分式典型练习题
分式的典型练习题(打印版)
分式的典型练习题1、若分式4242--x x 的值为零,则x 等于 。
若分式961|2|2+---x x x 的值为0,则x = 。
2、若分式231-+x x 的值为负数,则x 的取值范围是 ;分式512++x x 的值为负,则x 应满足 。
3、分式方程3-x x +1=3-x m有增根,则m= ;4、若关于x 的分式方程3232-=--x m x x 无解,则m 的值为 。
5、已知a=25,25-=+b ,求2++b aa b 得值为_________。
6、若将分式a+b ab (a 、b 均为正数)中的字母a 、b 的值分别扩大为原来的2倍,则分式的值为() A .扩大为原来的2倍 B .缩小为原来的12 C .不变 D .缩小为原来的147、把分式0.1220.30.25x x -+的x 系数化为整数,那么0.1220.30.25x x -+= .8、不改变分式的值,使23172x x x -+-+-的分子和分母中x 的最高次项的系数都是正数,应该是( ) A. 23172x x x ++- B. 23172x x x --- C. 23172x x x +-+ D. 23172x x x --+9、若分式212()()x x x +--的值为0,则x 的取值范围为 ( )(A) 21x x =-=或 (B) 1x = (C) 2x ≠± (D) 2x ≠10、▲不论x 取何值,分式m x x +-212总有意义,求m 的取值范围。
11、(1)已知0132=+-x x ,求① 221x x +的值。
② 求441x x +的值(2)已知31=+x x ,求1242++x x x 的值。
12、▲若112323,2x xy yx y x xy y +--=--则分式=___13、已知21)2)(1(43-+-=---x Bx Ax x x 是恒等式,求A 和B 的值。
14、试证明代数式12211222+-÷-+-x x x x x 的值与x 无关,写出证明过程。
分式方程计算题100道及答案
分式方程计算题100道及答案篇1:分式方程练习题及答案分式方程练习题及答案分式方程练习题及答案一选择1.下面是分式方程的是()a. b.c. d.2.若得值为-1,则x等于( )a. b. c. d.3.一列客车已晚点6分钟,如果将速度每小时加快10千米,那么继续行驶20千米便可正点运行,如果设客车原来行驶的速度是x千米/小时,可列出分式方程为()a. b.c. d.4.分式方程的解为()a.2b.1c.-1d.-25.若分式方程的解为2,则a的值为()a.4b.1c.0d.26.分式方程的解是()a.无解b.x=2c. x=-2d. x=2或x=-27.如果关于x的方程无解,则m等于()a.3b. 4c.-3d.58.解方程时,去分母得( )a.(x-1)(x-3)+2=x+5b. 1+2(x-3)=(x-5)(x-1)c. (x-1)(x-3)+2(x-3)=(x-5)(x-1)d.(x-3)+2(x-3)=x-5二、填空9.已知关于的分式方程的根大于零,那么a的取值范围是 .10.关于的分式方程有增根 =-2,那么k= .11.若关于的方程产生增根,那么m的值是 .12.当m= 时,方程的解与方程的解互为相反数.13.为改善生态环境,防止水土流失,某村拟定在荒坡地上种植960棵树,由于青年团员的支援,每日比原计划多种20课,结果提前4天完成任务,原计划每天种植多少棵树?设原计划每天种植x棵树,根据题意列方程为 .14.如果,则a= ;b= .三、解答题15.解分式方程16.已知关于的方程无解,求a的值?17.已知与的.解相同,求m的值?18.近年来,由于受国际石油市场的影响,汽油价格不断上涨.下面是小明与爸爸的对话:小明:“爸爸,听说今年5月份的汽油价格上涨了不少啊!”爸爸:“是啊,今年5月份每升汽油的价格是去年5月份的倍,用元给汽车加的油量比去年少升.”小明:“今年5月份每升汽油的价格是多少呢?”聪明的你,根据上面的对话帮小明计算一下今年5月份每升汽油的价格?19.武汉一桥维修工程中,拟由甲、乙两各工程队共同完成某项目,从两个工程队的资料可以知道,若两个工程队合作24天恰好完成,若两个工程队合作18天后,甲工程队再单独做10天,也恰好完成,请问:⑴甲、乙两工程队完成此项目各需多少天?⑵又已知甲工程队每天的施工费用是0.6万元,乙工程队每天的施工费用是0.35万元,要使该项目总的施工费用不超过22万元,则乙工程队至少施工多少天?参考答案一、选择1.d2.c3.b4.a5.a6.b7.a8.c二、填空9.a<2 10.1 11.1 12.m=-3 13. 14.3, 2三、解答题15.⑴ 解:方程变形为两边同时乘以(x2-9)得,x-3+2x+6=12,x=3,经检验x=3是原方程的增根,故原方程无解.⑵ 解:两边同时乘以(x2-4)得x(x+2)-(x+14)=2x(x-2)-(x2-4);整理得,5x=18, ,经检验是原方程的解.(3)解:方程两边同时乘以想x(x2-1)得,5x-2=3x,x=1,经检验x=1是原方程的增根,故原方程无解.(4).解:两边同乘以(2x+3)(2x-3)得2x(2x+3)-(2x-3)=(2x-3)(2x+3)整理得4x=-12,x=-3,经检验x=-3是原方程的根.16.解:因为原方程无解,所以最简公分母x(x-2)=0,x=2或x=0;原方程去分母并整理得a(x-2)-4=0;将x=0代入得a(0-2)-4=0,a=-2;将x=2代入得a0-4 =0,a无解,故综上所述a=-2.17. 解:,x=2,经检验x=2是原方程的解,由题意可知两个方程的解相同,所以把x=2代入第二个方程得,故m=10.18. 解:设去年5月份汽油的价格为x元/升,则今年5月份的价格为1.6x元/升,依题意可列方程为,解得x=3,经检验x=3是原方程的解也符合题意,所以1.6x=4.8,故今年5月份汽油的价格是4.8元/升.19.解:⑴设甲工程队单独完成该项目需要天,乙单独完成该项目需要天,依题意可列方程组为解得,经检验是原方程组的解,也符合题意.⑵设甲、乙两工程队分别施工a天、b天,由于总施工费用不超过22万元,可得,解得,b取最小值为40.故⑴甲、乙两工程队单独完成此项目分别需40天、60天.⑵乙工程度至少要施工40天.篇2:分式方程应用题及答案分式方程应用题及答案一、a、b两地相距48千米,一艘轮船从a地顺流航行至b 地,又立即从b地逆流返回a地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程求解。
分式练习题及答案
分式方程练习题及答案(一)一、选择题(每小题3分,共30分)1.下列式子是分式的是( )A .2xB .x 2C .πxD .2y x +2.下列各式计算正确的是( )A .11--=b a b aB .ab b a b 2= C .()0,≠=a ma na m n D .a m a n m n ++= 3.下列各分式中,最简分式是( )A .()()y x y x +-73B .n m n m +-22C .2222ab b a ba +- D .22222y xy x y x +-- 4.化简2293m mm --的结果是( ) A.3+m m B.3+-m m C.3-m m D.m m -35.若把分式xy yx +中的x 和y 都扩大2倍,那么分式的值( )A .扩大2倍B .不变C .缩小2倍D .缩小4倍6.若分式方程x a x a x +-=+-321有增根,则a 的值是( ) A .1 B .0 C .—1 D .—27.已知432c b a ==,则c b a +的值是( )A .54 B. 47 C.1 D.458.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .x x -=+306030100B .306030100-=+x xC .x x +=-306030100D .306030100+=-x x9.某学校学生进行急行训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20%,结果于下午4时到达,求原计划行的速度。
设原计划行的速度为xkm/h ,,则可列方程( )A .1%206060++=x x B. 1%206060-+=x x C. 1%2016060++=)(x x D. 1%2016060-+=)(x x10.已知 k b a c c a b c b a =+=+=+,则直线2y kx k =+一定经过( )A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限二、填空题(每小题3分,共18分)11.计算2323()a b a b --÷= .12.用科学记数法表示—0.000 000 0314= .13.计算22142a a a -=-- .14.方程3470xx =-的解是 . 15.瑞士中学教师巴尔末成功地从光谱数据9162536,,,,5122132中得到巴尔末公式,从而打开了光谱奥秘的大门。
分式的运算练习题及答案
分式的运算练习题及答案分式的运算是数学中的基本内容之一,掌握好分式的运算方法对于提高数学水平具有重要的作用。
本文将为您提供一些分式的运算练习题及答案,帮助您巩固分式运算的知识。
一、基础练习题1. 计算:$\frac{1}{2} + \frac{3}{4}$答案:$\frac{5}{4}$2. 计算:$\frac{2}{3} \times \frac{3}{5}$答案:$\frac{2}{5}$3. 计算:$\frac{5}{6} \div \frac{1}{2}$答案:$\frac{5}{3}$4. 计算:$\frac{3}{4} + \frac{2}{9} - \frac{1}{3}$答案:$\frac{1}{36}$5. 计算:$(\frac{2}{3} + \frac{1}{4}) \times \frac{3}{5}$答案:$\frac{13}{30}$二、复杂练习题1. 计算:$\frac{3}{4} \div \frac{2}{5} \times \frac{1}{3}$答案:$\frac{15}{8}$2. 计算:$(\frac{7}{8} - \frac{3}{4}) \div (\frac{2}{3} \times\frac{5}{6})$答案:$\frac{7}{20}$3. 计算:$\frac{1}{2} + \frac{1}{3} - \frac{1}{4} \times \frac{1}{5}$答案:$\frac{2}{15}$4. 计算:$\frac{2}{3} \div \frac{3}{4} + \frac{4}{5} - \frac{5}{6}$答案:$\frac{7}{6}$5. 计算:$(\frac{3}{4} + \frac{1}{5}) \div \frac{2}{3} - \frac{5}{6}$答案:$-\frac{17}{36}$三、应用题1. 甲、乙两人一起做数学题,甲做的时间是乙的$\frac{2}{3}$,若乙做完题所需时间为1小时,问甲需要多长时间做完这些题?答案:$\frac{4}{3}$小时解析:设甲需要x小时做完这些题,则根据题意可得$\frac{x}{1}=\frac{2}{3}$,解得x=$\frac{4}{3}$。
分式练习计算练习题(超全)
分式练习题一 填空题1.下列有理式中是分式的有 (1)-3x ;(2)y x ;(3)22732xy y x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7)-π-12m ; (8)5.023+m ; 2.(1)当a 时,分式321+-a a 有意义;(2)当_____时,分式4312-+x x 无意义; (3)当______时,分式68-x x 有意义;(4)当_______时,分式534-+x x 的值为1; (5)当______时,分式51+-x 的值为正;(6)当______时分式142+-x 的值为负. (7)分式36122--x x 有意义,则x (8)当x = 3时,分式b x a x +-无意义,则b ______ 3.(1)若分式0)1x )(3x (1|x |=-+-,则x 的值为_________________; (2)若分式33x x --的值为零,则x = ; (3)如果75)13(7)13(5=++a a 成立,则a 的取值范围是__________; (4)若)0(54≠=y y x ,则222y y x -的值等于________; (5)分式392--x x 当x __________时分式的值为零; (6)当x __________时分式xx 2121-+有意义; (7)当x=___时,分式22943x x x --+的值为0; (8)当x______时,分式11x x +-有意义; (10)当a=_______时,分式2232a a a -++ 的值为零; (11)当分式44x x --=-1时,则x__________;(12)若分式11x x -+的值为零,则x 的值为 (13)当x________时,1x x x -- 有意义. 4.①())0(,10 53≠=a axy xy a ②()1422=-+a a 。
5.约分:①=ba ab 2205__________,②=+--96922x x x __________。
分式的概念练习题
分式的概念练习题一、选择题1. 下列哪个式子是分式?A. 3x + 2B. $\frac{4}{5}$C. $\frac{x}{y+1}$D. $\sqrt{a+b}$A. $\frac{1}{x}$B. $\frac{x^2 1}{x 1}$C. $\frac{2}{x^2 + 1}$D. $\frac{x^3 + 3x^2 4x + 4}{x^2 2x + 1}$3. 分式$\frac{3}{x2}$的定义域是?A. 全体实数B. 除了2以外的全体实数C. 除了0以外的全体实数D. 除了0和2以外的全体实数二、填空题1. 分式$\frac{a}{b}$中,a叫做______,b叫做______。
2. 若分式$\frac{x3}{x+2}$的值等于2,则x的值为______。
3. 已知分式$\frac{2}{x1}+\frac{3}{x+2}=1$,则x的值为______。
三、简答题1. 请简要说明分式与整式的区别。
2. 什么情况下分式无意义?什么情况下分式有意义?3. 如何求分式的值?四、计算题1. 计算$\frac{2}{3}+\frac{1}{6}$。
2. 计算$\frac{3}{4}\frac{2}{5}$。
3. 计算$\frac{4}{5}\times\frac{3}{7}$。
4. 计算$\frac{5}{8}\div\frac{2}{3}$。
5. 简化分式$\frac{x^2 9}{x^2 + 6x + 9}$。
五、应用题1. 某班有男生x人,女生人数是男生人数的$\frac{2}{3}$,求班级总人数与男生人数的比例。
2. 甲、乙两人共同完成一项工作,甲单独完成需要5天,乙单独完成需要8天。
求甲、乙合作完成这项工作的时间。
3. 一辆汽车行驶了a千米,其速度是b千米/小时,求汽车行驶这段路程所需的时间(用分式表示)。
六、判断题1. 分式的分子和分母都是整式。
()2. 分式的值在分母不为零的情况下一定有意义。
100道分式试题及答案
100道分式试题及答案一、选择题1. 下列哪个选项是分式的加法运算的正确结果?A. \( \frac{1}{x} + \frac{1}{y} = \frac{1}{xy} \)B. \( \frac{1}{x} + \frac{1}{y} = \frac{x + y}{xy} \)C. \( \frac{1}{x} + \frac{1}{y} = \frac{y}{x} + \frac{x}{y} \)D. \( \frac{1}{x} + \frac{1}{y} = \frac{1}{x} - \frac{1}{y} \)答案: B(接下来的题目继续以类似格式出题,每个题目后都直接给出答案)二、填空题2. 若 \( \frac{a}{b} \) 与 \( \frac{c}{d} \) 最简分式相同,则\( ad = bc \),其中 \( a \)、\( b \)、\( c \)、\( d \) 都是非零实数。
请填空,使 \( \frac{3x^2}{4y} \) 与 \( \frac{6x}{y^2} \) 相等,\( x \) 和 \( y \) 的取值范围是:答案: \( x \neq 0 \) 且 \( y \neq 0 \)三、计算题3. 计算下列分式的和:\( \frac{2}{x} + \frac{3}{y} \)解答:首先找到两个分式的最小公倍数,即 \( xy \)。
然后进行通分: \( \frac{2y}{xy} + \frac{3x}{xy} = \frac{2y + 3x}{xy} \)四、化简题4. 化简下列分式:\( \frac{3x^2 - 5x}{x^2 - 9} \)解答:首先分解分子和分母的因式:\( \frac{3x(x - \frac{5}{3})}{(x + 3)(x - 3)} \) 然后约去公因式 \( x - 3 \)(假设 \( x \neq 3 \)):\( \frac{3x}{x + 3} \)五、解分式方程5. 解下列分式方程:\( \frac{1}{x} + \frac{1}{x - 1} = \frac{2}{x^2 - x} \)解答:首先将方程两边乘以 \( x(x - 1) \) 以消去分母:\( (x - 1) + x = 2 \)解得 \( x = \frac{3}{2} \),经检验,\( x = \frac{3}{2} \) 是原方程的解。
分式练习题(附答案)
分式单元复习一、选择题1.下列各式中,不是分式方程的是( )111..(1)1111.1.[(1)1]110232x A B x x x x x xxC D x x x -=-+=-+=--=+-2.如果分式2||55x x x -+的值为0,那么x 的值是( )A .0B .5C .-5D .±53.把分式22x yx y +-中的x ,y 都扩大2倍,则分式的值( )A .不变B .扩大2倍C .扩大4倍D .缩小2倍4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++----A .2个B .3个C .4个D .5个5.分式方程2114339x x x +=-+-的解是( )A .x=±2B .x=2C .x=-2D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为( )A .-13.55B - C .1 D .无法确定7.关于x 的方程233x kx x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为()A .3B .0C .±3D .无法确定8.使分式224x x +-等于0的x 值为( )A .2B .-2C .±2D .不存在9.下列各式中正确的是( )....a b a b a ba bA B a b a b a b a ba b a ba b a b C D a b a b a b b a-++--==-----++--+-+-==-+-+-10.下列计算结果正确的是( )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= __________ . 2.在比例式9:5=4:3x 中,x=_________________ .3.计算:1111b a b a a b a b++---=_________________ . 4.当x> __________时,分式213x--的值为正数. 5.计算:1111x x ++-=_______________ . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足_______________ . 7.已知x+1x =3,则x 2+21x = ________ . 8.已知分式212x x +-:当x= _ 时,分式没有意义;当x= _______时,分式的值为0;当x=-2时,分式的值为_______. 9.当a=____________时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是_____________.三、解答题1.计算题:2222444(1)(4);282a a a a a a a --+÷-+--222132(2)(1).441x x x x x x x --+÷+-+-2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12;(2)213(2)22x x x x x -÷-+-++,其中x=12.3.解方程:(1)1052112x x +--=2; (2)2233111x x x x +-=-+-.4.课堂上,李老师给大家出了这样一道题:当x=3,5-,时,求代数式22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?分式单元复习题及答案一、选择题1.下列各式中,不是分式方程的是(D )111..(1)1111.1.[(1)1]110232x A B x x x xx x x C D x x x -=-+=-+=--=+- 2.如果分式2||55x x x-+的值为0,那么x 的值是(B ) A .0 B .5 C .-5 D .±53.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值(A ) A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍4.下列分式中,最简分式有(C )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个5.分式方程2114339x x x +=-+-的解是(B ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x++-的值为(B ) A .-13.55B -C .1D .无法确定 7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为(A ) A .3 B .0 C .±3 D .无法确定8.使分式224x x +-等于0的x 值为(D ) A .2 B .-2 C .±2 D .不存在9.下列各式中正确的是(C )....a b a b a b a bA B a ba b a b a b a ba ba b a b C D a b a b a b b a -++--==-----++--+-+-==-+-+-10.下列计算结果正确的是(B )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= -5 . 2.在比例式9:5=4:3x 中,x= 2027. 3.1111b a b a a b a b ++---的值是 2()a b ab+ . 4.当x> 13 时,分式213x--的值为正数. 5.1111x x ++-= 221x - . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足 x ≠±1 . 7.已知x+1x =3,则x 2+21x= 7 . 8.已知分式212x x +-,当x= 2 时,分式没有意义;当x= -12 时,分式的值为0;当x=-2时,分式的值为 34. 9.当a= -173 时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是 (a a m n+)h . 三、解答题1.计算题.2222222444(1)(4);28241(2)1.(2)(4)424a a a a a a a a a a a a a a --+÷-+----==-+--+解:原式 2222132(2)(1).441(1)(1)1(1)(2)1.(2)112x x x x x x x x x x x x x x x x --+÷+-+-+----==-+--解:原式 2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12; 解:原式=1111111122x x x x x x x x x x -+---÷==-----. 当x=-12时,原式=15. (2)213(2)22x x x x x -÷-+-++,其中x=12. 解:原式=22(1)(2)(2)3121(2)(1)2211x x x x x x x x x x ---+++÷=-=-+-++--. 当x=12时,原式=43. 3.解方程.(1)1052112x x+--=2; 解:x=74. (2)2233111x x x x +-=-+-. 解:用(x+1)(x -1)同时乘以方程的两边得,2(x+1)-3(x -1)=x+3.解得 x=1.经检验,x=1是增根.所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3,5-,时,求代数式22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.解:原式=2(1)1(1)(1)2(1)x x x x x -++--=12. 由于化简后的代数中不含字母x ,故不论x 取任何值,所求的代数式的值始终不变.所以当x=3,5-,时,代数式的值都是12. 5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ①31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.解:正确的应是:23111x x x ----=312(1)(1)(1)(1)1x x x x x x x -++=-+-++ 当x=2时,原式=23. 6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?解:设他第一次在购物中心买了x 盒,则他在一分利超市买了75x 盒. 由题意得:12.51475x x -=0.5 解得 x=5.经检验,x=5是原方程的根.答:他第一次在购物中心买了5盒饼干.。
100道分式解方程练习题
100道分式解方程练习题一、基础练习题1. 解方程:$\frac{x}{3} - 4 = 7$2. 解方程:$\frac{2}{5}y + 1 = 4$3. 解方程:$2 - \frac{3}{x} = 5$4. 解方程:$3x - \frac{1}{2} = 6$5. 解方程:$\frac{x}{4} + \frac{2}{3} = \frac{5}{6}$二、整数系数练习题6. 解方程:$\frac{3}{2}x - 1 = 2$7. 解方程:$2 - \frac{4}{3}x = -1$8. 解方程:$\frac{1}{4}x + \frac{2}{5} = \frac{3}{10}$9. 解方程:$3x - \frac{5}{2} = \frac{1}{2}$10. 解方程:$-2 - \frac{3}{4}x = -\frac{1}{2}$三、含有分数项的练习题11. 解方程:$\frac{1}{2}x - \frac{3}{4} = \frac{x}{3}$12. 解方程:$y + \frac{2y}{3} = \frac{5}{2}$13. 解方程:$2 - \frac{1}{x} = \frac{x}{2}$14. 解方程:$\frac{3}{x} - \frac{x}{2} = 1$15. 解方程:$3 - \frac{x}{2} = \frac{5}{6} - \frac{1}{3}x$四、复杂分式练习题16. 解方程:$\frac{x+1}{x} - \frac{1}{x+1} = \frac{1}{2}$17. 解方程:$\frac{2x-1}{x-1} - \frac{x+1}{x} = \frac{1}{3}$18. 解方程:$\frac{3}{2x-1} - \frac{x}{x+1} = \frac{1}{4}$19. 解方程:$\frac{2}{x+1} + \frac{1}{x-1} = 1$20. 解方程:$\frac{1}{2x} + \frac{1}{x+2} = \frac{5}{4}$五、含有根式的练习题21. 解方程:$2\sqrt{x} - 3 = 5$22. 解方程:$\frac{1}{\sqrt{x}} + 5 = 3$23. 解方程:$\sqrt{x+1} + \sqrt{x-2} = 5$24. 解方程:$\frac{6}{\sqrt{x}} - 4 = 2$25. 解方程:$\sqrt{x} - \frac{1}{\sqrt{x}} = 2$六、含有二次项的练习题26. 解方程:$x^2 - \frac{1}{4} = \frac{3}{2}$27. 解方程:$\frac{5x}{2} + 3x^2 = 7x$28. 解方程:$x^2 - 6x + 9 = 4$29. 解方程:$(2x-1)(x+\frac{1}{3}) = 0$30. 解方程:$x^2 - 4x + 4 = 0$七、混合练习题31. 解方程:$\frac{1}{2}x - \frac{3}{4} = \frac{x}{3}$32. 解方程:$y + \frac{2y}{3} = \frac{5}{2}$33. 解方程:$2 - \frac{1}{x} = \frac{x}{2}$34. 解方程:$\frac{3}{x} - \frac{x}{2} = 1$35. 解方程:$3 - \frac{x}{2} = \frac{5}{6} - \frac{1}{3}x$36. 解方程:$\frac{x+1}{x} - \frac{1}{x+1} = \frac{1}{2}$37. 解方程:$\frac{2x-1}{x-1} - \frac{x+1}{x} = \frac{1}{3}$38. 解方程:$\frac{3}{2x-1} - \frac{x}{x+1} = \frac{1}{4}$39. 解方程:$\frac{2}{x+1} + \frac{1}{x-1} = 1$40. 解方程:$\frac{1}{2x} + \frac{1}{x+2} = \frac{5}{4}$41. 解方程:$2\sqrt{x} - 3 = 5$42. 解方程:$\frac{1}{\sqrt{x}} + 5 = 3$43. 解方程:$\sqrt{x+1} + \sqrt{x-2} = 5$44. 解方程:$\frac{6}{\sqrt{x}} - 4 = 2$45. 解方程:$\sqrt{x} - \frac{1}{\sqrt{x}} = 2$46. 解方程:$x^2 - \frac{1}{4} = \frac{3}{2}$47. 解方程:$\frac{5x}{2} + 3x^2 = 7x$48. 解方程:$x^2 - 6x + 9 = 4$49. 解方程:$(2x-1)(x+\frac{1}{3}) = 0$50. 解方程:$x^2 - 4x + 4 = 0$以上是100道分式解方程的练习题,通过这些题目的练习,可以加深对分式解方程的理解和掌握。
分式测试题及答案
分式测试题及答案一、选择题1. 分式的基本性质是()A. 分子分母同时乘以一个不为0的数,分式的值不变B. 分子分母同时除以一个不为0的数,分式的值不变C. 分子分母同时乘以或除以一个不为0的数,分式的值不变D. 以上都不对答案:C2. 已知分式\(\frac{a}{b}\),如果\(b=0\),则分式()A. 无意义B. 有意义C. 等于0D. 等于1答案:A3. 将分式\(\frac{3x^2}{2x^2-4x+2}\)化为最简形式,正确的是()A. \(\frac{3x}{2-x}\)B. \(\frac{3x}{x-1}\)C. \(\frac{3x}{2x-1}\)D. \(\frac{3x}{x-2}\)答案:B二、填空题1. 计算分式\(\frac{2}{x-1}+\frac{3}{x+1}\)的和,结果为______。
答案:\(\frac{5x+1}{x^2-1}\)2. 若分式\(\frac{2x-3}{x^2-4}\)有意义,则x不能等于______。
答案:±2三、计算题1. 计算并简化\(\frac{2x^2-4x+2}{x^2-9}\)。
答案:\(\frac{2(x-1)^2}{(x-3)(x+3)} = \frac{2}{x+3}\)(当\(x \neq 3\))2. 计算并简化\(\frac{1}{x-1} - \frac{1}{x+1} + \frac{2}{x^2-1}\)。
答案:\(\frac{2}{x^2-1}\)四、解答题1. 已知\(\frac{a}{b} = \frac{c}{d}\),求\(\frac{ad}{bc} = \)。
答案:12. 若\(\frac{2}{3} \leq \frac{a}{b} < 1\),求\(\frac{a}{b} +\frac{1}{a}\)的取值范围。
答案:\(\frac{5}{3} \leq \frac{a}{b} + \frac{1}{a} < 2\)五、证明题1. 证明:若\(\frac{a}{b} = \frac{c}{d}\),则\(\frac{a+c}{b+d} = \frac{a}{b}\)。
分式方程专项练习50题(有答案)
分式方程专项练习50题(有答案)1.$\frac{x}{x+2}=\frac{2}{x-1}$,改写为$x(x-1)=2(x+2)$。
2.$\frac{5x-3}{x^2}=0$,当 $5x-3=0$ 时成立,即$x=\frac{3}{5}$。
3.$\frac{x}{x}+\frac{1}{x}=1$,当 $x\neq 0$ 时成立。
4.$x^2+2x=0$,当 $x=0$ 或 $x=-2$ 时成立。
5.$\frac{13}{x(x-2)}=\frac{1}{x-1}$,改写为 $13(x-1)=x(x-2)$。
6.$\frac{1}{x-1}-\frac{2}{x+1}=\frac{1}{2}$,改写为$3x^2-2x-5=0$,当 $x=\frac{1}{3}$ 或 $x=-\frac{5}{3}$ 时成立。
7.$\frac{x+1}{x-1}=\frac{x}{x+1}$,改写为 $x^2-1=0$,当 $x=1$ 或 $x=-1$ 时成立。
8.$\frac{2x-5}{3-x}=\frac{2x-2}{x+1}$,改写为 $4x^2-13x+7=0$,当 $x=1$ 或 $x=\frac{7}{4}$ 时成立。
9.$\frac{2x-5}{x-2}-\frac{1}{x+2}=x$,改写为 $3x^2-4x-3=0$,当 $x=\frac{1\pm\sqrt{13}}{3}$ 时成立。
10.$\frac{2x-1}{x+1}=1-\frac{1}{x+1}$,改写为 $x^2+3x-2=0$,当 $x=-3+\sqrt{11}$ 或 $x=-3-\sqrt{11}$ 时成立。
11.$\frac{x}{x+1}+\frac{x}{x-1}=2$,改写为 $2x^2-2x-1=0$,当 $x=\frac{1\pm\sqrt{3}}{2}$ 时成立。
12.$\frac{1}{x-1}+\frac{1}{x+1}=\frac{4}{x^2-1}$,改写为 $3x^4-8x^2-5=0$,当 $x=\pm\sqrt{\frac{5}{3}}$ 或$x=\pm\sqrt{\frac{8}{3}}$ 时成立。
分式练习题及答案
分式练习题及答案一、计算下列分式的值:1. $\dfrac{3}{4} - \dfrac{1}{6} + \dfrac{2}{5}$解:将所有分式的分母通分,得到:$\dfrac{9}{12} - \dfrac{2}{12}+ \dfrac{4}{12} = \dfrac{11}{12}$2. $\dfrac{5}{6} \div \dfrac{2}{3}$解:将除法转换成乘法,并将除数取倒数,得到:$\dfrac{5}{6}\cdot \dfrac{3}{2} = \dfrac{15}{12} = \dfrac{5}{4}$3. $\dfrac{2}{3} \times \dfrac{3}{4} \div \dfrac{1}{2}$解:先进行分式的乘法运算,得到:$\dfrac{2}{3} \times\dfrac{3}{4} = \dfrac{6}{12} = \dfrac{1}{2}$,然后将乘法转换成除法,得到:$\dfrac{1}{2} \div \dfrac{1}{2} = 1$二、判断下列分式的大小关系,用“<”、“>”或“=”表示:1. $\dfrac{2}{3}$ ____ $\dfrac{4}{5}$解:通分后比较分子的大小,得到:$\dfrac{10}{15}$ <$\dfrac{12}{15}$,即 $\dfrac{2}{3}$ < $\dfrac{4}{5}$2. $\dfrac{7}{8}$ ____ $\dfrac{7}{9}$解:通分后比较分子的大小,得到:$\dfrac{63}{72}$ >$\dfrac{56}{72}$,即 $\dfrac{7}{8}$ > $\dfrac{7}{9}$3. $\dfrac{5}{6}$ ____ $\dfrac{5}{8}$解:通分后比较分子的大小,得到:$\dfrac{40}{48}$ =$\dfrac{30}{48}$,即 $\dfrac{5}{6}$ = $\dfrac{5}{8}$三、将下列分数化成最简分数形式:1. $\dfrac{12}{15}$解:可以约分,分子分母同时除以3,得到:$\dfrac{4}{5}$2. $\dfrac{18}{24}$解:可以约分,分子分母同时除以6,得到:$\dfrac{3}{4}$3. $\dfrac{40}{48}$解:可以约分,分子分母同时除以8,得到:$\dfrac{5}{6}$四、计算下列混合数的值:1. $2 \dfrac{1}{2} + 3 \dfrac{2}{3}$解:先将混合数转换成带分数的形式,得到:$2 \dfrac{1}{2} =\dfrac{5}{2}$,$3 \dfrac{2}{3} = \dfrac{11}{3}$,然后进行分数的加法运算,得到:$\dfrac{5}{2} + \dfrac{11}{3} = \dfrac{15}{6} +\dfrac{22}{6} = \dfrac{37}{6}$2. $4 \dfrac{3}{4} - 3 \dfrac{1}{2}$解:先将混合数转换成带分数的形式,得到:$4 \dfrac{3}{4} =\dfrac{19}{4}$,$3 \dfrac{1}{2} = \dfrac{7}{2}$,然后进行分数的减法运算,得到:$\dfrac{19}{4} - \dfrac{7}{2} = \dfrac{19}{4} -\dfrac{14}{4} = \dfrac{5}{4}$3. $1 \dfrac{2}{3} \times 2 \dfrac{1}{2}$解:先将混合数转换成带分数的形式,得到:$1 \dfrac{2}{3} =\dfrac{5}{3}$,$2 \dfrac{1}{2} = \dfrac{5}{2}$,然后进行分数的乘法运算,得到:$\dfrac{5}{3} \times \dfrac{5}{2} = \dfrac{25}{6}$总结:本文介绍了分式的基本计算,包括求值、大小关系比较、最简形式化简以及混合数的计算。
分式方程专项练习题优秀4篇
分式方程专项练习题优秀4篇分式是表示分子,分母有未知数。
如果分子,分母都是常数,那这个分式就是分数了。
以下内容是小编为您带来的4篇《分式方程专项练习题》,希望能为您的思路提供一些参考。
分式加减法练习题篇一分式加减法练习题一、选择题:(每小题4分,共8分)1.下列各式计算正确的是A.B.C.D.2.化简+1等于()A.B.C.D.3.若a-b=2ab,则的值为()A.B.-C.2D.-24.若,则M、N的值分别为()A.M=-1,N=-2B.M=-2,N=-1C.M=1,N=2D.M=2,N=15.若_2+_-2=0,则_2+_-的值为()A.B.C.2D.-二、填空题:(每小题4分,共8分)1.计算:=________.2.已知_≠0,=________.3.化简:_+=________.4.如果m+n=2,mn=-4,那么的值为________.5.甲、乙两地相距S千米,汽车从甲地到乙地按每小时v千米的速度行驶,可按时到达;若每小时多行驶a千米,则可提前________小时到达(保留最简结果).三、解答题:(共50分)1.(4_5=20)计算:(1)a+b+(2)(3)(4)(_+1-)÷2.(10分)化简求值:(2+)÷(a-)其中a=2.3.(10分)已知,求的值。
4.(10分)一项工程,甲工程队单独完成需要m天,乙工程队单独完成比甲队单独完成多需要n天时间,那么甲、乙工程队合做需要多少天能够完成此项工程?八年级数学分式练习题篇二数学八年级分式的运算练习题同步一、选择题:(每小题5分,共30分)1、计算的结果为()A.1B._+1C.D.2、下列分式中,最简分式是()A.B.C.D.3、已知_为整数,且分式的值为整数,则_可取的值有()A.1个B.2个C.3个D.4个4、化简的结果是()A.1B.C.D.-15、当_=时,代数式的值是()A.B.C.D.二、填空题:(每小题6分,共30分)6、计算的结果是____________.7、计算a2÷b÷÷c_÷d_的结果是__________.8、若代数式有意义,则_的取值范围是__________.9、化简的结果是___________.10、若,则M=___________.11、公路全长s千米,骑车t小时可到达,要提前40分钟到达,每小时应多走____千米。
分式方程常考经典练习题(6套)附带详细的答案
练习(一)1.1.((2008安徽)分式方程112x x =+的解是(的解是() A . x=1 B . x =-1 C . x=2 D . x =-2 2.2.((2008荆州)方程21011x x x-+=--的解是(的解是() A .2 B .0 C .1 D .3 3.3.((2008西宁)“5·12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?某原计划每天修米,所列方程正确的是(米,所列方程正确的是( )A .B .C .D .4.4.((2008襄樊)当m = 时,关于x 的分式方程213x mx +=--无解.无解.5.5.((2008大连)轮船顺水航行40千米所需的时间和逆水航行30千米所需的时间相同.已知水流速度为3千米/时,设轮船在静水中的速度为x 千米/时,可列方程为_________________________________.6.6.((2008泰州)方程22123=-+--xx x 的解是=x __________. 7.7.解方程:解方程:解方程: (1)(2008赤峰)(2)(2008南京)22011x x x -=+-8.8.((2008咸宁)咸宁) A 、B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运20千克,A 型机器人搬运1000千克所用时间与B 型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?间相等,两种机器人每小时分别搬运多少化工原料? 9.9.((2008镇江)汶川大地震发生以后,全国人民众志成城.首长到帐篷厂视察,布置赈灾生产任务,下面是首长与厂长的一段对话:生产任务,下面是首长与厂长的一段对话:首长:为了支援灾区人民,组织上要求你们完成12000顶帐篷的生产任务. 厂长:为了尽快支援灾区人民,我们准备每天的生产量比原来多一半.x 12012045x x -=+12012045x x -=+12012045x x-=-12012045x x -=-2112323x x x -=-+首长:这样能提前几天完成任务?厂长:请首长放心!保证提前4天完成任务! 根据两人对话,问该厂原来每天生产多少顶帐篷?根据两人对话,问该厂原来每天生产多少顶帐篷?10.10.((2008山西)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,店又购进第二批同样的书包,所购数量是第一批购进数量的所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元。
分式有关练习题
分式有关练习题一、选择题1.下列分数中,质数是:A. 1/4B. 2/3C. 5/6D. 9/82. 下列分式的值最大的是:A. 1/2B. 2/3C. 3/4D. 4/53. 下列各分式中,正确的是:A. 3/5 < 4/7B. 1/4 > 2/7C. 5/6 = 4/7D. 3/8 = 5/64. 分数5/8的倒数是:A. 5/8B. 8/5C. 3/8D. 8/35. 分数9/16的约分结果是:A. 3/4B. 2/3C. 6/9D. 9/16二、填空题1. 将3/4化成分数的百分比形式,填写分数部分和百分号部分分别为____和____。
答:3/4 和 752. 将0.6化成分数形式,填写分子和分母分别为____和____。
答:3 和 53. 2/5除以1/3的结果为____。
答:6/5 或 1 1/54. 将3 1/4化成假分数形式,填写分子和分母分别为____和____。
答:13 和 45. 2/3乘以2/5的结果为____。
答:4/15三、计算题1. 计算:2/3 + 1/4 = ____。
答:11/122. 计算:3/4 - 1/3 = ____。
答:5/123. 计算:3/5 × 2/3 = ____。
答:2/54. 计算:1/2 ÷ 2/3 = ____。
答:3/45. 计算:5/8 + 3/4 - 1/2 = ____。
答:13/8 或 1 5/8四、应用题1. 爸爸煮了8只鸡蛋,妈妈说要给每个孩子分三分之一个鸡蛋,家里一共有4个孩子。
问每个孩子可以分到几个鸡蛋?答:每个孩子可以分到2个鸡蛋。
2. 小明学习了1/2小时,又学习了3/4小时,他一共学习了多长时间?答:小明学习了1 1/4小时。
3. 一桶果汁有5/6升,小明喝了2/3升后,还剩下多少升?答:还剩下1/6升。
4. 小华家种了9/12亩的水稻,小明家种了5/6亩的水稻,他们家一共种了多少亩的水稻?答:他们家一共种了11/12亩的水稻。
分式混合运算专题练习(经典集合)
分式的运算一、典型例题例1、下列分式a bc 1215,a b b a --2)(3,)(222b a b a ++,b a b a +-22中最简分式的个数是( ).A.1B.2C.3D.4例2.计算:3234)1(x y y x ∙ a a a a 2122)2(2+⋅-+ x y xy 2263)3(÷41441)4(222--÷+--a a a a a 例3、 若432z y x ==,求222zy x zxyz xy ++++的值.例4、计算(1)3322)(c b a - (2)43222)()()(xy x y y x -÷-⋅-(3)2332)3()2(c b a bc a -÷- (4)232222)()()(xy xy xy x y y x -⋅+÷-例5计算:1814121111842+-+-+-+--x x x x x练习:1.计算:8874432284211x a x x a x x a x x a x a --+-+-+--例6.计算:2018119171531421311⨯+⨯++⨯+⨯+⨯练习1、()()()()()()()()1011001431321211++++++++++++x x x x x x x x例7、已知21)2)(1(12++-=+-+x Bx A x x x ,求A. B 的值。
针对性练习:1.计算下列各题:(1)2222223223xy yx y x y x y x y x ----+--+ (2)1111322+-+--+a a a a .(3)29631a a --+ (4) 21x x --x -1 (5)3a a --263a a a +-+3a ,(6)xy yy x x y x xy --++-222 ⑺b a b b a ++-22 ⑻293261623x x x -+--+⑼xy y x y x y x 2211-⋅⎪⎪⎭⎫ ⎝⎛+-- ⑽ 222x x x +--2144x x x --+(11)a a a a a a 4)22(2-⋅+--.2.已知x 为整数,且918232322-++-++x x x x 为整数,求所有的符合条件的x 的值的和.3、混合运算:⑴2239(1)x x x x ---÷ ⑵232224xx x x x x ⎛⎫-÷ ⎪+--⎝⎭⑶ a a a a a a 112112÷+---+⑷ 444)1225(222++-÷+++-a a a a a a ⑸ )1x 3x 1(1x 1x 2x 22+-+÷-+-⑹ )252(23--+÷--x x x x ⑺ 221111121x x x x x +-÷+--+⑻2224421142x x x x x x x -+-÷-+-+ ⑼2211xy x y x y x y ⎛⎫÷- ⎪--+⎝⎭⑽ (ab b a 22++2)÷ba b a --22 ⑾22321113x x x x x x x +++-⨯--+⑿ x x x x x x x x x 416)44122(2222+-÷+----+ (13)、22234()()()x y y y x x-⋅-÷-(14)、)252(423--+÷--m m m m (15)、x x x x xx x --+⋅+÷+--36)3(446222(16)、 ()3212221221------⎪⎭⎫ ⎝⎛ba cb b a (17)、⎪⎭⎫ ⎝⎛---÷⎪⎪⎭⎫ ⎝⎛+--x x x x x 23441823224.计算:x xx x x x x x -÷+----+4)44122(22,并求当3-=x 时原式的值.5、先化简,x x x x x x11132-⋅⎪⎭⎫ ⎝⎛+--再取一个你喜欢的数代入求值:6、有这样一道题:“计算22211x x x -+-÷21x x x -+-x 的值,其中x=2 004”甲同学把“x=2 004”错抄成“x=2 040”,但他的计算结果也正确,你说这是怎么回事?7、计算、)1(1+a a +)2)(1(1++a a +)3)(2(1++a a +…+)2006)(2005(1++a a 。
100道解分式方程及答案
100道解分式方程练习题(带答案)解答:一、复习例解方程:(1)2x+xx+3=1; (2)15x=2×15 x+12;(3)2(1x+1x+3)+x-2x+3=1.解(1)方程两边都乘以x(3+3),去分母,得2(x+3)+x2=x2+3x,即2x-3x=-6所以x=6.检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根.(2)方程两边都乘以x(x+12),约去分母,得15(x+12)=30x.解这个整式方程,得x=12.检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根.(3)整理,得2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,即2x+xx+3=1.方程两边都乘以x(x+3),去分母,得2(x+3)+x2=x(x+3),即2x+6+x2=x2+3x,亦即2x-3x=-6.解这个整式方程,得x=6.检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根.二、新课例1 一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍.若骑车的速度是队伍进行速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?请同学根据题意,找出题目中的等量关系.答:骑车行进路程=队伍行进路程=15(千米);骑车的速度=步行速度的2倍;骑车所用的时间=步行的时间-0.5小时.请同学依据上述等量关系列出方程.答案:方法1 设这名学生骑车追上队伍需x小时,依题意列方程为15x=2×15 x+12.方法2 设步行速度为x千米/时,骑车速度为2x千米/时,依题意列方程为15x-15 2x=12.解由方法1所列出的方程,已在复习中解出,下面解由方法2所列出的方程.方程两边都乘以2x,去分母,得30-15=x,所以x=15.检验:当x=15时,2x=2×15≠0,所以x=15是原分式方程的根,并且符合题意.所以骑车追上队伍所用的时间为15千米30千米/时=12小时.答:骑车追上队伍所用的时间为30分钟.指出:在例1中我们运用了两个关系式,即时间=距离速度,速度=距离时间.如果设速度为未知量,那么按时间找等量关系列方程;如果设时间为未知量,那么按速度找等量关系列方程,所列出的方程都是分式方程.例2 某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成.现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天?分析;这是一个工程问题,在工程问题中有三个量,工作量设为s,工作所用时间设为t,工作效率设为m,三个量之间的关系是s=mt,或t=sm,或m=st.请同学根据题中的等量关系列出方程.答案:方法1 工程规定日期就是甲单独完成工程所需天数,设为x天,那么乙单独完成工程所需的天数就是(x+3)天,设工程总量为1,甲的工作效率就是x1,乙的工作效率是1x+3.依题意,列方程为2(1x+1x3)+x2-xx+3=1.指出:工作效率的意义是单位时间完成的工作量.方法2 设规定日期为x天,乙与甲合作两天后,剩下的工程由乙单独做,恰好在规定日期完成,因此乙的工作时间就是x天,根据题意列方程2x+xx+3=1.方法3 根据等量关系,总工作量—甲的工作量=乙的工作量,设规定日期为x天,则可列方程1-2x=2x+3+x-2x+3.用方法1~方法3所列出的方程,我们已在新课之前解出,这里就不再解分式方程了.重点是找等量关系列方程.三、课堂练习1.甲加工180个零件所用的时间,乙可以加工240个零件,已知甲每小时比乙少加工5个零件,求两人每小时各加工的零件个数.2.A,B两地相距135千米,有大,小两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知大、小汽车速度的比为2:5,求两辆汽车的速度.答案:1.甲每小时加工15个零件,乙每小时加工20个零件.2.大,小汽车的速度分别为18千米/时和45千米/时.四、小结1.列分式方程解应用题与列一元一次方程解应用题的方法与步骤基本相同,不同点是,解分式方程必须要验根.一方面要看原方程是否有增根,另一方面还要看解出的根是否符合题意.原方程的增根和不符合题意的根都应舍去.2.列分式方程解应用题,一般是求什么量,就设所求的量为未知数,这种设未知数的方法,叫做设直接未知数.但有时可根据题目特点不直接设题目所求的量为未知量,而是设另外的量为未知量,这种设未知数的方法叫做设间接未知数.在列分式方程解应用题时,设间接未知数,有时可使解答变得简捷.例如在课堂练习中的第2题,若题目的条件不变,把问题改为求大、小两辆汽车从A地到达B地各用的时间,如果设直接未知数,即设,小汽车从A地到B地需用时间为x小时,则大汽车从A地到B地需(x+5-12)小时,依题意,列方程135 x+5-12:135x=2:5.解这个分式方程,运算较繁琐.如果设间接未知数,即设速度为未知数,先求出大、小两辆汽车的速度,再分别求出它们从A地到B地的时间,运算就简便多了.五、作业1.填空:(1)一件工作甲单独做要m小时完成,乙单独做要n小时完成,如果两人合做,完成这件工作的时间是______小时;(2)某食堂有米m公斤,原计划每天用粮a公斤,现在每天节约用粮b公斤,则可以比原计划多用天数是______;(3)把a千克的盐溶在b千克的水中,那么在m千克这种盐水中的含盐量为______千克.2.列方程解应用题.(1)某工人师傅先后两次加工零件各1500个,当第二次加工时,他革新了工具,改进了操作方法,结果比第一次少用了18个小时.已知他第二次加工效率是第一次的2.5倍,求他第二次加工时每小时加工多少零件?(2)某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用的时间相等,求他步行40千米用多少小时?(3)已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?(4)A,B两地相距135千米,两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知两车的速度之比是5:2,求两辆汽车各自的速度.答案:1.(1)mn m+n; (2)m a-b-ma; (3)ma a+b.2.(1)第二次加工时,每小时加工125个零件.(2)步行40千米所用的时间为40 4=10(时).答步行40千米用了10小时.(3)江水的流速为4千米/时.课堂教学设计说明1.教学设计中,对于例1,引导学生依据题意,找到三个等量关系,并用两种不同的方法列出方程;对于例2,引导学生依据题意,用三种不同的方法列出方程.这种安排,意在启发学生能善于从不同的角度、不同的方向思考问题,激励学生在解决问题中养成灵活的思维习惯.这就为在列分式方程解应用题教学中培养学生的发散思维提供了广阔的空间.2.教学设计中体现了充分发挥例题的模式作用.例1是行程问题,其中距离是已知量,求速度(或时间);例2是工程问题,其中工作总量为已知量,求完成工作量的时间(或工作效率).这些都是运用列分式方程求解的典型问题.教学中引导学生深入分析已知量与未知量和题目中的等量关系,以及列方程求解的思路,以促使学生加深对模式的主要特征的理解和识另别,让学生弄清哪些类型的问题可借助于分式方程解答,求解的思路是什么.学生完成课堂练习和作业,则是识别问题类型,能把面对的问题和已掌握的模式在头脑中建立联系,探求解题思路.3.通过列分式方程解应用题数学,渗透了方程的思想方法,从中使学生认识到方程的思想方法是数学中解决问题的一个锐利武器.方程的思想方法可以用“以假当真”和“弄假成真”两句话形容.如何通过设直接未知数或间接未知数的方法,假设所求的量为x,这时就把它作为一个实实在在的量.通过找等量关系列方程,此时是把已知量与假设的未知量平等看待,这就是“以假当真”.通过解方程求得问题的解,原先假设的未知量x就变成了确定的量,这就是“弄假成真”.解分式方程的例题及答案第2 篇一认识分式知识点一分式的概念1、分式的概念从形式上来看,它应满足两个条件:(1)写成的形式(A、B表示两个整式)(2)分母中含有这两个条件缺一不可2、分式的意义(1)要使一个分式有意义,需具备的条件是(2)要使一个分式无意义,需具备的条件是(3)要使分式的值为0,需具备的条件是知识点二、分式的基本性质分式的分子与分母都乘以(或除以)同一个分式的值不变用字母表示为= (其中M是不等于零的整式)知识点三、分式的约分1、概念:把一个分式的分子和分母中的公因式约去,这种变形称为分式的约分2、依据:分式的基本性质注意:(1)约分的关键是正确找出分子与分母的公因式(2)当分式的分子和分母没有公因式时,这样的分式称为最简分式,化简分式时,通常要使结果成为最简分式或整式。
(完整版)分式计算专项练习题
1.化简求值:﹣, 2 .化简求值:÷( 1﹣),3.化简求值: 1﹣÷,此中x、y知足|x﹣2|+(2x﹣y﹣3)2=0.4.化简求值:,此中a=2.5.化简求值: [﹣]+[1+] ,此中 a=-1, b=2.6.化简求值:( 1﹣)÷,此中x=﹣1.7.化简求值:÷(﹣a),此中a=﹣2.8.化简求值:( x﹣ 2+)÷,此中x=(π﹣2015)0+()﹣1.9.化简求值:÷﹣,此中x=﹣1.10.已知 A=﹣(1)化简 A;(2)当x知足不等式组,且x为整数时,求 A 的值.11.÷12 .(2015?云南)化简求值:[﹣] ?,此中x=-1.13.化简求值:(1﹣)÷,此中x=-1.14.(2015?铁岭)先化简÷(a﹣2+),而后从﹣2,﹣1,1,2四个数中选择一个适合的数作为 a 的值代入求值.15.化简求值:(a﹣)÷,此中a=+1. 16 .化简,再求值:(1+),此中a=﹣3.17.化简求值:,此中x=﹣1.18.先化简,再求值:(1﹣)÷,从﹣1,2,3中选择一个适合的数作为x 值代入.19.化简求值:﹣,此中a=1.20.化简求值:(﹣)?,此中x=4.21.化简求值:(+)÷,此中a知足a2﹣4a﹣1=0.22.化简求值:(1﹣)÷,此中x=-123.化简求值:﹣,此中a=﹣1.24.化简求值:(﹣)÷,此中x=9.25.化简?( m﹣ n)26.先化简(+)×,而后选择一个你喜爱的数代入求值.27.化简求值:(﹣)÷,此中x=3.28.化简求值: [﹣] ÷,请选用一个适合的x 的数值代入求值.29.解分式方程:+=1.30.解方程:.31.÷(﹣)32.化简求值:÷,33.化简求值:(+)?,此中a=﹣.34.化简求值:÷﹣,此中m=﹣3.35.化简求值:÷(x﹣2+),此中x=﹣1.36.化简求值:÷(a﹣),此中a=2,b=2.37.化简求值:?,此中a=5.38.÷(+1)39.化简:÷(﹣),再从﹣2<x<3的范围内选用一个你最喜爱的值代入,求值.40.化简(﹣)?,再从0,1,2中选一个适合的x 的值代入求值.41.化简求值:(1+)÷,此中a=4.42.(+1)(2)已知对于 x,y 的二元一次方程组的解知足x+y=0,务实数m的值.43.化简求值:(﹣)÷,此中x知足2x﹣6=0.44.化简求值:(1﹣),此中x=3.45.化简:(+1)++,而后从﹣2≤ x≤ 2的范围内选用一个适合的整数作为x 的值代入求值.46.(+)÷,此中a=-1,b=﹣.47.化简:﹣,再选用一个适合的m的值代入求值.48.化简,再求值:?+,此中x是从﹣1、0、1、2中选用的一个适合的数.49.化简求值:÷(﹣1),此中x=2.50.(﹣)÷51.化简求值:(+)÷52 .化简求值:( 1﹣)÷,此中x=-2.53.化简求值:()÷,此中x=﹣254.化简求值:?﹣,此中a=1,b=1.55.( 2015?淮安)先化简( 1+)÷,再从1,2,3三个数中选一个适合的数作为x 的值,代入求值.56.化简求值:(x2﹣ 9)÷,此中x=﹣1.57.化简求值:(+)÷,此中a=﹣158.(2015?广元)先化简:(﹣)÷,而后解答以下问题:(1)当 x=3 时,求原代数式的值;(2)原代数式的值能等于﹣ 1 吗?为何?59..60.化简求值:(1+)÷,此中:x=﹣3.61.(2015?甘南州)已知若分式的值为0,则x的值为.62.(2015?包头)化简:( a﹣)÷= .63.(2015?长沙模拟)已知对于x 的方程=2 的解是正数,则 m的范围是.64.(2015?咸宁模拟)已知对于x 的分式方程=1 的解是非正数,则 a 的取值范围是.65.(2015?潍坊一模)若对于 x 的分式方程﹣ 2= 有增根,则 m的值为.66.(2015?诸城市校级三模)已知方程=3﹣有增根,则 a 的值为.67.(2015 春?宿迁校级期末) m= 时,方程会产生增根.68.(2015 春?江阴市期中)当 x= 时,分式的值为零.69.(2015 春?江都市月考)若分式的值为0,则x=.70.(2015 春?龙口市期中)使分式方程产生增根,m的值为.71.(2015 春 ?无锡校级月考)当 x时,分式无心义;当x=时,分式的值是 0.72.(2015 春?安岳县校级月考)若分式的值为负数,则 x 的取值范围是.73.(2015 春?成都校级月考)分式的值为正数,则 x 的取值范围是.74.(2015 春 ?江都市月考)已知 x 为整数,且分式的值为整数,则 x 可取的值为.75.(2015 春?萧山区月考)已知对于 x 的分式方程无解,则 a 的值是.76.(2015 春?达州校级月考)对于 x 的方程的解为负数,那么 a 的取值范围是.77.(2015 春?建湖县校级月考)若分式方程﹣=2 有增根,则 m= .78.(2014?宝应县二模)已知对于x 的方程的解是负数,则 m的取值范围为.79.(2014?牡丹江二模)若对于 x 的方程﹣1= 无解,则 a 的值是.80.(2014 秋?昌乐县期末)当 x= 时,分式值为零.81.(2014 秋?万州区校级期末)已知,则分式的值为.82.(2014 秋?崇州市期末)若对于 x 的分式方程无解,则 m的值为.83.(2014 秋?海陵区校级期末)对于 x 的分式方程=﹣ 2,当 m= 时无解; m知足时,有正数解.84.(2013 秋?伊春区期末)若分式方程: 2﹣= 无解,则 k= .85.)解分式方程: =.86 .分式方程=187.分式方程= 的解为()88.方程=﹣189. 解分式方程+=390.方程=的解为()91.方程=0 的解是()92.若对于x的分是方程+=2 有增根,则 m的值是93.方程的解为94.分式方程95.方程96.分式方程= 97.分式方程98.分式方程= 99.分式方程﹣=0100.分式方程1﹣。
史上最全分式练习题(各题型,含答案)
第十六章 分式16.1分式16.1.1从分数到分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,a s ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程.设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v +20100小时,逆流航行60千米所用时间v-2060小时,所以v +20100=v-2060.3. 以上的式子v +20100,v -2060,a s ,sv ,有什么共同点?它们与分数有什么相同点和不同点?五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0? (1) (2) (3) 1-m m 32+-m m 112+-m m 4522--x x x x 235-+23+x x x 57+xx 3217-x x x --221七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义? 3. 当x 为何值时,分式的值为0? 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x 2.(1)x ≠-2 (2)x ≠ (3)x ≠±2 3.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, ba s +,4y x -; 整式:8x, a+b, 4y x -; 分式:x 80, ba s + 2. X = 3. x=-1课后反思:16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.x 802332xx x --212312-+x x二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据? 3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.a b 56--, y x3-, n m --2, n m 67--, yx 43---。
分式方程练习题(含答案)
分式方程精华练习题一.选择题1.在下列方程中,关于x 的分式方程的个数(a 为常数)有( ) ①0432212=+-x x ②.4=a x ③.;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-ax a x . A.2个 B.3个 C.4个 D.5个2. 关于x 的分式方程15m x =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数C .5m <-时,方程的解为负数D .无法确定3.方程x x x-=++-1315112的根是( ) A.x =1 B.x =-1 C.x =83 D.x =2 4.,04412=+-x x 那么x 2的值是( ) A.2 B.1 C.-2 D.-15.下列分式方程去分母后所得结果正确的是( ) A.11211-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ; B.125552=-+-xx x ,去分母得,525-=+x x ; C.242222-=-+-+-x x x x x x ,去分母得,)2(2)2(2+=+--x x x x ; D.,1132-=+x x 去分母得,23)1(+=-x x ; 6. .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A.21140140-+x x =14 B.21280280++x x =14 C.21140140++x x =14 D.211010++x x =1 7.若关于x 的方程0111=----x x x m ,有增根,则m 的值是( ) A.3 B.2 C.1 D.-18.若方程,)4)(3(1243+-+=++-x x x x B x A 那么A 、B 的值为( )A.2,1B.1,2C.1,1D.-1,-19.如果,0,1≠≠=b b a x 那么=+-ba b a ( ) A.1-x 1 B.11+-x x C.x x 1- D.11+-x x 10.使分式442-x 与6526322+++-+x x x x 的值相等的x 等于( ) A.-4 B.-3 C.1 D.10二.填空题11. 满足方程:2211-=-x x 的x 的值是________. 12. 当x =________时,分式xx ++51的值等于21. 13.分式方程0222=--x x x 的增根是 . 14. 一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时.15. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为 .16.已知,54=y x 则=-+2222yx y x . 17.=a 时,关于x 的方程53221+-=-+a a x x 的解为零. 18.飞机从A 到B 的速度是,1v ,返回的速度是2v ,往返一次的平均速度是 .19.当=m 时,关于x 的方程313292-=++-x x x m 有增根. 20. 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程 .三.计算21. .解下列方程 (1)x x x --=+-34231 (2) 2123442+-=-++-x x x x x (3)21124x x x -=--.四.解答题22.10年前父亲的年龄是女儿的7倍,15年后父亲的年龄是女儿的2倍,现在父亲的年龄有多大?23.两个人同走一段路,甲每小时走4250米,乙每小时走3000米,甲比乙少用2.5小时走完这段路,求这段路有多长?24.修一条公路,未修长度是已修长度的3倍,如果再修300米,未修长度就是已修的2倍,这条公路长多少米?、25.某制衣厂加工一批定货服装,按计划完成天数生产,如果每天均生产20套,就比定货任务少100套;如果每天生产23套服装,就可超过定货任务20套,问这批服装的订货任务是多少?原计划几天完成?25. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?26.小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室内发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元钱,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多53倍,问她第一次在供销大厦买了几瓶酸奶?答案一、1.B ,2.C 3.C ;4.B ,5.D ,6.C , 7.B ,8.C9.B ,10.D ;二、11.0;12.3,13.2=x ;14. 212v v t v +;15. 3215315-=x x ;16.941-. 17.51=a ;18.21212v v v v +;19.6或12,20. ()240024008120%x x-=+; 三、21.(1)无解(2)x = -1;(3)方程两边同乘(x-2)(x+2),得x(x+2)-(x 2-4)=1, 化简,得2x=-3,x= 32- 经检验,x=32-是原方程的根. 22.6天,24.解;5=x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式知识点和典型习题(一)、分式定义及有关题型题型一:考查分式的定义1、下列代数式中:y x yx y x y x ba b a y x x -++-+--1,,,21,22π,是分式的有: .2、下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个 3、下列各式:2b a -,x x 3+,πy +5,()1432+x ,b a b a -+,)(1y x m-中,是分式的共有( )A.1个B.2个C.3个D.4个题型二:考查分式有意义的条件 1、当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件 1、当x 取何值时,下列分式的值为0.(1)31+-x x (2)42||2--x x (3)653222----x x x x题型四:考查分式的值为正、负的条件 1、(1)当x 为何值时,分式x-84为正;(2)当x 为何值时,分式2)1(35-+-x x 为负;(3)当x 为何值时,分式32+-x x 为非负数.(二)分式的基本性质及有关题型1.分式的基本性质:MB M A M B M A B A ÷÷=⨯⨯=2.分式的变号法则:bab a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数 1、不改变分式的值,把分子、分母的系数化为整数.(1)y x yx 41313221+- (2)ba ba +-04.003.02.0(3)b a ba 10141534.0-+题型二:分数的系数变号2、不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)yx yx --+- (2)ba a ---(3)ba ---题型三:考查分式的性质 1、若分式xyx +中x 、y 的值都增加到原来的3倍,则分式的值( ) A 、不变 B 、是原来的3倍 C 、是原来的31 D 、是原来的912、若分式xyy x 22+中x 、y 的值都增加到原来的3倍,则分式的值( )A 、不变B 、是原来的3倍C 、是原来的31D 、是原来的91题型三:化简求值题 1、已知:511=+y x ,求yxy x yxy x +++-2232的值. 2、已知:311=-b a ,求a ab b b ab a ---+232的值.3、已知:21=-xx ,求221xx +的值. 4、若0)32(|1|2=-++-x y x ,求yx 241-的值.5、已知与互为相反数,代数式的值。
6、若0106222=+-++b b a a ,求ba ba 532+-的值. 7、如果21<<x ,试化简x x --2|2|xx x x |||1|1+---.(三)分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母因式取各分母所有字母的最高次幂.2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂.题型一:通分1、将下列各式分别通分. (1)cb ac a b ab c 225,3,2--; (2)a b b b a a 22,--;(3)22,21,1222--+--x x xx xx x ; (4)aa -+21,2题型二:约分 1、约分: (1)322016xy y x -; (2)n m m n --22; (3)6222---+x x x x .题型三:分式的混合运算 1、计算:(1)42232)()()(abc ab c c b a ÷-⋅-;(2)22233)()()3(xy x y y x y x a +-÷-⋅+;(3)mn mn m n m n n m ---+-+22;(4)112---a a a ;(5))5)(3(1)3)(1(1)1)(1(1+++++++-x x x x x x ; (6))12()21444(222+-⋅--+--x xx x x x x题型四:化简求值题 1、先化简后求值(1)已知:1-=x ,求分子)]121()144[(48122x x x x -÷-+--的值;(2)已知:432z y x==,求22232z y x xz yz xy ++-+的值;题型五:求待定字母的值 例、若111312-++=--x Nx M x x ,试求N M ,的值.(四)、整数指数幂与科学记数法题型一:运用整数指数幂计算 计算:(1)3132)()(---⋅bc a(2)2322123)5()3(z xy z y x ---⋅(3)24253])()()()([b a b a b a b a +--+-- (4)6223)(])()[(--+⋅-⋅+y x y x y x(5)20082007024)25.0()31(|31|)51()5131(⋅-+-+-÷⋅--题型二:化简求值题【例2】已知51=+-x x ,求(1)22-+x x 的值;(2)求44-+x x 的值.题型三:科学记数法的计算【例3】计算:(1)223)102.8()103(--⨯⨯⨯;(2)3223)102()104(--⨯÷⨯.(五)、分式中的变形求值1、变形代入: ①若2=+a b b a ,则ba ba 22-+的值为_______。
②已知1111x yx y+-=-+,则2(3)(3)x y x +++的值为_______。
③已知0=++c b a ,且0≠abc ,求222222222111c b a b c a a c b -++-++-+的值为__________。
2、整体代入: ①若22237y y ++的值为14,则21461y y +-的值为___________。
②已知ba b a +=-311,则a bb a -的值为_______。
变式:已知b a b a +=+511,则ab b a +的值为_______。
③已知115x y -=,则323x xy yx xy y--+-的值为的值为 。
已知31211=-y x ,则xxy y y xy x ---+32432的值为 。
已知532232=---+y xy x y xy x ,则y x 11-的值为______________。
3、xx 1±型的变形: ①若13x x+=,则2421x x x =++__________。
变式1:若51=--x x ,则=+-2x x __________。
4、设比值: ①若234234a b c +++==,且18a b c ++=,则2a b c -+=__________。
②若a c c b b a ==,则=--++cb ac b a 3223 。
5、消元思想:①已知0634=--z y x ,072=-+z y x (0≠xyz ),则22222275632z y x z y x ++++=_____________。
②如果11=+b a ,11=+c b ,则=+ac 1________。
6、裂项: ①若5=+xy y x ,6=+yz z y ,7=+xzz x ,则z y x 111++的值为________。
7、取倒:①若1132=+-x x x,则=+-19242x x x ______________。
②已知31=+b a ab ,41=+c b bc ,51=+c a ac ,则bcac ab abc++=_____________。
第二讲 分式方程【知识要点】1.分式方程的概念以及解法;2.分式方程产生增根的原因3.分式方程的应用题【主要方法】1.分式方程主要是看分母是否有外未知数;2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母.3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数.(一)分式方程题型分析题型一:用常规方法解分式方程 1、解下列分式方程(1)xx 311=-; (2)0132=--xx ; (3)114112=---+x x x ; (4)x x x x -+=++4535 提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.题型二:特殊方法解分式方程2、解下列方程3、解下列方程组 (1)4441=+++xx x x ; (2)569108967+++++=+++++x x x x x x x x 提示:(1)换元法,设y x x =+1;(2)裂项法,61167++=++x x x .题型三:求待定字母的值 例、若分式方程122-=-+x ax 的解是正数,求a 的取值围.题型五:解分式方程 1.解下列方程:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+)3(4111)2(3111)1(2111x zz yy x(1)021211=-++-xxx x ; (2)3423-=--x x x ;(3)171372222--+=--+x x x x xx (4)22322=--+x x x ;(5)2123524245--+=--x x x x (6)41215111+++=+++x x x x(二)分式方程的特殊解法解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法 二、化归法 例1.解方程:231+=x x 例2.解方程:012112=---x x三、左边通分法 四、观察比较法 例3:解方程:87178=----xx x 例4.解方程:417425254=-+-x x x x五、分离常数法 六、分组通分法 例5.解方程:87329821+++++=+++++x x x x x x x x 例6.解方程:41315121+++=+++x x x x(三)分式方程求待定字母值的方法1、若分式方程xmx x -=--221无解,求m 的值。
2、若关于x 的方程11122+=-+-x xx k x x 不会产生增根,求k 的值。
3、若关于x 分式方程432212-=++-x x k x 有增根,求k 的值。
4、若关于x 的方程1151221--=+-+-x k xx k xx 有增根1=x ,求k 的值。
5、当a= 时,关于x的方程23axa x+-=54的解是x=1.6、当分式2223211x x xx x+++--与分式的值相等时,x须满足.分式方程应用题一.行程问题(1)一般行程问题1、从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是全长480Km的高速公路。