利用三角形全等来证明线段相等或角相等或直线的平行、垂直关系等”的方法。
4。
掌握证明三角形全等问题的规范书写格式。
教学重点和难点应用三角形的边角边公理证明问题的分析方法和书写格式。
教学过程设计一、实例演示,发现公理1.教师出示几对三角形模板,让学生观察有几对全等三角形,并根据所学过的全等三角形的知识动手操作,加以验证,同时写出全等三角形的数学表达式。
2.在此过程当中应启发学生注意以下几点:(1)可用移动三角形使其重合的方法验证图3-49中的三对三角形分别全等,并根据图中已知的三对对应元素分别相等的条件,可以证明结论成立。
如图3-49(c)中,由AB=AC=3cm,可将△ABC绕A点转到B与C重合;由于∠BAD=∠CAE=120°,保证AD能与AE重合;由AD=AE=5cm,可得到D与E重合。
因此△BAD可与△CAE重合,说明△BAD≌△CAE。
(2)每次判断全等,若都根据定义检查是否重合是不便操作的,需要寻找更实用的判断方法——用全等三角形的性质来判定。
(3)由以上过程可以说明,判定两个三角形全等,不必判断三条边、三个角共六对对应元素均相等,而是可以简化到特定的三个条件,引导学生归纳出:有两边和它们的夹角对应相等的两个三角形全等。
3。
画图加以巩固。
教师照课本上所叙述的过程带领学生分析画图步骤并画出图形,理解“已知两边及夹角画三角形”的方法,并加深对结论的印象。
二、提出公理1。
板书边角边公理,指出它可简记为“边角边”或“SAS”,说明记号“SAS’的含义.2.强调以下两点:(1)使用条件:三角形的两边及夹角分别对应相等.(2)使用时记号“SAS”和条件都按边、夹角、边的顺序排列,并将对应顶点的字母顺序写在对应位置上.3.板书定理证明应使用标准图形、文字及数学表达式,正确书写证明过程.如图3-50,在△ABC与△A’B’C’中,(指明范围)三、应用举例、变式练习1.充分发挥一道例题的作用,将条件、结论加以变化,进行变式练习,例1已知:如图3-51,AB=CB,∠ABD=∠CBD.求证:△ABD≌△CBD.分析:将已知条件与边角边公理对比可以发现,只需再有一组对应边相等即可,这可由公共边相等 BD=BD得到.说明:(1)证明全等缺条件时,从图形本身挖掘隐含条件,如公共边相等、公共角相等、对顶角相等,等等.(2)学习从结论出发分析证明思路的方法(分析法).分析:△ABD≌△CBD因此只能在两个等角分别所在的三角形中寻找与AB,CB夹两已知角的公共边BD.(3)可将此题做条种变式练习:练习1(改变结论)如图 3-51,已知 AB=CB,∠ABD=∠CBD。
全等三角形的判定教案
全等三角形的判定教案以下是一份关于全等三角形判定的教学教案:一、教学目标1. 让学生理解并掌握全等三角形的判定方法。
2. 通过实际操作和推理,培养学生的逻辑思维能力和空间想象力。
3. 激发学生对几何学习的兴趣,提高解决问题的能力。
二、教学重难点重点:全等三角形的几种判定方法。
难点:灵活运用判定方法证明三角形全等。
三、教学准备三角板、教学课件四、教学过程师:同学们,咱们今天来学习全等三角形的判定。
那大家想想,什么样的三角形是全等三角形呀?生:能够完全重合的三角形。
师:对啦,那怎么判断两个三角形全等呢?这就是咱们今天要重点研究的啦。
(展示课件上两个三角形)师:大家看看这两个三角形,觉得它们全等吗?生:光看不太确定。
师:那咱们就来找找方法。
首先啊,有一种方法叫边边边,就是如果三条边都相等,那这两个三角形就全等。
大家理解不?生:嗯,有点明白。
师:那老师来画两个三角形,三条边都相等,你们看看它们是不是全等。
(在黑板上画图)师:现在能看出来全等了吧?生:能。
师:这就是边边边判定方法。
那还有其他方法哦,比如边角边。
谁来说说边角边是什么意思呀?生:就是两条边和它们的夹角相等。
师:真不错!那咱们再来看个例子。
(展示课件例子)师:同学们自己来判断一下这个是不是符合边角边。
(学生讨论)师:谁来说说?生:符合,两条边和夹角都相等。
师:非常好!那还有角边角、角角边这些方法,大家自己去探索一下哦。
接下来咱们做几道练习题巩固一下。
五、教学反思在教学过程中,通过师生互动和实例分析,学生较好地掌握了全等三角形的判定方法。
但部分学生在理解和运用上还存在一些困难,需要在后续教学中加强练习和辅导。
要多鼓励学生自己思考和探索,提高他们的学习积极性和主动性。
全等三角形教案六篇
全等三角形教案六篇全等三角形教案范文1同学的学问技能基础:同学通过前面的学习已经了解了全等三角形的概念,把握了全等三角形的对应边、对应角的关系,这为探究三角形全等的条件做好了学问上的预备。
同学活动阅历基础:同学也具备了利用直尺、量角器作三角形的基本作图力量,这将使同学能够主动参加本节课的操作、探究成为可能。
二、教学任务分析全等三角形是两个三角形间最简洁,最常见的关系,它不仅是学习后面学问的基础,还是证明线段相等、角相等以及两线相互平行、垂直的重要依据。
因此必需娴熟地把握全等三角形的判定方法,并且能够敏捷应用。
《探究三角形全等的条件》共三课时,本节课探究第一种判定方法―边边边,为了使同学更好地把握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导同学操作、观看、探究、沟通、发觉、思维,真正把同学放到主置,进展同学的空间观念,体会分析问题、解决问题的方法,积累数学活动阅历,为以后的证明打下基础。
为此,本节课的教学目标是:1.学问与技能:经受探究三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,把握三角形全等的“边边边”条件,了解三角形的稳定性,在探究的过程中,能够进行有条理的思索并进行简洁的推理。
2.方法与过程:争论、引导教学法。
3.情感、态度、价值观:使同学在自主探究三角形全等的过程中,经受画图、观看、比较、推理、沟通等环节,从而获得正确的学习方式和良好的情感体验,让同学体验数学源于生活,服务于生活的辨证思想。
三、教学设计分析本节课设计了五个教学环节:学问回顾引入新知、创设情境提出问题、建立模型探究发觉、巩固运用及其推广、反思小结布置作业。
第一环节学问回顾引入新知活动内容:回顾全等三角形的定义及其性质。
全等三角形的定义:两个能够重合的三角形称为全等三角形。
全等三角形的性质:全等三角形的对应边、对应角相等。
活动目的:回忆前面学习过的学问,为探究新学问作预备。
三角形全等的判定SAS教案
三角形全等的判定SAS教案一、教学目标1. 让学生掌握三角形全等的判定方法之一——SAS(Side-Angle-Side,边角边)。
2. 能够运用SAS判定两个三角形全等,并解决实际问题。
3. 培养学生的空间想象能力和逻辑思维能力。
二、教学内容1. 三角形全等的概念。
2. SAS判定方法的理解和运用。
3. 实际例题解析。
三、教学重点与难点1. 重点:SAS判定方法的理解和运用。
2. 难点:如何判断两个三角形是否全等,以及如何运用SAS判定。
四、教学方法1. 采用讲解法、演示法、练习法、讨论法等多种教学方法,引导学生理解SAS 判定方法。
2. 通过实际例题,让学生动手操作,培养学生的实践能力。
3. 组织学生进行小组讨论,培养学生的合作意识。
五、教学过程1. 导入:回顾三角形全等的概念,引入SAS判定方法。
2. 新课讲解:详细讲解SAS判定方法,并通过图形演示,让学生直观理解。
3. 例题解析:给出实际例题,引导学生运用SAS判定两个三角形全等。
4. 课堂练习:布置一些练习题,让学生运用SAS判定方法,巩固所学知识。
5. 小组讨论:组织学生进行小组讨论,分享解题心得,互相学习。
6. 总结:对本节课的内容进行总结,强调SAS判定方法的应用。
7. 作业布置:布置一些有关SAS判定方法的作业,让学生课后巩固。
六、教学评估1. 课堂练习题目的设计应涵盖基础知识考察和应用能力考察,通过学生的练习情况来评估学生对SAS判定方法的理解程度。
2. 小组讨论的参与度和讨论质量可以反映学生的合作能力和解决问题的能力。
3. 课后作业的完成情况能够检验学生对课堂所学知识的巩固程度。
七、教学反思1. 课后应对课堂教学进行反思,考虑学生的反馈和自己的教学表现,查找可能存在的不足之处。
2. 针对学生的掌握情况,调整教学策略,以便更好地指导学生。
3. 反思教学过程中的互动环节,确保学生有充分的机会提问和参与讨论。
八、拓展活动1. 组织学生进行几何模型制作,让学生亲自动手操作,加深对三角形全etc.e 的理解。
全等三角形教案【优秀7篇】
全等三角形教案【优秀7篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!全等三角形教案【优秀7篇】在教学工作者开展教学活动前,时常会需要准备好教案,教案是教学活动的总的组织纲领和行动方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形全等的判定(一)
教学目标
1.构建探索三角形全等条件的思路,体会研究几何问题的方法.
2.探索并理解“边边边”判定方法,体验利用操作、•归纳获得数学结论的过程.
3.会用“边边边”判定方法证 明三角形全等.会用尺规作一个角等于已知角,了解作图的依据.
教学重点: 构建探索三角形全等条件的思路,理解并运用“边边边”判定方法. 教学难点:1.构建探索三角形全等条件的思路。
2.用尺规作一个角等于已知角
教学准备:多媒体课件、 两块全等的三角形纸板、 直尺、 圆规 、 学案等. 教学过程:
一、复习旧知,尝试解决生活问题,初识“全等判定”,构建探索思路
1.请你思考后回答:什么叫做全等三角形 根据这个定义,你知道的全等三角形有哪些性质你怎样去判定两个三角形全等
师生活动:教师根据学生回答,在黑板上用符号语言表示这一判定方法.
在△ABC 和△A′B′C′中,
∵⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧'∠=∠'∠=∠'∠=∠''=''='
'=C C B B A
A C A AC C
B B
C B A AB ∴ △ABC ≌△A′B′C′
2.尝试应用:小明家的衣橱上镶有两块全等的三角形玻璃装饰物,其中一块被打碎了,妈妈让小明到玻璃店配一块回来,请你说说小明该怎么办并说说这样做的依据是什么
师生活动:学生先在小组内交流,再在全班展示结果.
3.请你继续思考:是否一定需要六个条件才能判定两个三角形全等呢能否减
少个三角形全等的判定你想从几个条件开始研究
C '
B 'A '
C B A
师生活动:学生畅说欲言,交换,确定先从“一个条件”开始,不行就两个“两个条件”,再不行就“三个条件”……的顺序来探究三角形全等的条件。
二、动手操作,感知由“一个条件”“两个条件”不能确定两个三角形全等
活动 1.请你观察手中的一副三角尺,思考后回答:只给一个条件相等的两个三角形一定全等吗
师生活动:学生独立观察、比较后,再个人展示,有不同想法补充说明,发现:有一条边或一个角相等的两个三角形不一定全等.一起归纳得出:只有一个条件对应相等的两个三角形不一定全等。
活动二:那么我们现在给出两个条件分别相等,你可以观察手中的三角尺,也可以依据条件在学案上画图,思考后回答,有两个条件分别相等的两个三角形全等吗
条件举例:①三角形两内角分别为30°和60°.
②三角形两条边分别为4cm、6cm.
③三角形一内角为30°,一条边为6cm.
师生活动:生先独立思考,按要求动手操作,有结果后在组内交流,然后后派代表在全班举例说明你们讨论的结果.最后共同归纳结果:
有两个条件对应相等的两个三角形也不一定全等。
三、类比探究,尺规作图,理解“SSS”判定方法
问题:现在给出三个条件分别相等,来探究这样的两个三角形一定全等吗同学们根据下面的问题探究:
1.思考并回答:根据前面的探究,你能说出三个条件分别相等有几种可能的情况吗
师生活动:学生先组内讨论、再组间相互补充得到有四种情况,即:三条边、三个内角、两边一角、两角一边.
我们先从最基本的同类元素开始探究,三个角或三条边分别相等的情况.
2.一起来观察:用你们手中的三角尺和老师手中的三角尺,你们很快发现三个角分别相等的两个三角形不一定全等.下面我们再来研究三条边分别相等的情况(其他几种情况以后再研究)
3. 动手跟我画:先任意画一个△ABC,再画出一个三角形A′B′C′,使
AB=A′B′、AC=A′C′、BC=B′C′.将画好的△A′B′C′剪下来,放到△ABC 上,看看他们
全等吗
师生活动:教师演示画图过程,学生跟老师一起用尺规作图,画完后剪下
其中一个,与另一个叠放比较,发现他们全等.
4.我善于归纳:作图的结果反映了怎样的结论你能用文字语言和数学符
号语言概括这个结论吗
师生活动:学生先尝试归纳,然后小组内交流,再全班展示,师板书.
三边对应相等的两个三角形全等,简写为“边边边”或“SSS”.
这反映了一个基本事实,它用符号语言表示为:
在△ABC 和△A′B′C′中,
⎪⎩⎪⎨⎧''=''=''=C A AC C B BC B A AB
∴ △ABC ≌△A′B′C′
5.我思故我用:这个基本事实能帮助我们解决什么问题
(1)问题2中小明家的玻璃问题,你有更简单的方法了吗
(2)前面做过的实验,用三根木条能钉成一个固定的三角形木架,
你能解释其中的道理吗
师生活动:问题比较简单,学生独立思考后,举手回答,其他同学补充。
四、应用“SSS ”判定方法,解决问题,尝试演绎推理.
例. 如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支
架.求证:△ABD ≌△ACD .
变式:判断∠BAD 的∠CAD 数量关系,
并证明之.
师生活动:师生共同分析解题思路,要证△ABD ≌△ACD ,可以看这两个三角形的三条边是否对应相等.注意隐含条件的
挖掘和必要条件的证明.师给出规范的板书:
证明:∵D 是BC 的中点,∴BD=DC ,
在△ABD 和△ACD ,
C '
B 'A '
C B A
⎪⎩
⎪⎨⎧===AD AD CD BD AC AB
∴△ABD ≌△ACD (SSS ).
我来想,我来画:您能用直尺和圆规做一个角等于已知角吗
师生活动:师生分别画出一个任意角,教师板书已知和求作的内容,学生
尝试自己画图,如果没有思路,教师进一步提示:将已知角放在一个三角形中,求作的角画在与这个三角形全等的三角形中.学生进一步解答(可能会出现两种方法).学生明白作图的依据后,自己动手作图.
已知∠AOB ,求作:∠B O A '''=∠AOB.
作法:1、以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C 、D ;
2、画一条射线O 'A ',以点O '为圆心,OC 长为半径画弧,交
O 'A '于点C ';
3、以点C '为圆心,CD 长为半径画弧,与第2步中所画的弧交于
点D ';
4、过点D '画射线O 'B ', 则∠A 'O 'B '=∠AOB
五.反思小结 ,理清知识,体会解决数学问题的思路与方法.
请同学们谈一谈这节课的收获和体会分享、补充、完善
一个基本事实:边边边——判定三角形全等——解决实际问题
两个方法:探究事实的方法——画图 猜想 分类 归纳等
解决几何问题的方法——证明两角相等→转化→证明角所在的 两个三角形全等
温馨提醒:证明三角形全等的步骤一定要规范
C′ O A B D O′ A′ B′
D′
六.达标测评(在学案上独立完成,师展示答案,对手同学互相评价)
1、已知,如图1 ,AB=C ′A ′,BC=A ′B ′,AC=C ′B ′,那么( )
A. △ABC ≌△A′B′C′
B. △ABC ≌△C ′A ′B ′
C. △ABC ≌△B ′C ′A ′
D. 这两个三角形不全等
2.已知AC=FE ,BC=DE ,点A ,D ,B ,F 在一条直线上,AD=FB . 求证:(1)△ABC ≌△FDE ; (2)∠A=∠F ; (3) AC
3.工人师傅常用角尺平分一个任意角.做法如下:如图, ∠AOB 是一个任 意角,在边OA 、OB 上分别取OM=ON,移动角尺,使角尺两边相同的刻度分
别与M 、N 重合.过角尺顶点C 的射线OC 便是∠AOB 的平分线.为什么
七.布置作业:
教材37页练习第1题,43页习题第1题、第9题.
O A
B M N
C F
D C B
E A。