探索三角形全等的条件教案

合集下载

4.3探索三角形全等的条件(教案)

4.3探索三角形全等的条件(教案)
(二)解三角形全等的基本概念。全等三角形是指两个三角形在形状和大小上完全相同。它是解决几何问题、理解图形关系的基础。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何使用SSS和SAS条件判断两个三角形全等,并说明全等三角形在几何证明中的应用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形全等在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
4.通过实际操作,学会使用直尺和圆规绘制全等三角形;
5.能够运用全等三角形的性质解决实际问题。
本节课将结合实际案例,引导学生探索三角形全等的条件,培养他们的观察、分析和解决问题的能力。
二、核心素养目标
本节课的核心素养目标主要包括:
1.培养学生的空间想象能力,通过观察和思考全等三角形的特征,提高他们对几何图形的认知和理解;
-学生在识别全等条件时,可能会混淆SSS和SAS,特别是在实际题目中,需要教师在教学过程中通过具体例题进行反复讲解和练习。
-学生在应用全等条件时,可能会忽视角度的重要性,误认为只有边长相等即可判断全等,需要教师强调角度的必要性。
-难点2:全等三角形的证明过程
-学生在证明过程中可能会出现逻辑错误,如错误地假设两个三角形的其他边或角相等,而未基于给定的全等条件进行推理。
3.重点难点解析:在讲授过程中,我会特别强调SSS和SAS这两个全等条件。对于难点部分,我会通过具体例题和比较来帮助大家理解如何识别和应用这些条件。

探索三角形全等的条件优秀教案

探索三角形全等的条件优秀教案

探究三角形全等的条件【教课目的】使学生掌握并初步学会应用三角形全等的判断——边角边公义【教课要点】1.指导学生剖析问题,找寻判断三角形全等的条件。

2.三角形全等证明的书写格式【教课难点】1.指导学生剖析问题,找寻判断三角形全等的条件。

2.三角形全等证明的书写格式【教课方法】多媒体教课法及实践操作法【教课器具】折纸三角形【教课过程】一、复习发问1.如何的两个三角形是全等三角形?2.全等三角形的性质?3.指出图中各对全等三角形的对应边和对应角,并说明经过如何的变换能使它们完整重合:图( 1)中:△ ABD≌△ ACE,AB与 AC是对应边;图( 2)中:△ ABC≌△ AED,AD与 AC是对应边。

二、新课三角形全等的判断1.全等三角形拥有“对应边相等、对应角相等”的性质。

那么,如何才能判断两个三角形全等呢?也就是说,具备什么条件的两个三角形能全等?能否需要已知“三条边相等和三个角对应相等”?此刻我们用图形变换的方法研究下边的问题:如图 2, AC.BD订交于 O,AO、BO、 CO、DO的长度如图所标,△ ABO和△ CDO能否能完整重合呢?不难看出,这两个三角形有三对元素是相等的:AO=CO,∠AOB=∠COD,BO=DO假如把△ OAB绕着 O点顺时针方向旋转,由于OA=OC,所以能够使 OA与 OC重合;又由于∠AOB=∠ COD, OB =OD,所以点 B 与点 D重合。

这样△ ABO与△ CDO就完整重合。

(附注:别的,还能够图 1(1)中的△ ACE绕着点 A 逆时针方向旋转∠ CAB的度数,也将与△ ABD重合。

图 1( 2 )中的△ ABC绕着点 A 旋转,使 AB与 AE重合,再把△ ADE沿着 AE( AB)翻折 180°。

两个三角形也可重合)由此,我们获得启迪:判断两个三角形全等,不需要三条边对应相等和三个角对应相等。

并且,从上边的例子能够惹起我们猜想:假如两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等。

探索三角形全等的条件教案

探索三角形全等的条件教案

探索三角形全等的条件教案一、教学目标1.了解三角形全等的定义和性质;2.掌握三角形全等的判定方法;3.能够应用三角形全等的条件解决实际问题。

二、教学重点1.三角形全等的定义和性质;2.三角形全等的判定方法。

三、教学难点1.三角形全等的判定方法;2.应用三角形全等的条件解决实际问题。

四、教学过程1. 导入新知识教师可以通过提问的方式引导学生回忆三角形的定义和性质,然后引出三角形全等的概念。

2. 学习三角形全等的定义和性质教师可以通过讲解和演示的方式,让学生了解三角形全等的定义和性质。

例如:•定义:如果两个三角形的三条边分别相等,则这两个三角形全等。

•性质:全等的三角形的对应角度相等,对应边也相等。

3. 学习三角形全等的判定方法教师可以通过讲解和演示的方式,让学生掌握三角形全等的判定方法。

例如:•SSS判定法:如果两个三角形的三条边分别相等,则这两个三角形全等。

•SAS判定法:如果两个三角形的两条边和夹角分别相等,则这两个三角形全等。

•ASA判定法:如果两个三角形的两个角和夹边分别相等,则这两个三角形全等。

•RHS判定法:如果两个三角形的一条直角边和另外一条边分别相等,则这两个三角形全等。

4. 应用三角形全等的条件解决实际问题教师可以通过实例的方式,让学生应用三角形全等的条件解决实际问题。

例如:•已知两个三角形的两个角和夹边分别相等,求这两个三角形的其他角和边是否相等。

•已知两个三角形的一条边和两个角分别相等,求这两个三角形的其他角和边是否相等。

5. 总结归纳教师可以通过提问的方式,让学生总结归纳三角形全等的定义、性质和判定方法。

五、教学评价教师可以通过课堂练习、小组讨论、个人作业等方式,对学生的掌握情况进行评价。

六、教学反思教师可以对本节课的教学过程进行反思,总结教学经验,为今后的教学提供参考。

《探索三角形全等的条件》教案

《探索三角形全等的条件》教案

探索三角形全等的条件一、教学内容《探索三角形全等的条件》是北师大版初中数学七年级下册第四章第三节的内容。

本节共三课时,我所授的第一课时的内容包括(1)经历探索三角形全等的条件归纳总结出“边边边”定理(2)“边边边”定理的运用,(3)三角形的稳定性及应用。

二、教学目标由于学生是初一的孩子,对几何的认识还很限,这是第一次系统的学习三角形,所以根据学生已有的认知基础,以及教学内容的地位和作用,我拟定以下教学目标:(1)知识目标:经历探索三角形全等条件的过程,掌握三角形全等的“边边边”条件并初步学会运用,了解三角形的稳定性及其应用。

(2)能力目标:在探索三角形全等条件的过程中,让学生体验分类的思想有条理地思考、分析、表达、解决问题的能力,逐步培养学生推理意识和能力。

(3)情感目标:鼓励学生敢于实践,勇于发现,大胆探索,合作创新的精神;体会数学在生活中的作用,增强学习数学的兴趣。

三、教学重点:经历探索三角形全等条件的过程。

掌握三角形全等的“边边边”条件并初步学会运用。

四、教学难点:对三角形全等条件的分析和探索。

五、教学媒体:课件。

六、教具学具:自制三角形和四边形模型、学具纸。

七、教学过程:1.找一找:回顾全等三角形相关的知识。

2.想一想:画三角形与已知三角形全等的条件。

3.做一做(1)只给出一个条件.(教师使用多媒体演示引导,学生观察思考在只给出一个条件下作出的三角形是否全等)a.一条边b.一个角(2)两个条件。

(学生在学具纸上按要求动手做图,组内交流相同条件下作出的图形是否全等,然后汇报得出的结论,教师再使用多媒体演示和总结)a.一个角和一条边(一内角30°和一边长3cm的三角形)b.两个内角(一内角30°和一内角50°的三角形)c.两条边(两条边长分别是4cm,6cm)d.学生探索汇报后教师小结上述的情况得到的几个三角形不一定全等(3)三个条件。

学生先讨论给出三个条件画三角形,有哪几种情况?三个内角相等、三条边相等、两条边和一个角相等、两个内角和一条边相等a.比一比三个内角(学生30°,60°,90°的三角尺,先组内交流同等条件下的三角尺比一比是否全等,后与教师同等条件下的三角尺比一比是否全等。

八年级数学教案:探索三角形全等的条件 ( 全8课时 )

八年级数学教案:探索三角形全等的条件 ( 全8课时 )

合吗?(2)重新利用这张长方形剪一个直角三角形,要使得全班同学剪下的都能够重合,你有什么办法?(3)剪下直角三角形,验证是否能够重合,并能得出什么结论?5.如图,△ABC 与△DEF 、△MNP 能完全重合吗?(1)直觉猜想哪两个三角形能完全重合? (2)再用工具测量,验证猜想是否正确.6.按下列作法,用直尺和圆规作△ABC ,使∠A =∠α,AB =a ,AC =b .作法:1.作∠MAN =∠α.2.在射线AM 、AN 上分别作线段AB =a ,AC =b . 3.连接BC .△ABC 就是所求作的三角形.图形:你作的三角形与其他同学作的三角形能完全重合吗? 三.交流展示通过上面几个活动你对三角形全等所需要的条件有什么看45︒31.5CB A60︒3DEF1.5P45︒31.5MN课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(3)教学目标1.掌握三角形全等的条件“ASA”;会利用“ASA”进行有条理的简单的推理;2.通过多种手段的活动过程,让学生动手操作,激发学生学习的兴趣,并能通过合作交流解决问题,体会数学在现实生活中的应用,增强学生的自信心.教学重点掌握三角形全等的条件“ASA”,并能利用它们判定三角形是否全等.教学难点探索三角形全等的条件“ASA”的过程及应用教学方法教具准备教学课件教学过程个案补充一.自主先学:(1)要证明两个三角形全等,需要几个条件?(2)上节课我们学习了哪些条件可以构成全等(3)请你们猜想,构成全等还有哪些条件组合?二.探究交流1.调皮的小明用纸板挡住了两个三角形的一部分,你能画出这两个三角形吗?每个人画出的三角形都一样吗?2.粗心的小明不小心将一块三角形模具打碎了,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带哪块去合适?3.请你和小明一起画:用圆规和直尺画△ABC,使AB=a,∠A=∠α,∠B=∠β.(1)作AB=a.(2)在AB的同一侧分别作∠MAB=∠α,∠NBA=∠β,AM、BN相交于点C.(3)△ABC就是所求作的三角形.以上三个问题回答完毕了,你有什么发现?基本事实两角及其夹边分别相等的两个三角形全等(ASA)三.交流展示1.说一说图中有几对全等三角形?你能找出它们并说出理由吗?2.如图,O是AB的中点,∠A=∠B,△AOC与△BOD全等吗?为什么(以填空方式回答)?四.拓展提高:已知:如图,在△ABC中,D是BC的中点,点E、F分别在AB、AC上,且DE//AC,DF//AB.求证:BE=DF,DE=CF.五.小结与反思:这节课你学到了什么?哪些三个条件的组合是你还想去探索求证的?课外作业:布置作业板书设计教后札记课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(4)1.掌握三角形全等的条件“AAS”,会用“AAS”进行有条理的简单的推理;教学目标2.学会根据题目的条件选择适当的定理进行全等的证明.教学重点掌握三角形全等的条件“AAS”,并能利用它们判定三角形是否全等.教学难点在解题时选择适当定理应用.教学方法教具准备教学课件教学过程个案补充一. 自主先学:1.回忆上节课内容,用自己的语言表达出来!2.解决下面的问题,你有什么发现吗?已知:如图,∠A=∠D,∠ACB=∠DBC,求证:AB=DC.二.探究交流探索新知一已知:△ABC与△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.基本推论:两角及其中一角的对边分别相等的两个三角形全等.简称“角角边”或“AAS”.在△ABC与△A'B'C'中,∠B=∠B'(已知),∠C=∠C'(已知),AB=A'B'(已知),∴△ABC≌△A'B'C'(AAS).三.交流展示1.如图∠ACB=∠DFE,BC=EF,根据“ASA”,应补充一个直接条件__________根据“AAS”,那么补充的条件为______,才能使△ABC≌△DEF.2.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?3.如图∠ACB=∠DFE,BC=EF,根据“ASA”,应补充一个直接条件__________根据“AAS”,那么补充的条件为______,才能使△ABC≌△DEF.2.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?3.已知:如图,△ABC≌△A'B'C',AD和A'D'分别是△ABC和△A'B'C'中BC和B'C'边上的高.求证:AD=A'D'.四.拓展提高:4.已知:如图,△ABC ≌△A 'B 'C ',AD 和A 'D '分别是△ABC 和△A 'B 'C '中∠A 和∠A’的角平分线.求证:AD =A 'D '.五.小结与反思:布置作业课外作业:板书设计教后札记课时NO: 主备人: 审核人 用案时间: 年 月 日 星期A 'B ' D 'C 'AB DC AB DC A 'B'D 'C '教学课题 1.3 探索三角形全等的条件(5)教学目标1.会用“角边角”“角角边”证明两个三角形全等,进而证明线段或角相等;2.渗透综合、分析等思想方法,从而提高学生演绎推理的条理性和逻辑性.教学重点用“角边角”“角角边”定理证明两个三角形全等,进而证明线段或角相等教学难点角边角”“角角边”定理的灵活应用教学方法教具准备教学课件教学过程个案补充一.自主先学:如图,已知AD平分∠BAC,要使△ABD≌△ACD,(1)根据“SAS”需添加条件________;(2)根据“ASA”需添加条件________;(3)根据“AAS”需添加条件________.二.探究交流1.如图,∠A=∠B,∠1=∠2,EA=EB,你能证明AC=BD吗?2.如图,点C、F在AD上,且AF=DC,∠B=∠E,∠A=∠D,你能证明AB=DE吗?三.交流展示例1: 已知:如图,点A、B、C、D在一条直线上,EA∥FB,EC∥FD,EA=FB.求证:AB=CD.例2;已知:如图,AB=AC,点D、E分别在AB、AC上,∠B =∠C.求证:DB=EC变式一已知:∠1=∠2,∠B=∠C,AB=AC.求证:AD=AE,∠D=∠E.变式二已知:∠1=∠2,∠B=∠C,AB=AC,D、A、E在一条直线上.求证:AD=AE,∠D=∠E.四.拓展提高:1.如图,AC⊥AB,BD⊥AB,CE⊥DE,CE=DE.求证:AC+BD=AB.2.如图,∠ABC=90°,AB=BC,D为AC上一点,分别过A、C作BD的垂线,垂足分别为E、F.求证:EF+AE=CF.五.小结与反思:课外作业:布置作业板书设计教后札记课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(6)教学目标1.掌握“边边边”定理.理解三角形的稳定性和它在生产、生活中的应用;教会学生如何利用尺规来完成“已知三边画三角形”,如何添加辅助线构造全等三角形;2.培养学生观察、操作、分析、综合、抽象、概括和发散思维的能力;感悟转化的数学思想方法.教学重点探究三角形全等的方法及运用“边边边”条件证明两个三角形全等.教学难点边边边”定理的应用和转化意识的形成及辅助线的添加.教学方法教具准备教学课件教学过程个案补充一.自主先学:小明家的衣橱上镶有两块全等的三角形玻璃装饰物,其中一块被打碎了,妈妈让小明到玻璃店配一块回来,小明该怎么办呢?二.探究交流实践探索一:已知三条线段a、b、c,以这三条线段为边画一个三角形,并把你画好的三角形剪下,和其他同学进行比较,看剪下的三角形是否能完全重合.通过以上的操作你发现了什么?实践探索二:教师出示三角形、四边形木架,让学生动手拉动木架的两边.教师提出问题:(1)演示实验说明了什么?教师总结:三角形的这个性质叫做三角形的稳定性.(2)你能举出生活中利用三角形稳定性的例子吗?三.交流展示1.下列图形中,哪两个三角形全等?2.如图,C 点是线段BF 的中点,AB =DF ,AC =DC .△ABC 和△DFC 全等吗?变式1若将上题中的△DFC 向左移动(如图),若AB =DF ,AC =DE ,BE =CF ,问:△ABC ≌△DFE 吗 ?变式2若继续将上题中的△DFC 向左移动(如图),若AB =DC ,AC =DB ,问:△ABC ≌ △DCB 吗 ?3.已知:如图, 在△ABC 中,AB =AC ,求证:∠B =∠C .四.拓展提高:1.已知:如图,AB =CD ,AD =CB ,求证:∠B =∠D .117667119942.如图,AC 、BD 相交于点O ,且AB =DC ,AC =DB .求证:∠A =∠D .五.小结与反思:布置作业课外作业:板书设计教后札记课时NO: 主备人: 审核人 用案时间: 年 月 日 星期CDOAB教学课题 1.3 探索三角形全等的条件(7)教学目标1.会作一个角的角平分线,能证明作法的正确性,并在经历“观察——操作——证明”的活动过程中养成善于分析、乐于探究和理性思考的良好习惯;2.会过一点作已知直线的垂线,能证明作法的正确性,体会与“作一个角的角平分线”作法的联系,在比较中探究作法;3.能在不同的作图题中感悟相同的知识背景,在同一问题中探求不同的作法,从而进一步把握知识本质,逐步形成抽象概括能力和发散思维.教学重点能在不同的作图题中感悟相同的知识背景,在同一问题中探求不同的作法,从而进一步把握知识本质,逐步形成抽象概括能力和发散思维.”.教学难点几何图形信息转化为尺规操作教学方法教具准备教学课件教学过程个案补充一. 自主先学:工人师傅常常利用角尺平分一个角.如图(1),在∠AOB的两边OA、OB上分别任取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.请同学们说明这样画角平分线的道理.二.探究交流1.说请按序..说出木工师傅的“操作”过程.2.作与写用直尺和圆规在图(2)中按序..将木工师傅的“操作”过程作出来,并写出作法.3.证请证明你的作法是正确的.4.用用直尺和圆规完成以下作图:(1)在图(3)中把∠MON四等分.图(1)(2)在图(4)中作出平角∠AOB 的平分线.说明:过直线上一点作这条直线的垂线就是作以这点为顶点的平角的角平分线.1.观察思考.在图(2)作图的基础上,作过C 、D 的直线l (如图(5)),观察图中射线OM 与直线l 的位置关系,并说明理由.2.问题变式.你能用圆规和直尺过已知直线外一点作这条直线的垂线吗?(如图(6),经过直线AB 外一点P 作AB 的垂线PQ ). 3.比较分析.引导学生比较新旧两个问题之间的联系,寻求解决新问题的策略. 4.作图与证明.1 以点P 为圆心,适当的长为半径作弧,使它与AB 交于C 、D .2 分别以点C 、D 为圆心,大于12CD 的长为半径作弧,两弧交于点Q .3 作直线PQ .∴直线PQ 就是经过直线AB 外一点P 的AB 的垂线(如图(7)). (2)证明略.5.归纳总结.图(2)O BA 图(4)NOM图(3)(图7)QDC BAPMDCBOA图(5)l图(6)BAP课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(8)教学目标 1.利用尺规作图,掌握已知斜边、直角边画直角三角形的画图方法; 2.经历操作、实验、观察、归纳,证明斜边、直角边(HL )定理;3.用HL 及其他三角形全等的判定方法进行证明和计算,发展演绎推理的能力. 教学重点 斜边、直角边”定理的证明和应用. 教学难点 斜边、直角边”定理的证明和应用.教学方法教具准备教学课件教 学 过 程个案补充一.自主先学:1.判定两个三角形全等的方法: 、 、 、___ .2.如图,在Rt △ABC 中,直角边是 、 , 斜边是___ 3.如何将一个等腰三角形变成两个全等的直角三角形? 4.如图,在Rt △ABC 、Rt △DEF 中,∠B =∠E =90°, (1)若∠A =∠D ,AB =DE 则△ABC ≌△DE ( ) (2)若∠A =∠D ,BC =EF ,则△ABC ≌△DEF ( ) (3)若AB =DE ,BC =EF ,则△ABC ≌△DEF ( ).上面的每一小题,都只添加了两个条件,就使两个直角三角形全等,你还能添加哪两个不同的条件使这两个直角三角形全等?二.探究交流探索活动一. (1)交流、操作.用直尺和圆规作Rt △ABC ,使∠C =90°,CB =a ,AB =c .(2)思考、交流.①△ABC 就是所求作的三角形吗?BADE C F。

探索三角形全等的条件优秀教案

探索三角形全等的条件优秀教案

探索三角形全等的条件
(二)分组讨论,揭示新知(做一做)
1.按三角形“边”、“角”
元素进行分类:
活动一:
(1)提出问题:(给出下列
条件,能画出全等的三角形吗?)
一个条件:一边、一角。

(2)分析问题:
学生画图有一边长为3厘米
的三角形,进行观察,各小组比
较组内三角形是否全等。

再画有一角为30°的三角
形,然后比较。

(最后PPT演示)
(3)解决问题:
小组讨论,得出结论。

(只
满足一个角或一条边对应相等的
两个三角形不一定全等)
活动二
(1)提出问题:(给出下列
条件,能画出全等的三角形吗?)
两个条件:两边、两角、一
边一角。

(2)分析问题:
学生画图,观察,比较各小
组的三角形是否全等。

(3)解决问题:
小组讨论,得出结论。

(只
满足两条边或两个角或一条边和
一个角对应相等的两个三角形不
一定全等)
活动三:(议一议)
(1)提出问题:
画图。

画图、剪纸、
交流、探索。

讨论、归纳。

1.让学生体验
分类的思想,通过画
图、观察、比较这些
动手实践的活动中
进行推理、交流,在
条件由少到多的过
程中逐步自主探索
出最后结论。

2.老师巡视,
指导有困难的同学。

3.通过分组讨
论进行合作交流的
过程中,激活学生思
维,感受反例的作
用,培养学生的合作
精神和表达能力。

数学全等三角形教案8篇

数学全等三角形教案8篇

数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。

初中数学《全等三角形》教案优秀6篇

初中数学《全等三角形》教案优秀6篇
课前准备全等三角形纸片、三角板、
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、

全等三角形教学设计优秀4篇

全等三角形教学设计优秀4篇

全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。

二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。

另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。

遵循启发式教学原则,采用引探式教学方法。

用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。

四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。

2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。

全等三角形教案6篇

全等三角形教案6篇

全等三角形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!全等三角形教案6篇我们的教案需要定期更新以反映新的教育趋势,教师编写教案不仅促进了自我管理,还增强了他们的教育专业素养,以下是本店铺精心为您推荐的全等三角形教案6篇,供大家参考。

《探索三角形全等的条件》教案

《探索三角形全等的条件》教案

《探索三角形全等的条件》教案教案:探索三角形全等的条件教学目标:1.了解三角形全等的概念和条件;2.能够运用全等条件判断三角形是否全等;3.发展逻辑思维和推理能力。

教学重点:1.三角形全等的条件;2.运用全等条件进行判断。

教学准备:1.教师准备:白板、马克笔、教材《数学七年级上册》;2.学生准备:课本、笔和纸。

教学过程:Step 1:引入新知识(10分钟)1.教师用白板上画出两个全等的三角形,让学生观察并提出它们之间的特点;2.引导学生思考,询问三角形全等的条件是什么;3.学生提出自己的想法,教师鼓励并给予肯定。

Step 2:探索全等的条件(20分钟)1.将学生分为小组,每个小组由3-4人组成,并给每个小组发放纸和笔;2.学生讨论,尝试构造一些具有共同性质的全等三角形,寻找它们之间的共同特点;3.学生通过讨论和实例的方式,发现三角形全等的条件。

Step 3:归纳总结(15分钟)1.教师引导学生汇总各组的发现,呈现在白板上;2.全班讨论并筛选出最为普遍和具有代表性的三角形全等条件。

Step 4:巩固练习(25分钟)1.教师将教材中的相关练习题呈现在白板上,让学生完成;2.学生在小组中互相讨论,梳理各步推理过程和答案;3.全班共同讨论,解答并纠正错误。

Step 5:拓展延伸(15分钟)1.教师给学生提供一些延伸题目,让学生进一步巩固和拓展所学知识;2.学生可以以小组形式完成,互相检查答案并讨论解题思路;3.学生可以将拓展题目的解题思路和结果汇报给全班,展示和分享自己的思考过程。

Step 6:课堂小结与反思(5分钟)1.教师对本节课的内容进行复盘总结,强调三角形全等的条件和运用;2.教师鼓励学生对这节课的学习进行思考和反思,提出自己的感受和问题。

教学反思:通过本节课的教学,我采用了探索式教学的方式,让学生围绕三角形全等的条件进行自主探索和讨论。

这种方式既可以调动学生的学习积极性,又能够培养学生的逻辑思维和推理能力。

北师大版七下数学4.3探索三角形全等的条件(第1课时)教案

北师大版七下数学4.3探索三角形全等的条件(第1课时)教案

北师大版七下数学4.3探索三角形全等的条件(第1课时)教案一. 教材分析《北师大版七下数学4.3探索三角形全等的条件》这一课时,是在学生已经掌握了三角形的基本概念、性质以及三角形相似的基础上进行教学的。

本节课的主要内容是让学生通过观察、操作、猜想、验证等过程,探索并掌握三角形全等的条件,培养学生的动手操作能力、观察能力、推理能力及合作交流能力。

二. 学情分析七年级的学生已经具备了一定的几何图形基础,对三角形有一定的了解。

但是,对于三角形全等的概念和判定条件,学生可能还比较陌生。

因此,在教学过程中,教师需要引导学生通过观察、操作、猜想、验证等方法,自主探索三角形全等的条件,从而提高学生的学习兴趣和积极性。

三. 教学目标1.知识与技能目标:让学生掌握三角形全等的条件,能运用三角形全等的条件判断两个三角形是否全等。

2.过程与方法目标:通过观察、操作、猜想、验证等过程,培养学生的动手操作能力、观察能力、推理能力及合作交流能力。

3.情感态度与价值观目标:让学生在探索过程中体验到数学的乐趣,培养学生的团队合作精神,增强学生对数学学科的学习兴趣。

四. 教学重难点1.教学重点:三角形全等的条件。

2.教学难点:如何引导学生探索并理解三角形全等的条件。

五. 教学方法1.情境教学法:通过设置具体的问题情境,激发学生的学习兴趣,引导学生主动参与课堂。

2.启发式教学法:在教学过程中,教师提出问题,引导学生思考、讨论,从而达到理解三角形全等的目的。

3.合作学习法:学生进行小组合作,培养学生的团队合作精神,提高学生的学习效果。

六. 教学准备1.教师准备:教师需要提前准备好相关的教学材料,如PPT、几何图形等。

2.学生准备:学生需要预习相关的内容,了解三角形的基本概念和性质。

七. 教学过程1.导入(5分钟)教师通过向学生展示一些生活中的三角形图片,引导学生回顾三角形的基本概念和性质。

然后,教师提出问题:“你们认为,什么样的两个三角形可以称为全等三角形?”2.呈现(10分钟)教师通过PPT展示三角形全等的定义和判定条件。

三角形全等的判定教案 三角形全等的判定教学设计

三角形全等的判定教案 三角形全等的判定教学设计

三角形全等的判定教案三角形全等的判定教学设计角形全等的判定教案三角形全等的判定教学设计篇一目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。

2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。

3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。

重点:sss公理、灵活地应用学过的各种判定方法判定三角形全等。

难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中较适当的方法判定两个三角形全等。

用具:直尺,微机方法:自学辅导过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你较少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。

于是要引导学生,抓住问题的本质:三角形的三个元素――三条边。

2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。

然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。

(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。

应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)(3)、此公理与前面学过的公理区别与联系(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。

在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。

探索三角形全等的条件教案

探索三角形全等的条件教案

探索三角形全等的条件教案教案标题:探索三角形全等的条件教案目标:1. 了解三角形全等的定义和性质。

2. 探索和理解三角形全等的条件。

3. 能够应用三角形全等的条件解决相关问题。

教学准备:1. 教学投影仪或黑板。

2. 幻灯片或黑板笔。

3. 直角三角形模型或图片。

4. 一些练习题和解答。

教学步骤:引入(5分钟):1. 通过展示一些直角三角形的图片或模型,引起学生对三角形全等的兴趣。

2. 提问学生,你认为什么样的三角形可以称为全等三角形?探索(15分钟):1. 将学生分成小组,每组3-4人。

2. 给每个小组发放一些三角形模型或图片,并要求他们观察并讨论哪些条件可以使两个三角形全等。

3. 指导学生关注边长、角度和边角关系等方面。

4. 鼓励学生互相讨论和交流,引导他们提出自己的观察和假设。

总结(10分钟):1. 让每个小组分享他们的观察和假设。

2. 引导学生总结出三角形全等的条件,如SSS(边边边)、SAS(边角边)、ASA (角边角)等。

3. 通过幻灯片或黑板笔,总结并记录下这些条件,并强调它们的重要性和应用范围。

应用(20分钟):1. 给学生一些练习题,要求他们根据已知条件判断两个三角形是否全等。

2. 鼓励学生尝试使用不同的全等条件来解决问题,加深对条件的理解和应用。

3. 监督学生的解题过程,及时给予指导和反馈。

巩固(10分钟):1. 随堂测验:给学生几道简单的题目,要求他们应用所学的三角形全等条件解答。

2. 讨论和解答测验题,确认学生对所学内容的掌握情况。

3. 强调学生在解题过程中要注意合理的推理和解释。

拓展(5分钟):1. 提出一些拓展问题,如如何证明两个三角形全等、是否存在无法通过全等条件判断的情况等。

2. 鼓励学生思考并给出自己的答案或解释。

3. 结束本节课,鼓励学生在课后继续探索和应用三角形全等的条件。

评估:1. 学生在小组讨论和分享中的参与度和表现。

2. 学生在练习题和随堂测验中的答题准确性和解题思路。

探索三角形全等的条件教案

探索三角形全等的条件教案

课题探索三角形全等的条件课时教学目标1.知识与技能三角形全等的条件:边角边.2.过程与方法(1)经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.(2)掌握三角形全等的“边角边”条件.(3)在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.3.情感、态度与价值观通过画图、思考、探索来激发学生学习的积极主动性,并使学生获得一些研究问题的经验和方法,发展实践能力与创新精神.教学重难点重点:三角形全等的条件:边角边.难点:三角形全等的条件的探索.教学活动设计情景目标导学在前两节课的讨论中,我们知道:只给出一个条件或两个条件时,都不能保证所画出的三角形一定全等.给出三个条件时,有四种可能出现的情况,想一想,是哪四种呢?这节课我们继续来探索三角形全等的条件.出示目标:助生自助自学指导小明不慎将一块三角形模具打碎成两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带哪块去合适?为什么?自主探究1.大家想一想:如果已知一个三角形的两边及一角,那么有几种可能情况呢?那在每种情况下得到的三角形全等吗?我们逐一来研究.先看第一种情况下,两个三角形是否全等.2.做一做(1)如果“两边及一角”条件中的角是两边的夹角.如:三角形的两条边分别为2.5 cm,3.5 cm.它们的夹角为40°,你能画出这个三角形吗?你画出的三角形与同伴画的一定全等吗?大家利用直尺、三角尺和量角器来画满足以上条件的三角形,然后与同伴画的来比较一下.小组交流展示小组交流展示:由此得到结论:如果已知三角形的两边及其夹角,那么所得的三角形都全等.我们来改变上述条件中的角度和边长,大家分组讨论,是否能得到以上结论?由此我们得到了三角形全等的条件:两边和它们的夹角对应相等的两个三角形全等.简称“边角边”或“SAS”.如图,在△ABC和△DEF中,{AB=DE,∠B=∠E,BC=EF,则△ABC≌△DEF.(2)接下来我们研究第二种情况:如果“两边及一角”条件中的角是其中一边的对角.如:两条边分别为 2.5 cm,3.5 cm.长度为2.5 cm的边所对的角为40°,所画的三角形与同伴画的全等吗?按上述条件画的三角形不唯一,有两个不同的三角形满足上述条件,如图.由此可得:两边及其中一边的对角对应相等,两个三角形不一定全等.因此可知:“两边及一角”中的两种情况中只有一种是三角形全等的条件.即:两边及其夹角对应相等的两个三角形全等.教师指导1.易错点两边及其中一边的对角对应相等,两个三角形不一定全等.2.归纳小结探索了三角形全等的条件“边角边”.至此我们已有五种说明三角形全等的条件.(1)全等三角形的定义;(2)边边边;(3)角边角;(4)角角边;(5)边角边.训练评价1.分别找出各题中的全等三角形,并说明理由.2.小明做了一个如图所示的风筝,其中∠EDH=∠FDH,ED=FD.将上述条件标注在图中,小明不用测量就能知道EH=FH吗?与同伴进行交流.第1题图第2题图板书设计“SAS”1.三角形全等的条件“SAS”2.当堂训练教学反思探索三角形全等的条件郭新强宁阳二十五中。

《探索三角形全等的条件》__教案

《探索三角形全等的条件》__教案

《探索三角形全等的条件》——精品教案省市县名称黑龙江省大庆市肇源县网络班级数学53班任职学校头台中学姓名范明双作业内容《探索三角形全等的条件》教学设计教学内容:北师大版数学七年级下册第五章《三角形》第四节《探索三角形全等的条件》第一课时。

教学目标:1、经历探索三角形全等条件的过程,掌握三角形全等的“边边边”条件并初步学会运用,了解三角形的稳定性及其应用。

2、在探索三角形全等条件的过程中,体验分类讨论的数学思想,体会利用操作、归纳获得数学知识;让学生学会有条理地思考、分析、解决问题的能力,培养学生推理意识和能力,发展学生的空间观念。

3、培养学生敢于实践、勇于发现、大胆探索、合作创新的精神;体会数学在生活中的作用,增强学习数学的兴趣,树立学好数学的信心。

教学重点、难点:重点:三角形全等条件的探索和应用。

难点:探究全等三角形条件的过程及其准确的分类。

教法学法:教法:启发、组织、引导、演示作业内容学法:自主探究、合作交流教学准备:教具:相关多媒体课件;学具:剪刀、纸片、直尺、一副三角板、木条、钉子等。

教学过程:(一)创设情境,引入新课首先,出示一个实际问题:小明不小心打破了一块三角形玻璃,碎片如图所示(课件出示):问能不能带图中某一块到商店做一块与原来三角形玻璃一样的玻璃?【设计意图:新课初始设计生活问题引发学生思考,激发学生的学习兴趣,又把数学与生活紧密相联系,引导学生学有用的数学。

】接着,教师组织学生讨论,分析,引导学生进入主题:探索三角形全等的条件。

(板书课题)(二)引导探究,实验操作,归纳总结。

活动一:让学生通过动手操作,只给一个条件,即一条边或一个角不能判断两个三角形全等并在黑板上展示。

师通过几何画板演示。

活动二:只给两个条件,先让学生展开讨论,分析有几种情况:即边边、边角、角角,再由各小组自行探索。

同样让学生通过动手操作,师进行指导,在黑板上展示,作业内容再观察几何画板动画,最终得到只给两个条件不能判断两个三角形全等。

全等三角形教案六篇

全等三角形教案六篇

全等三角形教案六篇全等三角形教案范文1同学的学问技能基础:同学通过前面的学习已经了解了全等三角形的概念,把握了全等三角形的对应边、对应角的关系,这为探究三角形全等的条件做好了学问上的预备。

同学活动阅历基础:同学也具备了利用直尺、量角器作三角形的基本作图力量,这将使同学能够主动参加本节课的操作、探究成为可能。

二、教学任务分析全等三角形是两个三角形间最简洁,最常见的关系,它不仅是学习后面学问的基础,还是证明线段相等、角相等以及两线相互平行、垂直的重要依据。

因此必需娴熟地把握全等三角形的判定方法,并且能够敏捷应用。

《探究三角形全等的条件》共三课时,本节课探究第一种判定方法―边边边,为了使同学更好地把握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导同学操作、观看、探究、沟通、发觉、思维,真正把同学放到主置,进展同学的空间观念,体会分析问题、解决问题的方法,积累数学活动阅历,为以后的证明打下基础。

为此,本节课的教学目标是:1.学问与技能:经受探究三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,把握三角形全等的“边边边”条件,了解三角形的稳定性,在探究的过程中,能够进行有条理的思索并进行简洁的推理。

2.方法与过程:争论、引导教学法。

3.情感、态度、价值观:使同学在自主探究三角形全等的过程中,经受画图、观看、比较、推理、沟通等环节,从而获得正确的学习方式和良好的情感体验,让同学体验数学源于生活,服务于生活的辨证思想。

三、教学设计分析本节课设计了五个教学环节:学问回顾引入新知、创设情境提出问题、建立模型探究发觉、巩固运用及其推广、反思小结布置作业。

第一环节学问回顾引入新知活动内容:回顾全等三角形的定义及其性质。

全等三角形的定义:两个能够重合的三角形称为全等三角形。

全等三角形的性质:全等三角形的对应边、对应角相等。

活动目的:回忆前面学习过的学问,为探究新学问作预备。

探索三角形全等的条件教案

探索三角形全等的条件教案

探索三角形全等的条件教案探索三角形全等的条件11.3探索三角形全等的条件(5)教学目标知识目标:1、已知斜边和直角边会作直角三角形;2、熟练掌握“斜边、直角边公理”,以及熟练地利用这个公理和判定一般三角形全等的方法判定两个直角三角形全等;3、熟练使用“分析综合法”探求解题思路。

能力目标:通过探究性教学,营造民主和谐的课堂气氛,初步学会科学研究的思维方法;通过一题多变、一题多解,培养学生的发散思维能力,增强学生的创新意识和创新能力;通过实践探究,培养学生读题、识图能力,提高学生观察与分析,归纳与概括的能力。

情感目标:通过对一般三角形与直角三角形全等判定方法的比较,初步感受普遍性与特殊性之间的辩证关系;在探究性教学活动中培养学生刻苦钻研、实事求是的态度,勇于探索创新的精神,增强学生的自主性和合作精神重点“斜边、直角边公理”的掌握和灵活运用。

难点数学语言的正确表达。

教学方法采用启发式和讨论式教学课型新授课教具投影仪教师活动学生活动新课讲解:斜边、直角边公理斜边和一直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边公理”或“HL”)例题1:如图,ACperp;BC,ADperp;BD,垂足分别为C、D,AC=BD,△ABC与△BAD全等吗?为什么?练习:第148页第1、2、3题小结:1.直角三角形全等的判定方法有四项依据:“SAS”、“ASA”、“AAS”、“SSS”“HL”其中,“HL”公理只适用判定直角三角形全等。

2.使用“HL”公理时,必须先得出两个直角三角形,然后证明斜边和一直角边对应相等。

3.熟练使用“分析综合法”探求解题思路。

教学素材:A组题:1.已知:如图,△ABC中,AB=AC,AD是高,则______≌______。

依据是______,BD=______,ang;BAD=______.2.如图,已知ang;ACB=ang;BD=90deg;,若要使△ACB≌△BDA,还需要什么条件?把它们分别写出来。

探索三角形全等的条件教案

探索三角形全等的条件教案

探索三角形全等的条件教案教案标题:探索三角形全等的条件教案目标:1. 理解全等三角形的概念和判定条件;2. 掌握使用SAS、ASA、SSS三个全等条件判定两个三角形全等。

教学重点:1. 全等三角形的概念和判定条件;2. 使用全等条件判定两个三角形全等。

教学难点:1. 理解三角形全等的概念和判定条件;2. 运用全等条件判定两个三角形全等。

教学准备:1. 教师准备:黑板、彩色粉笔、绘图工具等;2. 学生准备:纸和铅笔。

教学过程:Step 1. 引入新知识(5分钟)1. 出示一个全等三角形的例子,引导学生观察并总结全等三角形的性质。

2. 提出问题:如何判定两个三角形是否全等?Step 2. 学习全等三角形的定义和判定条件(15分钟)1. 讲解全等三角形的定义:两个三角形的对应边相等,对应角相等,则两个三角形全等。

2. 研究使用SAS(边边角)、ASA(角边角)和SSS(边边边)三个判定条件判定两个三角形全等的方法,通过示例进行解释和演示。

Step 3. 同桌合作练习(15分钟)1. 将学生分成小组,每组3-4人,一起解决下列问题:(1)在平面上画出两个三角形,使其满足SAS条件,并判定两个三角形是否全等;(2)在平面上画出两个三角形,使其满足ASA条件,并判定两个三角形是否全等;(3)在平面上画出两个三角形,使其满足SSS条件,并判定两个三角形是否全等。

Step 4. 展示和总结(10分钟)1. 学生展示各自的解答过程和结果,教师进行点评和讲解。

2. 总结全等三角形的判定条件:(1)SAS:若两个三角形的两边分别相等,并且夹角也相等,则它们全等;(2)ASA:若两个三角形的一个角相等,并且两边分别相等,则它们全等;(3)SSS:若两个三角形的三边分别相等,则它们全等。

3. 强调不同全等条件之间的等价关系:任意一个条件成立,都可以推导出其他两个条件。

Step 5. 练习与应用(15分钟)1. 学生完成一些课后练习题,巩固对全等三角形的判定条件的理解和运用能力。

探索三角形全等的条件教案

探索三角形全等的条件教案

探索三角形全等的条件教案教案:探索三角形全等的条件一、教学目标:1.掌握三角形全等的条件;2.熟练运用三角形全等的条件解决相关问题;3.发展学生的逻辑思维和推理能力。

二、教学重点与难点:1.重点:三角形全等的条件;2.难点:培养学生的逻辑思维和推理能力。

三、教学准备:1.板书:三角形全等的条件;2.教具:直尺、量角器。

四、教学过程:1.复习导入(5分钟)通过提问、举例等方式复习三角形的基本概念、性质以及前几节课所学的内容。

2.引入新知(5分钟)教师引导学生思考:当两个三角形完全相同时,我们可以说这两个三角形是全等的。

那么,如何判断两个三角形是否全等,有哪些条件呢?3.学习新知(20分钟)教师板书三角形全等的条件,包括以下四个条件:a.两边和夹角相等;b.两角和边相等;c.任意两边和夹角相等;d.全等性质的推论。

教师通过示例和图示,逐步解释每个条件,并帮助学生理解和记忆。

4.练习与巩固(30分钟)a.学生个人练习:在作业本上完成练习题,熟练运用三角形全等的条件。

b.学生合作练习:分成小组,相互出题,互相考核,进一步巩固所学内容。

c.教师点评:针对学生的错误或疑惑进行解答和指导。

5.拓展应用(10分钟)教师提供一些拓展应用题,引导学生运用所学知识解决实际问题。

例如:给定两个三角形的一些条件,判断它们是否全等,并说明理由。

6.归纳总结(5分钟)教师与学生一起总结归纳三角形全等的条件,并强调每个条件的应用注意事项。

7.提高拓展(5分钟)对于拓展应用中出现的难题,教师引导学生思考更深层次的推理和解决方法,培养学生的逻辑思维和推理能力。

8.课堂小结(5分钟)教师对本节课所学知识进行简要总结,并提醒学生预习下节课内容。

五、课后作业:1.完成课堂练习不会的题目;2.思考并总结三角形全等的条件以及应用。

六、教学反思:通过设计本节课的教学,希望学生能够理解和掌握三角形全等的条件,并能够熟练运用这些条件解决问题。

在教学过程中,通过不同形式的练习,既可以提高学生的动手操作能力,又能够培养学生的逻辑思维和推理能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:探索三角形全等的条件
三、巩固提高
(三)补例如图:
AB=AC
BD=CD
△ABD与△ACD全等吗?为什么?学生独立思
考后合作探

加深对SSS
的应用
四、拓展应用(四)举例说明三角形的稳定性在生产和生
活中的应用
学生畅所欲

培养学生的
创新精神,增
强学生的合
作意识。

五、收获体会
六、布置作业(五)本节课的收获:
1、经历探索三角形全等的条件—SSS的过程。

2、了解三角形稳定性及其在生产和生活中的广泛应用。

3、会用SSS判断两个三角形是否全等?
4、已知三边长,会用直尺和圆规作三角形。

相关文档
最新文档