探索三角形全等的条件(一)教学设计
《探索三角形全等的条件》第一课时参考(完整版)教案
精品"正版〞资料系列,由本公司独创 .旨在将"人教版〞、〞苏教版"、〞北师大版"、〞华师大版"等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友 .本资源创作于2021年8月,是当前最||新版本的教材资源 .包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最||正确选择 .§3.3.1 探索三角形全等的条件●教学目标(一)教学知识点1.三角形全等的"边边边〞的条件.2.了解三角形的稳定性.(二)能力训练要求1.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.2.掌握三角形全等的"边边边〞条件.了解三角形的稳定性.3.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.(三)情感与价值观要求1.使学生在自主探索三角形全等的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方式和良好的情感体验.2.让学生体验数学来源于生活,效劳于生活的辩证思想.●教学重点三角形全等的条件.●教学难点三角形全等的条件.●教学方法讨论、引导教学法.●教具准备投影片五张第|一张:复习练习(记作投影片§3.3.1 A )第二张:做一做(记作投影片§3.4.1 B )第三张:议一议(记作投影片§3.3.1 C )第四张:做一做(记作投影片§3.3.1 D )第五张:实验(记作投影片§3.3.1 E )木条或细硬纸条数根.●教学过程Ⅰ.巧设现实情景,引入新课[师]前面我们研究了全等三角形.现在我们来回忆一下:(出示投影片§3.3.1 A )如图图:△ABC≌△DEF.找出其中相等的边与角.[生]图中相等的边是:AB=DE、BC=EF、AC=DF.相等的角是:∠A=∠D、∠B=∠E、∠C=∠F.[师]很好.我这里有一个三角形纸片,你能画一个三角形与它全等吗?如何画?[生]能,先量出这个三角形纸片的每边的长,各个角的度数,然后作出一个三角形,使它的每边长,每个角的度数分别等于三角形纸片的每边长,每个角,这样作出的三角形一定与三角形纸片全等.[师]噢,这位同学他利用了两个三角形全等的定义来作图.但是,是否一定需要六个条件呢?条件能否尽可能少吗?一个条件行吗?两个条件、三个条件呢?我们这节课就来探索三角形全等的条件.Ⅱ.讲授新课[师]下面我们来做一做(出示投影片§3.3.1 B ).1.只给一个条件(一条边或一个角)画三角形时,大家画出的三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况?每种情况下作出的三角形一定全等吗?分别按照下面的条件做一做.(1 )三角形的一个内角为30° ,一条边为3 cm.(2 )三角形的两个内角分别为30°和50°.(3 )三角形的两条边分别为4 cm、6 cm.[师]只给一个条件,怎么样呢?想一想.[生]不能.[师]对,只给定一条边时(如图的实线)图由图可知:这三个三角形不全等.只给定一个角时夹角(如图中的实线).图由画图可知:这三个三角形也不全等.因此,只给出一个条件....所画出的三角形一定全等.....时,不能保证接下来我们探索:给出两个条件时,所画的三角形一定全等吗?大家动手画:三角形的一个内角为30° ,一条边为3厘米.[生甲]我们画出的三角形几乎都不一样,如图.图这三个三角形不全等.[师]好,那如果三角形的两个内角分别是30°和50°时,所画的三角形又如何呢?[生乙]我画的三角形和他们画的形状一样,但大小不一样.如图.图这两个三角形不能重合,即不全等.[师]很好.如果给定三角形的两边分别为4 cm、6 cm ,那么所画出的三角形全等吗?[生丙]也不全等.如图5-103.图[师]很好,我们通过画图、观察、比较知道,只给出一个条件或两个条件时,都不能保证所画出的三角形一定全等.那给出三个条件时,又怎样呢?大家来议一议(出示投影片§3.3.1 C ).如果给出三个条件画三角形,你能说出有哪几种可能的情况?[生丁]有四种可能.即:三条边,三个角,两边一角和两角一边.[师]对,下面我们来逐一探索(出示投影片§3.3.1 D )做一做:(1 )一个三角形的三个内角分别为40° ,60° ,80°.你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,它们一定全等吗?(2 )一个三角形的三条边分别为4 cm、5 cm和7 cm ,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,它们一定全等吗?[生甲]一个三角形的三个内角分别为40°、60°、80°.能画出这个三角形,但与同伴画的进行比较时,有的能完全重合,有的不重合,所以它们不一定重合.如图.图[师]通过比较得知:给出三角形的三个内角,得到的三角形不一定全等.那给出三角形的三条边又如何呢?[生乙]一个三角形的三条边分别是4 cm ,5 cm和7 cm ,我能画出这个三角形.与同伴们进行比较可知:这样的所有三角形都是全等的.如图.图[生丙]我画的三角形也和别人画的全等.由此可知:三角形的三边,那么画出的所有三角形都全等.[师]是吗?我们来验证:画一个三角形,使它的三边分别等于8 cm、6 cm、10 cm.画出图形后与同伴的进行比较.[生丁]我画出的三角形与其他人的全等.[师]是吗?大家来重叠一下.[生齐声]都能够重合.[师]好,由此我们知道:三角形的三条边画三角形,那么画出的所有三角形全等 (电脑演示重合过程 ).这样就得到了三角形全等的条件:三边对应相等的两个三角形全等. 简写为: "边边边〞或 "SSS 〞 如图.图⎪⎩⎪⎨⎧=−→−==EF BC DF AC DE AB △ABC ≌△DEF . 注意:三边对应相等是前提条件 ,三角形全等是结论. 下面我们来做一个实验 (出示投影片§3.3.1 E )取三根长度适当的木条 ,用钉子钉成一个三角形的框架 ,你所得到的框架的形状固定吗 ?用四根木条钉成的框架的形状固定吗 ?[师]做实验时 ,可用细纸条代替木条.实验后分组讨论.[生]用三根木条钉成的三角形框架是固定的 ,用四根木条钉成的框架 ,它的形状是可以改变的.[师]很好 ,看屏幕 (演示图 ).图图 (1 )是用三根木条钉成的三角形框架 ,它的大小和形状是固定不变的 ,三角形的这个性质叫做三角形的稳定性.三角形的稳定性在生产和生活中是很有用的.如:房屋的人字梁具有三角形的结构 ,它就稳固和稳定.图(2 )的形状是可以改变的,它不具有稳定性.大家想一想,如何才能使图(2 )的框架不能活动?[生]在相对的顶点上钉一根木条,使它变为两个三角形框架即可.[师]对,在生活中经常会看到采用三角形的结构去建筑.就是用到了它的稳定性.同学们能举出一些生活中应用三角形的稳定性的例子吗?[生]能.如:大桥钢架、索道支架、输电线支架等等.[师]很好,下面我们来做一练习以熟悉掌握本节内容.Ⅲ.课堂练习(一)课本习题3.6 1、21.准备几根硬纸条(1 )取出三根硬纸条钉成一个三角形,你能拉动其中两边,使这个三角形的形状发生变化吗?(2 )取出四根硬纸条钉成一个四边形,拉动其中两边,这个四边形的形状改变了吗?钉成一个五边形,又会怎么样?(3 )上面的现象说明了什么?解:(1 )三角形的形状不会发生变化.(2 )四边形,五边形的形状发生了变化.(3 )说明了三角形具有稳定性,而四边形、五边形不具有稳定性.2.两个锐角对应相等的两个直角三角形全等吗?为什么?解:不一定全等.如图.图Rt△ABC与Rt△A′B′C′不全等.(二)看课本然后小结.Ⅳ.课时小结本节课我们重点探索了三角形全等的条件 ,还了解了三角形的稳定性. 三角形全等的条件:三边对应相等的两个三角形全等. 如图.图−→−⎪⎭⎪⎬⎫===DF AC EF BC DE AB △ABC ≌△DEF . Ⅴ.课后作业(一 )课本习题3.6 3 (二 )1.预习内容 2.预习提纲三角形全等的条件是什么 ? Ⅵ.活动与探究图一个六边形钢架ABCDEF .由6条钢管连接而成 (如下列图 ) ,为使这一钢架稳固 ,请你用三条钢管连接使它不能活动 ,你能找出几种方法 ?过程:让学生思考、探索 ,进一步理解三角形的稳定性在现实生活中的应用. 结果: (1 )可从这六个顶点中的任意一个作对角线 ,把这个六边形划分成四个三角形.如图(1 )为其中的一种.(2 )也可以把这个六边形划分成四个三角形.如图(2 ).图●板书设计§3.3.1 探索三角形全等的条件一、三角形全等的条件:三边对应相等的两个三角形全等. "SSS〞二、三角形的稳定性.三、课堂练习四、课时小结五、课后作业以下为赠送内容别想一下造出大海,必须先由小河川开始 .成功不是只有将来才有,而是从决定做的那一刻起,持续积累而成!人假设软弱就是自己最||大的敌人,人假设勇敢就是自己最||好的朋友 . 成功就是每天进步一点点!如果要挖井,就要挖到水出为止 .即使爬到最||高的山上,一次也只能脚踏实地地迈一步 .今天拼搏努力,他日谁与争锋 .在你不害怕的时候去斗牛,这不算什么;在你害怕的时候不去斗牛,这没什么了不起;只有在你害怕的时候还去斗牛才是真正的了不起 .行动不一定带来快乐,但无行动决无快乐 .只有一条路不能选择- -那就是放弃之路;只有一条路不能拒绝|| - -那就是成长之路 .坚韧是成功的一大要素,只要在门上敲得够久够大声,终会把人唤醒的 .只要我努力过,尽力过,哪怕我失败了,我也能拍着胸膛说:"我问心无愧 ."用今天的泪播种,收获明天的微笑 .人生重要的不是所站的位置,而是所朝的方向 .弱者只有千难万难,而勇者那么能披荆斩棘;愚者只有声声哀叹,智者却有千路万路 .坚持不懈,直到成功!最||淡的墨水也胜过最||强的记忆 .凑合凑合,自己负责 .有志者自有千计万计,无志者只感千难万难 .我中|考,我自信!我尽力我无悔!听从命运安排的是凡人;主宰自己命运的才是强者;没有主见的是盲从,三思而行的是智者 .相信自己能突破重围 .努力造就实力,态度决定高度 .把自己当傻瓜,不懂就问,你会学的更多 .人的活动如果没有理想的鼓舞,就会变得空虚而渺小 .安乐给人予舒适,却又给人予早逝;劳作给人予磨砺,却能给人予长久 .眉毛上的汗水和眉毛下的泪水,你必须选择一样!假设不给自己设限,那么人生中就没有限制你发挥的藩篱 .公众号:惟微小筑相信自己我能行!任何业绩的质变都来自于量变的积累 .明天的希望,让我们忘了今天的痛苦 .世|界上最||重要的事情,不在于我们身在何处,而在于我们朝着什么方向走 . 爱拼才会赢努力拼搏,青春无悔!。
《探索三角形全等的条件》教案
探索三角形全等的条件一、教学内容《探索三角形全等的条件》是北师大版初中数学七年级下册第四章第三节的内容。
本节共三课时,我所授的第一课时的内容包括(1)经历探索三角形全等的条件归纳总结出“边边边”定理(2)“边边边”定理的运用,(3)三角形的稳定性及应用。
二、教学目标由于学生是初一的孩子,对几何的认识还很限,这是第一次系统的学习三角形,所以根据学生已有的认知基础,以及教学内容的地位和作用,我拟定以下教学目标:(1)知识目标:经历探索三角形全等条件的过程,掌握三角形全等的“边边边”条件并初步学会运用,了解三角形的稳定性及其应用。
(2)能力目标:在探索三角形全等条件的过程中,让学生体验分类的思想有条理地思考、分析、表达、解决问题的能力,逐步培养学生推理意识和能力。
(3)情感目标:鼓励学生敢于实践,勇于发现,大胆探索,合作创新的精神;体会数学在生活中的作用,增强学习数学的兴趣。
三、教学重点:经历探索三角形全等条件的过程。
掌握三角形全等的“边边边”条件并初步学会运用。
四、教学难点:对三角形全等条件的分析和探索。
五、教学媒体:课件。
六、教具学具:自制三角形和四边形模型、学具纸。
七、教学过程:1.找一找:回顾全等三角形相关的知识。
2.想一想:画三角形与已知三角形全等的条件。
3.做一做(1)只给出一个条件.(教师使用多媒体演示引导,学生观察思考在只给出一个条件下作出的三角形是否全等)a.一条边b.一个角(2)两个条件。
(学生在学具纸上按要求动手做图,组内交流相同条件下作出的图形是否全等,然后汇报得出的结论,教师再使用多媒体演示和总结)a.一个角和一条边(一内角30°和一边长3cm的三角形)b.两个内角(一内角30°和一内角50°的三角形)c.两条边(两条边长分别是4cm,6cm)d.学生探索汇报后教师小结上述的情况得到的几个三角形不一定全等(3)三个条件。
学生先讨论给出三个条件画三角形,有哪几种情况?三个内角相等、三条边相等、两条边和一个角相等、两个内角和一条边相等a.比一比三个内角(学生30°,60°,90°的三角尺,先组内交流同等条件下的三角尺比一比是否全等,后与教师同等条件下的三角尺比一比是否全等。
《三角形全等的判定》(边边边)教案
三角形全等的判定(一)一、教学目标1.掌握边边边条件的内容,能应用边边边条件证明两个三角形全等。
2.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程。
3.通过探究三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想、 乐于探究的良好品质以及发现问题的能力。
二、教学重点能应用边边边条件判定两个三角形全等。
三、教学难点探究三角形全等的条件。
四、教学过程1、创设情境,引入新课出示投影片,回忆前面研究过的全等三角形。
已知△ABC ≌△A′B′C′,找出其中相等的边与角。
C 'B 'A 'C B A图中相等的边是:AB=A′B 、BC=B′C′、AC=A′C 。
相等的角是:∠A=∠A′、∠B=∠B′、∠C=∠C′。
展示课作前准备的三角形纸片,提出问题:你能画一个三角形与它全等吗?怎样画?(可以先量出三角形纸片的各边长和各个角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对应角相等.这样作出的三角形一定与已知的三角形纸片全等)。
这是利用了全等三角形的定义来作图.那么是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题。
2、讲授新课1.只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做。
①三角形一内角为30°,一条边为3cm 。
②三角形两内角分别为30°和50°。
③三角形两条边分别为4cm 、6cm 。
学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流。
结果展示:1.只给定一条边时:只给定一个角时:2.给出的两个条件可能是:一边一内角、两内角、两边。
①3cm 3cm 3cm 30︒30︒30︒②50︒50︒30︒30︒③6cm4cm 4cm6cm可以发现按这些条件画出的三角形都不能保证一定全等。
探索三角形全等的条件教学设计
教师引导学生分别 从“角”和“边”的角度 分析有一个条件对应相 等, 有两个条件对应相等 各有几种情形. 教师引导学生共同 完成满足一个条件相等 的情况的探究, 然后指导 学生分组操作, 对满足两 个条件的进行探究, 并在 组内进行交流,讨论,形 成结论. 教师深入小组参与 活动,倾听学生交流,并 帮助, 指导学生比较各种 情况. 由上面几种情形的讨论, 教师引导学生得出正确 的结论: 两个三角形满足 一个或两个条件时, 它们 不一定全等. 本次活动中教师应 重点关注: (1 )学生是否积极的 动手画图; (2 )在比较活动中学 生是否分情况比较, 情况 是否全面; (3 )学生能否根据所 给的条件, 画出不全等的 几个三角形, 进而得出结 论; (4 )学生在活动中的 参与意识和发表见解的 勇气.
教学反思: 1、教的转变 本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共 同研究者,在引导学生画图、测量发现结论后,利用课件直观地展示,激发学生自觉 探究数学问题,体验发现的乐趣。 2、学的转变 学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站 在研究者的角度深入其境。 3、课堂氛围的转变 整节课以“流畅、开放、合作、 ‘隐’导”为基本特征,教师对学生的思维减少干 预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话” 、 “讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环
在画图中, 教师可让 学生试着画图, 在让学生 发现存在的问题, 最后给 出正确的画法. 本次活动中教师应 重点关注: (1 )学生能否根据条 件正确的画出图形; (2 )学生能否根据探 究中发现的规律概括出 结论“SSS” ; (3 )在阐述结论时, 学生的语言是否规范; (4) 学生是否掌握 “SSS” 的书写格式.
初中数学教学课例《探索三角形全等的条件(一)》教学设计及总结反思
(学生分小组画图,学生们可以进行分工合作,可 以让部分学生画两边相等,部分学生画两角相等,另一 部分画一角相等,一边相等。然后在一起互相交流,看 每种情况是否全等,画完之后,教师找每组学生代表回 答。)
生 14:在△ABC 和△AB′C′中,其中∠B=∠B′, ∠C=∠C′,但这两个三角形不全等。(如图 3)
师:我们画三角形需要确定它的两个顶点,我们如 何才能确定△A′B′C′的顶点呢?
生 20:我们先画一条边 B′C′,使 B′C′=BC, 就可以确定两个顶点。
师:点 A′和 B′的距离为多少?,点 A′和 C′的 距离为多少?
生 21:A′B′=AB 师:我们怎样做能使 A′B′=AB。 生 22:以 B′为圆心,以 AB 的长为半径画弧。 师:对同样的道理,我们以 C′为圆心,AC 的长为 半径画弧,两弧交点就 A′,教师演示作图过程,并要 求学生说出三个主要的步骤。 (投影出示)任意画一个△ABC,然后画 △A′B′C′,使 A′B′=AB,B′C′=BC,A′C′= AC。 学生画完图后,将其中一个三角形剪下来,放在另 一个上面,看两个三角形是否全等,并与小组中其他同 学交流意见,教师收集学生作品,并展示学生代表的作 品。 生 23:在△ABC 和△A′B′C′,且 A′B′=AB, B′C′=BC,A′C′=AC,如下图:我将其中一个剪下 来,放在另一个上面,发现它们是完全重合的,所以这
教学过程
生 3:画全等三角形需要满足什么条件?
师:问得好!三角形全等需要什么条件呢?这就是
我们这节课需要研究的问题。
(出示课题)
点评 1:通过投影出示欣赏几幅美丽的图案,让学
生感受美的同时激发学创造美的意识,培养学生学习和
探索的兴趣,调动了学生学习的积极性。
探索三角形全等的条件(1)的教学设计
4.3 探索三角形全等的条件(1)大庆市第44中学刘畅一、教学目标1.知识与技能:掌握三角形全等的“SSS”条件,了解三角形的稳定性。
2.过程与方法:经历观察、猜想、操作,归纳的探究过程。
体会特殊到一般的分析问题方法,和分类的数学思想方法。
3.情感态度与价值观:会有条理的思考,感受逻辑推理的严谨性和数学的美。
二、教学重点、难点1.经历探索过程,从实践中得到三角形全等的“SSS“条件。
并能运用其解决简单问题。
2.对三角形全等条件的分析以及探索思路的选择三、教具、学具多媒体演示、直尺、圆规、量角器、剪刀、卡纸.四、教学过程(一)导入新课1.旧知回顾.教师:(1)上节课学习了图形的全等,回忆一下什么是全等三角形?(2)(参看幻灯片)如图,如果△ABC≌△DEF,那么它们的()相等,()相等。
即满足:AB=(),()=EF,( )=( ), ∠A=( ),( )= ∠E,( )=( )。
2.情境创设教师:要画一个三角形与小明画的三角形全等,需要几个与边或角有关的条件呢?同学们猜想一下,一定要六个条件都满足时,才会使得两个三角形全等吗?这就是本节课所要研究的问题.(回忆三角形全等的有关知识,以及全等三角形的性质。
以此为出发点启发学生大胆猜想:要判定三角形全等,是否需要三组边、三组角都分别相等,即从条件的数量着手来研究,自然进入本节课的探究活动。
)3.引出课题.(板书:4.3探索三角形全等的条件)(二)合作探究探究点一、探索两个三角形全等需要的条件(课前布置:依据下列要求画出并剪下三角形,标清题号。
在本节课的操作比较中,剪下的三角形可以灵活的移动、叠合,对比结果更加直观,便于观察。
)问题1:只给一个条件作三角形,大家画的三角形一定全等吗?问题2:给出两个条件作三角形,有几种可能的情况?每种情况下大家得到的三角形一定全等吗?(1)三角形一个内角30°,一条边长15CM.(2)三角形两个内角分别为30°和50°。
《探索三角形全等的条件》教案设计
《探索三角形全等的条件》教案设计《探索三角形全等的条件》教案设计一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念,以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。
遵循启发式教学原则,采用引探式教学方法。
用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。
《探索三角形全等的条件》说课教案(刘连芳)
初中数学说课-《探索三角形全等的条件》说课教案一、教材分析(一)本节内容在教材中的地位与作用。
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。
它是两三角形间最简单、最常见的关系。
本节《探索三角形全等的条件》是学生在理解三角形的基础上,在了解全等图形和全等三角形以后实行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、两角相等的重要依据。
所以,本节课的知识具有承上启下的作用。
同时,苏科版教材将“边角边”这个识别方法作为五个基本事实之一,说明本节的内容对学生学习几何说理来说具有举足轻重的作用。
(二)教学目标在本课的教学中,不但要让学生学会“边角边”这个全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。
同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。
为此,我确立如下教学目标:(1)经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验。
(2)掌握“边角边”这个三角形全等的识别方法,并能利用这些条件判别两个三角形是否全等,解决一些简单的实际问题。
(3)培养学生勇于探索、团结协作的精神。
(三)教材重难点因为本节课是第一次探索三角形全等的条件,故我确立了以“探究全等三角形的必要条件的个数及探究边角边这个识别方法作为教学的重点,而将其发现过程以及边边角的辨析作为教学的难点。
同时,我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。
(四)教学具准备,教具:相关多媒体课件;学具:剪刀、纸片、直尺。
画有相关图片的作业纸。
二、教法选择与学法指导本节课主要是“边角边”这个基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生实行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。
《探索三角形全等的条件》(第一课时)教学设计
3 0
学 生 3我们 小组 选择 一个角 一条边 . :
教师 : 一一 告诉 学生 需 要 的条 件 具体 是 多 少 , (
中学数 学杂 志
21 0 0年第 8期 教 师 : 个小组 先 说一下 你们 的结 论 ? 哪
要求 按条 件 画 图) . 学生 : 各 自根 据 自己 的条件 画 图 . ( ) 教师 : 完后 , 画 小组 内先进 行 观察 、 比较 , 再与 老
教具 准 备 : 自制三 角形模 型 . 学 生 座位设 计 : 全班 5 人 , 2 每组 4 , 人 共分 1 小 3
组
看 几个 条件 能保证 两个 三角形 全等 .
教 学方 法 : 导 一 探究 式 , 引 小组 合作 交流 .
教 学过 程 :
一
二 、 索过 程 探
( )做 一做 1
学生 8 ( :情绪 兴奋 )我 们 小组 画 的三 角形 都 全
等, 和老 师 的也全 等 .
师手 中的三角 形进行 比较 , 能得 出什 么结论 ? 你 学生 4: 们 小 组 画 的 图有 的 全 等 , 的不 全 我 有
等.
教师 : 其他 小组 还有 其他 的结论 吗 ? 学生 :全体 学 生一致 同意 学生 8的意见 ) (
舞 £届§09 毽
y(x 2 4 一9 y )=xy ( +3 ) 2 Z 2 y ( 一3 ) y
中学 数学杂
2 1 第 8期 0 0年
点 评 这 儿 的 两 个小 题都 是分 解 因式 的综 合
师 : 否将 上述两 种不 同方法 作一个 比较 ? 能 生 1 : 一种方 法是先 用 平 方差 公式 之 逆再 提 6第 取公 因式 , 第二种 方 法 是先 提 取 公 因式 再 用 平 方差 公式 .相对来 说先 提取公 因式 后更 易于用 平方差 公
北师大版七下数学4.3探索三角形全等的条件(第1课时)教案
北师大版七下数学4.3探索三角形全等的条件(第1课时)教案一. 教材分析《北师大版七下数学4.3探索三角形全等的条件》这一课时,是在学生已经掌握了三角形的基本概念、性质以及三角形相似的基础上进行教学的。
本节课的主要内容是让学生通过观察、操作、猜想、验证等过程,探索并掌握三角形全等的条件,培养学生的动手操作能力、观察能力、推理能力及合作交流能力。
二. 学情分析七年级的学生已经具备了一定的几何图形基础,对三角形有一定的了解。
但是,对于三角形全等的概念和判定条件,学生可能还比较陌生。
因此,在教学过程中,教师需要引导学生通过观察、操作、猜想、验证等方法,自主探索三角形全等的条件,从而提高学生的学习兴趣和积极性。
三. 教学目标1.知识与技能目标:让学生掌握三角形全等的条件,能运用三角形全等的条件判断两个三角形是否全等。
2.过程与方法目标:通过观察、操作、猜想、验证等过程,培养学生的动手操作能力、观察能力、推理能力及合作交流能力。
3.情感态度与价值观目标:让学生在探索过程中体验到数学的乐趣,培养学生的团队合作精神,增强学生对数学学科的学习兴趣。
四. 教学重难点1.教学重点:三角形全等的条件。
2.教学难点:如何引导学生探索并理解三角形全等的条件。
五. 教学方法1.情境教学法:通过设置具体的问题情境,激发学生的学习兴趣,引导学生主动参与课堂。
2.启发式教学法:在教学过程中,教师提出问题,引导学生思考、讨论,从而达到理解三角形全等的目的。
3.合作学习法:学生进行小组合作,培养学生的团队合作精神,提高学生的学习效果。
六. 教学准备1.教师准备:教师需要提前准备好相关的教学材料,如PPT、几何图形等。
2.学生准备:学生需要预习相关的内容,了解三角形的基本概念和性质。
七. 教学过程1.导入(5分钟)教师通过向学生展示一些生活中的三角形图片,引导学生回顾三角形的基本概念和性质。
然后,教师提出问题:“你们认为,什么样的两个三角形可以称为全等三角形?”2.呈现(10分钟)教师通过PPT展示三角形全等的定义和判定条件。
3.3 探索三角形全等的条件(SAS)一等奖创新教学设计
3.3 探索三角形全等的条件(SAS)一等奖创新教学设计《4.3.3探索三角形全等的条件》教学设计一、教学内容分析本节课选自北师大版《七年级数学下册》第四章第三节探索三角形全等的条件第三课时,本节课探索第三种判定方法—“边角边”,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,以“问题串”的形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析学生的知识技能基础:学生在前两节中,已经了解了图形的全等,探索了三角形全等的条件,这已是第三个课时。
在前两课时中,学生通过画图、观察、比较、交流等方式探索到了三角形全等的一些条件。
探讨的步骤学生已很熟悉,也很有激情,教师可以因势利导,引导学生更进一步探索三角形全等的另外一些条件。
学生在探讨过程中,一定会遇到“两边及一边的对角”的条件,有很多学生难于发现其错误所在,教师应适当指点迷津,与学生友好合作,引导学生到达成功的彼岸。
已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了探索三角形全等的条件的活动,通过拼小木棒、画图、等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想建构主义学习论主张教师提供大量的素材,学生利用资源建构自己的知识体系。
我们的教学设备齐全,学生学习基础较好,在这之前他们已了解了三角形全等的三种判定方法,并且积累了探究三角形全等的条件的活动经验,为再探究“边角边”做好了充足的准备。
另外,学生也基本具备了利用已知条件画出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。
遵循启发式教学原则,采用引探式教学方法。
探索三角形全等的条件(1)的教学设计
1.3 探索三角形全等的条件(1)一、教学目标1.经历探索三角形全等条件(SAS)的过程,体会从特殊到一般的分析问题的方法,积累数学活动经验.2.会利用“SAS”定理判断两个三角形是否全等.3.能结合具体的问题和情境,进行有条理的思考,会用“因为……所以……”的表达方式进行简单的说理.4.培养学生积极主动参与探索的意识以及观察能力.二、教学重点、难点1.在实践中理解:“SAS”定理是判断两三角形全等的一个基本事实;2.会利用“SAS”定理及图形的变换判别两个三角形全等.三、教具、学具多媒体演示、几何画板、直尺、圆规、量角器、卡纸.四、教学过程(一)创设情境观看几何画板动画演示《一朵花的绽放过程》,思考:这个图案是如何形成的?(经过图形的旋转而形成,图形的旋转只改变了图形的位置,没有改变图形的大小和形状,所以,图案中的三角形彼此全等.)1.回顾.教师:两个能重合的三角形是全等三角形,如果两个三角形全等,那么它们的对应边相等,对应角相等.2.问题.反过来,两个三角形有多少对边或角分别相等时,这两个三角形就全等呢?这就是本节课所要研究的问题.(回顾全等三角形的定义,这也是学生仅有的以“形”为出发点,判断两个三角形全等的依据.而全等的性质启发我们:是否可以从基本元素的“数量”研究出发,探索判断三角形全等的更为科学的数学方法?)3.引出课题.(二)探索活动活动1:用一张长方形纸剪一个直角三角形(不沿对角线),如何剪最简单?(1)任意剪1个直角三角形,通过重叠、比较:同学们剪得的三角形都全等吗?(2)找出小组同学剪得的三角形中,最小的一个,组内同学再次动手,剪出与之全等的三角形.思考:回顾以上操作过程,想一想:确定两个直角三角形全等的因素是什么?(用长方形纸剪直角三角形的方法较多,应让学生发表意见,得出一种最为简便的方法再动手剪.第一次剪裁,由于两条直角边的长度是不确定的,所以学生剪得的三角形不一定全等.第二次剪裁,有了统一的标准后,学生自然想到通过叠合或者度量的方法,确定两条直角边长,从而使得组内同学的三角形均全等.在层层探索中,使学生明三角形全等.)交流讨论:组长分发课堂活动单1,独立思考,完成活动单,再在组内交流讨论.(活动单1)如图,△ABC与△DEF、△MNP能完全重合吗?(活动1的延伸和拓展,体现由特殊到一般的研究问题的方法.引导学生先观察,作出猜想,然后再用工具测量验证猜想是否正确.培养学生观察、猜想、动手操作和做出正确判断的能力,进一步理解:两边及其夹角相等的两个三角形全等.)思考:以上结论对于任意的三角形都适用吗?让我们用更为一般的方法进行检验.活动2:组长分发课堂活动单2,独立思考,完成活动单,再在组内交流讨论.B按下列作法,用直尺和圆规作△ABC ,使∠A =∠α,AB =a ,AC =b .1.作∠MAN =∠α;2.在射线AM 、AN 上分别作线段AB =a ,AC =b ;3.连接BC .要求:将所作三角形画在卡纸上,并剪裁下.任意收集几位同学剪下的三角形,通过叠合、比较,你有什么发现?通过以上3个活动,你对判断两个三角形全等的条件有什么认识?(以上活动层层递进,在实践中建立了对于判断两三角形全等的基本事实的认识.)(三)知识生成实践告诉我们判断两个三角形全等的一个基本事实:两边及其夹角分别相等的两个三角形全等(可简写为“边角边”或“SAS ”).几何语言:在△ABC 与△A 'B 'C '中,AB =A 'B '(边),∠B =∠B '(角),BC =B 'C '(边),∴△ABC ≌△A 'B 'C '(SAS ).(规范书写符号语言,培养学生的符号意识和有条理的表达、说理的能力.)(四)知识运用1.练一练:找出图中的全等三角形,并说明理由.B (3)(2)(设计本题,重点不在于找全等,而在于锻炼学生熟练的利用基本事实说明判断全等的理由,教会学生,解决数学问题,要知其然,更要知其所以然.)2.例题精讲.求证:△ABC≌△ADC.A分析:已知中已经具备了一边一角对应相等的条件,要想证得全等,就必须再找一组边对应相等的关系,由图可知,公共边AC即为构造全等的第三个条件.证明:在△ABC与△ADC中,AB=AD(已知),∠BAC=∠DAC (已知),AC=AC(公共边),∴△ABC≌△ADC(SAS).问题:其中一个三角形经过怎样的图形运动,可以与另一个三角形重合呢?(利用几何说理,证明全等,同样也可以借助图形的运动变换,更为直观的感受图形全等的关系,引导学生从中体会,让图形动起来也是研究几何问题的有效方法.)(五)开放思维小组合作:利用手中的三角形拼图,合理设计问题,并邀请你的同学用本节课所学的知识解决问题.(本环节对学生而言具有一定的挑战性.借助拼图,发展学生的几何直观能力,根。
《探索三角形全等的条件(1)》教学设计
第一章三角形1.3.1 探索三角形全等的条件〖教学目标〗1.知识与技能:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.数学思考:在探索三角形全等的条件及其运用的过程中,能进行有条理的思考,体会分析问题的一种思想――分类思想在数学活动中的应用,积累数学活动经验。
3.解决问题:经历探索三角形全等的条件的过程,体会运用操作、归纳获取数学结论的方法,初步形成解决问题的基本策略。
4.情感与态度:通过探索活动,体验数学知识在现实生活中的广泛应用,培养学生勇于探索、敢于创新的精神。
〖教材分析〗1.对于全等三角形的研究是在全等图形的基础上进行的,是对两个封闭图形关系研究的开始。
三角形全等是两个三角形间最简单、最常见的关系,其内容在本章乃至整个初中数学中占有非常重要的基础性地位。
三角形全等的条件是三角形全等的主要内容,是应用全等三角形解决问题的前提。
而三角形全等条件的探索不仅能使学生深入理解三角形全等的条件,更能使学生体会分析问题、解决问题的方法。
2.教材的重点:三角形全等条件的探索过程。
教材从设置情境提出问题,到动手操作、交流,直至归纳得出结论,整个过程力图使学生不仅得到两个三角形全等的条件,更重要的是经历知识的形成过程,体会一种分析问题的方法,积累了数学活动经验,这将有利于学生更好地理解数学、应用数学。
教材难点:三角形全等条件的探索过程中,特别是提出问题后,学生面对开放性问题,要做出全面、正确的分析,并对各种情况进行讨论。
而初一学生还不具备独立系统地推理论证几何问题的能力,思维有一定的局限性,考虑问题不够全面,因此对初一学生有一定的难度。
〖学校及学生状况分析〗我们所在的学校处于城区,不仅教学设备齐全,而且学校积极组织教师参与课程及教法的改革,并取得了一定的成绩。
我校学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
《探索三角形全等的条件》__教案
《探索三角形全等的条件》——精品教案省市县名称黑龙江省大庆市肇源县网络班级数学53班任职学校头台中学姓名范明双作业内容《探索三角形全等的条件》教学设计教学内容:北师大版数学七年级下册第五章《三角形》第四节《探索三角形全等的条件》第一课时。
教学目标:1、经历探索三角形全等条件的过程,掌握三角形全等的“边边边”条件并初步学会运用,了解三角形的稳定性及其应用。
2、在探索三角形全等条件的过程中,体验分类讨论的数学思想,体会利用操作、归纳获得数学知识;让学生学会有条理地思考、分析、解决问题的能力,培养学生推理意识和能力,发展学生的空间观念。
3、培养学生敢于实践、勇于发现、大胆探索、合作创新的精神;体会数学在生活中的作用,增强学习数学的兴趣,树立学好数学的信心。
教学重点、难点:重点:三角形全等条件的探索和应用。
难点:探究全等三角形条件的过程及其准确的分类。
教法学法:教法:启发、组织、引导、演示作业内容学法:自主探究、合作交流教学准备:教具:相关多媒体课件;学具:剪刀、纸片、直尺、一副三角板、木条、钉子等。
教学过程:(一)创设情境,引入新课首先,出示一个实际问题:小明不小心打破了一块三角形玻璃,碎片如图所示(课件出示):问能不能带图中某一块到商店做一块与原来三角形玻璃一样的玻璃?【设计意图:新课初始设计生活问题引发学生思考,激发学生的学习兴趣,又把数学与生活紧密相联系,引导学生学有用的数学。
】接着,教师组织学生讨论,分析,引导学生进入主题:探索三角形全等的条件。
(板书课题)(二)引导探究,实验操作,归纳总结。
活动一:让学生通过动手操作,只给一个条件,即一条边或一个角不能判断两个三角形全等并在黑板上展示。
师通过几何画板演示。
活动二:只给两个条件,先让学生展开讨论,分析有几种情况:即边边、边角、角角,再由各小组自行探索。
同样让学生通过动手操作,师进行指导,在黑板上展示,作业内容再观察几何画板动画,最终得到只给两个条件不能判断两个三角形全等。
《探索三角形全等的条件》(第1课时) 教案
课题第11章图形的全等课时分配本课(章节)需 5 课时本节课为第 1 课时为本学期总第课时11.3探索三角形全等的条件(1)教学目标(1)知识与技能目标:让学生懂得三角形全等必须具备三个条件;理解“边角边”公理,学会用它来判定两个三角形全等。
(2)数学思想方法和数学思维能力发展目标:让学生学会有条理地思考、分析、解决问题的能力,培养学生推理、应用能力和空间想象能力。
(3)数学品质与数学素养培养目标:让学生学会大胆探索、善于归纳、应用、培养学生个性,优化学生数学思维品质。
重点掌握三角形全等的“边角边”条件。
难点正确运用“边角边”条件判定三角形全等,解决实际问题。
教学方法讲练结合、探索交流课型新授课教具投影仪教师活动学生活动复习引入:前面我们已经学习了什么是全等三角形,掌握了全等三角形的性质——对应边相等、对应角相等,现在又有一个新的问题。
要想画出一个与下图全等的三角形,你准备怎么做?新课讲解:同学们会说这需要量一下这个三角形的边长和内角的度数,那么请问:你准备量哪几条边长,哪几个内角的度数?能尽量少吗?学生回答由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充.B CA我们一起来分析: 只知道一个条件(一条边或一个角)画三角形,能保证画出的三角形与△ABC 全等吗?知道两个条件画三角形,有几种可能的情况?(两条边或两个角或一条边和一个角)每种情况下作出的三角形一定与△ABC 全等吗?我们来试一次。
量得△ABC 中,BC=3cm ,∠B=50°,画画看。
还是不行,当然如果我们只知道△ABC 中其它两个条件,例如只知道两个角的度数,也还是不能保证作出的三角形与△ABC 全等。
有兴趣的话可以课后试试。
如果知道三个条件画三角形,你能说出有哪几种可能的情况?(有四种可能:三条边、三个角、两边一角和两角一边) 做一做:在△ABC 中,已知∠A=70°,∠B=50°,∠C=60°,你能画出一个与△ABC 全等的三角形吗?(不能,因此三个内角对应相等的两个三角形不一定全等) 在△ABC 中,已知AB=2.8cm ,∠A=70°,AC=2.5cm ,你能画出一个与△ABC 全等的三角形吗?两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS ”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七(下)第三章三角形3探索三角形全等的条件(第1课时)九江市鹤湖学校(李江飞、袁唐民、帅启凤、李广义)一、学生知识状况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等和全等三角形等,对本节课要学习的三角形的稳定性和三角形全等条件中的“边边边”来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形的全等和全等三角形的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析教科书基于学生对三角形全等的认识,提出了本课的具体学习任务:了解三角形的稳定性和经历探索三角形全等条件的过程,掌握三角形全等“边边边”的条件,并能应用这一条件解决一些实际的问题。
但这仅仅是这堂课外显的具体教学目标,本课内容从属于“空间与图形”这一数学学习领域,因而务必服务于“空间与图形”的总体目标:“学生将探索基本图形的基本性质及其相互关系,进一步丰富对空间图形的认识和感受”,同时也应力图在学习中逐步达成学生的有关情感态度目标。
为此,本节课的教学目标是:(1)知识与技能:了解三角形的稳定性,三角形全等“边边边”的条件,经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;(2)过程与方法:使学生在自主探索三角形全等的过程中,经历画图、观察、比较、交流等过程,从而获得正确的学习方式和良好的情感体验。
(3)情感与态度:培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。
三、教学过程分析本节课设计了七个教学环节:课前准备、情境引入、合作学习、课内链接、课堂小结、问题解决、布置作业。
第一环节课前准备活动内容:动手操作(前一个双休日布置。
课堂上要用到的三角形、四边形等模型,在课堂上现场制作有一定的困难,且时间也较长,所以要求学生提前准备。
学生可以个人,也可以以小组为单位准备。
)以4人活动小组为单位,要求学生每小组制作完成三角形、四边形、五边形和六边形四个模型材料:若干小木条(或硬纸板),钉子(大头钉)活动目的:通过此活动,培养学生的动手能力,在实践操作中对于三角形形状的固定有初步的认识,再在教学中鼓励学生思考三角形为什么具有稳定性,逐步树立推理意识。
在实际操作中培养学生善于观察、乐于探索的学习品质及与他人合作交流的意识;实际教学效果:实际教学时,在学生探索完三角形全等的条件“边边边”后,再讨论三角形所具有的性质时,拿出此模型。
学生拿出了自己制作的模型,虽然制作有些粗糙,但有亲手制作的模型,学生更愿意参与到讨论中来,效果要明显优于教学模型,尤其是对比可以动来动去的四边形、五边形、六边形来说,学生在摆弄之中,更能深刻的体会出只有三角形具有稳定性。
第二环节情境引入活动内容:出示幻灯片,两个全等的三角形,让学生找出其中相等的边和角,复习全等三角形所具有的性质。
然后提出问题:要画一个三角形与小明画的三角形全等需要什么条件?一定要知道所有的边长和所有的角度吗?条件能否尽可能的少?是需要一个条件?两个条件?三个条件?还是更多的条件?活动目的:通过复习,使学生回忆起所学的和三角形全等相关的一些性质和概念。
并通过问题的提出引导学生思考,鼓励学生通过画图、观察、比较、推理、交流等方式,在条件由少到多的过程中逐步探索出最后的结论。
实际教学效果:学生积极投入思考,开篇就为学生创设了一个自由、宽松的讨论氛围。
第三环节合作学习活动内容:一、做一做.1. 只给一个条件(一条边或一个角)画三角形时,大家画出的三角形一定全等吗?2. 给出两个条件画三角形时,有几种可能的情况?每种情况下作出的三角形一定全等吗?分别按照下面的条件做一做。
(1) 三角形的一个内角为30°,一条边为3cm;(2) 三角形的两个内角分别为30°和 50°;(3) 三角形的两条边分别为4cm,6cm.二、议一议.如果给出三个条件画三角形,你能说出有哪几种可能的情况?三、做一做.1.已知一个三角形的三个内角分别为40°,60°和80°,你能画出这个三角形吗?把你画的三角形与同伴画出的进行比较,它们一定全等吗?2.已知一个三角形的三条边分别为4cm,5cm和7cm,你能画出这个三角形吗?把你画的三角形与同伴画出的进行比较,它们一定全等吗?活动目的:以问题串的形式引导学生逐步深入的思考可以使三角形全等的条件,问题的提出从条件的由少到多,由简到繁,一步步深入、引导,通过一系列的活动最终得出正确的结论。
实际教学效果:对于只给出一个条件时结论是显而易见的。
因此,只需学生想象此时的情况即可,无需实际画出三角形。
当给出两个条件时,学生也不难得出结论,教学中让学生实际去画一画,感受反例的作用。
这时学生发现两个条件都不能使结论成立,那么三个条件呢?引出议一议。
由于三个条件的组合较多,所以,先让学生组合一下条件。
组合时提醒学生按照一定的顺序、规律进行,不重不漏。
让学生在讨论的过程中体验分类的思想。
讨论出结果后,本节课只研究三个角和三条边的情况,也就是第二个做一做。
对于已知三个内角的情况,学生能比较容易的举出反例。
而对于已知三边的研究则是本节课的重点,也是难点。
由于七年级学生在作图方面没有太深的基础,所以这里的作图,可以利用一切可以利用的工具,如:直尺,量角器,等等。
每人完成后,先小组比较,然后全班比较,根据它们都重合的特点,使学生承认“边边边”的条件。
(这里有的学生可能在作图上有困难,如果出现困难,可以用小木条、细纸条等摆一摆。
) 第四环节 课内链接活动内容:1. 两个锐角对应相等的两个直角三角形全等吗?为什么?2. 已知:如图AB=CD,AD=BC ,E ,F 是BD 上两点,且AE=CF, DE=BF, 那么图中共有几对全等的三角形?说明理由.3. 已知:如图AB=CD,AD=BC.则∠A 与∠C 相等吗?为什么?活动目的:巩固练习,对课上的探索结论有更深一步的认识。
例1的设计是使学生练习使用举反例这一解题方法,对于这类可以猜想出结论是否定答案的题,可以提示学生尽量去选择身边常见的较为简单的例子作为反例,例如这道题,就可以引导学生观察大小不同的两个三角板。
学生善于发现、找到这些简单的例子,有助于学生更好的应用举反例的方法。
通过例2,例3主要是让学生练习去应用本节课学习的利用三边判定全等的方法。
并在例3中给出完整的答案,指导学生答题要规范。
实际教学效果: 例1较为简单,一般的学生都能想到这两个直角三角形不全等,一部分学生可以举出较简单的例子;例题2,学生可以通过观察法先得出结论,然后结合本节课的学习内容作出口答;例3较为复杂,对于一般学生很难马上想到,这时,教师可以给出较为详尽的分析,帮学生屡清思路,并板演解题过程。
第五环节 课堂小结活动内容: 让学生自己谈收获,可以是知识方面的,也可以是探索方法的,DDQ P应鼓励学生从多方面思考问题。
活动目的:教师带领,回顾反思本节课对知识的研究探索过程,小结方法及相关结论,提炼数学思想,掌握数学规律。
实际教学效果:给学生一定的时间去反思回顾,启发学生从知识技能、数学方法、情感态度进行总结,让学生们畅所欲言,培养学生的归纳、概括能力。
然后老师点评,使学生在获得知识的同时,学会数学方法,增强学习兴趣和合作意识。
第六环节 问题解决活动内容:仪器ABCD 可以用来平分一个角,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们落在角的两边上,沿AC 画一条射线AE ,AE 就是∠PRQ 的平分线。
你能说明其中的道理吗? 活动目的:再次渗透分类的数学思想,体会分析问题的方法,积累数学活动的经验实际教学效果:对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理过程。
对一般学生要求口头表达理由,并能说明每一步的根据。
第七环节 布置作业作业分为必做题和选做题,必做题属于知识性的,可以巩固练习本节课的教学内容及相关方法;选作题有一定难度,且结合实际情况,有些学生不方便上网的,可以不做这一部分的习题。
1.必做题(1) P183:6;(2)一个四边形的门框,为使其牢固,请用木条加固,你能找出几种方法?最少用几根木条?2.选做题(1)网上查找一些有关三角形稳定性的例子;(2)你能否利用本节课的探索方法,找出其它可以使三角形全等的条件。
四、教学设计反思1. 给学生展示自我的空间。
本节课的设计本着以教师为主导、学生为主体,以知识为载体、培养学生的思维能力为重点的教学思想。
教师以探究任务引导学生自学自悟的方式,提供给学生自主合作探究的舞台。
在经历知识的发现过程中,培养了学生分类、探究、合作、归纳的能力。
课堂上把激发学生学习热情和获得学习的能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度。
2. 在课堂上要给予学生充分的时间去思考、动手实践,而不是使合作流于形式。
要把合作交流的空间真正的还给学生。
教师在课堂中还要照顾到每一名学生,让全体的学生都动起来。
在把他们的结论互相比较之前,应该留给学生足够的时间,使大部分的学生都能完成画图的工作,不能以一些思维活跃的学生的完成时间作为标准,剥夺了其他学生的操作时间。
教师还应对画图有困难的学生给予适当的指导。
3. 本节课教学内容比较丰富,具体操作时间相对比较紧张,对教学环节恰当的调控可以有效的完成本节课的教学目标,预见性的对于整体合作较快的集体,可以把课前准备的部分安排在课上;如果课上进行的较慢,则可以适当的删减课内链接的那一部分习题,着重于知识理论的建立。