浙教新版七年级下数学测试题中等难度

合集下载

2022-2023学年浙教新版七年级下册数学期中复习试卷(有答案)

2022-2023学年浙教新版七年级下册数学期中复习试卷(有答案)

2022-2023学年浙教新版七年级下册数学期中复习试卷一.选择题(共10小题,满分30分,每小题3分)1.如图是一只小兔,将小兔进行平移可得到下列选项中的()A.B.C.D.2.下列计算中,正确的是()A.a5+a5=a10B.a2•a3=a6C.(a3)3=a9D.a6÷a2=a3(a≠0)3.下列方程中:①xy=1;②;③2x+3y=0;④,二元一次方程有()A.1个B.2个C.3个D.4个4.下列各式中,从左到右的变形是分解因式的是()A.x2﹣2=(x+1)(x﹣1)﹣1B.(x﹣2)(x﹣3)=(3﹣x)(2﹣x)C.a2﹣4=(a+2)(a﹣2)D.ma+mb+mc=m(a+b)+mc5.已知l1∥l2,一个含有30°的角的三角尺按如图所示位置摆放,若∠1=65°,则∠2的度数为()A.20°B.25°C.30°D.65°6.下列说法中,错误的有()①相等的角是对顶角;②和为180°的两个角叫做邻补角;③过直线外一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、相交、垂直三种.A.3个B.2个C.1个D.0个7.与方程组有完全相同解的方程是()A.x+2y=3B.2x+y=0C.(x+2y﹣3)(2x+y)=0D.|x+2y﹣3|+(2x+y)2=08.古书中有一个“隔沟计算”的问题:“甲乙隔沟牧放,二人暗里参详.甲云得乙九只羊,多乙一倍之上.乙说得甲九只,两家之数相当.”翻译成现代文,其大意如下:甲乙两人隔一条沟放牧,二人心里暗中合计.甲对乙说:“我得到你的九只羊,我的羊就比你多一倍.“乙对甲说:“我得到你的九只羊,咱俩的羊一样多.”设甲有羊x只,乙有羊y只,则符合题意的方程组是()A.B.C.D.9.(﹣)2021×(﹣2.6)2020=()A.1B.﹣1C.﹣D.﹣2.610.如果m﹣n=2,x+y=3,则(m﹣x)﹣(n+y)=()A.﹣5B.﹣1C.1D.5二.填空题(共8小题,满分24分,每小题3分)11.“北斗三号”最后一颗全球组网卫星的授时精度小于0.00000002秒,则0.00000002用科学记数法表示为.12.x2y2﹣9=(+)(﹣);(x﹣4)=x2﹣16.13.若化简(x+1)(2x+m)的结果中x的一次项系数是﹣5,则数m的值为.14.已知ab=﹣5,a﹣b=6,则a2+b2的值为.15.如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF.若∠ABE=20°,则∠EFC′的度数为.16.如图,a∥b,∠1=3x+70°,∠2=2x+80°,则x=,∠3=.17.已知(a﹣3)a=1,则整数a的值为.18.(1)若关于x,y的二元一次方程组的解是,则关于a,b的二元一次方程组的解是.(2)已知关于x,y的方程组的解是,则关于x,y的方程组的解是.三.解答题(共7小题,满分46分)19.(6分)计算(1)(﹣1)2014+(﹣)﹣2﹣(﹣)0.(2)(﹣4a2+12c3b)÷(﹣4a2).20.(6分)用代入消元法解下列二元一次方程组:(1)(2)21.(4分)解答题:(1)[(a+2b)2﹣(a+b)(a﹣b)﹣3b2]÷(2b),其中a=﹣1,b=.(2)已知a+b=3,ab=2,求a2+b2,(a﹣b)2的值.22.(4分)如图,△ABC经过平移后,使点A与点A′(﹣1,4)重合.(1)画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段之间的关系是;(3)若三角形ABC内有一点P(a,b),经过平移后的对应点P′的坐标.23.(8分)五一节前,某商店拟购进A、B两种品牌的电风扇进行销售,已知购进3台A 种品牌电风扇所需费用与购进2台B种品牌电风扇所需费用相同,购进1台A种品牌电风扇与2台B种品牌电风扇共需费用400元.(1)求A、B两种品牌电风扇每台的进价分别是多少元?(2)销售时,该商店将A种品牌电风扇定价为180元/台,B种品牌电风扇定价为250元/台,商店拟用1000元购进这两种风扇(1000元刚好全部用完),为能在销售完这两种电风扇后获得最大的利润,该商店应采用哪种进货方案?24.(8分)1637年笛卡尔(R.Descartes,1596﹣1650)在其《几何学》中,首次应用待定系数法最早给出因式分解定理.关于笛卡尔的“待定系数法”原理,举例说明如下:分解因式:x3+2x2﹣3.观察知,显然x=1时,原式=0,因此原式可分解为(x﹣1)与另一个整式的积.令:x3+2x2﹣3=(x﹣1)(x2+bx+c),而(x﹣1)(x2+bx+c)=x3+(b﹣1)x2+(c﹣b)x﹣c,因等式两边x同次幂的系数相等,则有:,得,从而x3+2x2﹣3=(x﹣1)(x2+3x+3).根据以上材料,理解并运用材料提供的方法,解答以下问题:(1)若x+1是多项式x3+ax+1的因式,求a的值并将多项式x3+ax+1分解因式.(2)若多项式3x4+ax3+bx﹣34含有因式x+1及x﹣2,求a,b的值.25.(10分)如图,AB∥CD,DE∥CB,∠B=m°,求∠D的度数(用含m的代数式表示).四.填空题(共2小题,满分10分)26.(4分)已知2x2﹣3x=1,则2x3﹣9x2+8x+2018=.27.(6分)有若干张如图所示的正方形和长方形卡片.(1)选用若干张卡片拼成面积为(a+b)(2a+3b)的大长方形,在下面的表格中填写所选的卡片数量.卡片①②③数量/张(2)画图说明你的拼图方案.(3)根据大长方形的面积与组成它的卡片面积的关系可得到的代数恒等式为.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的C.故选:C.2.解:A.a5+a5=2a5,故本选项不符合题意;B.a2•a3=a5,故本选项不符合题意;C.(a3)3=a9,符合题意;D.a6÷a2=a4(a≠0),故本选项不符合题意.故选:C.3.解:①xy=1,是二元二次方程;②,是分式方程;③2x+3y=0,是二元一次方程;④,是二元一次方程.所以③④是二元一次方程,故选:B.4.解:A、右边不是整式积的形式,故本选项错误;B、不是把多项式写成整式积的形式,故本选项错误;C、a2﹣4=(a+2)(a﹣2)是因式分解,故本选项正确;D、右边不是整式积的形式,故本选项错误.故选:C.5.解:如图,过直角顶点作直线l∥l1,∵l1∥l2,∴l1∥l2∥l,∴∠1=∠3,∠2=∠4,∵∠3+∠4=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=90°﹣65°=25°.故选:B.6.解:相等的两个角不一定是对顶角,如图:∠1=∠2,但不是对顶角;故①错误;若∠1+∠2=180°,则∠1与∠2不一定是邻补角,如图:∠A+∠B=180°,但∠A和∠B不是邻补角,故②错误;过直线外一点,有且只有一条直线与这条直线平行,故③正确;同一平面内,两条直线的位置关系有:相交和平行,垂直是相交的特殊,故④错误;∴错误的有3个.故选:A.7.解:∵|x+2y﹣3|+(2x+y)2=0,∴.故选:D.8.解:设甲有羊x只,乙有羊y只.∵甲对乙说:“我得到你的九只羊,我的羊就比你多一倍.”∴x+9=2(y﹣9);∵乙对甲说:“我得到你的九只羊,咱俩的羊就一样多.”∴x﹣9=y+9.联立两方程组成方程组.故选:D.9.解:(﹣)2021×(﹣2.6)2020=====.故选:C.10.解:∵m﹣n=2,x+y=3,∴(m﹣x)﹣(n+y)=m﹣x﹣n﹣y=m﹣n﹣(x+y)=2﹣3=﹣1.故选:B.二.填空题(共8小题,满分24分,每小题3分)11.解:0.00000002=2×10﹣8.故答案为:2×10﹣8.12.解:x2y2﹣9=(xy+3)(xy﹣3),(x+4)(x﹣4)=x2﹣16;故答案为:xy,3,xy,3,x,4.13.解:(x+1)(2x+m)=2x2+mx+2x+m,由题意可知:m+2=﹣5,∴m=﹣7,故答案为:﹣714.解:∵a﹣b=6,∴(a﹣b)2=36∴a2+b2﹣2ab=36又∵ab=﹣5∴a2+b2=36+2ab=36+2×(﹣5)=26故答案为26.另解:∵ab=﹣5,a﹣b=6∴a2+b2=a2+b2﹣2ab+2ab=(a﹣b)2+2ab=62+2×(﹣5)=36﹣10=26故答案为26.15.解:∵四边形ABCD为长方形,∴∠BAD=90°,AD∥BC.∵在直角三角形BAD中,∠ABE=20°,∴∠AEB=70°,∴∠BED=110°,根据折叠重合的角相等,得∠BEF=∠DEF=55°.∵AD∥BC,∴∠EFC=125°,再根据折叠的性质得到∠EFC′=∠EFC=125°.故答案为:125°.16.解:∵∠1+∠3=180°,∠2+∠4=180°,,∠1=3x+70°,∠2=2x+80°,∴∠3=180°﹣∠1=180°﹣3x﹣70°=110°﹣3x,∠4=180°﹣∠2=180°﹣2x﹣80°=100°﹣2x,∵a∥b,∴∠3=∠4,∴110°﹣3x=100°﹣2x,解得x=10°,∴∠3=110°﹣3x=110°﹣30°=80°.故答案为:10°,80°.17.解:①∵若a﹣3≠0时,(a﹣3)a=1,∴a=0;②若a﹣3=1时,1的任何次幂都等于1,∴a=4;③若a﹣3=﹣1时,﹣1的偶次幂等于1,∴a=2;故答案为:0、2、4.18.(1)设a+b=x,a﹣b=y,则变形为,∵关于x,y的二元一次方程组的解是,∴,解得;故答案为:;(2)将整理得;设m=x2﹣2x+1,则原方程组变形成,∵关于x,y的方程组的解是,∴的解是,∴,解得或,故答案为:或.三.解答题(共7小题,满分46分)19.解:(1)原式=1+4﹣1=5﹣1=4;(2)原式=1﹣.20.解:(1),由①,得y=2x﹣1③,把③代入②,得5x﹣3(2x﹣1)=8,解得:x=﹣5,把x=﹣5代入③,得y=﹣10﹣1=﹣11,所以方程组的解是;(2)整理得:,由①,得x=3y﹣3③,把③代入②,得2(3y﹣3)﹣y=4,解得:y=2,把y=2代入③,得x=6﹣3=3,所以方程组的解是.21.解:(1)[(a+2b)2﹣(a+b)(a﹣b)﹣3b2]÷(2b)=(a2+4ab+4b2﹣a2+b2﹣3b2)÷(2b)=(2b2+4ab)÷(2b)=b+2a,当a=﹣1,b=时,原式=+2×(﹣1)=﹣;(2)∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,(a﹣b)2=(a+b)2﹣4ab=32﹣4×2=1.22.解:(1)如图所示,△A′B′C′即为所求;(2)由平移得:AA′=CC′,AA′∥CC′,故答案为:平行且相等.(3)由A(2,6)对应点A′(﹣1,4),可得平移规律:横坐标﹣3,纵坐标﹣2,所以点P(a,b),经过平移后的对应点P′的坐标为(a﹣3,b﹣2),故答案为:(a﹣3,b﹣2).23.解:(1)设A、B两种品牌电风扇每台的进价分别是x元、y元,由题意得:,解得:,答:A、B两种品牌电风扇每台的进价分别是100元、150元;(2)设购进A种品牌的电风扇a台,购进B种品牌的电风扇b台,由题意得:100a+150b=1000,其正整数解为:或或,当a=1,b=6时,利润=80×1+100×6=680(元),当a=4,b=4时,利润=80×4+100×4=720(元),当a=7,b=2时,利润=80×7+100×2=760(元),∵680<720<760,∴当a=7,b=2时,利润最大,答:为能在销售完这两种电风扇后获得最大的利润,该商店应采用购进A种品牌的电风扇7台,购进B种品牌的电风扇2台.24.解:(1)令x3+ax+1=(x+1)(x2+bx+c),而(x+1)(x2+bx+c)=x3+(b+1)x2+(c+b)x+c,∵等式两边x同次幂的系数相等,即x3+(b+1)x2+(c+b)x+c=x3+ax+1∴解得∴a的值为0,x3+1=(x+1)(x2﹣x+1)(2)(x+1)(x﹣2)=x2﹣x﹣2令3x4+ax3+bx﹣34=(x2﹣x﹣2)(3x2+cx+d),而(x2﹣x﹣2)(3x2+cx+d)=3x4+(c﹣3)x3+(d﹣c﹣6)x2﹣(2c+d)x﹣2d,∵等式两边x同次幂的系数相等,即3x4+(c﹣3)x3+(d﹣c﹣6)x2﹣(2c+d)x﹣2d=3x4+ax3+bx﹣34∴解得答:a、b的值分别为8、﹣39.解法二:由题意,,解得.25.解:∵AB∥CD,∴∠C=∠B=m°.∵DE∥CB,∴∠D=180°﹣∠C=(180﹣m)°.故∠D的度数为(180﹣m)°.四.填空题(共2小题,满分10分)26.解:∵2x2﹣3x=1,∴2x2﹣3x﹣1=0,∴2x3﹣9x2+8x+2018=(2x3﹣3x2﹣x)+(﹣6x2+9x)+2018=x(2x2﹣3x﹣1)﹣3(2x3﹣3x)+2018=x•0﹣3×1+2018=2015,故答案为2015.27.解:(1)根据题意得可得:卡片①2张,卡片②5张,卡片③3张,填表如下:卡片①②③数量/张 2 5 3故答案为:2,5,3;(2)如图所示:(3)根据大长方形的面积与组成它的卡片的面积的关系可得:(a+b)(2a+3b)=2a2+5ab+3b2;故答案为:(a+b)(2a+3b)=2a2+5ab+3b2.。

最新浙教版七年级数学下册单元测试题全套及答案

最新浙教版七年级数学下册单元测试题全套及答案

最新浙教版七年级数学下册单元测试题全套及答案浙教版七年级数学下册单元测试题全套及答案一、填空题1、在平面直角坐标系中,点P(2,3)在____________ 象限。

2、在一幅地图上,用50厘米表示实际距离10千米,这幅地图的比例尺是____________。

3、若一个正多边形的内角都相等,且每个内角与相邻的外角之差为36°,那么这个多边形的边数为____________。

4、如果一个角的两边分别与另一个角的两边平行,那么这两个角的关系是____________。

5、已知点A(2,4),B(3,1),那么线段AB的中点C的坐标为____________。

6、已知一次函数y=kx+b的图象经过点(1,2),且与y轴的交点的纵坐标是-1,那么这个一次函数的解析式是____________。

7、在一个等边三角形中,边长为10厘米,则它的高为____________ 厘米。

8、将直线y=2x+4向上平移2个单位,得到的直线的解析式为____________。

9、在□ABCD中,对角线AC与BD交于点O,则下列结论错误的是____________:①AC=BD;②OA=OC;③OB=OD;④BC=AD。

10、若点A(m,n)在第三象限,则点B(-m,-n)在____________ 象限。

二、选择题1、下列说法正确的是( ) A. 不是正数的数一定是负数 B. 不是负数的数一定是正数 C. 在数轴上,到一个原点的距离为3的点表示的数是3 D. 正有理数和负有理数组成的有理数集合中只含有有限个的数2、在平面直角坐标系中,点A(0,4),B(4,0),C(0,0),则三角形ABC 的面积为( ) A. 8 B. 6 C. 4 D. 以上都不对3、在一次函数y=kx+b中,若k>0,b<0,则这个函数的图象经过第几象限( ) A. 一、二、三象限 B. 一、二、四象限 C. 二、三、四象限 D. 一、三、四象限4、用四舍五入法把0.6995精确到千分位的近似值的有效数字是( ) A. 0,6,9,5 B. 6,9,9,5 C. 6,9,0,5 D. 6,9,0,05、下列说法正确的是( ) A. 数轴上原点的位置是任意取的 B. 数轴上可以用一个点表示两个不同的数 C. 以不同的方向为正方向建立平面直角坐标系,同一个点会在不同的平面直角坐标系中的坐标相同D. 可以根据平移的意义把平面直角坐标系里的点平移到另一个平面直角坐标系中三、解答题1、一次函数y=kx+b的图象经过点A(-1,-2)和B(2,6)。

浙教版初中数学七年级下册专题50题含参考答案

浙教版初中数学七年级下册专题50题含参考答案

浙教版初中数学七年级下册专题50题含答案一、单选题1.12-的值是( ) A .2-B .2C .12-D .122.计算4322⨯的结果是( ) A .72B .82C .122D .1323.如图,不一定能推出a∥b 的条件是( )A .∥1=∥3B .∥2=∥4C .∥1=∥4D .∥2+∥3=180º4.下列运算正确的是( ) A .2333a a a += B .()3252?2a a a -=C .623422a a a ÷=D .()22238a a a --=5.如图:有a 、b 、c 三户家用电路接入电表,相邻电路的接点距离相等,相邻电表的距离相等,且相邻电路的接点距离等于相邻电表接入点的距离,电线对应平行排列,则三户所用电线( )A .a 户最长B .b 户最长C .c 户最长D .三户一样长6.一个圆柱形容器的容积为V 3m ,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分钟.设小水管的注水速度为x 立方米/分钟,则下列方程正确的是( )A .2V V t x x+= B .4V V t x x += C .11224V Vt x x⋅+⋅= D .24V V t x x+= 7.已知35a b =,则a b a b -+的值是( )A .﹣23B .﹣25C .﹣14D .298.下列运算正确的是( ) A .2532a a a -= B .2324236ab a b a b ⋅= C .()3339327ab a b -=-D .222(2)42a b a ab b -=-+9.2022年我市有5800名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( ) A .5800名考生是总体 B .1000名考生是总体的一个样本 C .1000名考生是样本容量D .每位考生的数学成绩是个体10.下列各式能用平方差公式计算的是( ) A .(﹣12a +1)(﹣12a ﹣1) B .(2x +y )(2y ﹣x ) C .(a +b )(a ﹣2b )D .(2x ﹣1)(﹣2x +1)11.下列调查适合抽样调查的是( ) A .对某班全体学生出生日期的调查 B .上飞机前对乘客进行的安检C .审核将发表的一篇文稿中的错别字D .对全市中小学生的睡眠情况进行调查12.下列各组值中,哪组是二元一次方程2x ﹣y=5的解( ) A .26x y =-⎧⎨=⎩B .43x y =⎧⎨=⎩C .34x y =⎧⎨=⎩D .62x y =⎧⎨=⎩13.若多项式2(5)2x a x ++-中不含x 的一次项,则a 的值为( ) A .0B .5C .5-D .5或5-14.对于两个非零实数a 、b ,规定11a b b a⊕=-,若()2211x ⊕+=,则x 的值为( ) A .56B .54C .32D .16-15.观察图形,用两种不同的方法计算大长方形面积,我们可以验证等式( )A .(a +b )(a +2b )=a2+3ab +2b2B .(a +b )(2a +b )=2a2+3ab +b2C .(a +b )(a +2b )=2a2+3ab +b2D .(a +b (2a +b )=a2+3ab +2b216.如图,由图形的面积关系能够直观说明的代数恒等式是( )A .22()()a b a b a b -=-+B .222()2a b a ab b -=-+C .224()()ab a b a b =+--D .222()2a b a ab b +=++17.下列计算正确的是( ) A .235a a a += B .844a a a ÷= C .222(2)4ab a b -=-D .222()a b a b +=+18.如图是某班全体学生外出时选择乘车、步行、骑车人数的条形统计图和扇形统计图(两图都不完整),则下列结论中正确的是( )A .步行人数为30人B .骑车人数占总人数的10%C .该班总人数为50人D .乘车人数是骑车人数的40%19.已知m ﹣1m 1m+m 的值为( )A.B C . D .1120.某瓶中装有1分,2分,5分三种硬币,15枚硬币共3角5分,则有多少种装法( ) A .1.B .2.C .3.D .4.二、填空题 21.若14-x 在实数范围内有意义,则x 的取值范围是________. 22.分解因式:my 2﹣9m =_____.23.某校共有3000名学生,为了了解学生的视力情况,抽取了100名学生进行视力检查,在这个问题中,样本容量是_____. 24.比较大小:4442____333325.关于x 、y 的方程组354522x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,则()ba -=____26.分解因式:224x y xy +=______.27.一个不透明的盒子中有若干个白球和5个黑球,从中摸出一球记下颜色后放回,重复摸球100次,其中摸到黑球的次数为25次,盒中有白球约______个. 28.分解因式:32a b b -=_______________. 29.若244(2)()x x x x n ++=++,则n =__________ 30.分解因式:2x x -=_________.31.如图,AB //CD ,∥2=135°,则∥1的度数是 ___.32.如图, 已知12180∠+∠=︒,375∠=︒,则4∠=__________.33.因式分解:2412x x +-=______.34.小玲想借助学过的几何图形设计图案,首先她将如图1的小长方形和如图2的小正方形组合成如图3的大正方形图案,已知小长方形的长为()cm a ,宽为()cm b ,则图2的小正方形的边长可用关于a 和b 的代数式表示为______;小玲随后用3个如图3的完全相同的图案和8个如图1的小长方形,组合成如图4的大长方形图案,则图4中阴影部分面积与整个图形的面积之比为______.35.分式方程1233x x x-=---解得______. 36.因式分解:516a a -= ____37.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB ,CD .若CD ∥BE ,∥1=28°,则∥2的度数是______.38.某个数的平方根是2a b +和44a --__________. 39.如图,O 是正六边形ABCDEF 的中心,下列图形:∥OCD ,∥ODE ,∥OEF ,∥OAF ,∥OAB ,其中可由∥OBC 平移得到的有_________个.三、解答题40.因式分解:2(2)(2)m a a -+-41.阅读下列推理过程,在括号中填写理由.已知:如图,点D 、E 分别是线段AB 、BC 上的点,AE 平分BAC ∠,BED C ∠=∠,//DF AE ,交BC 于点F .求证:DF 平分BDE ∠. 证明:AE 平分BAC ∠(已知)12∴∠=∠( )BED C ∠=∠(已知) //AC DE ∴( )13∠∠∴=( ) 23∴∠=∠(等量代换) //DF AE ( )25∴∠=∠( )3=4∠∠( )45∴∠=∠( ) DF ∴平分BDE ∠( )42.解方程组(1)2123211x y x y +=⎧⎨-=⎩①②(2)24230x y x y -=⎧⎨+-=⎩①②43.某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题:()1该调查的样本容量为______,a =______%,b =______%.“很少”对应扇形的圆心角为______;()2请补全条形统计图;()3若该校共有3500名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?44.先化简,再求值:()2332111x x x x ⎡⎤--÷⎢⎥---⎢⎥⎣⎦,其中x =-1. 45.先化简,再求值2211xy x y x y x y ⎛⎫+÷ ⎪-+-⎝⎭,其中2x =,=2y -. 46.为提高居民的节水意识,向阳小区开展了“建设节水型社区,保障用水安全”为主题的节水宣传活动.小莹同学积极参与小区的宣传活动,并对小区300户家庭用水情况进行了抽样调查.她在300户家庭中随机调查了50户家庭5月份的用水量,结果如图所示.把图中每组用水量的值用该组的中间值(如06~的中间值为3)来代替,估计该小区5月份的用水量.47.仔细阅读下面例题,并解答问题:例题:已知二次三项式24x x m -+有一个因式为3x +,求另一个因式以及m 的值. 解:设另一个因式为x n +, 由题意得24(3)()x x m x x n -+=++,即224(3)3x x m x n x n -+=+++,则有343n n m +=-⎧⎨=⎩,解得217m n =-⎧⎨=-⎩,所以另一个因式为7x -,m 的值是21-. 问题:请仿照上述方法解答下面问题,(1)若2(1)(3)x bx c x x ++=-+,则b =__________,c =__________;(2)已知二次三项式225x x k ++有一个因式为23x -,求另一个因式以及k 的值.48.计算:(1)212sin 302-; (2)(x ―2)2―(x +3)(x ―1).49.已知多项式x 2-mx -n 与x -2的乘积中不含x 2项和x 项,求m ,n 的值.参考答案:1.D【分析】根据负整数指数幂的法则计算即可.【详解】解:1,2-=12故选D.【点睛】本题考查了负整数指数幂,掌握运算法则才能正确计算.2.A【分析】根据同底数幂的乘法运算进行计算即可.【详解】解:344732==⨯2+22故选A【点睛】本题考查了同底数幂的乘法,掌握同底数幂的乘法是解题的关键.3.C【详解】解:A、∥∥1和∥3为同位角,∥1=∥3,∥a∥b;B、∥∥2和∥4为内错角,∥2=∥4,∥a∥b;C、∥∥1=∥4,∥3+∥4=180°,∥∥3+∥1=180°,不符合同位角相等,两直线平行的条件;D、∥∥2和∥3为同位角,∥2+∥3=180°,∥a∥b.故选C.4.D【详解】解:A、不是同类项,无法进行加法计算,计算错误;B、原式=5-,计算错误;2aC、462a a a÷=,计算错误;422D、原式=222-=,计算正确.98a a a故选D.5.D【分析】可理解为将最左边一组电线向右、向上平移所得,由平移的性质即可得出结论.【详解】解:∥a、b、c三户家用电路接入电表,相邻电路的电线等距排列,∥将a向右、向上平移即可得到b、c,∥图形的平移是全等的,即不改变图形大小和形状,∥三户一样长.故选:D.【点睛】本题考查的是生活中的平移现象,熟知图形平移的性质是解答此题的关键. 6.C【分析】根据题意先求出注入前一半容积水量所需的时间为12Vx ⋅,再求出后一半容积注水的时间为124Vx⋅,故可列出方程.【详解】根据题意得出前一半容积水量所需的时间为12Vx ⋅,后一半容积注水的时间为124V x⋅, 即可列出方程为11224V Vt x x⋅+⋅= , 故选C.【点睛】此题主要考查分式方程的应用,解题的关键是找到等量关系进行列方程. 7.C 【分析】由35a b =,得35a b =,代入a b a b -+,即可得到答案.【详解】解:∥35a b =, ∥35a b =,∥315345b ba b a b b b --==-++, 故选择:C.【点睛】本题考查了分式化简求值,解题的关键是掌握化简的方法,正确的进行化简. 8.C【分析】分别根据合并同类项的法则、单项式乘以单项式的法则、积的乘方运算法则、完全平方公式计算各项,进而可得答案.【详解】解:A 、25a 与3a -不是同类项,不能合并,所以本选项运算错误,不符合题意; B 、2342432366ab a b a b a b ≠⋅=,所以本选项运算错误,不符合题意; C 、()3339327ab a b -=-,所以本选项运算正确,符合题意;D 、22222(2)4442a b a ab b a ab b -=-+≠-+,所以本选项运算错误,不符合题意. 故选:C .【点睛】本题考查了合并同类项的法则、单项式乘以单项式的法则、积的乘方运算法则和完全平方公式等知识,属于基础题型,熟练掌握基本知识是解题关键.9.D【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A .5800名考生的数学成绩是总体,故此选项不合题意;B .1000名考生的数学成绩是总体的一个样本,故此选项不合题意;C .1000是样本容量,故此选项不合题意;D .每位考生的数学成绩是个体,说法正确,故此选项符合题意;故选:D .【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.10.A【分析】运用平方差公式()()22a b a b a b +-=-时,关键要找两数的和与两数的差,字母可以代表数或代数式.【详解】解:A. (﹣12a +1)(﹣12a ﹣1)符合平方差公式,故本选项符合题意;B. (2x +y )(2y ﹣x )不符合平方差公式,故本选项不符合题意;C. (a +b )(a ﹣2b )不符合平方差公式,故本选项不符合题意;D. ()()()()()22121212121x x x x x --+=---=--中符合完全平方公式,不能用平方差公式计算,故本选项不符合题意;故选A【点睛】考查了平方差公式,运用平方差公式计算时,关键要找两数的和与两数的差,字母可以代表数或代数式.11.D【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A.对某班全体学生出生日期的调查,应用全面调查方式,故此选项不合题意;B.上飞机前对乘客进行的安检,应用全面调查方式,故此选项不合题意;C.审核将发表的一篇文稿中的错别字,应用全面调查方式,故此选项不合题意;D.对全市中小学生的睡眠情况进行调查,适合选择抽样调查,故此选项符合题意.故选:D.【点睛】本题考查了抽样调查和全面调查,解题的关键是掌握由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.12.B【分析】把各项中x与y的值代入方程检验即可.【详解】A、把26xy=-⎧⎨=⎩代入方程得:左边4610=--=-,右边=5.∥左边≠右边,∥不是方程的解;B、把43xy=⎧⎨=⎩代入方程得:左边835=-=,右边=5.∥左边=右边,∥是方程的解;C、把34xy=⎧⎨=⎩代入方程得:左边642=-=,右边=5.∥左边≠右边,∥不是方程的解;D、把62xy=⎧⎨=⎩代入方程得:左边12210=-=,右边=5.∥左边≠右边,∥不是方程的解.故选:B.【点睛】此题考查了解二元一次方程的解,熟练掌握运算法则及理解方程的解即为能使方程左右两边相等的未知数的值是解本题的关键.13.C【分析】根据不含项的系数为0解答.【详解】解:∥多项式2(5)2x a x ++-中不含x 的一次项,∥5+a =0,解得a =-5,故选:C .【点睛】此题考查多项式不含项的问题,多项式中所不含的项应是合并同类项后该项的系数为零,掌握法则是解题的关键.14.D【分析】根据题中的新定义化简已知方程,求出解即可. 【详解】解:根据题中的新定义化简得:111212x +-=, 去分母得:2-2x -1=4x +2,解得:x =16-, 经检验x =16-是分式方程的解, 则x 的值为16-, 故选:D .【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.解题的关键是根据新定义的运算法则列出方程.15.A【分析】根据图形,大长方形面积等于三个小正方形面积加上三个小长方形的面积和,列出等式即可.【详解】解:∥长方形的面积=(a +b )(a +2b )长方形的面积=a 2+ab +ab +ab +b 2+b 2= a2+3ab +2b2,∥(a +b )(a +2b )= a 2+3ab +2b 2故选:A .【点睛】本题考查多项式乘以多项式的几何意义,通过几何图形之间的数量关系对多项式乘以多项式做出几何解释.16.B【分析】利用面积公式及割补法分别求出图中正方形∥的面积,即可获得答案.【详解】解:如下图,图中正方形∥,其边长为()a b -,故其面积可表示为:21()S a b =-,利用割补法,正方形∥的面积也可计算如下:1234S S S S S =---正方形长方形长方形大正方形2222()()a ab b ab b b =-----222a ab b =-+,即有222()2a b a ab b -=-+.故选:B .【点睛】本题主要考查了完全平方公式与几何图形,理解并掌握完全平方公式是解题关键.17.B【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.【详解】解:A 、23a a +,无法计算,故此选项错误;B 、844a a a ÷=,故此选项正确;C 、22224ab a b (﹣)=,故此选项错误;D 、2222a b a ab b +++()=,故此选项错误;故选B .【点睛】考查了合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.18.C 【分析】根据乘车的人数和所占的百分比求出总人数,用总人数乘以步行所占的百分比求出步行的人数,用骑车的人数除以总人数求出骑车人数占总人数的百分比,用乘车的人数除以骑车人数,求出乘车人数是骑车人数的倍数.【详解】A 、步行的人数有:2550%×30%=15人,故本选项错误; B 、骑车人数占总人数10÷2550%=20%,故本选项错误; C 、该班总人数为2550%=50人,故本选项正确; D 、乘车人数是骑车人数的2510=2.5倍,故本选项错误; 故选C .【点睛】本题考查了频数(率)分布直方图和扇形统计图,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.A【分析】根据完全平方公式即可得到结果.【详解】1m-=m 21m-=7m ⎛⎫∴ ⎪⎝⎭, 221m -2+=7m ∴, 221m +=9m ∴, 22211m+=m +2+=11m m ⎛⎫∴ ⎪⎝⎭, 1m+m∴= 故选A.【点睛】本题主要考查完全平方公式,熟悉掌握公式是关键.20.C【详解】解:设1分的硬币有x 枚,2分的硬币有y 枚,则5分的硬币有(15-x-y)枚, 可得方程x+2y+5(15-x-y)=35,整理得4x+3y=40,即x=10-34y , 因为x ,y 都是正整数,所以y=4或8或12,所以有3种装法,故选C.21.x≠4【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围.【详解】当分母40x -≠,即4x ≠时,分式14x -在实数范围内有意义, 故答案为:4x ≠.【点睛】考查了分式有意义的条件,注意:分式有意义⇔分母不为零.22.(3)(3)m y y +-【分析】首先提取公因式m ,进而利用平方差公式进行分解即可.【详解】my 2﹣9m =m (y 2﹣9)=m (y +3)(y ﹣3).故答案为:m (y +3)(y ﹣3)【点睛】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.23.100【分析】利用样本容量定义可得答案.【详解】解:某校共有3000名学生,为了了解学生的视力情况,抽取了100名学生进行视力检查,在这个问题中,样本容量是100,故答案为:100.【点睛】此题主要考查了样本容量,关键是掌握样本容量只是个数字,没有单位. 24.<【分析】把它们化为指数相同的幂,再比较大小即可.【详解】解:∥2444=(24)111=16111,3333=(33)111=27111,而16111<27111,∥2444<3333,故答案为:<.【点睛】本题主要考查了幂的乘方以及有理数大小比较,熟记幂的运算法则是解答本题的关键.25.-8【分析】先联立仅含有字母,x y 的方程,求出方程组的解,将方程组的解代入含有字母,a b的方程组中求解即可.【详解】解:由题意联立方程组得:35,234x y x y -=⎧⎨+=-⎩①② ∥3⨯+∥得:1111x =,即1x =,把1x =代入∥得:=2y -,将x ,y 值代入45228ax by ax by +=-⎧⎨-=⎩解得:23a b =⎧⎨=⎩, 则3()(2)8b a -=-=-故答案为8-.【点睛】本题考查了解二元一次方程组,乘方运算,正确的解方程组是解题的关键. 26.()22xy x +【分析】用提公因式法分解因式即可.【详解】解:()22422x y xy xy x +=+.故答案为:()22xy x +.【点睛】本题主要考查了因式分解,解题的关键是找出公因式2xy .27.15【分析】可根据“黑球数量=黑球所占比例⨯黑白球总数”来列等量关系式,其中“黑白球总数=黑球个数+白球个数”,“黑球所占比例⨯总共摸球的次数=随机摸到的黑球次数”.【详解】解:设盒中原有白球有x 个,根据题意得:()2555100x ⨯+=⨯, 解得:x =15,答:盒中原有白球约有15个.故答案为:15.【点睛】本题主要考查用样本估计总体,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.28.b (a+b )(a -b )【详解】试题分析:首先进行提取公因式,然后利用平方差公式进行因式分解.原式=b (22a b -)=b (a+b )(a -b ).考点:因式分解.29.2【分析】等号的左边符合完全平方公式的形式,所以可以利用完全平方公式解题.【详解】2244(2)(2)(2)x x x x x ++=+=++所以2n =【点睛】本题主要考查完全平方公式222()2a b a ab b ±=±+ ,熟练掌握完全平方公式并灵活应用是解题的关键.30.()1x x -【分析】根据提取公因式的方法进行因式分解即可.【详解】()21x x x x -=-故答案为:()1x x -.【点睛】本题考查了因式分解的问题,掌握因式分解的方法是解题的关键.31.45°【分析】根据根据对顶角相等得到∥3=135°,再根据平行线的性质,同旁内角互补即可求解.【详解】解:如图,∥3=∥2=135°∥AB //CD ,∥3=135°,∥∥1+∥3=180°;又∥∥1=180°−∥3=180°−135°=45°.故答案为:45°【点睛】能够明确各个角之间的位置关系.熟练运用平行线的性质以及对顶角相等的性质.32.105°【分析】根据平行线的判定得出a∥b ,根据平行线的性质得出∥5=∥3=75°,再求出∥4即可.【详解】解:∥∥1+∥2=180°,∥a∥b ,∥∥3=∥5,∥∥3=75°,∥∥5=75°,∥∥4=180°−∥5=105°,故答案为:105°.【点睛】本题考查了平行线的性质和判定,能灵活运用平行线的判定和性质定理进行推理是解此题的关键.33.()()26x x -+【分析】直接用()()()2x a b x ab x a x b +++=++分解即可.【详解】22412(26)(2)6(2)(6)x x x x x x +-=+-++-⨯=-+【点睛】本题考查了因式分解-十字相乘法,关键是确定两个合适的数:把常数项分解成两个数的积,其和恰好等于一次项系数.34. a −b 16【分析】根据图形所表示的长度,列代数式即可;根据图形列出阴影部分与整个矩形的面积,然后求比值即可.【详解】解:根据题意小正方形的边长为:a −b ;∥图3中阴影部分的面积为:()2a b -,小长方形的长为a ,宽为b ,∥图4中阴影部分的面积为:()23a b -,整个图形的面积为:4a (a +3b ),∥图4中阴影部分面积与整个图形的面积之比为:()()2343a b a a b -+, 又由图4得:3a +3b =4a ,∥a =3b ,∥()()()()2222333121434333726a b b b b a a b b b b b --===+⨯+, 故答案为:a −b ;16. 【点睛】本题考查了列代数式,整式的混合运算,分式的化简,关键是用代数式正确表示阴影部分的面积、大矩形的面积.35.5x =【分析】根据分式方程的求解步骤进行求解即可;【详解】解:方程两边同时乘以()3x -,得:()123x x =--,去括号、移项得:5x -=-,系数化为1得:5x =,经检验,当5x =时,30x -≠,故5x =是原方程的根,故答案为:5x =.【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键. 36.a(2a +4)(a+2)(a -2)【详解】试题分析:本题首先提取公因式a ,然后连续利用两次平方差公式进行因式分解. 考点:因式分解.37.56°【分析】由折叠的性质可得∥3=∥1=28°,从而求得∥4=56°,再根据平行线的性质定理求出∥EBD =180°﹣∥4=124°,最后再根据平行线性质定理求出∥2=56°.【详解】解:如图,由折叠的性质,可得∥3=∥1=28°,∥纸带对边互相平行∥∥4=∥1+∥3=56°,∥CD∥BE,AC∥BD,∥∥EBD=180°﹣∥4=124°,又∥CD∥BE,∥∥2=180°﹣∥CBD=180°﹣124°=56°.故答案为:56°.【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.38.36【分析】根据一个数的两个平方根互为相反数以及平方的非负数的性质,求得a、b的值,然后再求这个数即可.【详解】解:∥一个数的平方根是a2+b与4-4a∥a2+b+4-4a,即(a2-4a+4)+(b,则(a-2)21)2=0,∥a-2=01=0,解得a=2,b=2,∥a2+b=6,这个数是62=36.故答案为:36.【点睛】本题主要考查了平方根的性质,非负数的性质,完全平方公式的应用,利用平方根的性质得到(a-2)21)2=0是解题的关键.39.2【分析】根据平移的性质,结合图形,对题中给出的三角形进行分析,排除错误答案,求得正确选项.【详解】解∥∥OCD 方向发生了变化,不是平移得到;∥ODE 符合平移的性质,是平移得到;∥OEF 方向发生了变化,不是平移得到;∥OAF 符合平移的性质,是平移得到;∥OAB 方向发生了变化,不是平移得到.故答案为∥2.【点睛】此题考查平移的性质,准确把握平移的性质,平移变换不改变图形的形状、大小和方向是解题的关键.40.(2)(1)(1)a m m -+-【分析】根据代数式的特点先变形,再提取公因式法,最后用平方差公式进行因式分解.【详解】2(2)(2)m a a -+-=2(2)(2)m a a ---=2(2)(1)a m --=(2)(1)(1)a m m -+-【点睛】此题主要考查因式分解,解题的关键是根据代数式的特点进行变形再因式分解. 41.见解析【分析】根据平行线的性质,角平分线的定义填写理由即可.【详解】证明:AE 平分BAC ∠(已知)12∴∠=∠(角平分线的定义)BED C ∠=∠(已知)//AC DE ∴(同位角相等,两直线平行)13∠∠∴=(两直线平行,内错角相等)23∴∠=∠(等量代换)//DF AE (已知)25∴∠=∠(两直线平行,同位角相等)3=4∠∠(两直线平行,内错角相等)45∴∠=∠(等量代换)DF ∴平分BDE ∠(角平分线的定义)【点睛】本题考查了角平分线的定义,平行线的性质与判定,掌握平行线的性质与判定是解题的关键.42.(1)1214x y ⎧=⎪⎪⎨⎪=⎪⎩(2)21x y =⎧⎨=-⎩【分析】(1)利用加法消元法即可解方程组;(2)由第一个方程得到24x y =+,然后利用代入消元法即可解方程组.【详解】(1)解:2123211x y x y +=⎧⎨-=⎩①②, 由∥+∥得:2412x =,解得:12x =, 把12x =代入∥得:14y =, 即方程组的解为:1214x y ⎧=⎪⎪⎨⎪=⎪⎩; (2)解:24230x y x y -=⎧⎨+-=⎩①②, 由∥得:24x y =+∥,将∥代入∥得:()22430y y ++-=,解得:1y =-,把1y =-代入∥得:()2142x =⨯-+=,即方程组的解为:21x y =⎧⎨=-⎩. 【点睛】本题考查解二元一次方程组,熟练掌握加减消元法和代入消元法求解二元一次方程组是解题关键.43.(1)200、12、36、43.2;(2)见解析(3)“总是”对错题进行整理、分析、改正的学生有1260名【详解】分析:(1)根据扇形统计图和条形统计图中的信息进行计算解答即可;(2)根据(1)中所得样本容量结合扇形统计图中的信息计算出“常常”这一组的人数,由此即可补充完整条形统计图;(3)先由(1)中所得样本容量计算出样本中“总是”这一组占总数的百分比,然后乘以3500即可求得所求结果了.详解:(1)由所给两幅统计图中的信息可知:属于“有时”这一组的有44人,占总数的22%, ∥样本容量为:44÷22%=200 ,∥ 24÷200×100%=12%,72÷200×100%=36%,∥ a=12% ,b=36%,∥很少部分对应的圆心角的度数为:360°×12%=43.2°.(2)∥样本容量为200,“常常”这一组的人数占总数的30%,∥被抽查的同学中,属于“常常”这一组的人数为:200×30%=60人,∥将条形统计图补充完整如下图所示:(3)由题意可得:3500×(72÷200×100%)=1260(人),答:估计其中“总是”对错题进行整理、分析、改正的学生有1260多少名点睛:这样一道通过从扇形统计图和条形统计图中获取信息来解题的统计类的题目,解题的关键是:熟悉相关“基本概念”、清楚条形统计图和扇形统计图中的相关统计数据间的关系.44.33,12x -- 【分析】先计算括号内的代数式,然后化除法为乘法进行化简,然后代入求值. 【详解】解:()2332111x x x x ⎡⎤--÷⎢⎥---⎢⎥⎣⎦=223(1)3[](1)(1)x x x ----·12x x -- =236(1)x x --·12x x -- =23(2)(1)x x --·12x x -- =31x -. 当x =-1时,原式=311--=-32. 【点睛】本题考查了分式的化简求值.这道求代数式值的题目,不应考虑把x 的值直接代入,通常做法是先把代数式化简,然后再代入求值.45.2y,-1 【详解】解析:先根据分式混合运算的法则把原式进行化简,再把x 、y 的值代入计算即可.解:原式=()()()()x y x y x y x y x y x y xy ++-+-=⋅+-2()()2()()x x y x y x y x y xy y +-=⋅=+-,当=2y -时,原式212==--. 易错:解:原式()()()()x y x y x y x y x y x y xy ++-+-=⋅+-2()()2()()x x y x y x y x y xy y +-=⋅=+-,当=2y -时,原式212==. 错因:代入数值时丢了负号.满分备考:本例题是分式除法与加减混合运算题,运算顺序是先做括号内的加法,此时要先确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意分子、分母能因式分解的先因式分解,然后约分.46.估计该小区5月份的用水量是3960吨【分析】用该组的中间值乘以户数,求出总的用水量,再除以抽查的户数求出每户的平均用水量,最后乘以该小区总的户数即可得出答案.【详解】解:根据题意得:()300369201512217275503960⨯⨯+⨯+⨯+⨯+⨯÷=吨, ∥估计该小区5月份的用水量是3960吨,答:估计该小区5月份的用水量是3960吨.【点睛】本题主要考查了平均数的实际应用,正确理解题意求出样本中每户居民的平均用水量是解题的关键.47.(1)2,3-;(2)另一个因式为4x +,k 的值是12-【分析】(1)由题意利用多项式乘多项式进行运算分析即可求出答案;(2)根据题意设另一个因式为x p +,利用整式的运算以及待定系数法求出另一个因式以及k 的值.【详解】解:(1)∥223(1)(32)x bx c x x x x ++=+-+-=,∥2b =,3c =-,故答案为:2b =,3c =-.(2)设另一个因式为x p +,由题意得:225()(23)x x k x p x ++=+-,即22252(23)3x x k x p p ++=+--,则有2353p p k -=⎧⎨-=⎩,解得124k p =-⎧⎨=⎩ 所以另一个因式为4x +,k 的值是12-.【点睛】本题考查因式分解的实际运用,正确读懂例题,理解如何利用待定系数法求解是解答本题的关键.48.(1)(2)-6x +7【详解】分析:(1)先进行负整数指数幂、二次根式的化简、特殊角的三角函数值的计算,然后合并.(2)先去括号,再合并同类项即可得出答案.详解:(1)解:原式=14+14=(2)解:原式= x 2―4x +4 -( x 2+2x -3)=-6x +7点睛: 本题考查了实数的运算和整式的化简求值,涉及了二次根式的化简、特殊角的三角函数值,完全平方公式,去括号,合并同类项等知识,属于基础题.49.m =-2,n =-4【详解】试题分析:根据多项式与多项式的乘法法则展开,再利用不含的项系数等于0列。

七年级下册数学试卷浙教

七年级下册数学试卷浙教

一、选择题(每题3分,共30分)1. 下列各数中,属于有理数的是()A. √2B. πC. 3.1415926...D. 2/32. 下列运算中,正确的是()A. (-3)² = -9B. (-2)³ = -8C. (-1)⁴ = 1D. (-2)⁴ = 163. 已知a=5,b=-3,则a² + b²的值是()A. 16B. 9C. 34D. 254. 在直角坐标系中,点P(-2, 3)关于x轴的对称点坐标是()A. (-2, -3)B. (2, -3)C. (-2, 3)D. (2, 3)5. 下列图形中,不是轴对称图形的是()A. 矩形B. 正方形C. 圆D. 三角形6. 已知一元二次方程ax² + bx + c = 0(a≠0)的判别式Δ=b²-4ac=0,则该方程的解是()A. 有两个不同的实数根B. 有两个相同的实数根C. 没有实数根D. 无法确定7. 下列函数中,是反比例函数的是()A. y = x²B. y = 2x + 1C. y = 1/xD. y = 3x8. 在等腰三角形ABC中,AB=AC,若∠BAC=60°,则∠ABC的度数是()A. 60°B. 90°C. 120°D. 180°9. 已知等差数列{an}的首项a₁=2,公差d=3,则第10项a₁₀是()A. 29B. 32C. 35D. 3810. 下列不等式中,正确的是()A. 3x > 2x + 1B. 3x < 2x + 1C. 3x ≥ 2x + 1D. 3x ≤ 2x + 1二、填空题(每题3分,共30分)11. 2的平方根是______,3的立方根是______。

12. 若a=3,b=-2,则a² - b²的值是______。

13. 已知直角坐标系中,点A(2, 3),点B(-1, 2),则AB的长度是______。

浙教七年级数学试卷下册

浙教七年级数学试卷下册

一、选择题(每题3分,共30分)1. 下列各数中,正数是()A. -3/4B. 0C. 3/4D. -22. 下列各式中,正确的是()A. a + b = b + aB. a - b = b - aC. a × b = b × aD.a ÷b = b ÷ a3. 若m + n = 7,且m - n = 3,则m的值为()A. 5B. 6C. 7D. 84. 下列图形中,是轴对称图形的是()A. 矩形B. 等腰三角形C. 平行四边形D. 正方形5. 下列各式中,是比例式的是()A. a ÷ b = c ÷ dB. a × b = c × dC. a + b = c + dD. a - b = c - d6. 下列各数中,绝对值最大的是()A. -5B. -3C. 2D. 17. 若一个长方形的长是10cm,宽是5cm,则它的周长是()A. 15cmB. 20cmC. 25cmD. 30cm8. 下列各数中,有理数是()A. √2B. πC. 0D. 无理数9. 下列各式中,能化为最简二次根式的是()A. √18B. √24C. √36D. √4810. 若a、b、c是等差数列的前三项,且a + b + c = 12,则a的值为()A. 3B. 4C. 5D. 6二、填空题(每题3分,共30分)11. 已知x + y = 5,y - x = 1,则x的值为______。

12. 下列各数中,正有理数是______。

13. 下列各数中,无理数是______。

14. 若一个等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长是______。

15. 若a、b、c是等比数列的前三项,且abc = 64,则a的值为______。

16. 下列各数中,负数是______。

17. 下列各数中,整数是______。

18. 若一个圆的半径为r,则其面积为______。

浙教版初中数学七年级下册专题50题含答案

浙教版初中数学七年级下册专题50题含答案

浙教版初中数学七年级下册专题50题含答案一、单选题1.下列运算正确的是( ) A .428a a a ⋅= B .426a a a +=C .()248a a =D .22(2)2a a =2.计算:x 11x x+-=( ) A .1B .2C .1+2xD .x 2x- 3.环境监测中PM 2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.数据0.0000025用科学记数法可以表示为( ) A .62.510⨯B .52.510-⨯C .62.510-⨯D .72.510-⨯4.分解因式x 2-5x -14,正确的结果是( ) A .(x -5)(x -14) B .(x -2)(x -7) C .(x -2)(x +7) D .(x +2)(x -7)5.下列因式分解正确的是( ) A .x 2y 2﹣z 2=x 2(y +z )(y ﹣z ) B .﹣x 2y ﹣4xy +5y =﹣y (x 2+4x +5) C .(x +2)2﹣9=(x +5)(x ﹣1) D .9﹣12a +4a 2=﹣(3﹣2a )2 6.有下列命题,其中假命题有( ) ①对顶角相等:①垂直于同一条直线的两直线平行; ①平行于同一条直线的两直线平行; ①内错角相等. A .①① B .①① C .①① D .①①7.计算()100101122⎛⎫-⨯- ⎪⎝⎭的结果是( ) A .1B .2-C .1-D .28.某批发商在外地购买了同一型号的a 把椅子,需要托运回本市,这批椅子的总价为18300元,每把椅子的运费是5元,如果少买一把椅子,那么剩下的椅子的运费总和恰好等于一把椅子的价钱,则a 的值是( )9.下列各数,绝对值最大的是( ) A .﹣5B .3C .21()2-D .010.自新冠疫情爆发以来,新型冠状病毒经历了多次变异,形成了多个变种,其中一个变种直径约为107nm ,已知91nm 10m -=,则数据“107nm ”用科学记数法可表示为( ) A .111.0710m -⨯B .71.0710m -⨯C .60.10710m -⨯D .910710m -⨯11.在下列命题中,真命题是( ) A .相等的角是对顶角 B .同位角相等C .三角形的外角和是360︒D .角平分线上的点到角的两边相等12.已知2240x x +-=,则3x 的值等于( ) A .8B .2C .-3D .-813.小李以两种形式储蓄300元,一种储蓄的年利率为10%,另一种为11%,一年后的本息和为331.5元,则两种储蓄的存款分别为( ) A .100元,200元B .150元,150元C .200元,100元D .50元,250元14.为了防止疫情扩散,确保人民健康,某区计划开展全员核酸检测,甲、乙两个检测队分别负责A 、B 两个生活区的核酸检测,已知A 生活区参与核酸检测的共有3000人,且B 生活区参与核酸检测的共有2800人,乙检测队因工作原因比甲检测队开始晚检测10分钟.已如乙检测队的检测速度是甲检测队的1.2倍,结果两个检测队同时完成检测,设甲检测队每分钟检测x 人,根据题意,可以得到的方程是( ) A .28003000101.2x x =+ B .3000280011.26x x =+ C .30002800101.2xx =- D .30002800101.2x x=+ 15.化简2442x xx x ---的结果是( ) A .22x x -+ B .26x x -+ C .2x x -+ D .2x x - 16.下列等式正确的是( )①40.000126 1.2610-=⨯;②43.101031000⨯=; ③51.1100.000011-⨯=;④612600000 1.2610=⨯. A .①②B .②④C .①②③D .①③④17.下列计算正确的是( ) A .a 2+a 2=a 4 B .(a +b )2=a 2+b 2 C .(a 3)3=a 9D .a 3•a 2=a 618.下列运算正确的是( ) A .(-3mn )2=-6m 2n 2 B .4x 4+2x 4+x 4=6x 4 C .(xy )2÷(-xy )=-xyD .(a-b )(-a-b )=a 2-b 2二、填空题19.如图,在平行线a b 、之间放置一块直角三角板,三角板的顶点A B 、分别在直线a b 、上,则12∠+∠的度数为_________.20.用科学记数法表示:-0.0000506=________________.21.如图,直线a 与直线b 、c 分别相交于点A 、B ,将直线b 绕点A 转动,当①1=①________时,c b22.写出二元一次方程x+y =6的一组整数解为_____.23.一个样本有10个数据:52,51,49,50,47,48,50,51,48,53,则如果组距为1.5,则应分成____组. 24.分式232a b 与2a bab c+的最简公分母是_________. 25.计算:(﹣p )2•(﹣p )=_______. 26.计算126x x ÷的结果为______.27.与单项式3a 的积是321263a a a -+的多项式是__________. 28.计算:23(2)x x x ⋅-=_______________.29.一个样本共有50个数据,最大的数据是172,最小的数据是147,若组距为3,则第八组数据的范围是_____. 30.化简分式()233a ba b --的结果是______.31.若6,3,m n a a ==则2m n a -=________ .若=3n x ,则1(2)()2n n x x ⋅=_______.32.计算:_____________;33.若方程组312323x y ax y a +=+⎧⎨+=--⎩的解满足1x y -=-,则a 的值为_______.34.如图,//a b ,若146∠=︒,则2∠=__︒.35.计算:(x+2+52x-)·243x x --=_____.36.如图,直线12//,,150l l αβ︒∠=∠∠=,2∠=______.37.已知(2018)(2021)5a a --=-,求22(2018)(2021)a a -+-=________.三、解答题38.某商店订购了A ,B 两种商品,A 商品18元/千克,B 商品20元/千克,若B 商品的数量比A 商品的2倍少10千克,购进两种商品共用了1540元,求两种商品各多少千克.39.当a=2014时,求÷(a+)的值.40.已知:如图,AB CD ∥,12∠=∠.试说明:BE CF ∥.请按照下列说明过程填空.解:AB CD ∥,根据________________________________ABC ________.12∠=∠,1ABC ∴∠-∠=________2-∠,即EBC ∠=________.根据________________________________BE CF ∴∥.41.计算:;(2)解方程: .42.分解因式: (1)2m n n -. (2)2242x y xy y ++.43.解方程组:448x y x y +=⎧⎨+=-⎩.44.计算:2(2)(31)(2)--+a a a .45.已知化简()()2283x px x x q ++-+的结果中不含2x 项和3x 项.(1)求p ,q 的值;(2)若()()()()24x q x x p x a -+-++是一个完全平方式,求a 的值. 46.计算: (1)()32242ab a b -÷-(2)02111232--⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭ (3) 211a a a ---(4)()2221(2)4y x x x y y x y x +--÷⋅ 47.(1)已知456a b c ==,求分式222ab ac bca b c+-+-的值; (2)小丽在课下自主学习时,通过查阅资料发现()()1111212x x x x =-++++,请你根据这一规律,化简()()()()()()111122320192020x x x x x x ++⋯+++++++.参考答案:1.C【分析】根据幂的乘方与积的乘方分别计算判断即可.【详解】解:A、a4•a2=a6,故错误;B、a4+a2不是同类项,不能合并,故错误;C、(a4)2=a8,正确;D、(2a)2=4a2,故错误.故选:C.【点睛】此题考查的是幂的乘方及积的乘方运算,掌握其运算法则是解决此题关键.2.A【分析】按同分母分式的减法法则计算即可.【详解】解:x11x x+-=11xx+-,=xx,=1.故选A.【点睛】本题考查了分式的减法.掌握同分母分式的减法法则是解决本题的关键.3.C【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数决定.【详解】解:0.0000025=2.5×10-6.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.解题的关键是确定a与n的值.4.D【分析】根据-14=-7×2,-5=-7+2,进行分解即可.【详解】解:x2-5x-14=(x-7)(x+2),故选:D.【点睛】本题考查了因式分解-十字相乘法,熟练掌握因式分解-十字相乘法是解题的关键. 5.C【分析】利用平方差、完全平方公式先判断、利用提公因式与完全平方公式判断对选项进行判断.【详解】解:A 、()()()()2222x y z xy z xy z x y z y z -=+-≠+-,故选项不符合题意; B 、()()()22454551x y xy y y x x y y x --+=-+-=-+-,分解不彻底,故选项不符合题意;C 、2(2)9(5)(1)x x x +-=+-,故选项符合题意;D 、2229124(32)(32)a a a a -+=-≠--,故选项不符合题意. 故选:C .【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,解题的关键是掌握如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解,分解要彻底. 6.C【分析】根据对顶角、平行线的性质可直接进行判断. 【详解】解:①对顶角相等,是真命题,不合题意.①垂直于同一条直线的两直线平行,缺少在同一平面内,故原命题是假命题,符合题意; ①平行于同一条直线的两直线平行,故原命题是真命题,不符合题意; ①内错角相等,缺少两直线平行,故原命题是假命题,符合题意. 故选:C .【点睛】本题主要考查平行线的性质定理及对顶角,熟记知识点是解题的关键. 7.B【分析】根据积的乘方公式的逆运用,即可求出答案. 【详解】解:()100101122⎛⎫-⨯- ⎪⎝⎭()()1001001222⎛⎫=-⨯-⨯- ⎪⎝⎭()()1001222⎡⎤⎛⎫=-⨯-⨯- ⎪⎢⎥⎝⎭⎣⎦()10021=-⨯()21=-⨯2=-,故选:B .【点睛】本题考查了积的乘方,解题的关键是乘方公式的逆运用. 8.C【分析】一把椅子的价钱为18300a元,剩下椅子的运费()51a -元,根据“剩下的椅子的运费总和恰好等于一把椅子的价钱”即可列出方程,解答即可. 【详解】解:一把椅子的价钱为18300a元,剩下椅子的运费()51a -元, 根据题意得()1830051a a=-, 整理得236600a a --=,解得161a =,260a =-(不符合题意,舍去), ①a 的值为61, 故选:C .【点睛】本题主要考查了分式方程的应用,找准等量关系“剩下的椅子的运费总和恰好等于一把椅子的价钱”是解决问题的关键. 9.A【分析】直接利用绝对值的性质以及负整数指数幂的性质分别化简、判断即可.【详解】解:①|-5|=5,|3|=3,|(1)2-2|=4,|0|=0,①5>4>3>0, ①-5的绝对值最大. 故选:A .【点睛】本题主要考查了负整数指数幂的性质以及绝对值的性质,正确掌握绝对值的性质是解题关键. 10.B【分析】用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a |<10,n 为整数,据此判断即可.【详解】解:297107nm 1.071010m 1.0710m --=⨯⨯=⨯. 故选B .【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a 与n 的值是解题的关键. 11.C【分析】根据对顶角的定义、同位角的定义、三角形的外角和、角平分线的性质逐项判断即可.【详解】A 、由对顶角的定义“如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角”可得,对顶角必相等,但相等的角未必是对顶角,此项不是真命题B 、只有当两直线平行,同位角必相等,此项不是真命题C 、根据内角和定理可知,任意多边形的外角和都为360︒,此项是真命题D 、由角平分线的性质可知,角平分线上的点到角的两边距离相等,此项不是真命题 故选:C.【点睛】本题考查了对顶角的定义、同位角的定义、三角形的外角和、角平分线的性质,熟记各定义和性质是解题关键. 12.D【分析】等式两边同乘以x ,再进行变形、代入求解即可得解. 【详解】解:①2240x x +-=,两边同乘以x 得,()2240x x x +-=,即,3224x x x =-+,()3228428228x x x x x x x -=--=-+=-,故选:D .【点睛】本题主要考查了单项式乘以多项式,整体代入以及等式变形等知识,将原等式乘以x 出现3x 是解答本题的关键. 13.B【分析】设第一种储蓄存了x 元,第二种存了y 元,根据储蓄了300元钱可以列出方程x+y=300,根据一年后共得利息31.5元可以列出方程10%x+11%y=31.5,联立两个方程组成方程组,解方程组即可求出结果.【详解】若设第一种储蓄存了x元,第二种存了y元,则根据题意可列方程组为30010%11%331.5300x yx y+⎧⎨+-⎩==,①150150 xy=⎧⎨=⎩故选B【点睛】此题主要考查了二元一次方程组的应用:储蓄的年利率问题,其中本金+利息=本息,年利率=利息本金×100%,根据这些关系式即可列出方程解决问题.14.D【分析】由题可知甲队检测A生活区需要3000x分钟,知乙队检测B生活区需要28001.2x分钟,由乙检测队因工作原因比甲检测队晚开始检测10分钟,结果两个检测队同时完成检测,可得等量关系3000280010.1.2x x=+【详解】解:甲检测队每分钟检测x人,已知乙检测队的检测速度是甲检测队的1.2倍,则A生活区参与核酸检测的共有3000人共需要3000x分钟,B生活区参与核酸检测的共有2880人需要28001.2x分钟.①乙检测队因工作原因比甲检测队晚开始检测10分钟,结果两个检测队同时完成检测,3000280010.1.2x x∴=+故选:D.【点睛】本题主要考查了列分式方程解决实际问题,找到等量关系是解决此题的关键.15.C【详解】原式=4(2)(2)(2)(2)(2)x x xx x x x+-+-+-=242(2)(2)x x xx x--+-=2xx-+,故选C.16.C【分析】直接利用科学记数法表示方法以及科学记数法与原数的关系得出答案.【详解】解:①0.000126=1.26×10-4,正确;①3.10×104=31000,正确;①1.1×10-5=0.000011,正确;①12600000=1.26×107,错误;故选C .【点睛】此题主要考查了科学记数法表示方法以及科学记数法与原数的关系,正确掌握科学记数法的表示方法是解题关键.17.C【分析】按照合并同类项的法则、幂的运算法则以及完全平方公式进行计算即可判断.【详解】解:A 、a 2+a 2=2a 2,故选项A 不合题意;B .(a +b )2=a 2+2ab +b 2,故选项B 不合题意;C .(a 3)3=a 9,故选项C 符合题意;D .a 3•a 2=a 5,故选项D 不合题意.故选:C .【点睛】本题主要考查了合并同类项的法则、幂的运算法则以及完全平方公式,熟练掌握法则是解答本题的关键.18.C【分析】根据积的乘方、合并同类项、整式的乘法、除法,即可解答.【详解】A 、(-3mn )2=9m 2n 2,故错误;B 、4x 4+2x 4+x 4=7x 4,故错误;C 、正确;D 、(a-b )(-a-b )=-(a 2-b 2)=b 2-a 2,故错误;故选C .【点睛】本题考查了积的乘方、合并同类项、整式的乘法、除法,解决本题的关键是熟记相关法则.19.90︒##90度【分析】过点C 作CD a ∥,再由平行线的性质即可得出结论.【详解】解:过点C 作CD a ∥,则1=ACD ∠∠.①a b①CD b ∥①2DCB =∠∠①90ACD DCB ∠+∠=︒,①1290∠+∠=︒故答案为:90︒【点睛】本题考查平行线的性质,根据题意作出辅助线,构造出平行线是解题的关键. 20.-5.06×10-5【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:-0.0000506=-5.06×10-5,故答案为-5.06×10-5.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.21.3【分析】根据同位角相等,两直线平行进行判断即可.【详解】解:根据同位角相等,两直线平行可知:当①1=①3时,c b .故答案为:3【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行.22.15x y =⎧⎨=⎩【分析】先移项得到y =﹣x+6,假设x =1时,得到y ,即可得到答案.【详解】解:方程x+y =6,解得:y =﹣x+6,当x =1时,y =5,则二元一次方程的一组整数解为15x y =⎧⎨=⎩, 故答案为15x y =⎧⎨=⎩. 【点睛】本题考查二元一次方程的解,解题的关键是掌握求二元一次方程的解的方法.23.5【分析】因为包含两个端点,直接利用组数=(最大值-最小值)÷组距+1求解即可.【详解】组数=5347151.5-+=, 故答案为:5.【点睛】本题注意考查组数的求法,注意包含端点.24.2a 2b 2c【分析】根据最简公分母的定义求解. 【详解】解:分式232a b 与2a b ab c +的最简公分母是2a 2b 2c . 故答案为2a 2b 2c .【点睛】本题考查了最简公分母:通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.25.﹣p 3.【详解】试题分析:直接利用同底数幂的乘法运算法则进行计算,原式=(﹣p )3=﹣p 3. 故答案为﹣p 3.考点:幂的乘方与积的乘方;同底数幂的乘法.26.6x【分析】根据同底数幂的除法公式即可求解.【详解】126x x ÷=6x故答案为:6x .【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的除法公式.27.2421a a -+【分析】根据题意求32(1263)3a a a a -+÷即可得出答案.【详解】32(1263)3a a a a -+÷ 321236333a a a a a a =÷-÷+÷2421a a =-+故答案为:2421a a -+.【点睛】本题考查整式的除法,掌握除法法则是解题的关键.28.3263x x -【分析】直接利用单项式与多项式相乘的运算法则计算即可.【详解】2323(2)63x x x x x ⋅-=-.故答案为:3263x x -.【点睛】本题考查了单项式乘多项式,单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.29.167.5~170.5【详解】试题分析:方法一:根据最大值与最小值求出极差,再根据组距求出组数,然后求解即可;方法二:根据最小值以及组距列式求出第八组的最小的值,然后确定出范围即可. 解:方法一:极差为:172﹣147=25,①25÷3=8,①组数为9,①147+7×3=147+21=168,①第八组数据的范围是167.5~170.5;方法二:第八组最小的数为:147+7×3=147+21=168,所以,第八组数据的范围是167.5~170.5.故答案为167.5~170.5.30.3a b- 【分析】此题涉及的知识点是整式的化简,根据约分要求进行计算可得结果【详解】()233a ba b --=()()3a b a b a b ---()=3a b -【点睛】此题重点考查学生对整式化简的理解,约分至最简形式是解题的关键 31. 239 【分析】根据同底数幂的除法的逆用及积的乘方可直接进行求解.【详解】解:①6,3m n a a ==,①()2226293m n m n m n a a a a a -=÷=÷==, ①=3n x ,①()()22111222139222n n n n n n n nx x x x x ⎛⎫⎛⎫⎛⎫⋅=⋅⋅⋅=⨯⋅=⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 故答案为23,9.【点睛】本题主要考查同底数幂的除法及积的乘方,熟练掌握同底数幂的除法及积的乘方是解题的关键. 32.13-. 【详解】根据积的乘方运算简化该式即可计算. 试题分析:20052006200520052005111111(3)()(3)()[(3)]333333-⋅=-⋅⋅=-⋅⋅=-. 考点:积的乘方运算.33.32- 【分析】根据题意可得三元一次方程组,解方程组即可得出答案.【详解】根据题意得三元一次方程组,如下:3123231x y a x y a x y +=+⎧⎪+=--⎨⎪-=-⎩①②③, 解得341432x y a ⎧=-⎪⎪⎪=⎨⎪⎪=-⎪⎩, 即32a =-, 故答案为:32-. 【点睛】本题考查了二元一次方程组以及三元一次方程组的知识,掌握求解三元一次方程组的方法是解答本题的关键.34.46.【分析】根据平行线的性质,得到①1=①2即可.【详解】①a①b ,①1=46°,①①2=①1=46°,故答案为46.【点睛】本题考查的知识点是平行线的性质的运用,解题关键是注意:两直线平行,同位角相等.35.2x+6【分析】根据分式的运算法则即可求出答案.【详解】原式=()2229•23x x x x ---- =2(x+3)=2x+6故答案为2x+6【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则.36.130°【分析】延长AE 交2l 与点B ,根据平行线的性质求解即可.【详解】解:如下图,延长AE 交2l 与点B ,①12//l l ,①1350∠=∠=︒,①αβ∠=∠,①AB//CD ,①23180∠+∠=︒,①2130∠=︒.故答案为:130︒.【点睛】本题考查的知识点是平行线的判定及性质,熟记判定定理以及性质内容是解此题的关键.37.19【分析】设2021a m -=,则20183a m -=+;根据题意,得235m m +=;再将235m m +=代入到代数式中计算,即可得到答案.【详解】①(2018)(2021)5a a --=-①(2018)(2021)5a a --=设2021a m -=,则20183a m -=+①()35m m +=,即235m m +=①22(2018)(2021)a a -+-()223m m =++ 2269m m =++()2239m m =++259=⨯+19=故答案为:19.【点睛】本题考查了整式运算和代数式的知识;解题的关键是熟练掌握整式乘法、完全平方公式的性质,从而完成求解.38.A 商品30千克,B 商品50千克【分析】设A 商品x 千克,B 商品y 千克,根据数量关系列出二元一次方程组21018201540y x x y =-⎧⎨+=⎩ 求解即可. 【详解】解:设A 商品x 千克,B 商品y 千克.由题意得21018201540y x x y =-⎧⎨+=⎩解得3050x y =⎧⎨=⎩ 答:A 商品30千克,B 商品50千克.【点睛】本题主要考查二元一次方程组的实际应用,分析题意,找等量关系,列出方程是方程解决实际问题的关键.39.【详解】试题分析:根据分式混合运算的法则对原式进行化简,然后把a 的值代入进行计算即可.试题解析:原式===,当a=2014时,原式=考点:分式化简求值40.见解析 【分析】根据平行线的性质与判定求解即可.【详解】解:AB CD ∥,根据两直线平行,内错角相等 ABC BCD ∠12∠=∠,1ABC ∴∠-∠=BCD ∠2-∠,即EBC ∠=FCB ∠.根据内错角相等,两直线平行BE CF ∴∥.【点睛】本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解答本题的关键.41.(1)4(2).【分析】(1)利用算术平方根和零指数幂来求解;(2)观察方程可得最简公分母是:x (x-1),两边同时乘最简公分母可把分式方程化为整式方程来解答.【详解】(1)解:原式=2+1+1 =4(2)解:. 经检验:是原方程的解.所以原方程的解是.42.(1)()()11n m m +-(2)()221y x +【分析】(1)先提取公因式n ,再用平方差公式分解;(2)先提取公因式2y ,再用完全平方公式分解.(1)解:原式=()()()2111n m n m m -=+-;(2)解:原式=()2221y x x ++=()221y x +.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;①公式法;①十字相乘法;①分组分解法. 因式分解必须分解到每个因式都不能再分解为止.43.48x y =-⎧⎨=⎩ 【分析】根据加减消元法求解二元一次方程即可得到解答.【详解】解:448x y x y +=⎧⎨+=-⎩①② 由①-①得:3x =-12,解得x =-4,把x =-4代入x +y =4得y =8,①方程组的解为48x y =-⎧⎨=⎩. 【点睛】本题考查了二元一次方程,解决本题的关键是运用加减消元法进行求解. 44.7a 2﹣7a +2【分析】根据多项式乘多项式法则以及积的乘方法则去括号,再合并同类项即可.【详解】解:原式=3a 2﹣a ﹣6a +2+4a 2=7a 2﹣7a +2.【点睛】本题考查了整式乘法的混合运算,熟练掌握多项式乘多项式法则以及积的乘方法则是解决本题的关键.45.(1)3,1p q ==(2)25【分析】(1)先将原式化简,再根据结果中不含2x 项和3x 项可得30,380p q p -=-+= ,即可求解;(2)先将原式化简,再根据原式是一个完全平方式,把化简后的结果中()2x x + 作为一个整体,再变形为完全平方形式,即可求解.【详解】(1)解:()()2283x px x x q ++-+432322338248x x qx px px pqx x x q -++--=+++()()()432338248x p x q p x pq x q +-+-++-+= ,①化简()()2283x px x x q ++-+的结果中不含2x 项和3x 项,①30,380p q p -=-+= ,解得:3,1p q ==;(2)解:()()()()24x q x x p x a -+-++()()()()1234x x x x a =-+-++()()()()1234x x x x a =-+-++⎡⎤⎡⎤⎣⎦⎣⎦()()22212x x x x a =+-+-+()()2221424x x x x a =+-+++ ①()()()()24x q x x p x a -+-++是一个完全平方式,①()()()()()22222222142471449x x x x a x x x x x x +-+++=+-=+-++, ①2449a += ,解得:25a = .【点睛】本题主要考查了整式乘法运算中的无关项题,完全平方公式的应用,熟练掌握完全平方公式,不含某一项就是化简后该项的系数等于0是解题的关键.46.(1)72a b- (2)92(3)11a - (4)y -【分析】(1)根据积的乘方运算以及整式的除法运算即可求出答案.(2)根据零指数幂的意义、负整数指数幂的意义即可求出答案.(3)根据分式的加减运算法则即可求出答案.(4)根据分式的加减运算法则以及乘除运算法则即可求出答案.【详解】(1)解:原式()26348ab a b -=÷-7112a b -=- 72a b=-. (2)解:原式1142=-+ 152=- 92=. (3)解:原式()()2111a a a a -+-=- 2211a a a -+=- 11a =-. (4)解:原式()()()12222xy x y x y x y x y x =+-⋅⋅+- y =-.【点睛】本题考查积的乘方运算、整式的除法运算、零指数幂的意义、负整数指数幂的意义、以及分式的加减运算与乘除运算法则,本题属于基础题型.47.(1)145;(2)2201920212020x x ++. 【分析】(1)设4561a b c k===,则4a k =,5b k =,6c k =,然后代入分式中化简即可; (2)根据题意,将分式变形计算即可.【详解】(1)设4561a b c k===(0k ≠),则4a k =,5b k =,6c k =, 把4a k =,5b k =,6c k =代入,原式()()()222454656456k k k k k kk k k ⋅+⋅-⋅=+-222222202430162536k k k k k k +-=+- 22145k k= 145=. (2)原式111111122320192020x x x x x x =-+-+⋯+-++++++ 1112020x x =-++ ()()2020112020x x x x +--=++ 2201920212020x x =++. 【点睛】此题考查的是分式的化简和求值题,掌握设参法和裂项相消的运算规律是解决此题的关键.。

浙教版初中数学七年级下册期中测试卷(较易)(含答案解析)

浙教版初中数学七年级下册期中测试卷(较易)(含答案解析)

浙教版初中数学七年级下册期中测试卷(较易)(含答案解析)考试范围:第单一,二,三单元; &nbsp; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 如图,下列四组条件中,能判定AB//CD的是( )A. ∠1=∠2B. ∠ABD=∠BDCC. ∠3=∠4D. ∠BAD+∠ABC=180∘2. 如图所示,过点C作线段AB的平行线,下列说法中,正确的是( )A. 不能作出B. 只能作出一条C. 能作出两条D. 能作出无数条3. 已知在同一平面内有三条不同的直线a,b,c,下列说法错误的是( )A. 如果a//b,a⊥c,那么b⊥cB. 如果b//a,c//a,那么b//cC. 如果b⊥a,c⊥a,那么b⊥cD. 如果b⊥a,c⊥a,那么b//c4. 计算a3⋅(−a)的结果是( )A. a2B. −a2C. a4D. −a45. 如图,描述同位角、内错角、同旁内角关系不正确的是( )A. ∠1与∠4是同位角B. ∠2与∠3是内错角C. ∠3与∠4是同旁内角D. ∠2与∠4是同旁内角6. 如图,在下列给出的条件中,可以判定AB//CD的有( ) ①∠1=∠2; ②∠1=∠3; ③∠2=∠4; ④∠DAB+∠ABC=180∘; ⑤∠BAD+∠ADC=180∘.A. ① ② ③B. ① ② ④C. ① ④ ⑤D. ② ③ ⑤7. 已知某种新型感冒病毒的直径为0.000000823米,将0.000000823用科学记数法表示为( )A. 8.23×10−6B. 8.23×10−7C. 8.23×106D. 8.23×1078. 如果长方形的长为(4a 2−2a +1),宽为(2a +1),则这个长方形的面积为( )A. 8a 3−4a 2+2a −1B. 8a 3+4a 2−2a −1C. 8a 3−1D. 8a 3+19. 下列多项式的乘法运算可以运用平方差公式计算的是( )A. (x +1)(x +1).B. (a +2b)(a −2b).C. (−a +b)(a −b).D. (−m −n)(m +n).10. 下列各组数中,是二元一次方程5x −y =2的一个解的是( )A. {x =3,y =1.B. {x =0,y =2.C. {x =2,y =0.D. {x =1,y =3. 11. 方程组{y =2x −53x −2y =8用代入法消去y 后所得的方程是( )A. 3x −4x −10=8B. 3x −4x +5=8C. 3x −4x −5=8D. 3x −4x +10=812. 从甲地到乙地有一段上坡路与一段平路.如果保持上坡速度为每小时3千米,平路速度为每小时4千米,下坡速度为每小时5千米,那么从甲地到乙地需54分钟,从乙地到甲地需42分钟.问:从甲地到乙地全程是多少千米⋅小红将这个实际问题转化为二元一次方程组问题.设未知数x ,y ,已经列出一个方程为x 3+y 4=5460,那么另一个方程正确的是( ) A. x 4+y 3=4260. B. x 5+y 4=4260. C. x 4+y 5=4260. D. x 3+y 4=4260. 第II 卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 如图,已知直线a⊥c,b⊥c,∠1=140∘,则∠2的度数是.14. 在三元一次方程x+6y−2z=50中,用含x,y的代数式表示z:.15. 计算:(ab2)3⋅3a2=.16. 小明在解关于x,y的二元一次方程组{x+⊗y=3,3x−⊗y=1时得到了正确结果{x=⊕,y=1后来发现“⊗”“⊕处被墨水污损了,请你帮他找出⊗,⊕的值分别是__________.三、解答题(本大题共9小题,共72.0分。

浙教版初中数学七年级下册期中测试卷(困难)(含答案解析)

浙教版初中数学七年级下册期中测试卷(困难)(含答案解析)

浙教版初中数学七年级下册期中测试卷(困难)(含答案解析)考试范围:第单一,二,三单元; &nbsp; 考试时间:120分钟;总分:120分,第I 卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项) 1. 若关于x 的分式方程x−a x−1−3x =1无解,则a 的值为( )A. 0B. 1C. −2D. −2或1 2. 如图,AB // DE ,BC ⊥CD ,则以下说法中正确的是 ( )A. α,β的角度数之和为定值B. α随β的增大而增大C. α,β的角度数之积为定值D. α随β的增大而减小3. 某旅行团到森林游乐区参观,下表为两种参观方式与所需的缆车费用.已知旅行团中的每个人皆从这两种方式中选择一种,且去程有15人搭乘缆车,回程有10人搭乘缆车.若他们缆车费用的总花费为4100元,则此旅行团的人数是( )参观方式缆车费用 去程及回程均塔乘缆车300元 单程搭乘缆车,单程步行 200元A. 16B. 19C. 22D. 254. 用白铁皮做罐头盒,每张铁片可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有36张白铁皮,设用x 张制盒身,y 张制盒底,恰好配套制成罐头盒,则下列方程组中符合题意的是( )A. {x +y =36y =2xB. {x +y =36x =2yC. {x +y =362×25x =40yD. {x +y =3625x =2×40y5. 已知关于x,y的方程组{x+2y=5−2a,x−y=4a−1给出下列结论:①当a=1时,方程组的解也是x+y=2a+1的解;②无论a取何值,x,y的值不可能是互为相反数;③x,y都为自然数的解有4对;④若2x+y=8,则a=2.正确的有几个( )A. 1B. 2C. 3D. 46. 如果等式(2a−1)a+2=1成立,那么a的值可能有( )A. 4个B. 1个C. 2个D. 3个7. 小淇将(2019x+2020)2展开后得到a1x2+b1x+c1;小尧将(2020x−2019)2展开后得到a2x2+b2x+c2,若两人计算过程无误,则c1−c2的值为( )A. 2019B. 2020C. 4039D. 18. 一质点P从距原点8个单位的M点处向原点方向跳动,第一次跳动到OM的中点M1处,第二次从M1跳到OM1的中点M2处,第三次从点M2跳到OM2的中点M3处,如此不断跳动下去,则第2021次跳动后,该质点到原点O的距离为( )A. 2−2018B. 2−2019C. 2−2020D. 2−20219. 下列条件中,能说明AD//BC的条件有( )①∠1=∠4②∠2=∠3③∠1+∠2=∠3+∠4④∠A+∠C=180∘⑤∠A+∠ABC=180∘⑥∠A+∠ADC=180∘A. 1个B. 2个C. 3个D. 4个10. 我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4…请你猜想(a+b)9的展开式中所有系数的和是( )A. 2018B. 512C. 128D. 6411. 如图所示,在一圆形跑道上,甲从点A、乙从点B同时出发,反向而行,8min后两人相遇,再过6min甲到点B,又过10min两人再次相遇,则甲环行一周需要的时间是 ( )A. 26minB. 28minC. 30minD. 32min12. 如图:AB//CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40∘,则下列结论:①∠BOE=70∘;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确个数有( )A. 4B. 3C. 2D. 1第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 已知∠ABG为锐角,AH//BG,点C从点B(点C不与点B重合)出发,沿射线BG的方向移动,CD//AB交直线AH于点D,CE⊥CD交AB于点E,CF⊥AD,垂足为点F(点F不与点A重合).若∠ECF=n°,则∠BAF=.(用n来表示)14. 如图所示,已知前两架天平两端保持平衡.要使第三架天平两端保持平衡,则应在天平的右托盘上放________个圆形物品.15. 已知x=1999,则|4x2−5x+1|−4|x2+2x+2|+3x+7=_____.16. 若(x2−2x−3)(x3+5x2−6x+7)=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a0+ a1+a2+a3+a4+a5=.三、解答题(本大题共9小题,共72.0分。

浙教版七年级数学下册试题试卷

浙教版七年级数学下册试题试卷

第4题 21七年级数学试卷温馨提示:请仔细审题,细心答题,相信你一定会有出色一、选择题(每小题3分,共30分,请选出各题中唯一正确的选项,不选、多选、错选均不给分)1. 在下列图案中,不能用平移得到的图案是( )A .B .C .D .2. 下列方程是二元一次方程的是( )A. 2x + y = 3zB. 2x -y1=2 C. 2xy -3y = 0 D. 3x -5y=2 3. 下列运算正确的是( )A.954a a a =+ B.33333a a a a =⋅⋅ C.954632a a a =⨯ D.()743a a =-4. 如图,梯子的各条横档互相平行,若∠1=70o,则∠2的度数是( )A .80oB .110oC .120oD .140o5. 某种生物细胞的直径是0.000000012cm ,用科学计数法表示这个数,正确的是( )A .12 ×10-7 cmB .1.2 ×10-7 cmC .12 ×10-8 cmD .1.2 ×10-8cm 6. 若⎩⎨⎧x =-1y =2是方程3x +ay =1的一个解,则a 的值是( )A .1B .-1C .2D .-2 7. 下列算式能用平方差公式计算的是( )A.(2a +b )(2b -a )B. (a +1)(-a -1)C.(3x -y )(-3x +y )D.(-m -n )(-m +n ) 8. 若2,3==y x a a ,则yx a-2等于( )A.18B.11C.29D.7 9. 两个角的两边分别平行,其中一个角是60°,则另一个角是 ( )A. 60°B. 120°C. 60°或120°D. 无法确定 10.右图是琳琳装好糖果6个的礼包盒,每盒上面的数字代表这盒礼包 实际装有的糖果数量。

她把其中的5盒送给好朋友小芬和小红,自 己留下1盒。

浙教七下期中考数学试卷

浙教七下期中考数学试卷

考试时间:120分钟满分:100分一、选择题(每题4分,共40分)1. 下列各数中,正数是()。

A. -3B. 0C. -2.5D. 12. 若 |a| = 5,那么 a 的值可能是()。

A. 5B. -5C. 0D. 103. 已知 a + b = 10,a - b = 2,则 a 的值为()。

A. 6B. 4C. 8D. 24. 下列方程中,x = 3 是它的解的是()。

A. 2x + 1 = 7B. 3x - 4 = 5C. 4x + 3 = 13D. 5x - 2 = 85. 一个长方形的长是8cm,宽是5cm,那么它的面积是()。

A. 40cm²B. 45cm²C. 50cm²D. 60cm²6. 若一个数的平方根是4,那么这个数是()。

A. 16B. 4C. 2D. -167. 在直角坐标系中,点 P(-2,3)关于原点对称的点的坐标是()。

A.(-2,-3)B.(2,3)C.(2,-3)D.(-2,3)8. 下列图形中,轴对称图形是()。

A. 正方形B. 长方形C. 平行四边形D. 等腰梯形9. 已知一个等边三角形的边长为6cm,那么它的周长是()。

A. 18cmB. 24cmC. 30cmD. 36cm10. 下列函数中,y = 2x 是一次函数的是()。

A. y = x²B. y = 3x + 2C. y = 2/xD. y = 2x + 3x²二、填空题(每题5分,共50分)11. 若a² = 16,则 a = ________。

12. 若 a + b = 0,则 a 和 b 是 ________。

13. 已知一个三角形的两边长分别是3cm和4cm,那么它的第三边长可能是________。

14. 在直角坐标系中,点 A(2,-3)到原点的距离是 ________。

15. 若a² = b²,则 a 和 b 的关系是 ________。

浙教版初中数学七年级下册第六单元《数据与统计图表》单元测试卷(标准难度)(含答案解析)

浙教版初中数学七年级下册第六单元《数据与统计图表》单元测试卷(标准难度)(含答案解析)

浙教版初中数学七年级下册第六单元《数据与统计图表》单元测试卷(标准难度)(含答案解析)考试范围:第六单元; &nbsp; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 今年某市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,有下列说法:①这4万名考生的数学中考成绩的全体是总体;②每名考生是个体;③2000名考生是总体的一个样本;④样本容量是2000.其中正确的有A. 4个B. 3个C. 2个D. 1个2. 以下调查中,最适宜采用普查方式的是( )A. 检测某批次汽车的抗撞击能力B. 调查黄河的水质情况C. 调查全国中学生视力和用眼卫生情况D. 检查我国“神州八号”航天飞船各零部件的情况3. 近几年来,国民经济和社会发展取得了新的成就,农村经济快速发展,农民收入不断提高.下图统计的是某地区2004年−2008年农村居民人均年纯收入.根据图中信息,下列判断:①与上一年相比,2006年的人均年纯收入增加的数量高于2005年人均年纯收入增加的数量;×100%;②与上一年相比,2007年人均年纯收入的增长率为3587−32553255③若按2008年人均年纯收入的增长率计算,2009年人均年纯收入将达到4140×(1+4140−3587)元.3587其中正确的是( )A. 只有①②B. 只有②③C. 只有①③D. ①②③4. 下图是某地区用水量与人口数情况统计图.日平均用水量为400万吨的那一年,人口数大约是( )A. 180万B. 200万C. 300万D. 400万5. 小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“”应填的颜色是( )A. 蓝B. 粉C. 黄6. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到扇形统计图如图所示:则下面结论中不正确的是( )A. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,种植收入减少7. 某校七、八、九三个年级共有学生800人,该校公布了反映各年级学生体育达标情况的两张统计图(如图),甲、乙、丙三名同学看了这两张统计图后,甲说:“七年级的体育达标率最高.”乙说:“八年级共有学生264人.”丙说:“九年级的体育达标率最高.”甲、乙、丙三名同学中,说法正确的是( )A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙8. 有三名候选人A,B,C竞选班长,要求班级的每名学生只能从三人中选一人(候选人也参与投票).经统计,A,B,C三名候选人得票数之比依次为6:3:1,若候选人B获得票数的频数为15,则该班级共有( )A. 44人B. 46人C. 48人D. 50人9. 某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为( )棉花纤维长度x0≤x<88≤x<1616≤x<2424≤x<3232≤x<40频数12863A. 0.8B. 0.7C. 0.4D. 0.210. 为了解某校八年级400名学生60秒跳绳的次数,随机对该年级50名学生进行了调查,根据收集的数据绘制了如图所示的频数分布直方图,每组数据包括左端值,不包括右端值,如最左边第一组的次数x为:60≤x<80.则以下说法正确的是( )A. 该年级50名学生跳绳次数不少于100次的占80%B. 大多数学生跳绳次数在140~160范围内C. 60秒跳绳次数最多的是160次D. 由样本可以推断全年级400人中跳绳次数在60~80次的大约有48人11. 某中学八年级甲、乙两个班进行了一次跳远测试,测试人数每班都为40人,每个班学生的跳远成绩分为A,B,C,D四个等级,绘制的统计图如图.根据以上统计图提供的信息,下列说法错误的是( )A. 甲班A等级的人数在甲班中最少B. 乙班D等级的人数比甲班少C. 乙班A等级的人数与甲班一样多D. 乙班B等级的人数为14人12. 为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A. 280B. 240C. 300D. 260第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 在调查某地区老年人的健康状况中,个体是______.14. 某校组织学生开展“八荣八耻”宣传教育活动,其中有30%的同学走出校门进行宣讲,这部分学生在扇形统计图中应为______部分.15. 一次跳远比赛中,成绩在4.05米以上的人有8人,频率为0.4,则参加比赛的运动员共有______人.16. 某校为了解学生的课外阅读情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t(单位:min),然后利用所得数据绘制成如下不完整的统计表.课外阅读时间频数表课外阅读时间t(min)频数10≤t<30430≤t<50850≤t<70a70≤t<901690≤t<1102合计50表中a=.三、解答题(本大题共9小题,共72.0分。

【浙教版】七年级数学下期中试卷带答案(1)

【浙教版】七年级数学下期中试卷带答案(1)

一、选择题1.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种关系,其关系图象大致为( )A .B .C .D .2.某人先以v 1的速度由A 地出发去B 地,途中在超市购买了一瓶水之后,又以v 2的速度继续进行至B 地,已知v 1<v 2 , 下面图象中能表示他从A 地到B 地的时间t (分钟)与路程s (千米)之间关系的是( )A .B .C .D .3.学校计划买100个乒乓球,买的乒乓球的总费用w (元)与单价n (元/个)的关系式w =100n 中( ) A .100是常量,w 、n 是变量 B .100、w 是常量,n 是变量 C .100、n 是常量,w 是变量 D .无法确定4.气温y(℃)随高度x(km)的变化而变化的情况如下表,由表可知,气温y 随着高度x 的增大而( ) 高度x/km 0 1 2 3 4 5 6 7 8 气温y/℃282216104-2-8-14-20A .升高B .降低C .不变D .以上答案都不对5.如图,已知直线//AD BC ,BE 平分ABC ∠交直线DA 于点E ,若58DAB ∠=︒,则E ∠等于( )A .25°B .29°C .30°D .45°6.下面的语句,不正确的是( ) A .对顶角相等B .相等的角是对顶角C .两直线平行,内错角相等D .在同一平面内,经过一点,有且只有一条直线与已知直线垂直7.如图,修建一条公路,从王村沿北偏东75︒方向到李村,从李村沿北偏西25︒方向到张村,从张村到杜村的公路平行从王村到李村的公路,则张杜两村公路与李张两村公路方向夹角的度数为( ).A .100︒B .80︒C .75︒D .50︒8.如图,直线a ,b 被直线c 所截,则下列说法中错误的是( )A .∠1与∠2是邻补角B .∠1与∠3是对顶角C .∠2与∠4是同位角D .∠3与∠4是内错角9.定义运算(1)a b a b ⊗=-,下面给出了关于这种运算的四个结论:①2(2)6⊗-=; ②a b b a ⊗=⊗;③若0a b ⊗=,则0a =; ④若0a b +=,则()()2a a b b ab ⊗+⊗=. 其中正确结论的个数是( ) A .1B .2C .3D .410.如图(1),把一个长为m ,宽为n 的长方形(m >n )沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A .2m n- B .m ﹣n C .2m D .2n 11.下列计算正确的是( ) A .326a a a ⋅= B .()()2122a a a +-=-C .()333ab a b =D .623a a a ÷=12.将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成a cb d ,定义a cbd=ad -bc .上述记号就叫做2阶行列式,若11x x +- 11x x -+=12,则x=( ).A .2B .3C .4D .6二、填空题13.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y (元)与所存月数x 之间的关系式为____(不考虑利息税).14.汽车开始行驶时,油箱中有油30升,如果每小时耗油5升,那么油箱中的剩余油量y (升)和工作时间x (时)之间的函数关系式是____,自变量的取值范围____.15.如图,直线EF 、CD 相交于点O ,OA ⊥OB ,OC 平分∠AOF ,若∠AOE=40°,则∠BOD=______.16.如图AB 与CD 相交于O ,OP AB ⊥,若120∠=︒,则2∠=________.17.将如图1的长方形ABCD 纸片()//AD BC 沿EF 折叠得到图2,折叠后DE 与BF 相交于点P .如果70,EPF ∠=︒则PEF ∠的度数为____.18.计算:(﹣2x )3(﹣xy 2)=_____,(﹣23a 5b 7)÷32a 5b 5=_____. 19.如图所示的四边形均为长方形,请写出一个可以用图中图形的面积关系说明的正确等式______.20.设(2a+3b )2=(2a ﹣3b )2+A ,则A =__________三、解答题21.下面的统计图反映了某中国移动用户5月份手机的使用情况,该用户的通话对象分为三类:市内电话,本地中国移动用户,本地中国联通用户。

最新浙教版七年级数学下册单元测试题全套及答案

最新浙教版七年级数学下册单元测试题全套及答案

最新浙教版七年级数学下册单元测试题全套及答案第1章检测题(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列各图中,∠1与∠2是同位角的是(B)2.下列结论正确的是(D)A.过一点有且只有一条直线与已知直线垂直B.过一点有且只有一条直线与已知直线平行C.在同一平面内,不相交的两条射线是平行线D.如果两条直线都与第三条直线平行,那么这两条直线互相平行3.如图,在5×5的方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个长方形,那么下面的平移方法中正确的是(D)A.先向下平移3格,再向右平移1格B.先向下平移2格,再向右平移1格C.先向下平移2格,再向右平移2格D.先向下平移3格,再向右平移2格,第4题图),第5题图),第6题图) 4.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转(A)A.15°B.30°C.45°D.60°5.如图,点D,E,F分别在AB,BC,AC上,且EF∥AB,要使DF∥BC,只需添加条件(B) A.∠1=∠2 B.∠1=∠DFE C.∠1=∠AFD D.∠2=∠AFD6.如图,将三角形ABC平移到三角形EFG的位置,则图中共有平行线(C)A.3对B.5对C.6对D.7对7.如图,AB∥CD,EF⊥AB于点E,EF交CD于点F,已知∠1=64°,则∠2等于(A)A.26°B.32°C.25°D.36°,第7题图),第8题图),第9题图),第10题图)8.如图,把长方形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF等于(B)A.100°B.115°C.120°D.130°9.小红把一把直尺与一块三角板如图放置,测得∠1=48°,则∠2的度数为(B)A.38°B.42°C.48°D.52°10.如图,AB∥CD,∠1=100°,∠2=120°,则∠α等于(D)A.100°B.80°C.60°D.40°二、填空题(每小题3分,共24分)11.如图,在同一平面内,有三条直线a,b,c,a与b相交于点O,如果a∥c,那么直线b与c的位置关系是__相交__.,第11题图),第12题图),第13题图),第14题图)12.如图,AB∥CD,点E在CB的延长线上,若∠ABE=60°,则∠ECD的度数为__120°__.13.在一块长为a,宽为b的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位长度),则草地的面积为__b(a-1)__.14.如图,已知BE平分∠ABC,∠CDE=150°,当∠C=__120°__时,AB∥CD.15.如图,将边长为2个单位长度的等边三角形ABC沿边BC向右平移1个单位长度得到三角形DEF,则四边形ABFD的周长为__8__.,第15题图),第17题图),第18题图) 16.如图①是我们常用的折叠式小刀,图②中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图②所示的∠1与∠2,则∠1与∠2的度数和是__90__度.17.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE =70°;②OF平分∠BOD;③∠1=∠2;④∠POB=2∠3.其中正确的结论有__①②③__.(填序号) 18.如图,AB∥CD,则∠α,∠β,∠γ之间的关系是__∠α+∠β-∠r=180°__.三、解答题(共66分)19.(8分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.解:∠2=50°20.(8分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明:AC∥DF.解:∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴DB∥EC,∴∠C=∠ABD,又∵∠C=∠D,∴∠D=∠ABD,∴AC∥DF21.(8分)如图,在长方形ABCD中,AB=10 cm,BC=6 cm,试问将长方形ABCD沿着BC方向平移多少才能够使平移后的长方形与原来的长方形ABCD重叠部分的面积为20 cm2?解:由题意知长方形CDEF的面积为20 cm2,∴10×DE=20,∴DE=2,∴AE=6-2=4,即将长方形ABCD沿着BC方向平移4 cm22.(10分)如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.解:∵∠BAP+∠APD=180°,∴AB∥CD,∴∠BAP=∠APC,又∵∠1=∠2,∴∠EAP=∠FPA,∴AE∥PF,∴∠E=∠F23.(10分)如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.解:∵∠3=∠4,∴CF∥BD,∴∠5=∠BAF,∵∠5=∠6,∴∠BAF=∠6,∴AB∥CD,∴∠2=∠BGD,∵∠1=∠2,∴∠1=∠BGD,∴ED∥FB24.(10分)如图①,在三角形ABC中,点E,F分别为线段AB,AC上任意两点,EG交BC于点G,交AC的延长线于点H,∠1+∠AFE=180°.(1)求证:BC∥EF;(2)如图②,若∠2=∠3,∠BEG=∠EDF,求证:DF平分∠AFE.解:(1)∵∠1+∠AFE=180°,∠CFE+∠AFE=180°,∴∠1=∠CFE,∴BC∥EF(2)∵∠BEG =∠EDF,∴DF∥EH,∴∠DFE=∠GEF,由(1)知BC∥EF,∴∠GEF=∠2,∴∠DFE=∠2,∵∠2=∠3,∴∠DFE=∠3,∴DF平分∠AFE25.(12分)如图①,在四边形ABCD中,∠ABC+∠ADC=180°,BE,DF分别是∠ABC与∠ADC的平分线,∠1与∠2互余.(1)试判断直线BE 与DF 的位置关系,并说明理由;(2)如图②,延长CB ,DF 相交于点G ,过点B 作BH ⊥FG ,垂足为H ,试判断∠FBH 与∠GBH 的大小关系,并说明理由.解:(1)BE ∥DF.理由:∵BE ,DF 分别平分∠ABC 和∠ADC ,∴∠1=12∠ADC ,∠ABE =12∠ABC ,∵∠ABC +∠ADC =180°,∴∠1+∠ABE =12∠ADC +12∠ABC =12(∠ADC +∠ABC )=12×180°=90°,即∠1+∠ABE =90°,又∵∠1+∠2=90°,∴∠ABE =∠2,∴BE ∥DF (2)∠FBH =∠GBH.理由:∵BH ⊥FG ,∴∠BHG =90°,由(1)知,BE ∥DF ,∴∠EBH =∠BHG =90°,∴∠FBH +∠ABE =90°,∠GBH +∠CBE =180°-90°=90°,∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∴∠FBH =∠GBH第2章检测题(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分)1.已知下列方程:①x +xy =7;②2x -3y =4;③1x +1y =1;④x +y =z -1;⑤x +12=2x -13,其中二元一次方程的个数是( A )A .1B .2C .3D .42.已知二元一次方程3x -4y =1,则用含x 的代数式表示y 是( B )A .y =1-3x 4B .y =3x -14C .y =3x +14D .y =-3x +143.已知二元一次方程2x +3y =4,其中x 与y 互为相反数,则x ,y 的值为( A )A.⎩⎪⎨⎪⎧x =-4,y =4B.⎩⎪⎨⎪⎧x =4,y =-4C.⎩⎪⎨⎪⎧x =3,y =-3D.⎩⎪⎨⎪⎧x =-3,y =3 4.如下图所示的程序,已知当输入的x 的值为1时,输出值为1;当输入的x 的值为2时,输出值为-5,则当输入的x 的值为3时,输出值为( B )输入x →×k →+b →输出A .-13B .-11C .-9D .-75.已知方程组⎩⎪⎨⎪⎧x +y =3,ax +by =7和⎩⎪⎨⎪⎧ax -by =-9,3x -y =-7的解相同,则a ,b 的值分别为( C )A .a =-1,b =2B .a =1,b =-2C .a =1,b =2D .a =-1,b =-26.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,要使每个房间都住满,她们有几种租住方案( C )A .5种B .4种C .3种D .2种7.在一定范围内,弹簧的长度x(cm )与它所挂物体的重量y(g )之间满足关系式y =kx +b.已知挂重为50 g 时,弹簧长12.5 cm ;挂重为200 g 时,弹簧长20 cm ;那么当弹簧长15 cm 时,挂重为( B )A .80 gB .100 gC .120 gD .150 g8.有大小两种船,1艘大船与4艘小船一次可以载乘客46人,2艘大船与3艘小船一次可以载乘客57人.则3艘大船与6艘小船一次可以载乘客的人数为( D )A .129B .120C .108D .969.开学后某书店向学校推销两种图书,如果原价买这两种书共需要850元.书店推销时第一种书打八折,第二种书打七五折,结果买两种书共少用200元.则原来买第一、二种书分别需要( A )A .250元,600元B .600元,250元C .250元,450元D .450元,200元10.两位同学在解方程组时,甲同学由⎩⎪⎨⎪⎧ax +by =2,cx -7y =8正确地解出⎩⎨⎧x =3,y =-2,乙同学因把c 看错了,解得⎩⎨⎧x =-2,y =2,那么a ,b ,c 的正确的值应为( D ) A .a =4,b =5,c =-1 B .a =-4,b =-5,c =0 C .a =-4,b =-5,c =2 D .a =4,b =5,c =-2 二、填空题(每小题3分,共24分)11.请写出一个二元一次方程组__⎩⎨⎧x +y =1,x -y =3(答案不唯一)__,使它的解是⎩⎪⎨⎪⎧x =2,y =-1.12.二元一次方程组⎩⎪⎨⎪⎧7x -4y =13,5x -6y =3的解为__⎩⎨⎧x =3,y =2__.13.方程组⎩⎪⎨⎪⎧x +y -z =11,y +z -x =5,z +x -y =1的解是__⎩⎨⎧x =6,y =8,z =3__.14.已知x ,y 满足方程组⎩⎨⎧x +2y =5,2x +y =4,则x -y 的值是__-1__.15.已知x =2t -3,y =10-4t ,则用含y 的式子表示x 为__x =4-y2__.16.金块放在水里称重时,要减轻本身重量的119,银块放在水里称重时,要减轻110,一块金与银的合金重530克放在水里称重时,减轻了35克,则这块合金含金__380__克,银__150__克.17.某车间共有86名工人,已知每人平均每天可以加工甲种部件15个,乙种部件12个或丙种部件9个,要使加工后的部件按3个甲种部件,2个乙种部件和1个丙种部件配套,则应安排__36__人加工甲种部件,__30__人加工乙种部件,__20__人加工丙种部件.18.关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =1-m ,x -3y =5+3m 中,m 与方程组的解中的x 或y 相等,则m 的值为__2或-12__.三、解答题(共66分) 19.(8分)解方程组:(1)⎩⎪⎨⎪⎧x -2y =1,2x +3y =16; (2)⎩⎪⎨⎪⎧x +y 2+x -y3=6,4(x +y )-5(x -y )=2.解:(1)⎩⎨⎧x =5,y =2 (2)⎩⎨⎧x =7,y =120.(6分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧7x +9y =m ,3x -y +29=0的解也是二元一次方程2x +y =-6的解,求m 的值.解:m =2321.(7分)已知y =ax 2+bx +c ,当x =1时,y =5;当x =-2时,y =14;当x =-3时,y =25.求a ,b ,c 的值.解:依题意得⎩⎨⎧a +b +c =5,4a -2b +c =14,9a -3b +c =25,解得⎩⎨⎧a =2,b =-1,c =422.(7分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =6m +3,2x -y =2m +1的解互为相反数,求m 的值.解:m =-1223.(8分)随着人们环保意识的增强,“低碳生活”成为人们提倡的生活方式,黄先生要从某地到福州,若乘飞机需要3小时,乘汽车需要9小时.这两种交通工具每小时排放的二氧化碳总量为70千克,已知飞机每小时二氧化碳的排放量比汽车多44千克,黄先生若乘汽车去福州,那么他此行与乘飞机相比减少二氧化碳排放量多少千克?解:设黄先生乘飞机和乘汽车每小时二氧化碳的排放量分别为x 千克和y 千克,依题意得⎩⎨⎧x +y =70,x -y =44,解得⎩⎨⎧x =57,y =13,∴3x -9y =54.则他此行将减少二氧化碳排放量54千克24.(8分)A ,B 两地相距20千米,甲从A 地向B 地方向前进,同时乙从B 地向A 地方向前进,2小时后二人在途中相遇,相遇后甲就返回A 地,乙仍向A 地前进,甲回到A 地时,乙离A 地还有2千米,求甲、乙二人的速度.解:设甲的速度为x 千米/时,乙的速度为y 千米/时,根据题意得⎩⎨⎧2x +2y =20,2x -2y =2,解得⎩⎨⎧x =5.5,y =4.5.则甲的速度为5.5千米/时,乙的速度为4.5千米/时25.(10分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A ,B 两种饮料共100瓶,需加入同种添加剂270克,其中A 饮料每瓶需加添加剂2克,B 饮料每瓶需加添加剂3克,则饮料加工厂生产了A ,B 两种饮料各多少瓶?解:设A 种饮料生产了x 瓶,B 种饮料生产了y 瓶,根据题意,得⎩⎨⎧x +y =100,2x +3y =270.解得⎩⎨⎧x =30,y =70.则A种饮料生产了30瓶,B 种饮料生产了70瓶26.(12分)小丽购买学习用品的收据如表:因污损导致部分数据无法识别,根据下表,解决下列问题: (1)小丽购买自动铅笔、记号笔各几支?(2)若小丽再次购买软皮笔记本和自动铅笔两种学习用品,共花费15元,则有哪几种不同的购买方案?解:(1)设小丽购买自动铅笔x 支,记号笔y 支,根据题意可得⎩⎨⎧x +y =8-(2+2+1),1.5x +4y =28-(6+9+3.5),解得⎩⎨⎧x =1,y =2.则小丽购买自动铅笔1支,记号笔2支 (2)设小丽购买软皮笔记本m 本,自动铅笔n 支,根据题意可得92m +1.5n =15,∵m ,n 为正整数,∴⎩⎨⎧m =1,n =7或⎩⎨⎧m =2,n =4或⎩⎨⎧m =3,n =1.则共有3种方案:①购买1本软皮笔记本与7支记号笔;②购买2本软皮笔记本与4支记号笔;③购买3本软皮笔记本与1支记号笔第3章检测题(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分) 1.下列计算正确的是( D )A .a 3+a 3=a 6B .3a -a =3C .(a 3)2=a 5D .a ·a 2=a 32.下列计算:①a 9÷(a 7÷a)=a 3;②3x 2yz ÷(-xy)=-3xz ;③(10x 3-16x 2+2x)÷2x =5x 2-8x ;④(a -b)6÷(a -b)3=a 3-b 3,其中运算结果错误的是( B )A .①②B .③④C .①④D .②③ 3.20a 7b 6c ÷(-4a 3·b 2)÷ab 的值( D )A .-5a 5b 2B .-5a 5b 5C .5a 5b 2D .-5a 3b 3c 4.下列计算错误的有( D )①(-12)-3=8;②(3-π)0=1;③39÷3-3=3-3;④9a -3·4a 5=36a 2;⑤5x 2÷(3x )×13x =5x 2.A .①③④B .②③④C .①②③D .①③⑤ 5.下列计算正确的是( B )A .(2x +y )(3x -y )=x 2y 2B .(-x +2y )2=x 2-4xy +4y 2C .(2x -12y )2=4x 2-xy +14y 2 D .(-4x 2+2x )·(-7x )=28x 3-14x 2+7x6.若a =2b -2,则(a -2b +1)999+(2b -a)0的值为( B )A .-1B .0C .1D .无法确定7.若(-5a m +1b 2n -1)·(2a n b m )=-10a 4b 4,则m -n 的值为( A ) A .-1 B .1 C .-3 D .38.要使多项式(x 2-px +2)(x -q)不含x 的二次项,则p 与q 的关系是( B ) A .相等 B .互为相反数 C .互为倒数 D .乘积为-1 9.若a +b =3,a -b =7,则ab 的值是( A ) A .-10 B .-40 C .10 D .4010.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( B )A .y =2n +1B .y =2n +nC .y =2n +1+n D .y =2n +n +1 二、填空题(每小题3分,共24分)11.如果(-3x m +n y n )3=-27x 15y 9,那么(-2m)n 的值是__-64__.12.已知A =813,B =274,比较A 与B 的大小,则A__=__B .(填“>”“=”“<”)13.已知x 2+2x -1=0,则3x 2+6x -2=__1__.14.630 700 000用科学记数法表示为__6.307×108__;0.000 000 203 8用科学记数法表示为__2.038×10-7__;-5.19×10-5用小数表示为__-0.000_051_9__.15.计算:(-5)0×(43)-1+0.5-100×(-2)-102=__1__.16.已知x m =9-4,x n =3-2,则计算式子x m-3n的值为__19__.17.如图是四张形状、大小完全相同的长方形纸片拼成的图形,请利用图中的空白部分面积的不同表示方法,写出一个关于a ,b 的恒等式__(a +b )2-4ab =(a -b )2__.18.小亮在计算(5m +2n)(5m -2n)+(3m +2n)2-3m(11m +4n)的值时,把n 的值看错了,其结果等于25,细心的小敏把正确的n 的值代入计算,其结果也是25.为了探究明白,她又把n =2020代入,结果还是25.则m 的值为__±5__.三、解答题(共66分) 19.(12分)计算:(1)(-3x 2y 2z)·x(x 2y)2÷(3x 2y 2)2; (2)a 2b(ab -3)-3ab(a 2b -a); 解:(1)原式=-13x 3z (2)原式=-2a 3b 2(3)(y +2x )(2x -y )+(x +y )2-2x (2x -y ); (4)-2-2-(-2)-2+(23)-1+(3-π)0. 解:(3)原式=x 2+4xy (4)原式=220.(8分)用简便方法计算:(1)99×101; (2)752+252-50×75.解:(1)原式=(100-1)(100+1)=9999 (2)原式=(75-25)2=250021.(6分)先化简,再求值:(2+a)(2-a)+a(a -5b)+3a 5b 3÷(-a 2b)2,其中ab =-12. 解:原式=4-2ab.当ab =-12时,原式=4+1=522.(6分)已知实数a 满足a 2+2a -8=0,求a(a +2)2-a(a -3)(a -1)+3(5a -2)的值.解:原式=8a 2+16a -6=8(a 2+2a )-6,∵a 2+2a =8,∴原式=5823.(6分)已知x 2-x -1=0,求式子x 3-2x +1的值.解:∵x 2-x -1=0,∴x 2=x +1,∴x 3-2x +1=x·x 2-2x +1=x (x +1)-2x +1=x 2-x +1=1+1=224.(8分)观察下列等式:①1×3-22=-1;②2×4-32=-1;③3×5-42=-1;④__4×6-52=-1__……(1)请你按以上规律写出第4个等式;(2)把这个规律用含字母n的等式表示出来;(n为正整数)(3)你认为(2)中所写出的等式一定成立吗?并说明理由.解:(2)n·(n+2)-(n+1)2=-1(3)因为左边=n2+2n-(n2+2n+1)=-1,所以(2)中所写的等式一定成立25.(10分)甲、乙二人共同计算2(x+a)(x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为2x2+4x-30;由于乙漏抄了2,得到的结果为x2+8x+15.(1)求a,b的值;(2)求出正确的结果.解:(1)依题意得2(x-a)(x+b)=2x2+2(-a+b)x-2ab=2x2+4x-30,∴2(-a+b)=4,即-a+b=2①,(x+a)(x+b)=x2+(a+b)x+ab=x2+8x+15,∴a+b=8②,由①,②得a=3,b=5(2)正确结果是2(x+3)(x+5)=2x2+16x+3026.(10分)已知21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,……(1)请你据此推测出264的个位数字是几?(2)利用上面的结论,求(2+1)(22+1)(24+1)(28+1)…(232+1)的个位数字.解:(1)∵64÷4=16,∴264的个位数字与24的个位数字相同,是6(2)原式=(2-1)(2+1)(22+1)(24+1)(28+1)…(232+1)=(22-1)(22+1)(24+1)(28+1)…(232+1)=(24-1)(24+1)(28+1)…(232+1)=…=264-1,∴此式结果的个位数字是5第4章检测题(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列从左到右的变形属于因式分解的是(D)A.(x+1)(x-1)=x2-1 B.m2-2m-3=m(m-2)-3C .2x 2+1=x (2x +1x) D .x 2-5x +6=(x -2)(x -3) 2.多项式mx 2-m 与多项式x 2-2x +1的公因式是( A )A .x -1B .x +1C .x 2-1D .(x -1)23.下列各式中,不能分解因式的是( D )A .4x 2+2xy +14y 2B .4x 2-2xy +14y 2C .4x 2-14y 2D .-4x 2-14y 2 4.将下列多项式因式分解,结果中不含有因式a +1的是( C )A .a 2-1B .a 2+aC .a 2+a -2D .(a +2)2-2(a +2)+15.下列各式分解因式错误的是( D )A .(x -y )2-x +y +14=(x -y -12)2 B .4(m -n )2-12m (m -n )+9m 2=(m +2n )2C .(a +b )2-4(a +b )(a -c )+4(a -c )2=(b +2c -a )2D .16x 4-8x 2(y -z )+(y -z )2=(4x 2-y -z )26.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a -b ,x -y ,x +y ,a +b ,x 2-y 2,a 2-b 2分别对应下列六个字:华、爱、我、中、游、美,现将(x 2-y 2)a 2-(x 2-y 2)b 2因式分解,结果呈现的密码信息可能是( C )A .我爱美B .中华游C .爱我中华D .美我中华7.把多项式x 2+ax +b 分解因式,得(x +2)(x -3),则a ,b 的值分别是( B )A .a =1,b =6B .a =-1,b =-6C .a =-1,b =6D .a =1,b =-68.若x 2+12mx +k 是完全平方式,则k 的值是( C ) A .m 2 B.14m 2 C.116m 2 D.13m 2 9.已知a 2+b 2+2a -4b +5=0,则( B )A .a =1,b =2B .a =-1,b =2C .a =1,b =-2D .a =-1,b =-210.已知M =9x 2-4x +3,N =5x 2+4x -2,则M 与N 的大小关系是( A )A .M >NB .M =NC .M <ND .不能确定二、填空题(每小题3分,共24分)11.已知m +n =4,mn =5,则多项式m 3n 2+m 2n 3的值是__100__.12.已知a +b =5-3,a -b =5+3,则a 2-b 2=__2__.13.多项式a(a -b -c)+b(c -a +b)+c(b +c -a)提出公因式a -b -c 后,另外一个因式为__a -b -c __.14.若a -b =1,则代数式a 2-b 2-2b 的值为__1__.15.分解因式:x 2+2x(x -3)-9=__3(x +1)(x -3)__;-3x 2+2x -13=__-13(3x -1)2__. 16.若x 2-4y 2=-32,x +2y =4,则y x =__19__. 17.观察下列等式:32-12=8×1;52-32=8×2;72-52=8×3;…,请用含正整数n 的等式表示你所发现的规律:__(2n +1)2-(2n -1)2=8n __.18.已知a =12+32+52+…+252,b =22+42+62+…+242,则a -b 的值为__325__.三、解答题(共66分)19.(18分)分解因式:(1)m3+6m2+9m; (2)a2b-10ab+25b;解:(1)原式=m(m+3)2(2)原式=b(a-5)2(3)4x2-(y-2)2; (4)9x2-8y(3x-2y);解:(3)原式=(2x+y-2)(2x-y+2)(4)原式=(3x-4y)2(5)m2-n2+(2m-2n); (6)(x2-5)2+8(5-x2)+16.解:(5)原式=(m-n)(m+n+2)(6)原式=(x+3)2(x-3)220.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.解:a3b+2a2b2+ab3=ab(a+b)2,将a+b=3,ab=2代入得ab(a+b)2=2×32=1821.(8分)已知y(2x+1)-x(2y+1)=-3,求6x2+6y2-12xy的值.解:由已知得2xy+y-2xy-x=-3,∴x-y=3,∴6x2+6y2-12xy=6(x2+y2-2xy)=6(x-y)2=5422.(8分)已知x 2+y 2+6x +4y =-13,求y x 的值.解:由已知得(x 2+6x +9)+(y 2+4y +4)=0,(x +3)2+(y +2)2=0,∴x =-3,y =-2,∴y x =(-2)-3=-1823.(8分)已知a,b,c是三角形ABC的三边的长,且满足a2+2b2+c2-2b(a+c)=0,试判断此三角形三边的大小关系.解:(a2-2ab+b2)+(b2-2bc+c2)=0,(a-b)2+(b-c)2=0,∴a-b=0且b-c=0,∴a=b且b=c,∴a=b=c24.(8分)两位同学将x2+ax+b分解因式,一位同学因看错了一次项系数而分解成(x-1)(x-9),另一位同学因看错了常数项而分解成(x-2)(x-4),请将原多项式分解因式.解:依题意得b=9,a=-6,∴x2+ax+b=x2-6x+9=(x-3)225.(10分)如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为__(m+2n)(2m+n)__;(2)若每块小长方形的面积为10 cm2,四个正方形的面积和为58 cm2,试求图中所有裁剪线(虚线部分)长之和.解:(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,裁剪线长为2(2m+n)+2(m+2n)=6m+6n=42,∴图中所有裁剪线(虚线部分)长之和为42 cm第5章检测题(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列各式1x ,1π,x x -1,1x +y ,x +y 3,x +1y中,是分式的有( D ) A .1个 B .2个 C .3个 D .4个2.与分式-a +b -a -b相等的是( B ) A.a +b a -b B.a -b a +b C .-a +b a -b D .-a -b a +b3.已知分式(x -1)(x +2)x 2-1的值为0,那么x 的值是( B ) A .-1 B .-2 C .1 D .1或-24.如果分式x +y 2xy中的x 和y 都扩大3倍,那么分式的值( C ) A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍5.化简x 2-11-x的结果是( D ) A .x -1 B .x +1 C .1-x D .-x -16.解分式方程12x -3x +1x=3,去分母后所得的方程是( C ) A .1-2(3x +1)=3 B .1-2(3x +1)=2x C .1-2(3x +1)=6x D .1-6x +2=6x7.下列算式中,你认为正确的是( D )A.b a -b -a b -a=1 B .1÷b a ×a b =1 C .3a -1=13a D.1(a +b )2·a 2-b 2a -b =1a +b 8.已知a<b<0,x =a +b 2,y =2ab a +b,则下列结论正确的是( A ) A .x <y B .x >y C .x =y D .无法确定9.某生态示范园计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩产量x 万千克,则改量后平均每亩产量为1.5x 万千克,根据题意列方程为( A )A.36x -36+91.5x =20B.36x -361.5x =20C.36+91.5x -36x =20D.36x +36+91.5x=20 10.关于x 的方程3x -2x +1=2+m x +1无解,则m 的值为( A ) A .-5 B .-8 C .-2 D .5二、填空题(每小题3分,共24分)11.在分式|x|-1x -1中,当x =__1__时,分式无意义,当x =__-1__时,分式的值为零. 12.化简1x +3-69-x 2的结果是__1x -3__. 13.若x ∶y =1∶3,2y =3z ,则2x +y z -y的值为__-5__.14.方程x x -2=x +4x -22x -x 2的解是__x =3__. 15.在公式1f =1f 1+1f 2(f 1≠f 2)中,已知f ,f 2,则求得f 1=__ff 2f 2-f__. 16.一项工程需在规定日期内完成,如果甲队单独做,就要超规定日期1天,如果乙队单独做,就要超过规定日期4天,现在由甲、乙两队共做3天,剩下的工程由乙队单独做,刚好在规定日期完成,则规定日期为__8__天.17.如果x +1x =3,则x 2x 4+x 2+1的值为__18__. 18.若a 1=1-1m ,a 2=1-1a 1,a 3=1-1a 2,…,则a 2020=__m -1m__.(用含m 的式子表示) 三、解答题(共66分)19.(10分)化简:(1)x 2-a 2x 2+a 2·x 4-a 4x 2-2ax +a 2÷(x 2+2ax +a 2); (2)⎝⎛⎭⎫2+1x -1-1x +1÷⎝⎛⎭⎫x -x 1-x 2. 解:(1)原式=1 (2)原式=2x20.(10分)解方程:(1)x 2x 2-4+22-x =1+1x +2; (2)12x 2-9-2x -3=1x +3. 解:(1)x =23(2)无解21.(6分)小明解方程1x -x -2x=1的过程如图,请指出他解答过程中的错误,并写出正确的解答过程. 解:小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验;正确解法为:方程两边乘以x ,得1-(x -2)=x ,去括号,得1-x +2=x ,合并同类项,得3-x =x ,移项,得2x =3,解得x =32,经检验x =32是 分式方程的根,则方程的解为x =32解:方程两边同乘x ,得 1-(x -2)=1 ……①去括号,得 1-x -2=1 ……②合并同类项,得 -x -1=1 ……③移项,得 -x =2 ……④解得 x =-2……⑤∴原方程的解为 x =-2……⑥22.(6分)先化简(x -x x +1)÷(1+1x 2-1),再以-4<x<4中取一个合适的整数x 代入求值. 解:原式=x 2+x -x x +1÷x 2-1+1x 2-1=x 2x +1÷x 2x 2-1=x 2x +1·(x +1)(x -1)x 2=x -1,取x =2,则原式=1.注意:只能取x =±2,±323.(7分)已知4y ÷[(x 2+y 2)-(x -y)2+2y(x -y)]=1,求4x 4x 2-y 2-12x +y的值. 解:由已知得4y 4xy -2y 2=1,即22x -y =1,∴2x -y =2,4x 4x 2-y 2-12x +y =12x -y =1224.(7分)已知关于x 的方程x +m x -3=2x -33-x有增根,求m 的值. 解:去分母,得x +m =-2x +3,∴x =3-m 3,此方程的增根是x =3,∴3-m 3=3,∴m =-625.(8分)从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米,高速列车的平均速度是普通列车的平均速度的3倍,高速列车的乘车时间比普通列车的乘车时间缩短了2小时,高速列车的平均速度是每小时多少千米?解:设普通列车平均速度为每小时x 千米,则高速列车平均速度为每小时3x 千米,根据题意得240x-1803x=2,解得x =90,经检验,x =90是所列方程的根,则3x =3×90=270.所以高速列车平均速度为每小时270千米26.(12分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.解:(1)设原计划每天生产的零件x 个,依题意有24000x =24000+300x +30,解得x =2400,经检验,x =2400是原方程的根,且符合题意,∴规定的天数为24000÷2400=10(天) (2)设原计划安排的工人人数为y 人,依题意有[5×20×(1+20%)×2400y+2400]×(10-2)=24000,解得y =480,经检验,y =480是原方程的根,且符合题意.所以原计划安排的工人人数为480人第6章检测题(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分)1.下面调查中,最适合用全面调查方式的是( B )A .调查一批电视机的使用寿命情况B .调查某中学九年级(1)班学生的视力情况C .调查某市初中学生每天锻炼所用的时间情况D .调查某市初中学生利用网络媒体自主学习的情况2.为了考察一批电视机的使用寿命,从中任意抽取了10台进行实验,在这个问题中样本是( D )A .抽取的10台电视机B .这一批电视机的使用寿命C .10D .抽取的10台电视机的使用寿命3.为了了解我市6000名学生参加的初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法:①这6000名学生的数学会考成绩的全体是总体;②每个考生是个体;③200名考生是总体的一个样本;④样本容量是200.其中正确的有(C)A.4个B.3个C.2个D.1个4.下列统计图能够显示数据变化趋势的是(C)A.条形图B.扇形图C.折线图D.直方图5.对某中学70名女生身高进行测量,得到一组数据的最大值是169 cm,最小值是143 cm,对这组数据整理时取组距为5 cm,则应分(B)A.5组B.6组C.7组D.8组6.某个样本的频数直方图中,一组数据的频数为50,频率为0.5,则抽查样本的样本容量是(A) A.100 B.75 C.25 D.无法确定7.某校随机抽取200名学生,对他们喜欢的图书类型进行问卷调查,统计结果如图,根据图中信息,估计该校2000名学生中喜欢文学类书籍的人数是(A)A.800 B.600 C.400 D.200,第7题图),第9题图) 8.某学校将为七年级学生开设A,B,C,D,E,F共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整).根据图表提供的信息,下列结论错误的是(D)A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E,F的人数分别为80,70D.喜欢选修课C的人数最少9.将一次知识竞赛成绩(整数)进行整理后,分成五组,绘成频数直方图,如图中从左到右的前四组的百分比分别是4%,12%,40%,28%,最后一组的频数是8,则①第五组的百分比为16%;②该班有50名同学参赛;③成绩在70.5~80.5的人数最多;④80分以上(不含80分)的学生共有22名.其中正确的有(A)A.4个B.3个C.2个D.1个10.以下是某手机店1~4月份的销售额统计图,四个同学通过分析统计图,对3,4月份三星手机的销售情况得出以下结论,其中正确的为(B)A.4月份三星手机销售额为65万元B.4月份三星手机销售额比3月份有所上升C.4月份三星手机销售额比3月份有所下降D.3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额二、填空题(每小题3分,共24分)11.我市今年中考数学学科开考时间是6月22日15时,数串“201706221500”中“0”出现的频数是__4__.12.如图,是某班同学一次献爱心捐款的条形图,写出一条你从图中所获得的信息:__有15人每人捐100元(答案不唯一)__.13.某市为了了解七年级学生数学考试成绩,从全体学生的成绩中抽取了一部分,其中有10人得100分,20人得95分,80人得90分,100人得80分,150人得70分,在这个问题中,总体是__某市七年级学生数学成绩的全体__,个体是__每名七年级学生数学成绩__,样本是__抽取的360人的数学成绩__.14.一家电脑生产厂家在某城市三个经销本厂产品的大商场调查,产品的销量占这三个大商场同类产品销量的40%,由此在广告中宣传,他们的产品在国内同类产品销量中占40%.请你根据所学的统计知识,判断该宣传中的数据是否可靠:__不可靠__,理由是__样本不具代表性__.15.学校为七年级学生订做校服,校服有小号、中号、大号、特大号四种,随机抽取了100名学生调查他们的身高,得到如下表格,已知该校七年级学生有800名,那么中号校服大约应订制__360__套.,第15题图),第16题图),第17题图)16.某校学生来自甲、乙、丙三个地区,其人数比为2∶3∶5,如图所示的扇形统计图表示上述分布情况,已知来自甲地区的为180人,则下列说法:①扇形甲的圆心角是72°;②学生的总人数是900人;③甲地区的人数比丙地区的人数少180人;④丙地区的人数比乙地区的人数多180人.其中正确的是__①②④__.17.八年级(1)班共48名学生,他们身高(精确到0.1 cm)的频数直方图如图,各小长方形的高的比为1∶1∶3∶2∶1,则身高范围在__165~170__ cm的学生最多,是__18__人,此组的组中值是__167.5_cm__.18.某校要在园内空地上种植桂花树、香樟树、柳树、木棉树,为了解学生喜爱的树种情况,随机调查了该校部分学生,并将调查结果整理后制成了如图的统计图,则一共调查了__200__人,条形统计图中的m=__70__,n=__30__.三、解答题(共66分)19.(10分)你对:“你觉得该不该在公共场所禁烟”作民意调查,下面是三名同学设计的调查方案:同学A:我把要调查的问题放到访问量最大的网站上,这样大部分上网的人就可以看到调查的问题,并很快就可以反馈给我.同学B:我给我们小区的居民每一位住户发一份问卷,一两天也可以得到结果了.同学C:我只要在班级上调查一下同学就可以了,马上就能得到结果.请问:上面三个同学哪个能获得比较准确的民意吗?为什么?解:同学B能获得比较全面的民意.理由:同学A放在网上,调查的人不够全面,同学C调查的人群不具有代表性,只有同学B的调查能比较准确地反映出民意.因为小区里包括了各年龄层次的人20.(14分)为了深化课程改革,某校积极开展新课程建设,计划成立“文学鉴赏”“科学实验”“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团,为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):根据统计图表中的信息,解答下列问题:(1)求本次调查的学生总人数及a,b,c的值;(2)将条形统计图补充完整;(3)若该校共有1200名学生,试估计全校选择“科学实验”社团的学生人数.解:(1)本次调查的学生总人数是:70÷35%=200(人),b=40÷200=20%,c=10÷200=5%,a=1-(35%+20%+10%+5%)=30%(2)“文学鉴赏”的人数:30%×200=60(人),“手工编织”的人数:10%×200=20(人)(3)全校选择“科学实验”社团的学生人数:1200×35%=420(人)21.(14分)某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)该校共有1200名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?解:(1)观察条形统计图与扇形统计图知:喜欢跳绳的有10人,占25%,故总人数有10÷25%=40(人) (2)喜欢足球的有40×30%=12(人),喜欢跑步的有40-10-15-12=3(人),补图略 (3)全校最喜爱篮球的人数比最喜爱足球的人数多1200×15-1240=90(人)22.(14分)为了帮助九年级学生做好体育考试项目的选考工作,某校统计了本县上届九年级毕业生体育考试各个项目参加的男、女生人数及平均成绩,并绘制成如图两个统计图,请结合统计图信息解决问题.(1)“掷实心球”项目男、女生总人数是“跳绳”项目男、女生总人数的2倍,求“跳绳”项目的女生人数;(2)若一个考试项目的男、女生总平均成绩不小于9分为“优秀”,试判断该县上届毕业生的考试项目中达到“优秀”的有哪些项目,并说明理由;(3)请结合统计图信息和实际情况,给该校九年级学生体育考试项目的选择提出合理化建议.解:(1)(400+600)÷2-260=1 000÷2-260=500-260=240(人),故“跳绳”项目的女生人数是240人 (2)“掷实心球”项目平均分:(400×8.7+600×9.2)÷(400+600)=(3 480+5 520)÷1 000=9 000÷1 000=9(分),投篮项目平均分大于9分,其余项目平均分小于9分.故该县上届毕业生的考试项目中达到“优秀”的有投篮、掷实心球两个项目 (3)如:游泳项目考试的人数最多,可以选考游泳23.(14分)中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生 海选成绩分组表。

2022-2023学年浙教新版七年级下册数学期中复习试卷(有答案)

2022-2023学年浙教新版七年级下册数学期中复习试卷(有答案)

2022-2023学年浙教新版七年级下册数学期中复习试卷一.选择题(共10小题,满分30分,每小题3分)1.如图,在高2米,宽4米的楼梯表面铺地毯,则地毯的长至少需要少()A.8米B.6米C.4米D.2米2.方程2x+y=9的正整数解有()A.2组B.3组C.4组D.5组3.我国雾霾天气多发,PM2.5颗粒物被称为大气污染的元凶PM2.5是指直径小于或等于2.5×10﹣3毫米的颗粒物,用科学记数法表示数2.5×10﹣3,它应该等于()A.0.25B.0.025C.0.0025D.0.000254.如图所示,结论中正确的是()A.∠1和∠4是内错角B.∠3和∠5是同旁内角C.∠5和∠6是同位角D.∠1和∠2是同旁内角5.下列各式计算中,正确的是()A.(﹣a+b)(﹣a﹣b)=b2﹣a2B.2m2•m3=2m5C.(﹣m3n)3=﹣m6n3D.﹣(m﹣n)2=﹣m2+n26.下列各式从左到右的变形中,是因式分解的是()A.(a+3)(a﹣3)=a2﹣9B.a2﹣b2=(a+b)(a﹣b)C.a2﹣4a﹣5=(a﹣2)2﹣9D.x2﹣4+3x=(x﹣2)(x+2)+3x7.若(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.3B.0C.﹣3D.8.计算:(a3)4=a3×4=a12,其中,这一步运算的依据是()A.幂的乘方法则B.同底数幂的乘法法则C.乘法分配律D.去括号法则9.五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为()A.30B.26C.24D.2210.下列计算正确的是()A.﹣(﹣a3)2=a6B.3b2•4b2=12b2C.(2x+3)(2x﹣3)=2x2﹣9D.二.填空题(共6小题,满分24分,每小题4分)11.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b的值为.12.计算:3﹣1+(﹣)0=.13.在数学中,为了书写简便,我们记k=1+2+3+…+(n﹣1)+n,如(x+k)=(x+1)+(x+2)+(x+3)+(x+4),则化简[(x﹣k)(x﹣k﹣1)]的结果是.14.如图,在矩形ABCD中,AB=3,BC=5,对角线AC,BD交于点O.点M,N分别在边BC和CB的延长线上.将△NOM沿NM方向平移,得△BQP,点N,O,M的对应点分别为B,Q,P.再将△BQP沿BQ翻折,点P恰好落在点D上,此时点Q在PD上.则△NOM平移的距离为.15.如图,若∠1=∠D,∠C=78°,则∠B=°.16.已知x2+y2=1,y2+z2=2,z2+x2=2,且x,y,z为实数,则xy+yz+zx的最小值为.三.解答题(共8小题,满分66分)17.(6分)计算:(1)(3x2﹣2x+2)(2x+1);(2)(12p3q4+20p3q2r﹣6p4q3)÷(﹣2pq)2.18.(5分)解答题:(1)[(a+2b)2﹣(a+b)(a﹣b)﹣3b2]÷(2b),其中a=﹣1,b=.(2)已知a+b=3,ab=2,求a2+b2,(a﹣b)2的值.19.(9分)解下列方程:(1);(2).20.(8分)计算:(x+2)(x﹣3)+(x﹣1)2.21.(8分)如图,AB∥EF,CD⊥EF,∠BAC=50°,求∠ACD的度数.22.(8分)已知关于x,y的方程组.(1)若方程组的解满足x+y=0,求m的值;(2)无论实数m取何值,方程m﹣2y+mx+9=0总有一个公共解,请直接写出这个公共解.23.(10分)某文艺团为了给“希望工程”募捐,准备组织一场义演.若售出的票为1000张,其中成人票每张8元,学生票每张5元,能否筹得票款刚好为6930元,为什么?24.(12分)【阅读理解】截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,连接AE,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE,易证得△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而探寻线段DA、DB、DC之间的数量关系.根据上述解题思路,请写出DA、DB、DC之间的数量关系是,并写出证明过程;【拓展延伸】(2)如图2,在Rt△ABC中,∠BAC=90°,AB=AC.若点D是边BC下方一点,∠BDC=90°,探索线段DA、DB、DC之间的数量关系,并说明理由;【知识应用】(3)如图3,两块斜边长都为2cm的三角板,把斜边重叠摆放在一起,则两块三角板的直角顶点之间的距离PQ的平方为多少?参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵把楼梯的水平线段向下平移,竖直线段向右平移可得地毯长度为直角三角形两直角边的和,∴地毯长度至少为:2+4=6(米),故选:B.2.解:方程2x+y=9,解得:y=﹣2x+9,当x=1时,y=7;x=2时,y=5;x=3时,y=3;x=4时,y=1,即方程2x+y=9的正整数解有4组,故选:C.3.解:2.5×10﹣3=0.0025.故选:C.4.解:A、∠1与∠4不是内错角,故A错误;B、∠3与∠5是同位角,故B错误;C、∠5与∠6是内错角,故C错误;D、∠1与∠2是同旁内角,故D正确;故选:D.5.解:A、原式=a2﹣b2,不符合题意;B、原式=2m5,符合题意;C、原式=﹣m9n3,不符合题意;D、原式=﹣(m2﹣2mn+n2)=﹣m2+2mn﹣n2,不符合题意.故选:B.6.解:A、从左到右的变形不属于因式分解,故本选项不符合题意;B、从左到右的变形属于因式分解,故本选项符合题意;C、从左到右的变形不属于因式分解,故本选项不符合题意;D、从左到右的变形不属于因式分解,故本选项不符合题意;故选:B.7.解:(x+m)(x+3)=x2+(m+3)x+3m,∵乘积中不含x的一次项,∴m+3=0,∴m=﹣3.故选:C.8.解:(a3)4=a3×4(幂的乘方的法则:底数不变,指数相乘)=a12,故选:A.9.解:设1艘大船可载x人,1艘小船可载y人,依题意得:,①+②得:3x+3y=78,∴x+y=26,即1艘大船与1艘小船一次共可以满载游客的人数为26,故选:B.10.解:A:原式=﹣a6,∴不符合题意;B:原式=12b4,∴不符合题意;C:原式=4x2﹣9,∴不符合题意;D:原式=﹣64z,∴符合题意;故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)=(3x﹣7)(2x﹣21﹣x+13)=(3x﹣7)(x﹣8),∵(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),∴(3x﹣7)(x﹣8)=(3x+a)(x+b),则a=﹣7,b=﹣8,故a+3b=﹣7+3×(﹣8)=﹣31.故答案为:﹣31.12.解:3﹣1+=+1=.故答案为:.13.解:原式=(x﹣1)(x﹣1﹣1)+(x﹣2)(x﹣2﹣1)+(x﹣3)(x﹣3﹣1)=(x﹣1)(x﹣2)+(x﹣2)(x﹣3)+(x﹣3)(x﹣4)=(x﹣2)(x﹣1+x﹣3)+(x﹣3)(x﹣4)=(x﹣2)(2x﹣4)+(x﹣3)(x﹣4)=2(x﹣2)2+(x﹣3)(x﹣4)=2(x2﹣4x+4)+x2﹣4x﹣3x+12=2x2﹣8x+8+x2﹣4x﹣3x+12=3x2﹣15x+20.故答案为:3x2﹣15x+20.14.解:由翻折可得,BD=BP,由平移可得,OM∥QP,又∵D,Q,P三点共线,∴OM∥DP,又∵矩形ABCD中,O是BD的中点,∴M是BP的中点,∴MP=BP,又∵矩形ABCD中,AB=3,BC=5,∴AC=BD==,∴MP=,即△NOM平移的距离为,故答案为:.15.解:∵∠1=∠D,∴AB∥CD,∴∠C+∠B=180°,∵∠C=78°,∴∠B=180°﹣78°=102°.故答案为:102.16.解:由已知条件可得,∵若x2+y2=1,y2+z2=2,z2+x2=2,∴x2=y2=,z2=,∴x=±,y=±,z=±,∵xy+yz+zx=xy+(x+y)z,①当x、y同号时,xy=x2=,x+y=或,xy+yz+zx≥﹣×=−,②当x、y异号时,xy=﹣,x+y=0,xy+yz+zx=﹣+0=﹣>﹣,∴xy+yz+zx的最小值是﹣,故答案为:﹣.三.解答题(共8小题,满分66分)17.解:(1)(3x2﹣2x+2)(2x+1)=6x3+3x2﹣4x2﹣2x+4x+2=6x3﹣x2+2x+2;(2)(12p3q4+20p3q2r﹣6p4q3)÷(﹣2pq)2=(12p3q4+20p3q2r﹣6p4q3)÷4p2q2=3pq2+5pr﹣p2q.18.解:(1)[(a+2b)2﹣(a+b)(a﹣b)﹣3b2]÷(2b)=(a2+4ab+4b2﹣a2+b2﹣3b2)÷(2b)=(2b2+4ab)÷(2b)=b+2a,当a=﹣1,b=时,原式=+2×(﹣1)=﹣;(2)∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,(a﹣b)2=(a+b)2﹣4ab=32﹣4×2=1.19.解:(1),①×2﹣②,得3x=6,解得x=2,把x=2代入①,得y=3,故原方程组的解为;(2)设,,则原方程组的解为,①+②,得2a=,解得a=,把a=代入①,得,解得b=﹣,∴,,解得,y=﹣,故原方程组的解为.20.解:原式=x2﹣3x+2x﹣6+x2﹣2x+1=2x2﹣3x﹣5.21.解:如图,延长AC交EF于点G,∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°.22.解:(1)根据题意,联立,①﹣②,得y=5,将y=5代入①,得x=﹣5.把代入m﹣2y+mx+9=0,可得m﹣2×5﹣5m+9=0,解得m=.∴m的值为.(2)这个公共解为.理由:将m﹣2y+mx+9=0变形,得(1+x)m﹣2y+9=0,∵无论实数m取何值,方程m﹣2y+mx+9=0总有一个公共解,∴1+x=0,解得x=﹣1,将x=﹣1代入m﹣2y+mx+9=0,可得y=.∴这个公共解为.23.解:不能筹得票款刚好为6930元,理由如下:设能筹得票款刚好为6930元,售出的成人票为x张,学生票为y张,依题意得:,解得:,∵x、y为正整数,∴不能筹得票款刚好为6930元.24.解:(1)如图1,延长DC到点E,使CE=BD,连接AE,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BDC=120°,∴∠ABD+∠ACD=180°,又∵∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,∵∠ABC=60°,即∠BAD+∠DAC=60°,∴∠DAC+∠CAE=60°,即∠DAE=60°,∴△ADE是等边三角形,∴DA=DE=DC+CE=DC+DB,即DA=DC+DB,故答案为:DA=DC+DB;(2)DA=DB+DC,如图2,延长DC到点E,使CE=BD,连接AE,∵∠BAC=90°,∠BDC=90°,∴∠ABD+∠ACD=180°,∵∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∵AB=AC,CE=BD,∴△ABD≌△ACE,∴AD=AE,∠BAD=∠CAE,∴∠DAE=∠BAC=90°,∴DA2+AE2=DE2,∴2DA2=(DB+DC)2,∴DA=DB+DC;(3)如图3,连接PQ,∵MN=2,∠QMN=30°,∴QN=MN=1,∴MQ===,由(2)知PQ=QN+QM=1+,∴PQ==,∴PQ2=2+.。

浙教版七年级数学下册单元测试题全套及参考答案

浙教版七年级数学下册单元测试题全套及参考答案

浙教版七年级数学下册单元测试题全套及参考答案浙教版七年级数学下册单元测试题全套(含答案)第1章检测卷时间:90分钟满分:100分)一、选择题(共10小题,每小题3分,共30分)1.如图,若直线a,b被直线c所截,则∠1的同旁内角是()A.∠2 B.∠3 C.∠4 D.∠52.如图,直线DE经过点A,DE∥BC,∠B=60°,下列结论成立的是()A。

∠C=60° B。

∠DAB=60° C。

∠EAC=60° D。

∠BAC=60°3.已知,如图,AB∥CD,∠DCE=80°,则∠BEF的度数为()A。

120° B。

110° C。

100° D。

80°4.某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°,则∠XXX的度数是()A.30° B.45° C.60° D.75°5.如图,有一块含45°角的直角三角板的两个顶点放在直尺的对边上。

如果∠2=60°,则∠1=()A.10° B。

15° C。

20° D。

25°6.如图所示,下列判断错误的是()A.若∠1=∠3,AD∥BC,则BD是∠ABC的平分线B.若AD∥BC,则∠1=∠2=∠3C.若∠3+∠4+∠C=180°,则AD∥BC D.若∠2=∠3,则AD∥BC7.如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于()A。

23° B。

16° C。

20° D。

26°8.如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()A.40° B.50° C.60° D.140°9.如图所示,AB∥EF∥CD,EM∥BD,则图中与∠1相等的角(除∠1外)共有()A.6个 B.5个 C.4个 D.2个10.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C的大小是()A.150° B.130° C.140° D.120°二、填空题(共8小题,每小题3分,共24分)11.如图,梯子的各条横档互相平行,若∠1=70°,则∠2的度数是______.12.如图所示,直线a、b被c、d所截,且c⊥a,c⊥b,∠1=70°,则∠2=______°.13.如图,把一块含30°角的三角板ABC沿着直线AB向右平移,点A,B,C的对应点分别为D,F,E,则∠CEF的度数是______°.14.已知C岛在A岛的XXX方向,在B岛的北偏西45°方向,则从C岛看A、B两岛的视角∠ACB=75°。

浙教版初中数学七年级下册专题50题(含答案)

浙教版初中数学七年级下册专题50题(含答案)

浙教版初中数学七年级下册专题50题含答案一、单选题1.下列运算正确的是 ( ) A .222()a b a b +=+ B .236a a a ⋅= C .22()()a b b a a b --=- D .236()a a =2.若22x x -+的值等于0,则x 的值是( )A .2B .2-C .2或2-D .03.如图,是世界人口扇形统计图,中国部分的圆心角的度数为( )A .20°B .36°C .72°D .18°4.下列的计算正确的是( ). A .236a a a ⋅= B .()444a b a b +=- C .()236a a =D .()3322a a =5.已知在同一平面内,直线a ,b ,c 互相平行,直线a 与b 之间的距离是3cm ,直线b 与c 之间的距离是5cm ,那么直线a 与c 的距离是( )cm .A .8B .2C .8或2D .无法确定6.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两,问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( )A .64485338x y x y +=⎧⎨+=⎩B .64385348x y x y +=⎧⎨+=⎩C .46483538x y x y +=⎧⎨+=⎩D .46383548x y x y +=⎧⎨+=⎩7.如图所示,直线a 、b 与直线c 相交,给出下列条件:①①1=①2,①①3=①6,①①5=①7,①①6=①8,①①4+①7=180°,①①3+①5=180°,①①2+①7=180°,其中能使a①b 的正确个数有( )A .4个B .5个C .6个D .7个8.若x m y n ÷(14x 3y)=4x 2,则( ) A .m=6,n=1B .m=5,n=1C .m=5,n=0D .m=6,n=09.如图,已知①1=①2,则有( )A .AD ①BCB .AB ①CDC .①ABC =①ADCD .AB ①CD10.下列因式分解正确的是( ) A .x 2﹣9=(x ﹣3)2 B .x 2﹣2x ﹣1=x (x ﹣2)﹣1 C .4y 2﹣8y +4=(2y ﹣2)2D .x (x ﹣2)﹣(2﹣x )=(x ﹣2)(x +1) 11.下列计算正确的是( ) A .235a a a +=B .34a a a ⋅=C .623a a a ÷=D .329()a a =12.如图,已知直线a b ∥,把三角板的直角顶点放在直线b 上.若140∠=︒,则2∠的度数为( )A .140°B .130°C .120°D .110°13.如图所示,由图形B 到图形A 的平移变换中,下列描述正确的是( )A.向下平移1个单位,向右平移5个单位B.向上平移1个单位,向左平移5个单位C.向下平移1个单位,向右平移4个单位D.向上平移1个单位,向左平移4个单位14.下列运算正确的是()A.(x2)3=x5B.(xy)3=xy3 C.4x3y÷x=4x2y(x≠0)D.x2+x2=x415.若分式42xx-+的值为0,则x的值是()A.2-B.4-C.4D.2 16.式子2014-a2+2ab-b2的最大值是()A.2012B.2013C.2014D.201517.若x+1x=3,求2421xx x++的值是()A.18B.110C.12D.1418.三个数中,最小的是()A.B.C.D.不能确定19.九年级某班在一次考试中对某道单选题的答题情况进行统计,结果如图所示:根据以上统计图,下列判断错误的是()A.选A的有8人B.选B的有4人C .选C 的有28人D .该班共有40人参加考试20.已知2x =a ,2y =b ,那么2x +y 等于( ) A .a +bB .2abC .abD .xy二、填空题21.若8,2a b ab +==-,则22a b +=___________.22.下列命题:①如果AC =BC ,那么点C 是线段AB 的中点;①不相等的两个角一定不是对顶角;①直角三角形的两个锐角互余;①同位角相等;①两点之间直线最短.其中真命题的个数有_____.(填写序号) 23.计算:a 3•a 2•a 4=____.24.已知①A 的两边与①B 的两边分别平行,且①A 比①B 的3倍少40°,那么①A=______°.25.分解因式:8x 3﹣2x =_______.26.如图,长方形ABCD 的周长为24,以它的四条边为边长向外作正方形,如果这四个正方形的面积和为160,则长方形ABCD 的面积为___.27.若()()267x x x mx n +-=++,则m =______,n =______.28.已知x ,y 2,则x 2+y 2+2xy =_____.29.如果 x 2+ (m -1) x +1 是完全平方式,则 m 的值为______________. 30.用科学记数法表示0.000053为_____.31.如图,A 处在B 处的北偏东45°方向,C 处在A 处的南偏东15°方向,则①BAC 等于________°.32.因式分解:x 2-y (2x -y )= _______.33.若20195a b +=,5a b -=,则22a b -=______. 34.若4112121x M x x x x -=++-+-()(),则整式M =______.35.分解因式:2244x y -=_______________; 36.已知2x =3,2y =5,则22x +y -1=_____.37.如图,Rt ①ABC 中,①ACB=90°,①A=50°,D 为AB 上一点,过点D 作DE ①AC ,若CD 平分①ADE ,则①BCD 的度数为_____°.38.我市今年中考数学学科开考时间是6月22日15时,数串“201506221500”中“0”出现的频数是_____.39.如果30a b -=,那么代数式2222ab b a b aaa 的值是__________.40.方程组24393251156711x y z x y z x y z ++=⎧⎪-+=⎨⎪-+=⎩①②③中,未知数_________的系数成倍数关系,解此方程组首先考虑消去未知数______较简单,得到关于_______________的二元一次方程组为____________.三、解答题41.为了了解某学校九年级学生每周平均课外阅读时间的情况,随机抽查了该学校九年级m名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题: ①求m 值.①求扇形统计图中阅读时间为5小时的扇形圆心角的度数.①补全条形统计图.(2)求出这组数据的平均数.42.为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)补全条形统计图,补全扇形统计图中乐器所占的百分比;(2)本次调查学生选修课程的“众数”是__________;(3)若该校有1200名学生,请估计选修绘画的学生大约有多少名?43.经过平移,①ABC的边AB移到了MN,作出平移后的三角形,你能给出几种作法?44.因式分解:42--.x x362445.计算:(1(2)xy2•(-2x3y2)3÷4x546.某市第三中学组织学生参加生命安全知识网络测试,小明对九年级2班全体学生的测试成绩进行统计,并绘制了如图不完整的频数分布表和扇形统计图.x<060x<60708090x <90100x根据图表中的信息解答下列问题: (1)求九年级2班学生的人数; (2)写出频数分布表中a ,b 的值;(3)已知该市共有80000名中学生参加这次安全知识测试,若规定80分以上(含80分)为优秀,估计该市本次测试成绩达到优秀的人数;(4)小明通过该市教育网站搜索发现,全市参加本次测试的中学生中,成绩达到优秀有56320人.请你用所学统计知识简要说明实际优秀人数与估计人数出现较大偏差的原因. 47.计算(1(2)化简:11()12--(3)解方程2x 2﹣1=7;(4)解方程组:320x y x y -=⎧⎨+=⎩ 48.计算: (1)2222532x y xx y x y +---(2) 324(2)()21m m m m -+-⋅-- 49.已知:x+y =6,xy =7,求(3x+y)2+(x+3y)2的值. 50.在数学课上,老师给出了这样一道题:计算2162164m m+--.以下是小明同学的计算过程. 解:原式162(4)(4)4m m m =--+- ①162(4)(4)(4)(4)(4)m m m m m +=--+-+ ①1628(4)(4)m m m -+=-+ ①(1)以上过程中,第_________步是进行分式的通分,通分的依据是_________; (2)以上计算过程是否正确?若正确,请你继续完成本题后续解题过程;若不正确,请指出是哪一步出现了错误,并写出本题完整、正确的解答过程.参考答案:1.D【分析】A 利用完全平方公式展开,即可作出判断;B 利用同底数幂的乘法计算,即可作出判断;C 利用多项式乘多项式展开,即可作出判断;D 利用幂的乘方计算,即可作出判断.【详解】A :222()2a b a b ab +=++,故选项A 错误;B :2253+3=a a a a ⋅=,故选项B 错误;C :2222()()=2b a a a b b a b a b ab b a --=----+,故选项C 错误;D :23236()a a a ⨯==,故选项D 正确; 故答案选择D.【点睛】本题主要考查了完全平方公式、同底数幂的乘法、多项式乘多项式以及幂的乘方运算,熟练掌握公式是解决本题的关键. 2.A【分析】根据分式值为零的条件可得:|x |-2=0且x +2≠0,再解即可. 【详解】解:若22x x -+的值等于0,则|x |-2=0且x +2≠0,所以x =2. 故选:A .【点睛】本题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少. 3.C【分析】用360°乘中国的百分比即可. 【详解】解:360°×20%=72° 故答案为C【点睛】本题主要考查了扇形统计图圆心角的求法,即360°乘以其所占的百分比. 4.C【详解】解:①a 2•a 3=a 5, ①选项A 不符合题意; ①()444a b a b +≠-,①选项B 不符合题意; ①(a 3)2=a 6, ①选项C 符合题意; ①(2a )3=8a 3, ①选项D 不符合题意. 故选:C .【点睛】此题主要考查了幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,要熟练掌握. 5.C【分析】画出图形(1)(2),根据图形进行计算即可. 【详解】解:有两种情况,如图:(1)直线a 与c 的距离是3+5=8cm ; (2)直线a 与c 的距离是5−3=2cm ; 故选:C .【点睛】本题主要考查对平行线之间的距离的理解和掌握,能求出所有情况是解此题的关键. 6.C【分析】设马每匹x 两,牛每头y 两,根据“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”列出方程组,即可求解. 【详解】解:设马每匹x 两,牛每头y 两,根据题意得:46483538x y x y +=⎧⎨+=⎩. 故选:C【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.7.B【分析】根据平行线的判定逐个判断即可.【详解】理由是:①①①1=①2,①a①b,(同位角相等,两直线平行)①①①3=①6,不能得到a①b,①①5=①7,①a①b,(内错角相等,两直线平行)①①6=①8, ①8=①7,①①6=①7,①a①b,(同位角相等,两直线平行)①①4+①7=180°,①a①b,(同旁内角互补,两直线平行)①①3+①5=180°, ①3=①2,①①2+①5=180°,①a①b,(同旁内角互补,两直线平行)①①2+①7=180°,不能得到a①b.故选B.【点睛】考查平行线的判定,掌握平行线的判定定理是解题的关键. 8.B【分析】根据整式除法法则进行计算即可.【详解】因为,x m y n÷(14x3y)=4x2所以,m-3=2,n-1=0所以,m=5,n=1故选B【点睛】熟练掌握整式除法法则,特别是同底数幂除法法则. 9.B【分析】根据平行线的判定解答即可.【详解】①①1=①2,①AB ①CD ,故选:B .【点睛】此题考查平行线的判定和性质问题,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力.10.D【分析】各式分解得到结果,即可作出判断.【详解】解:A 、原式=(x +3)(x ﹣3),错误;B 、原式不能分解,错误;C 、原式=4(y 2﹣2y +1)=4(y ﹣1)2,错误;D 、原式=x (x ﹣2)+(x ﹣2)=(x ﹣2)(x +1),正确.故选:D .【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.B【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、幂的乘方运算法则对各选项逐一判断即可.【详解】A. 23a a +,无法计算,不合题意;B. 34a a a ⋅=,正确;C.624a a a ÷=,故此选项错误;D.326()a a =,故此选项错误;故选:B【点睛】本题考查的是整式的运算,如何合并同类项,同底数幂的乘法、除法、幂的乘方基本法则.12.B【分析】根据互余计算出3904050∠=︒-︒=︒,再根据平行线的性质由a b ∥得到21803130∠=︒-∠=︒.【详解】解:①1+3=90∠∠︒,①3904050∠=︒-︒=︒,①a b ∥,①23180∠+∠=︒.①218050130︒︒=∠=-︒.故选:B .【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.13.D【分析】根据图形中两个三角形顶点的平移变换即可得.【详解】由图形中两个三角形顶点的平移变换可知:向上平移1个单位,向左平移4个单位,故选:D .【点睛】本题考查了图形的平移,熟练掌握平移的概念是解题关键.14.C【详解】试题分析:分别根据幂的乘方、积的乘方、单项式除以单项式、整式的加法分别计算即可判断.解:A 、(x 2)3=x 6,此选项错误;B 、(xy )3=x 3y 3,此选项错误;C 、4x 3y÷x=4x 2y (x≠0),此选项正确;D 、x 2+x 2=2x 2,此选项错误;故选C .点评:本题主要考查整式的运算与幂的运算,熟练掌握整式的运算与幂的运算法则是解题关键.15.C【分析】根据分式的值为0的条件是分子为0,分母不为0,求解即可.【详解】由题:40x -=,20x +≠,①4x =,符合题意,故选:C .【点睛】本题考查分式值为0的条件,理解并熟记基本结论是解题关键.16.C【详解】试题分析:2014-a 2+2ab-b 2=2014-(a 2-2ab+b 2)=2014-(a-b )2,①(a-b )2≥0,①原式的最大值为:2014.故选C .考点:1.因式分解-运用公式法;2.偶次方.17.A【分析】把x +1x =3两边平方后,得到221x x +=7,先计算出原代数式的倒数4221x x x ++=2211x x ++的值后,再计算原代数式的值. 【详解】解:①x +1x=3, ①(x +1x )2=9,即221x x+=9﹣2=7, ①4221x x x ++=2211x x ++=7+1=8, ①2421x x x ++=18. 故选A .【点睛】此题要熟悉完全平方公式,同时注意先求原式的倒数,可以约分,简便计算. 18.C【详解】试题分析:根据幂的运算分别化简三个数,再根据有理数的大小比较法则可判断大小.,,,,因此可得到最小. 考点:1零指数幂;2负整数指数幂;3有理数大小比较.19.D【分析】先求出九年级某班参加考试的人数,再分别求出选A 、选B 、选C 的人数即可.【详解】①九年级某班参加考试的人数是8+4+28+10=50人,①选A 的人有50×16%=8人,选B 的人有50×8%=4人,选C 的人有50×56%=28人,故选D .【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.C【详解】①2x =a ,2y =b ,①2x +y =2x ·2y =ab.故选C.21.68【分析】根据完全平方公式,将a +b =8两边同时平方并展开,将ab 的值代入,将a 2+b 2整体作为一个未知数求解.【详解】解:因为a +b =8,所以(a +b )2=82,展开得:a 2+2ab +b 2=64,将ab =-2代入并移项得:()22642268a b +=-⨯-=,故答案为:68.【点睛】本题考查了完全平方公式,解题关键是熟练掌握完全平方公式及其变形并加以灵活运用.22.①①【分析】利用线段中点的定义、对顶角的定义、直角三角形的性质、平行线的性质及线段的性质分别判断后即可确定正确的选项.【详解】解:①如果AC =BC ,那么点C 是线段AB 的中点,错误,是假命题,不符合题意;①不相等的两个角一定不是对顶角,正确,是真命题,符合题意;①直角三角形的两个锐角互余,正确,是真命题,符合题意;①两直线平行,同位角相等,故原命题错误,是假命题,不符合题意;①两点之间线段最短,故原命题错误,是假命题,不符合题意,真命题有①①.故答案为:①①.【点睛】考查了命题与定理的知识,解题的关键是了解线段中点的定义、对顶角的定义、直角三角形的性质、平行线的性质及线段的性质等知识,难度不大.23.a 9【分析】根据同底数幂乘法运算法则计算即可.【详解】根据:“同底数幂相乘,底数不变,指数相加”得:3243249··a a a a a ++==故答案为:9a .【点睛】本题考查了同底数幂乘法运算,准确记忆运算法则是解决问题的关键. 24.20°或125°【分析】设①B 的度数为x ,则①A 的度数为3x-40°,根据两边分别平行的两个角相等或互补得到x=3x-40°或x+3x-40°=180°,再分别解方程,然后计算3x-40°的值即可.【详解】解:设①B 的度数为x ,则①A 的度数为3x-40°,当①A=①B 时,即x=3x-40°,解得x=20°,①①A=20°;当①A+①B=180°时,即x+3x-40°=180°,解得x=55°,①①A=125°;即①A 的度数为20°或125°.故答案为:20°或125°.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等,掌握平行线的性质是解题的关键.25.2x (2x +1)(2x ﹣1)【分析】首先提取公因式2x ,再利用平方差公式分解因式得出即可.【详解】解:8x 3﹣2x =2x (4x 2﹣1)=2x (2x +1)(2x ﹣1).故答案为:2x (2x +1)(2x ﹣1).【点睛】本题考查了综合提公因式法与公式法分解因式,熟练掌握相关知识,并且能彻底分解是解题的关键26.32【分析】根据题意易得12AD AB +=,2280AD AB +=,然后根据完全平方公式可进行求解.【详解】解:由长方形周长及正方形面积公式可得:()224AD AB +=,2222160AD AB +=, ①12AD AB +=,2280AD AB +=,①()2222144AD AB AD AD AB AB +=+⋅+=,①264AD AB ⋅=,即32AD AB ⋅=,①长方形ABCD 的面积为32;故答案为32.【点睛】本题主要考查完全平方公式的应用,熟练掌握长方形面积及周长、正方形的面积公式是解题的关键.27. 1- 42-【分析】根据多项式乘以多项式法则计算出等式左边,再和等式右边对比,得出m 与n 的值即可.【详解】解:①()()226742x x x x x mx n +-=--=++, ①1m =-,42n =-.故答案为:1-;42-【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.多项式乘以多项式法则:先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.28.20【分析】原式利用完全平方公式化简,把x 与y 的值代入计算即可求出值;【详解】①2x = ,2y = ,① 22x y +==,则原式=()220x y += ,故答案为:20.【点睛】本题考查了完全平方公式,熟练掌握完全平方公式是解题的关键;29.3或-1【分析】利用完全平方公式的结构特征判断即可确定出m 的值.【详解】解:①x 2+(m-1)x+1是完全平方式,①(12m-)2=1,即(m-1)2=4,开方得:m-1=2或m-1=-2,解得:m=3或m=-1.故答案为3或-1.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.30.55.310-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10na-⨯.与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.在本题中a应为5.3,10的指数为5-.【详解】用科学记数法表示50.000053 5.310-=⨯.故答案为55.310-⨯.【点睛】本题考查用科学记数法表示绝对值较小的数,一般形式为10na-⨯,其中110a≤<,n为由原数左边起第一个不为零的数字前面的0的个数.31.60【分析】如图,根据方向角的定义,即可求得①DBA,①EAC的度数,即可求解.【详解】解:如图,①AE,DB是正南正北方向,①BD①AE,①①DBA=45°,①①BAE=①DBA=45°,①①EAC=15°,①①BAC=①BAE+①EAC=45°+15°=60°,故答案是:60.【点睛】本题主要考查了方向角的定义,正确理解定义是解题的关键.32.2()x y -【分析】原式先展开,再利用完全平方公式分解即可.【详解】解:原式= ()2222x xy y x y +=--故答案为:2()x y -【点睛】此题考查了用完全平方公式进行因式分解,熟练掌握因式分解的方法是解本题的关键.33.2019【分析】直接利用平方差公式分解因式后再整体代入进行计算即可.【详解】22a b -=(a +b )(a -b )=20195=20195⨯, 故答案为:2019.【点睛】此题考查平方差公式,解题关键在于掌握运算公式.34.3【分析】已知等式右边通分并利用同分母分式的加法法则计算,再根据分式相等确定出M 即可. 【详解】解:已知等式整理得:41122121x M x x x x x x --++=+-+-()()()()(), 411212x M x x M x M ∴-=-++=++-()(),14M ∴+=,解得:3M =.故答案为:3.【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.35.4()()x y x y +-【分析】先提公因数4,再利用平方差公式分解因式即可解答.【详解】解:2244x y -=224()x y -=4()()x y x y +-,故答案为:4()()x y x y +-.【点睛】本题考查因式分解、平方差公式,熟练掌握因式分解的方法和步骤是解答的关键.36.452【分析】根据同底数幂的乘法,底数不变,指数相加;同底数幂的除法,底数不变,指数相减,可得答案.【详解】解:22x +y -1=22x ×2y ÷2=(2x )2×2y ÷2=9×5÷2 =452故答案为:452. 【点睛】本题考查了同底数幂的乘法与除法的逆用,熟记法则并根据法则计算是解题关键.37.25°【详解】①CD 平分①ADE ,①①ADC=①EDC, ①DE①AC ,①①EDC=①ACD, ①①ADC=①ACD, ①①A=50°, ①A+①ADC+①ACD=180°, ①ACD=18050652 , ①①ACB=90°, ①①BCD=90°-65°=25°.38.4.【详解】试题分析:数串“201506221500”中“0”出现的频数是4.故答案为4. 考点:频数与频率.39.12. 【分析】根据分式的运算法则即可求出答案.【详解】解:当30a b -=时,即3a b = ∴2222ab b a b a a a22222·a ab b a a a b -+=- 2()()()a b a a a b a b -=+- a b a b -=+ 33b b b b12=故答案是:12.【点睛】本题考查分式的化简求值,熟练运用分式的运算法则是解题的关键.40.y y x、z81331 4820 x zx z+=⎧⎨+=⎩【分析】利用解三元一次方程组的基本思想-消元的思想,判断即可得到结果.【详解】解:解三元一次方程组的基本想法是:先消去一个未知数,将解三元一次方程组转化为二元一次方程组,再转化为解一元一次方程,方程组24393251156711x y zx y zx y z++=⎧⎪-+=⎨⎪-+=⎩①②③, 未知数y的系数成倍数关系,解此方程组首先考虑消去未知数y较简单,得到关于x、z的二元一次方程组为81331 4820 x zx z+=⎧⎨+=⎩.故答案为y,y,x、z,81331 4820 x zx z+=⎧⎨+=⎩.【点睛】此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.41.(1)①m=60;①30°;①补全条形统计图见解析;(2)平均数为2.75小时.【详解】试题分析:(1)①根据图一、图二的数据,即可求解.①结合①中的m值,即可求解①结合①中的m值,即可求出每周平均课外阅读时间为3小时的人数为60101510520----=人,补全条形统计图即可.(2)平均数为一组数据中所有数据之和再除以这组数据的个数,那么根据定义,即可求得平均数.试题解析:(1)①①课外阅读时间为2小时的所在扇形的圆心角的度数为90°,①其所占的百分比为901 3604=,①课外阅读时间为2小时的有15人,①m=15÷14=60;①依题意得:×360°=30°;①第三小组的频数为:60﹣10﹣15﹣10﹣5=20,补全条形统计图为:(2)平均数为:1011522031045560⨯+⨯+⨯+⨯+⨯=2.75小时.42.(1)详见解析;(2)舞蹈;(3)240【分析】(1)由舞蹈人数及其所占百分比求得总人数,总人数乘以书法对应百分比可求得其人数,依据各科目人数之和等于总人数求得绘画人数,再用乐器人数除以总人数可得其对应百分比.(2)根据众数的定义求解即可.(3)用总人数乘以样本中绘画对应的比例即可求解.【详解】解:(1)被调查的总人数为:20÷40%=50(人),①书法的人数为:50×10%=5人,绘画的人数为:50-15-20-5=10(人),则乐器所在的百分比为:15÷50×100%=30%,补全统计图如图所示:(2)本次调查学生选修课程的“众数”是舞蹈;故答案为:舞蹈.(3)选修绘画的人数占总人数的百分比为:1050100%=20%÷⨯,所以估计选修绘画的学生大约有:120020%240⨯=(人);故答案为:240人.【点睛】本题考查条形统计图、扇形统计图、用样本估算总体,解答本题的关键是明确题意,利用数形结合思想解答.43.见解析【详解】试题分析:可根据对应线段分别平行,画出其余两条线段得到另一交点;也可根据一组对应线段平行且相等得到另一顶点,连接即可.给出以下两种作法:(1)依据平移后的图形与原来的图形的对应线段平行,那么应有MD①AC,ND①BC,MD与ND的交点即为点D.(2)还可根据平移后对应点所连接的线段平行且相等,那么连接AM,作CD①AM,且CD=AM,连接DM、DN即可.考点:本题主要考查平移的性质点评:解答本题的关键是熟练掌握平移的性质:平移前后对应线段平行且相等,对应点连成的线段平行且相等.44.2+-+3(2)(2)(2)x x x【分析】先提公因式,然后利用十字相乘法分解因式,然后利用平方差公式分解因式即可求解.【详解】解:原式42=--3(28)x x22=-+3(4)(2)x x2=+-+.x x x3(2)(2)(2)【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.45.(1)﹣7;(2)﹣2x5y8【分析】(1)根据立方根和算术平方根计算;(2)先算积的乘方,再根据整式乘除法计算;【详解】解:(1)原式=﹣2﹣5=﹣7(2)原式=xy2•(﹣8x9y6)÷4x5.=-8x10y8÷4x5=﹣2x5y8【点睛】本题考查立方根和算术平方根,整式乘除法.46.(1)九年级2班学生的人数为50人;(2)a=12,b=14;(3)41600人;(4)见解析.【分析】(1)用C组的频数除以扇形统计图中C组人数所占百分比即得结果;(2)用总人数乘以扇形统计图中D组人数所占百分比即可求出a,用总人数减去其它各组的人数即可求出b;(3)用D、E两组的频率之和乘以80000即得结果;(4)样本人数太小,所抽取的样本不具有代表性,据此解答即可.【详解】解:(1)17÷34%=50(人),答:九年级2班学生的人数为50人.(2)a=24%×50=12,b=50-2-5-17-12=14.(3)14÷50=28%,(28%+24%)×80000=41600(人),答:估计该市本次测试成绩达到优秀的人数为41600人;(4)全市参加本次测试的中学生中,成绩达到优秀有56320人,而样本中估计该市本次测试成绩达到优秀的人数为41600人,原因是:小明是以第三中学九年级2班全体学生的测试成绩作为样本,样本人数太小,不能代表全市中学的总体情况,所以会出现较大偏差.【点睛】本题考查了频数分布表、扇形统计图、抽样调查和利用样本估计总体等知识,属于常考题型,正确理解题意、熟练掌握上述知识是解题的关键.47.(1)﹣(2)(3)x1=2,x2=﹣2;(4)12 xy=⎧⎨=-⎩【分析】(1)先将二次根式化简,再合并同类二次根式;(2)先根据负整数指数幂和绝对值的定义进行化简,最后合并同类项即可;(3)利用直接开平方法解方程;(4)利用加减法解方程组即可.【详解】解:(16=﹣(2)化简:原式=21)=2=(3)解方程2x 2﹣1=7,2x 2=8,x 2=4,x =±2,①x 1=2,x 2=﹣2;(4)320x y x y -=⎧⎨+=⎩①②, ①+①得:3x =3,x =1,把x =1代入①得:1﹣y =3,y =﹣2,①方程组的解为:12x y =⎧⎨=-⎩. 【点睛】本题考查了二次根式的化简、绝对值和负整数指数幂的意义及二元一次方程组的解,灵活运用法则和性质,选择恰当的解题途径,往往能事半功倍.48.(1)3x y-;(2)m+1. 【分析】(1)先根据同分母分式加减计算,再分子分母分解因式,约分化为最简分式即可;(2)先计算括号内的加减,再计算乘法即可.【详解】(1)原式=22532x y x x y +--=2233x y x y +-=3()()()x y x y x y ++-=3x y -; (2)原式=24324()221m m m m m --+⋅---=(1)(1)221m m m m m +--⋅--=m+1. 【点睛】本题考查了分式的化简,熟悉通分、约分的法则是解题的关键.49.304.【分析】先利用完全平方公式展开合并得到原式=10(x 2+y 2)+12xy ,再进行配方得到原式=10(x+y )2-8xy ,然后利用整体代入的方法计算即可.【详解】原式=9x 2+6xy+y 2+x 2+6xy+9y 2=10x 2+12xy+10y 2=10(x 2+y 2)+12xy=10(x+y)2﹣8xy ,当x+y =6,xy =7,原式=10×62﹣8×7=304.【点睛】本题考查了完全平方公式:(a±b )2=a 2±2ab+b 2.50.(1)①,分式的基本性质 (2)24-+m【分析】(1)由分式加减法的计算方法进行计算即可,即先通分,再按照同分母分式加减法的计算方法进行计算即可;(2)先通分,再按照同分母分式加减法的计算方法进行计算即可.【详解】(1)解:根据计算步骤可知,第①步是分式的通分,通分的依据是分式的基本性质,故答案为①①,分式的基本性质;(2)解:第①步错误 原式1628(4)(4)m m m --=-+ 82(4)(4)m m m -=-+ 24m =-+. 【点睛】本题考查分式的加减法,掌握分式加减法的计算方法进行计算即可.。

浙教七年级下数学试卷

浙教七年级下数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √-9C. πD. √22. 已知x²=4,那么x的值是()A. 2B. -2C. ±2D. 03. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 14. 下列方程中,一元一次方程是()A. 2x+3=5B. 3x²-4=0C. x³-2x=0D. x+5=2x-35. 下列不等式中,正确的是()A. 2x > 4B. 3x ≤ 6C. 5x < 10D. 4x ≥ 86. 在直角坐标系中,点P(-2,3)关于x轴的对称点是()A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,-3)7. 已知等腰三角形底边长为6,腰长为8,那么这个三角形的周长是()A. 18B. 20C. 22D. 248. 在平面直角坐标系中,若点A(2,3)和B(-1,-2)关于原点对称,则点C (x,y)关于原点对称的坐标是()A. (2,3)B. (-2,-3)C. (-1,2)D. (1,-2)9. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x²D. y = √x10. 在一次函数y=kx+b中,若k>0,则函数图象()A. 通过第二、三、四象限B. 通过第一、二、三象限C. 通过第一、二、四象限D. 通过第一、三、四象限二、填空题(每题3分,共30分)11. 若a=-3,b=2,那么a²+b²的值是______。

12. 已知方程2x-3=7,那么x的值是______。

13. 在直角坐标系中,点M(4,-2)到原点O的距离是______。

14. 下列各数中,负数是______。

15. 下列各数中,无理数是______。

16. 若一个等边三角形的边长为6,那么它的面积是______。

浙教版七年级(下)期中数学试卷(范围:第1-3章)(5)

浙教版七年级(下)期中数学试卷(范围:第1-3章)(5)

浙教版七年级(下)期中数学试卷一、选择题(共10题,每题3分)1.(3分)下列运算正确的是()A.x2x3=x6B.x3+x2=x5C.(3x3)2=9x5D.(2x)2=4x22.(3分)已知图①~④,在上述四个图中,∠1与∠2是同位角的有()A.①②③④B.①②③C.①③D.①3.(3分)二元一次方程2x+3y=15的正整数解的个数是()A.1个B.2个C.3个D.4个4.(3分)如果x2+2mx+9是一个完全平方式,则m的值是()A.3 B.±3 C.6 D.±65.(3分)如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.16.(3分)如图,点E在CB的延长线上,则下列条件中.不能判定AD∥BC的是()A.∠2=∠3 B.∠1+∠2+∠6=180°C.∠1=∠4 D.∠5=∠1+∠27.(3分)设“●、▲、■”分别表示三种不同的物体.如图所示,前两架天平保持平衡,如果要使第三架天平也保持平衡,那么“?”处应放“■”的个数为()A.5 B.4 C.3 D.28.(3分)如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,将△ABC沿直线BC向右平移2个单位得到△DEF,连接AD,则下列结论:①AC∥DF,AC=DF②ED⊥DF③四边形ABFD的周长是16④S四边形ABEO=S四边形CFDO其中结论正确的个数有()A.1个B.2个C.3个D.4个9.(3分)若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A.﹣B.C.D.﹣10.(3分)代数式(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)+1的末尾数字是()A.2 B.4 C.6 D.8二.填空题(共6题,每题4分)11.(4分)计算:(﹣0.125)2018×82019=.用科学记数法表示0.000000159=.12.(4分)2x﹣3y=5,用含x的代数式表示y=.13.(4分)已知m+n=mn,则(m﹣2)(n﹣2)=.14.(4分)如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A、B两岛的视角∠ACB等于度.15.(4分)如图将一条两边都互相平行的纸带进行折叠,设∠1为α度,则∠2=.(请用含有α的代数式表示)16.(4分)若关于m,n的二元一次方程组的解是,那么关于x,y的二元一次方程组的解是.三、解答题(共7题,6+8+8+10+10+12+12)17.计算(1)(2)18.解方程组(1)(2)19.化简求值:代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2,其中4x=3y.20.画图题:(1)在如图所示的方格纸中,经过线段AB外一点C,不用量角器与三角尺,仅用直尺,画线段AB的垂线CE和平行线CH.(2)判断CE、CH的位置关系是.(3)连接AC和BC,若小正方形的边长为a,求三角形ABC的面积.(用含a的代数式表示).21.如图,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)试说明:AB∥CD;(2)若∠2=25°,求∠BFC的度数.22.将若干个同样大小的小长方形纸片拼成如图形状的大长方形(小长方形纸片长为a,宽为b),请你仔细观察图形,解答下列问题:(1)a与b的关系可表示为:;(2)图中大长方形的面积为,三块阴影部分的面积之和为,请求出三块阴影部分的面积之和是大长方形面积的几分之几?(3)请你仔细观察图中的一块阴影部分(黑框内的),根据它面积的不同表示方法写出另一个含字母a、b的等式:.利用这个等式计算:已知2x﹣3y=5,xy=1,求2x+3y的值.23.我市某企业承接了上海世博会的礼品盒制作业务,他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图1所示,(单位:cm)(1)列出方程(组),求出图甲中a与b的值.(2)若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图2的竖式与横式两种无盖礼品盒.①两种裁法共产生A型板材张,B型板材张;②做成的竖式和横式两种无盖礼品盒总数最多是多少个?此时横式无盖礼品盒可以做多少个?参考答案与试题解析一、选择题(共10题,每题3分)1.(3分)下列运算正确的是()A.x2x3=x6B.x3+x2=x5C.(3x3)2=9x5D.(2x)2=4x2【分析】根据同底数幂的运算法则进行计算即可.【解答】解:A、应为x2x3=x5,故本选项错误;B、x3与x2不是同类项,不能合并;C、应为(3x3)2=9x6,故本选项错误;D、应为(2x)2=4x2,正确.故选:D.【点评】本题考查同底数幂的运算:乘法法则,底数不变,指数相加;除法法则,底数不变,指数相减;乘方,底数不变,指数相乘.2.(3分)已知图①~④,在上述四个图中,∠1与∠2是同位角的有()A.①②③④B.①②③C.①③D.①【分析】根据同位角的定义;两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行判断即可.【解答】解:图①③中,∠1与∠2是同位角;故选:C.【点评】此题主要考查了同位角,关键是掌握同位角的边构成“F“形.3.(3分)二元一次方程2x+3y=15的正整数解的个数是()A.1个B.2个C.3个D.4个【分析】将x看做已知数表示出y,分别令x为正整数,确定出y为正整数,即为方程的正整数解.【解答】解:方程2x+3y=15,变形得:y=,当x=3时,y=3,x=6时,y=1.故选:B.【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数,求出y.4.(3分)如果x2+2mx+9是一个完全平方式,则m的值是()A.3 B.±3 C.6 D.±6【分析】根据完全平方公式是和的平方加减积的2倍,可得m的值.【解答】解:∵x2+2mx+9是一个完全平方式,∴2m=±6,∴m=±3,故选:B.【点评】本题考查了完全平方公式,完全平方公式是两数的平方和加减积的2倍,注意符合条件的m 值有两个.5.(3分)如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.1【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把m看作常数合并关于x的同类项,令x的系数为0,得出关于m的方程,求出m的值.【解答】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵(x+m)与(x+3)的乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选:A.【点评】本题主要考查了多项式乘多项式的运算,根据乘积中不含哪一项,则哪一项的系数等于0列式是解题的关键.6.(3分)如图,点E在CB的延长线上,则下列条件中.不能判定AD∥BC的是()A.∠2=∠3 B.∠1+∠2+∠6=180°C.∠1=∠4 D.∠5=∠1+∠2【分析】利用平行线的判定方法判断即可得到结果.【解答】解:∵∠2=∠3,∴AB∥CD,选项A符合题意;∵∠1+∠2+∠6=180°,即∠DAB+∠ABC=180°,∴AD∥BC,选项B不合题意;∵∠1=∠4,∴AD∥BC,选项C不合题意;∵∠5=∠1+∠2,即∠DAB=∠ABE,∴AD∥BC,选项D不合题意,故选:A.【点评】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.7.(3分)设“●、▲、■”分别表示三种不同的物体.如图所示,前两架天平保持平衡,如果要使第三架天平也保持平衡,那么“?”处应放“■”的个数为()A.5 B.4 C.3 D.2【分析】根据第一个天平可得2●=▲+■,根据第二个天平可得●+■=▲,可得出答案.【解答】解:根据图示可得,2●=▲+■①,●+■=▲②,由①②可得,●=2■,∴●+▲=4■故选:A.【点评】本题考查了等式的性质,根据图示得出●、▲、■的数量关系是解题的关键.8.(3分)如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,将△ABC沿直线BC向右平移2个单位得到△DEF,连接AD,则下列结论:①AC∥DF,AC=DF②ED⊥DF③四边形ABFD的周长是16④S四边形ABEO=S四边形CFDO其中结论正确的个数有()A.1个B.2个C.3个D.4个【分析】根据平移的性质逐一判定即可.【解答】解:∵将△ABC沿直线BC向右平移2个单位得到△DEF,∴AC∥DF,AC=DF=4,BC=EF=8,∠BAC=∠EDF=90°,∴ED⊥DF.四边形ABFD的周长=AB+BC+CF+DF+AD=3+5+2+4+2=16.∵S△ABC=S△DEF,∴S△ABC﹣S△OEC=S△DEF﹣S△OEC,∴S四边形ABEO=S四边形CFDO,即结论正确的有4个.故选:D.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.也考查了平移的距离以及图形的面积.9.(3分)若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A.﹣B.C.D.﹣【分析】将k看做已知数求出x与y,代入2x+3y=6中计算即可得到k的值.【解答】解:,①+②得:2x=14k,即x=7k,将x=7k代入①得:7k+y=5k,即y=﹣2k,将x=7k,y=﹣2k代入2x+3y=6得:14k﹣6k=6,解得:k=.故选:B.【点评】此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值.10.(3分)代数式(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)+1的末尾数字是()A.2 B.4 C.6 D.8【分析】先原式的前面添加(2﹣1),构造平方差公式得到原式=264,然后通过计算得到2的正整数次幂的末尾数字的循环规律,从而得到264的末尾数字.【解答】解:(2+1)(22+1)(24+1)(28+1)(216+1)(232+5)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)+1=(22﹣1)(22+1)(24+1)(28+1)(216+1)(232+1)+1=(24﹣1)(24+1)(28+1)(216+1)(232+1)+1=(28﹣1)(28+1)(216+1)(232+2)+1=(216﹣5)(216+1)(232+1)+1=(232﹣1)(232+1)+1=264﹣1+1=264,而21=2,22=4,23=8,24=16,25=32,而64=4×16,∴264的末尾数字是2.故选:C.【点评】本题考查了平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.二.填空题(共6题,每题4分)11.(4分)计算:(﹣0.125)2018×82019=8.用科学记数法表示0.000000159= 1.59×10﹣7.【分析】用积的乘方法则计算即可;绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:(﹣0.125)2018×82019=(4.125)2018×82018×8=(3.125×8)2018×8=3×8=8;用科学记数法表示0.000000159=1.59×10﹣7.故答案为:8;1.59×10﹣7【点评】本题主要考查了积的乘方法则以及科学记数法的表示较小的数.用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(4分)2x﹣3y=5,用含x的代数式表示y=.【分析】解关于y的一元一次方程,(x为常数)即可.首先移项、合并同类项,最后系数化为1即可.【解答】解:2x﹣3y=2,移项得,3y=2x﹣3,系数化为1得,y=,故答案为:.【点评】本题考查了一元一次方程的解法,基本运算技能:移项、合并同类项、系数化为1.13.(4分)已知m+n=mn,则(m﹣2)(n﹣2)=4.【分析】直接利用已知结合多项式乘法将原式变形进而得出答案.【解答】解:∵m+n=mn,∴2(m+n)=mn,∴(m﹣2)(n﹣2)=mn﹣2(m+n)+4=mn﹣2×0.5mn+4=mn﹣mn+4=4.故答案为:4.【点评】此题主要考查了多项式乘以多项式,正确掌握相关运算法则是解题关键.14.(4分)如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A、B两岛的视角∠ACB等于90度.【分析】根据方位角的概念和平行线的性质,结合三角形的内角和定理求解.【解答】解:∵C岛在A岛的北偏东50°方向,∴∠DAC=50°,∵C岛在B岛的北偏西40°方向,∴∠CBE=40°,∵DA∥EB,∴∠DAB+∠EBA=180°,∴∠CAB+∠CBA=90°,∴∠ACB=180°﹣(∠CAB+∠CBA)=90°.故答案为:90.【点评】解答此类题需要从运动的角度,结合平行线的性质和三角形的内角和定理求解.15.(4分)如图将一条两边都互相平行的纸带进行折叠,设∠1为α度,则∠2=90°﹣α.(请用含有α的代数式表示)【分析】根据平行线的性质以及折叠的性质,即可得到∠2=∠4,再根据三角形内角和定理以及对顶角相等进行计算即可.【解答】解:由折叠可得,∠3=∠4,由平行线的性质,可得∠6=∠3,∴∠2=∠3,又∵∠5=∠1=α,∴根据三角形内角和定理,可得∠6=(180°﹣α)÷2=90°﹣α,故答案为:90°﹣α.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,内错角相等.16.(4分)若关于m,n的二元一次方程组的解是,那么关于x,y的二元一次方程组的解是.【分析】根据方程组的解是可求出a与b的值,然后将a、b的值代入二元一次方程组即可求出x与y的值【解答】解:方法一:∵的解是,∴,解得:把代入,∴化简可得:解得:,故答案为:方法二:∵二元一次方程组的解是,∴关于x,y的二元一次方程组中,解得,故答案为:【点评】本题考查二元一次方程组的解,解题的关键是熟练运用方程组的解法,本题属于基础题型.三、解答题(共7题,6+8+8+10+10+12+12)17.计算(1)(2)【分析】(1)先根据负整数指数幂,零指数幂,有理数的乘方进行计算,再求出即可;(2)根据单项式乘以多项式法则求出即可.【解答】解:(1)原式=﹣2﹣1+9=6;(2)﹣3xy(8x2y2﹣xy3+7)=﹣6x3y3+x4y4﹣3xy.【点评】本题考查了单项式乘以多项式,负整数指数幂,零指数幂,有理数的乘方,幂的乘方等知识点,能灵活运用法则进行计算和化简是解此题的关键.18.解方程组(1)(2)【分析】(1)根据加减消元法解方程组即可求解;(2)先化简,再根据加减消元法解方程组即可求解【解答】解:(1),①×4+②得7x=14,解得x=2;把x=3代入①得4﹣y=3,解得y=3.故方程组的解为;(2)化简整理得,①+②得6x=36,解得x=6;把x=3代入②得24+3y=48,解得y=8.故方程组的解为.【点评】本题考查了用加减法解二元一次方程组的一般步骤,解决本题的关键是掌握解方程组的一般步骤.19.化简求值:代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2,其中4x=3y.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2,=x2﹣4xy+4y2﹣x2+y2﹣2y2=3y2﹣4xy,=y(3y﹣4x),当4x=3y时,原式=y(3y﹣3y)=0.【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.20.画图题:(1)在如图所示的方格纸中,经过线段AB外一点C,不用量角器与三角尺,仅用直尺,画线段AB的垂线CE和平行线CH.(2)判断CE、CH的位置关系是⊥.(3)连接AC和BC,若小正方形的边长为a,求三角形ABC的面积.(用含a的代数式表示).【分析】(1)过点C作4×4的矩形的对角线所在的直线,可得AB的垂线和平行线;(2)易CE与CH的位置关系是:垂直;(3)利用三角形的面积求解即可.【解答】解:(1)如图,直线CE和直线CH即为所求;(2)CE、CH的位置关系是CE⊥CH,故答案为:CE⊥CH;(3)如图,连接AC和BC,∵小方格的边长为a,则三角形ABC的面积是16a2﹣×(3a)2﹣3××a×2a=a2.故答案为:⊥.a2【点评】本题主要考查了作图﹣应用与设计作图,平行线的判定和性质,三角形的面积,解题的关键是利用方格正确的作出图形.21.如图,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)试说明:AB∥CD;(2)若∠2=25°,求∠BFC的度数.【分析】(1)根据角平分线定义求出∠ABD+∠BDC=180°,根据平行线的判定推出即可;(2)根据角平分线求出∠EDF,根据三角形外角性质求出∠FED,根据三角形内角和定理求出∠3,根据邻补角定义即可求∠BFC的度数.【解答】解:(1)∵∠ABD和∠BDC的平分线交于E,∴∠ABD=2∠1,∠BDC=3∠2,∵∠1+∠8=90°,∴∠ABD+∠BDC=180°,∴AB∥CD;(2)∵DE平分∠BDC,∴∠EDF=∠2=25°,∵∠1+∠2=90°,∴∠FED=90°,∴∠3=180°﹣90°﹣25°=65°.∴∠BFC=180°﹣∠3=115°.【点评】本题考查了平行线的判定,三角形内角和定理,角平分线定义,三角形的外角性质,邻补角定义,能综合运用定理进行推理是解此题的关键,难度适中.22.将若干个同样大小的小长方形纸片拼成如图形状的大长方形(小长方形纸片长为a,宽为b),请你仔细观察图形,解答下列问题:(1)a与b的关系可表示为:a=3b;(2)图中大长方形的面积为72b2,三块阴影部分的面积之和为12b2,请求出三块阴影部分的面积之和是大长方形面积的几分之几?(3)请你仔细观察图中的一块阴影部分(黑框内的),根据它面积的不同表示方法写出另一个含字母a、b的等式:(a﹣b)2=a2﹣2ab+b2.利用这个等式计算:已知2x﹣3y=5,xy=1,求2x+3y 的值.【分析】(1)根据小长方形的4个长等于小长方形的3个长和3个宽,列出算式,得出a,b的关系;(2)根据图形分别表示出阴影部分的面积和大长方形面积,再把(1)的结果代入化简即可;(3)根据图形和长方形、正方形的面积公式列出等式即可.【解答】解:(1)根据图形可得:4a=3a+5b,解得:a=3b;故答案为:a=3b;(2)大长方形的面积是5a(a+3b)=4a×2b=12b×6b=72b2,阴影部分的面积是7(a﹣b)2=3(3b﹣b)2=12b2,则阴影部分的面积是大长方形面积的=;故答案为:72b2,12b2;(3)根据图形得:(a﹣b)2=a2﹣2ab+b6.∵2x﹣3y=5,xy=1,∴(2x+3y)2=(2x﹣3y)2+4×2x×3y=52+24xy=25+24=49,∴2x+3y=±7.答:2x+3y的值为±7.【点评】本题主要考查了整式的加减运算,在解题时要根据题意结合图形得出答案是解题的关键.23.我市某企业承接了上海世博会的礼品盒制作业务,他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图1所示,(单位:cm)(1)列出方程(组),求出图甲中a与b的值.(2)若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图2的竖式与横式两种无盖礼品盒.①两种裁法共产生A型板材64张,B型板材38张;②做成的竖式和横式两种无盖礼品盒总数最多是多少个?此时横式无盖礼品盒可以做多少个?【分析】(1)根据图示得到关于a,b的二元一次方程组,解之即可,(2)计算出30张标准板材用裁法一裁剪和4张标准板材用裁法二裁剪,生产A型和B型板材的张数,计算求和即可,设做成竖式无盖礼品盒x个,做成横式无盖礼品盒y个由已知和图示得:横式无盖礼品盒的y个,用A型板材3y张,B型板材2y张,竖式无盖礼品盒的x个,用A型板材4x张,B型板材x张,则做两款盒子共需要A型板材4x+3y张,B型x+2y张,两个不等式相加整理后即可得到竖式和横式两种无盖礼品盒总数,相减整理后即可得到横式无盖礼品盒个数.【解答】解:(1)根据题意得:,解得:,即图甲中a的值为60,b的值为40,答:图甲中a的值为60,b的值为40,(2)①30张标准板材用裁法一裁剪,生产A型板材:30×6=60(张),4张标准板材用裁法二裁剪,生产A型板材:4张,即两种裁法共产生A型板材:60+7=64(张),B型板材:30+8=38(张),故答案为:64,38,②设做成竖式无盖礼品盒x个,做成横式无盖礼品盒y个由已知和图示得:横式无盖礼品盒的y个,用A型板材3y张,竖式无盖礼品盒的x个,用A型板材2x张,则做两款盒子共需要A型板材4x+3y张,B型x+8y张, 则4x+3y≤64,x+4y≤38,两式相加得5x+5y≤102,则x+y≤20.2,所以最多做20个,两式相减得:3x+y≤26,则2x≤3.6,则y≤18,则横式无盖礼品盒可以做16,17或18个.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教新版七年级下数学测试题中等难度
七年级下数学测试题
一.选择(每题3分,30分) 1.下列运算正确的是( )
A .(a-3)2=a 2-9
B .a 2•a 4=a 8
C .
3
9±=
D .
2
83
-=-
2.(2014春•文登市校级期中)下列各式,属于二元一次方程的个数有( )
①xy+2x-y=7;②4x+1=x-y ;③51=+y x
;④x=y ;⑤x 2-y 2
=2;⑥6x-2y ;⑦x+y+z=1;⑧y (y-1)=2y 2-y 2
+x . A .1 B .2 C .3 D .4
3.将下列多项式因式分解,结果中不含有因式a+1的是( ) A .a 2-1 B .a 2+a C .a 2+a-2 D .(a+2)2-2(a+2)+1
4.n 是整数,式子()[]()1118
12
---n n
计算的结果( ) A .是0 B .总是奇数 C .总是偶数
D .可能是奇数也可能是偶数
5.如图,直线a ∥b ,∠1=85°,∠2=35°,则∠3=( )
A .85°
B .60°
C .50°
D .35°
6.下列分式中,最简分式是( ) A .
1
122+-x x B .
1
12-+x x C .
xy
x y xy x -+-22
22 D .
12
2362+-x x
7.用换元法解方程312
41222=---x x
x x 时,设
y x
x =-12
2,则原方程可化
为( )
A .031=-+y y
B .034=--y y
C .031=--y y
D .034
=+-y
y 8.某学校将为初一学生开设ABCDEF 共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)
根据图表提供的信息,下列结论错误的是( ) A .这次被调查的学生人数为400人
B .扇形统计图中E 部分扇形的圆心角为72°
C .被调查的学生中喜欢选修课E 、F 的人数分别为80,70
D .喜欢选修课C 的人数最少
9.若方程组⎩
⎨⎧=+=-30531332b a b a 的解是⎩
⎨⎧==2.13.8b a ,则方程组()()()()⎩

⎧=-++=--+30
152313
1322y x y x 的解是( )
A .⎩
⎨⎧==2.13.8y x B .⎩
⎨⎧==2.03.10y x C .⎩
⎨⎧==2.23.6y x D .⎩

⎧==2
.13
.10y x 10.若关于x 、y 的二元一次方程组⎩

⎧=++-=+4
22
32y x m y x 的解满足x+y >2
1,则满足条件的m 的所有正整数值是( )
A .1,2,3,4
B .1,2,3
C .1,2
D .1 二.填空(每题3分,18分)
11.若整式x 2+ky 2
(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是_______(写出一个即可). 12.一组数据经整理后分成四组,第一,二,三小组的频率分
别为0.1,0.3,0.4,第一小组的频数是5,那么第四小组的频数是___________.
13.将一矩形纸条按如图所示折叠,若∠1=40°,则∠2=_____________. 14.当1
2+=
a ,1
2-=
b 时,代数式
2
22
22b a b ab a -+-的值是________.
15.已知⎩
⎨⎧-==23y x 是方程组⎩

⎧-=+=+7
3
ay bx by ax 的解,则代数式(a+b )(a-b )的值为_____________.
16.我国南宋数学家杨辉用三角形解释二项和的乘方规律,称
之为“杨辉三角”.这个三角形给出了(a+b)n(n=1,2,3,4…)的展开式的系数规律(按a的次数由大到小的顺序):
2)2016展开式中含x2014项的系数请依据上述规律,写出(x-
x
是________.
三.简答
17.(6分)完成下面的证明:已知:如图.BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.
求证:AB∥CD.
证明:∵DE平分∠BDC(已知),
∴∠BDC=2∠1(_______________).
∵BE平分∠ABD(已知),
∴∠ABD=________(角的平分线的定义).
∴∠BDC+∠ABD=2∠1+2∠2=2(∠1+∠2)(_______________).
∵∠1+∠2=90°(已知),
∴∠ABD+∠BDC=__________(________________).
∴AB∥CD(_______________).
18.(6分)先化简再求值
①已知4x=3y ,求代数式(x-2y )2-(x-y )(x+y )-2y 2的值.
②(2+a )(2-a )+a (a-5b )+3a 5b 3÷(-a 2b )2
,其中ab=21-。

19.(8分)甲,乙两位同学在解方程组
⎩⎨
⎧-=+=+1
1
y cx by ax 时,甲正确地
解得方程组的解为⎩

⎧=-=11
y x .乙因大意,错误地将方程中系数C 写错了,得到的解为⎩

⎧-==1
2
y x ;若乙没有再发生其他错误,试确定a ,b ,c 的值.
20.(8分)(2016•无锡)某校为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下: 参加社区活动次数的频数、频率分布表
根据以上图表信息,解答下列问题:
(1)表中a=_________,b=________;
(2)请把频数分布直方图补充完整(画图
后请标注相应的数据);
(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?
21.阅读材料:把形如ax 2+bx+c
的二次三项式(或其一部分)
配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a 2±2ab+b 2=(a ±b )2. 例如:(x-1)2
+3、(x-2)2
+2x 、
22
4
3221x x +⎪⎭⎫ ⎝⎛-是x 2
-2x+4的三
种不同形式的配方(即“余项”分别是常数项、一次项、二次项--见横线上的部分). 请根据阅读材料解决下列问题:
(1)比照上面的例子,写出x 2-4x+2三种不同形式的配方; (2)将a 2+ab+b 2配方(至少两种形式); (3)已知a 2+b 2+c 2
-ab-3b-2c+4=0,求a+b+c 的值.
22.(8分)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.
(1)求该店有客房多少间?房客多少人?
(2)假设店主李三公将客房进行改造后,房间数大大增加.每
间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?
23.(8分)乌梅是郴州的特色时令水果.乌梅一上市,水果店的小李就用3000元购进了一批乌梅,前两天以高于进价40%的价格共卖出150kg,第三天她发现市场上乌梅数量陡增,而自己的乌梅卖相已不大好,于是果断地将剩余乌梅以低于进价20%的价格全部售出,前后一共获利750元,求小李所进乌梅的数量.。

相关文档
最新文档