三角形全等的条件教案教案
全等三角形的判定教案
全等三角形的判定教案一、教学目标1. 知识目标:了解全等三角形的判定条件。
2. 能力目标:能够应用判定条件判断两个三角形是否全等。
3. 情感目标:培养学生对几何图形的兴趣和喜好。
二、教学内容1. 全等三角形的判定条件:SSS、SAS、ASA、RHS。
2. 全等三角形的性质。
3. 三角形全等的几何证明。
三、教学过程1. 导入新知:复习三角形的基本知识,提问学生“什么是全等三角形?”引导思考。
2. 学习新知:a. 讲解全等三角形的判定条件:SSS、SAS、ASA、RHS,并进行案例分析。
b. 教师通过幻灯片或手绘,向学生介绍全等三角形的性质。
3. 学生探究:a. 学生小组讨论并验证两个三角形是否全等,使用全等三角形的判定条件。
b. 学生使用尺木、剪纸等实物进行实践操作,通过构造全等三角形来观察和验证全等三角形的性质。
4. 拓展应用:a. 学生自主解决一些应用问题,如平面解析几何中的全等三角形问题,运用全等三角形判定进行证明。
b. 学生以小组形式完成一些综合性的任务,如设计一个拼图游戏,要求将一些全等三角形拼凑成一个大三角形。
5. 总结归纳:a. 教师对全等三角形的判定条件及性质进行归纳总结,并让学生进行讨论补充。
b. 教师提问学生“如何判断两个三角形是否全等?”并让学生进行回答。
6. 练习巩固:a. 学生独立完成课后作业,巩固全等三角形判定的知识。
b. 学生小组互相出题,选择合适的判定条件进行判断。
四、教学评价1. 观察学生在学习过程中的参与度和合作程度。
2. 收集学生的练习作业,查看他们是否掌握了全等三角形的判定条件。
3. 通过学生独立解决应用问题的能力和创造性,评价他们的学习成果。
三角形全等判定的教案
画法:1画线段bc=4
2分别以a、b为圆心,以2和3为半径作弧,交于点c。则△abc即为所求的三角形
把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否互相重合?
归纳:有三边对应相等的两个三角形全等.
可以简写成“边边边”或“ sss ”用数学语言表述:
在△abc和△ def中
∴ △≌△ def(sss)
(二)新课讲解:
问题1:如图:在△abc和△def中,ab=de,bc=ef,ac=df, ∠a=
∠d, ∠b=∠e, ∠c=∠f,则△abc和△def全等吗?
问题2: △abc和△def全等是不是一定要满足
ab=de,bc=ef,ac=df, ∠a=∠d, ∠b=∠e, ∠c=∠f这六个条
件呢?若满足这六个条件中的一个、两个或三个条件,这两个三角
满足三个条件有几种情形呢?
3.给出三个条件
三个条件可分为:三条边相等、三个角相等、两角一边相等、两边一
角相等
例:画△abc,使ab=2,ac=3,bc=4
画法:1画线段bc=42分别以a、b为圆心,以2和3为半径作弧,交于点c。
则△abc即为所求的三角形
把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否
1、如图,d、f是线段bc上的两点,
ab=ec,af=ed,要使△abf≌△ecd,还需要条件
2、已知:b、e、c、f在同一直线上, ab=de,ac=df a
并且be=cf,
求证: △ abc≌ △ def
小结:1、本节所讲主要内容为利用“边边边”证明两个三角形全等。
2证明三角形全等的书写步骤。3证明三角形be全等应注意的问题。
我们知道如果两个三角形的对应边、对应角都相等,那么这两个三角形全等。判定两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?
人教版八年级上册12.2.3三角形全等的条件(ASA、AAS)教案
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形全等的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对ASA和AAS全等条件的理解。我希望大家能够掌握这些知识点,并在解决实际问题中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
人教版八年级上册12.2.3三角形全等的条件(ASA、AAS)教案
一、教学内容
人教版八年级上册12.2.3节,本节课主要围绕三角形全等的条件(ASA、AAS)展开教学。内容包括:
1.掌握全等三角形的定义及性质;
2.理解并掌握“角-边-角”(ASA)全等条件;
3.理解并掌握“角-角-边”(AAS)全等条件;
-在证明过程中,强调步骤的完整性、逻辑性,示范正确的证明方法,并让学生多加练习,逐步提高证明能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《三角形全等的条件(ASA、AAS)》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断两个三角形是否完全一样的情况?”比如,在修补破损的三角板时,我们需要找到一块与原来完全一样的三角形板。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三角形全等的奥秘。
3.提升学生的数据分析能力,使学生能够从实际问题中提取几何信息,运用全等三角形的性质进行分析和解决问题;
4.培养学生的数学建模素养,通过构建全等三角形的模型,让学生体会数学与现实生活的联系,提高解决实际问题的能力。
三、教学难点与重点
1.教学重点
三角形全等的判定“边角边”判定定理教案
三角形全等的判定-“边角边”判定定理教案一、教学目标1. 让学生理解三角形全等的概念,掌握三角形全等的条件。
2. 引导学生学习“边角边”判定定理,并能运用该定理判断三角形是否全等。
3. 培养学生的观察能力、思考能力和动手操作能力。
二、教学内容1. 三角形全等的概念2. “边角边”判定定理3. 运用“边角边”判定定理判断三角形全等三、教学重点与难点1. 教学重点:三角形全等的概念,“边角边”判定定理及其运用。
2. 教学难点:三角形全等的判断过程,运用“边角边”判定定理时的思路。
四、教学方法1. 采用问题驱动法,引导学生探究三角形全等的条件。
2. 运用案例分析法,让学生通过观察、操作、思考,掌握“边角边”判定定理。
3. 采用小组合作学习法,培养学生的团队协作能力和沟通能力。
五、教学过程1. 导入:通过复习三角形的基本概念,引导学生思考三角形全等的条件。
2. 新课:介绍三角形全等的概念,讲解“边角边”判定定理。
3. 案例分析:展示三角形全等的实例,让学生运用“边角边”判定定理进行判断。
4. 课堂练习:设计相关练习题,让学生巩固所学知识。
5. 总结:对本节课的内容进行总结,强调三角形全等的判断方法。
6. 作业布置:布置相关作业,巩固所学知识。
教学反思:本节课通过问题驱动法和案例分析法,引导学生探究三角形全等的条件,并运用“边角边”判定定理进行判断。
在教学过程中,注意调动学生的积极性,培养学生的观察能力、思考能力和动手操作能力。
采用小组合作学习法,培养学生的团队协作能力和沟通能力。
通过课堂练习和作业布置,巩固所学知识。
在教学反思中,要关注学生的掌握情况,针对性地进行教学调整。
六、教学拓展1. 引导学生思考:除了“边角边”判定定理,还有哪些判定三角形全等的方法?2. 介绍其他判定三角形全等的方法:a. 角角边(AAS)判定定理b. 角边角(ASA)判定定理c. 边边边(SSS)判定定理3. 分析各种判定方法的适用范围和条件。
12.2三角形全等的判定SAS(教案)
1.理论介绍:首先,我们要了解SAS全等判定的基本概念。SAS是指两个三角形中有两边和它们之间的夹角分别相等,那么这两个三角形全等。它是解决几何问题的重要工具,帮助我们确定两个三角形的完全一致性。
2.案例分析:接下来,我们来看一个具体的案例。假设在两个三角形中,我们已知两边长度相等,以及它们之间的夹角也相等,通过SAS判定,我们可以确定这两个三角形是全等的。
2.掌握运用SAS判定两个三角形全等的具体步骤。
3.能够运用直尺和圆规作出符合条件的全等三角形。
4.解决实际问题,如运用SAS判定方法判断两个三角形是否全等,并解释其在现实生活中的应用。
5.通过例题和练习,加深对SAS判定全等三角形方法的理解,培养几何逻辑思维和解决问题的能力。
二、核心素养目标
本节课的核心素养目标旨在培养学生以下能力:
-掌握SAS全等判定的步骤:学生应学会如何通过以下步骤应用SAS判定全等:a)确认两个三角形中有两边相等;b)确认这两边的夹角相等;c)确认第三边也相等。
-应用SAS全等判定解决具体问题:学生应能够将SAS全等判定应用于解决实际几何问题,如计算未知长度或角度等。
-举例解释:如在三角形ABC和三角形DEF中,若AB=DE,AC=DF,且∠BAC=∠EDF,则根据SAS全等判定,三角形ABC和三角形DEF全等。
3.重点难点解析:在讲授过程中,我会特别强调SAS判定中“边角边”的顺序和角的定位。对于难点部分,我会通过举例和比较来帮助大家理解,例如,讲解为何SSA不能判定全等,而SAS可以。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形全等判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。学生们用直尺和圆规尝试作出符合SAS全等条件的两个三角形。
数学全等三角形教案8篇
数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。
初中数学《全等三角形》教案优秀6篇
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、
全等三角形教学设计优秀4篇
全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。
遵循启发式教学原则,采用引探式教学方法。
用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。
全等三角形教案6篇
全等三角形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!全等三角形教案6篇我们的教案需要定期更新以反映新的教育趋势,教师编写教案不仅促进了自我管理,还增强了他们的教育专业素养,以下是本店铺精心为您推荐的全等三角形教案6篇,供大家参考。
三角形全等的判定SAS教案
三角形全等的判定SAS教案一、教学目标:1. 让学生理解三角形全等的概念,掌握三角形全等的条件。
2. 引导学生学会使用SAS(边-角-边)定理判定两个三角形全等。
3. 培养学生的观察能力、操作能力和推理能力。
二、教学内容:1. 三角形全等的定义。
2. SAS定理的内容及其证明。
3. SAS定理在实际问题中的应用。
三、教学重点与难点:1. 教学重点:三角形全等的概念,SAS定理的判定方法。
2. 教学难点:SAS定理的证明,以及在实际问题中的应用。
四、教学方法:1. 采用讲授法,讲解三角形全等的定义和SAS定理。
2. 采用演示法,展示三角形全等的判定过程。
3. 采用练习法,让学生通过实际操作,巩固所学知识。
五、教学过程:1. 导入新课:通过复习三角形相似的概念,引出三角形全等的概念。
2. 讲解三角形全等的定义,让学生理解全等的含义。
3. 讲解SAS定理的内容,让学生掌握判定两个三角形全等的条件。
4. 进行演示,展示三角形全等的判定过程,让学生直观地理解SAS 定理。
5. 布置练习题,让学生运用SAS定理判断两个三角形是否全等。
6. 总结本节课所学内容,强调三角形全等的重要性。
7. 布置课后作业,巩固所学知识。
六、教学评价:1. 通过课堂提问,检查学生对三角形全等概念的理解程度。
2. 通过课堂练习,评估学生运用SAS定理判断三角形全等的能力。
3. 通过课后作业,检验学生对课堂所学知识的巩固情况。
七、教学反馈:1. 课堂提问环节,学生对三角形全等概念的理解较为扎实,但部分学生对SAS定理的证明过程尚有疑惑。
2. 课堂练习环节,大部分学生能够正确运用SAS定理判断三角形全等,但少数学生在实际应用中仍存在一定的困难。
3. 课后作业反馈,大部分学生能够熟练运用SAS定理解决相关问题,但仍有部分学生在解题过程中出现错误,需加强练习和指导。
八、教学改进:1. 针对学生对SAS定理证明过程的疑惑,可通过举例说明和课后辅导,帮助学生理解证明的依据和方法。
三角形全等的判定教案 三角形全等的判定教学设计
三角形全等的判定教案三角形全等的判定教学设计角形全等的判定教案三角形全等的判定教学设计篇一目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。
重点:sss公理、灵活地应用学过的各种判定方法判定三角形全等。
难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中较适当的方法判定两个三角形全等。
用具:直尺,微机方法:自学辅导过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你较少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。
于是要引导学生,抓住问题的本质:三角形的三个元素――三条边。
2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。
然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。
(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。
应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)(3)、此公理与前面学过的公理区别与联系(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。
在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
全等三角形教案(5篇)
全等三角形教案(5篇)全等三角形教案(5篇)全等三角形教案范文第1篇教学目标:1、学问目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能娴熟找出两个全等三角形的对应角、对应边。
2、力量目标:(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析力量;(2)通过找出全等三角形的对应元素,培育同学的识图力量。
3、情感目标:(1)通过感受全等三角形的对应美激发同学喜爱科学勇于探究的精神;(2)通过自主学习的进展体验猎取数学学问的感受,培育同学勇于创新,多方位端详问题的制造技巧。
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发觉这两个三角形有什么奇妙的关系吗?一般同学都能发觉这两个三角形是完全重合的。
(2)同学自己动手画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学协作,把两个三角形放在一起重合。
(3)猎取概念让同学用自己的语言叙述:全等三角形、对应顶点、对应角以及有关数学符号。
2、全等三角形性质的发觉:(1)电脑动画显示:问题:对应边、对应角有何关系?由同学观看动画发觉,两个三角形的三组对应边相等、三组对应角相等。
3、找对应边、对应角以及全等三角形性质的应用(1)投影显示题目:D、AD∥BC,且AD=BC分析:由于两个三角形完全重合,故面积、周长相等。
至于D,由于AD 和BC是对应边,因此AD=BC。
C符合题意。
说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是简单找错对应角。
分析:对应边和对应角只能从两个三角形中找,所以需将从简单的图形中分别出来说明:依据位置元素来找:有相等元素,其即为对应元素:然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
12.2.4三角形全等的判定-HL(教案)
本节课将围绕这些核心素养目标进行教学设计,旨在提高学生的综合素养,为学生的终身发展奠定基础。
三、教学难点与重点
1.教学重点
(1)掌握HL(斜边和直角边)判定法的条件:两个直角三角形,当斜边和直角边分别相等时,这两个三角形全等。
五、教学反思
在今天的教学中,我重点关注了三角形全等的判定-HL这一章节。通过引导学生们从日常生活出发,思考三角形全等的应用,我发现他们对这个概念产生了浓厚的兴趣。在讲授过程中,我尽量用简洁明了的语言解释HL判定法的原理,并结合具体案例进行分析,让学生能够更好地理解这一判定法的实际运用。
在实践活动中,学生们分组讨论并操作实验,我注意到他们在交流与合作中,对HL判定法的理解得到了加深。但同时,我也发现有些学生在运用HL判定法时仍然存在一些困难,比如容易混淆斜边和直角边的概念,或者在复杂图形中难以找到符合条件的关键信息。
2.提高学生的逻辑推理能力,让学生在运用HL判定法证明直角三角形全等的过程中,学会分析问题、解决问题,形成严谨的逻辑思维。
3.增强学生的数学建模能力,通过解决实际例子,培养学生将现实问题转化为数学模型的能力,并运用数学知识解决这些问题。
4.培养学生的数学运算能力,让学生在运用HL判定法解题时,熟练掌握相关运算,提高解题效率。
举例:在非直角三角形的情况下,学生可能会错误地尝试使用HL判定法。
(4)熟练运用HL判定法进行证明和计算。学生在证明过程中,可能会出现逻辑不严谨、步骤不完整等问题。
举例:在证明过程中,学生需要明确表述判定条件,并按照严谨的逻辑顺序进行证明。
为帮助学生突破难点,教师可以采取以下教学方法:
全等三角形教案【7篇】
全等三角形教案【优秀7篇】在教学工开展教学活动前,时常会需要准备好教案,教案是教学活动的总的组织纲领和行动方案。
那么优秀的教案是什么样的呢?这次帅气的我为您整理了7篇《全等三角形教案》,希望朋友们参阅后能够文思泉涌。
数学《全等三角形》教案篇一教学目标一、知识与技能1、了解全等形和全等三角形的概念,掌握全等三角形的性质。
2、能正确表示两个全等三角形,能找出全等三角形的对应元素。
二、过程与方法通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。
三、情感态度与价值观通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。
教学重点1、全等三角形的性质。
2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。
教学难点正确寻找全等三角形的对应元素。
教学关键通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。
课前准备:教师——————课件、三角板、一对全等三角形硬纸版学生——————白纸一张、硬纸三角形一个教学过程设计一、全等形和全等三角形的概念(一)导课:教师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。
(二)全等形的定义象这样的图片,形状和大小都相同。
你还能说一说自己身边还有哪些形状和大小都相同的图形吗?[学生举例,集体评析]动手操作1———在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的?[板书:能够完全重合]命名:给这样的图形起个名称————全等形。
[板书:全等形]刚才大家所举的各种各样的形状大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。
全等三角形教案六篇
全等三角形教案六篇全等三角形教案范文1同学的学问技能基础:同学通过前面的学习已经了解了全等三角形的概念,把握了全等三角形的对应边、对应角的关系,这为探究三角形全等的条件做好了学问上的预备。
同学活动阅历基础:同学也具备了利用直尺、量角器作三角形的基本作图力量,这将使同学能够主动参加本节课的操作、探究成为可能。
二、教学任务分析全等三角形是两个三角形间最简洁,最常见的关系,它不仅是学习后面学问的基础,还是证明线段相等、角相等以及两线相互平行、垂直的重要依据。
因此必需娴熟地把握全等三角形的判定方法,并且能够敏捷应用。
《探究三角形全等的条件》共三课时,本节课探究第一种判定方法―边边边,为了使同学更好地把握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导同学操作、观看、探究、沟通、发觉、思维,真正把同学放到主置,进展同学的空间观念,体会分析问题、解决问题的方法,积累数学活动阅历,为以后的证明打下基础。
为此,本节课的教学目标是:1.学问与技能:经受探究三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,把握三角形全等的“边边边”条件,了解三角形的稳定性,在探究的过程中,能够进行有条理的思索并进行简洁的推理。
2.方法与过程:争论、引导教学法。
3.情感、态度、价值观:使同学在自主探究三角形全等的过程中,经受画图、观看、比较、推理、沟通等环节,从而获得正确的学习方式和良好的情感体验,让同学体验数学源于生活,服务于生活的辨证思想。
三、教学设计分析本节课设计了五个教学环节:学问回顾引入新知、创设情境提出问题、建立模型探究发觉、巩固运用及其推广、反思小结布置作业。
第一环节学问回顾引入新知活动内容:回顾全等三角形的定义及其性质。
全等三角形的定义:两个能够重合的三角形称为全等三角形。
全等三角形的性质:全等三角形的对应边、对应角相等。
活动目的:回忆前面学习过的学问,为探究新学问作预备。
八年级数学上册《角边角判定三角形全等》教案、教学设计
在学生讨论结束后,我会布置一些课堂练习题,让学生独立完成。这些练习题分为基础题和提高题,旨在巩固学生对角边角判定方法的理解和应用。
在学生完成练习题的过程中,我会密切关注他们的解题情况,针对共性问题进行讲解。同时,鼓励学生之间相互讨论,共同解决难题。
(五)总结归纳,500字
在课堂的最后阶段,我会引导学的含义及其应用,强调其在解决实际问题中的重要性。
(1)针对学生在课堂练习中表现出的薄弱环节,设计相应的习题,帮助学生巩固知识。
(2)鼓励学生总结自己在解决全等三角形问题时的心得体会,并与同学分享。
3.运用全等三角形的性质解决实际问题时,分析问题和解决问题的能力。
教学设想:
1.创设情境,导入新课:通过展示生活中全等三角形的实例,激发学生对本节课的兴趣。例如,比较两个三角形的形状和大小,引导学生思考如何判断两个三角形是否全等。
2.自主探究,合作交流:在课堂上,教师提出问题,引导学生通过观察、猜想、验证等环节,自主探究角边角判定三角形全等的规律。在此基础上,组织学生进行小组讨论,分享自己的发现,培养学生的合作意识和团队精神。
三、教学重难点和教学设想
(一)教学重点
1.角边角(ASA)判定三角形全等的条件及其应用。
2.全等三角形性质的运用,解决实际问题。
3.几何证明过程中逻辑思维能力的培养。
(二)教学难点
1.角边角判定条件的理解,尤其是对角对应相等、边对应相等的理解。
2.在复杂几何图形中,准确找出符合角边角条件的全等三角形。
四、教学内容与过程
(一)导入新课,500字
在课堂开始时,我将向学生展示两幅完全相同的三角形图片,并提出问题:“如何判断这两个三角形是否完全相同呢?”让学生思考并尝试回答。接着,我会引导学生回顾已学的全等三角形判定方法(SSS、SAS),并提问:“除了这些方法,还有其他判定三角形全等的方法吗?”通过这个问题,激发学生对新知识的探究欲望。
探索三角形全等的条件教案
探索三角形全等的条件教案教案:探索三角形全等的条件一、教学目标:1.掌握三角形全等的条件;2.熟练运用三角形全等的条件解决相关问题;3.发展学生的逻辑思维和推理能力。
二、教学重点与难点:1.重点:三角形全等的条件;2.难点:培养学生的逻辑思维和推理能力。
三、教学准备:1.板书:三角形全等的条件;2.教具:直尺、量角器。
四、教学过程:1.复习导入(5分钟)通过提问、举例等方式复习三角形的基本概念、性质以及前几节课所学的内容。
2.引入新知(5分钟)教师引导学生思考:当两个三角形完全相同时,我们可以说这两个三角形是全等的。
那么,如何判断两个三角形是否全等,有哪些条件呢?3.学习新知(20分钟)教师板书三角形全等的条件,包括以下四个条件:a.两边和夹角相等;b.两角和边相等;c.任意两边和夹角相等;d.全等性质的推论。
教师通过示例和图示,逐步解释每个条件,并帮助学生理解和记忆。
4.练习与巩固(30分钟)a.学生个人练习:在作业本上完成练习题,熟练运用三角形全等的条件。
b.学生合作练习:分成小组,相互出题,互相考核,进一步巩固所学内容。
c.教师点评:针对学生的错误或疑惑进行解答和指导。
5.拓展应用(10分钟)教师提供一些拓展应用题,引导学生运用所学知识解决实际问题。
例如:给定两个三角形的一些条件,判断它们是否全等,并说明理由。
6.归纳总结(5分钟)教师与学生一起总结归纳三角形全等的条件,并强调每个条件的应用注意事项。
7.提高拓展(5分钟)对于拓展应用中出现的难题,教师引导学生思考更深层次的推理和解决方法,培养学生的逻辑思维和推理能力。
8.课堂小结(5分钟)教师对本节课所学知识进行简要总结,并提醒学生预习下节课内容。
五、课后作业:1.完成课堂练习不会的题目;2.思考并总结三角形全等的条件以及应用。
六、教学反思:通过设计本节课的教学,希望学生能够理解和掌握三角形全等的条件,并能够熟练运用这些条件解决问题。
在教学过程中,通过不同形式的练习,既可以提高学生的动手操作能力,又能够培养学生的逻辑思维和推理能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.2 三角形全等的条件(第1课时)
【教学任务分析】
【教学过程设计】
活动3
问题 (1)如果两个三角形有三个条件对应相等,这两个三角形全等吗我们也可以分情况讨论,有哪几种情况 ①我们先来探究两个三角形三个角相等的情况: ②画出一个三角形,使它的三边长分别为3cm 、 4cm 、6cm ,把你画的三角形与小组内画的进行比较,它们一定全等吗 (2)上面的探究反映了什么规律 教师先提出问题,引导
学生回答出满足三个条件的四种情况,教师再明确探究的任务,指导学生画图探究,获取“SSS ”的条件. 在画图中,教师可让学
生试着画图,在让学生发现存在的问题,最后给出正确
的画法.
本次活动中教师应重点关注: (1)学生能否根据条件正确的画出图形;
(2)学生能否根据探究中发现的规律概括出结论“SSS ”; (3)在阐述结论时,学生的语言是否规范; (4)学生是否掌握“SSS ”的书写格式.
让学生明确满足条件
中的三个有哪几种情形,为以后的学习埋下伏笔.
以学生的画图活动为主线开展探究活动,注重“SSS ”条件的发生过程和学生的亲身体验,从实践中获取“SSS ”的条件,培养学生探索,发现,概括规律的能力.
活动4
问题
三角形的三边长度固定,这个三角形的形状大小就完全确定,你能解释其中的道理吗 你能说出生活中看到的例子吗
教师先提出问题,引导学生正确的回答问题.
教师指出:三角形的三边长度固定,这个三角形的形状大小就完全确定,这个性质叫三角形的稳定性.
让学生举出生活中的实例.
本次活动中教师应重点关注:
(1)学生对“SSS ”的理解;
(2)学生能否发现生活中三角形稳定性的实例; (3)学生是否积极的思考问题.
通过生活中的实例,让学生充分体验当三角形的三边确定后,三角形就唯一确定,加深对“SSS ”的理解,使学生找到生活与数学之间的联系.
问题与情景 师生行为 设计意图
300 700
800 300 700 80。