高考数学真题——集合
高中数学高考总复习集合习题及详解
高中数学高考总复习集合习题及详解一、选择题1.(09·全国Ⅱ)已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则∁U (M ∪N )=( )A .{5,7}B .{2,4}C .{2,4,8}D .{1,3,5,6,7}[答案] C[解析] M ∪N ={1,3,5,6,7}, ∴∁U (M ∪N )={2,4,8},故选C.2.(2010·烟台二中)已知集合M ={y |y =x 2},N ={y |y 2=x ,x ≥0},则M ∩N =( ) A .{(0,0),(1,1)} B .{0,1} C .[0,+∞)D .[0,1][答案] C[解析] M ={y |y ≥0},N =R ,则M ∩N =[0,+∞),选C.[点评] 本题极易出现的错误是:误以为M ∩N 中的元素是两抛物线y 2=x 与y =x 2的交点,错选A .避免此类错误的关键是,先看集合M ,N 的代表元素是什么以确定集合M ∩N 中元素的属性.若代表元素为(x ,y ),则应选A.3.设集合P ={x |x =k 3+16,k ∈Z },Q ={x |x =k 6+13,k ∈Z },则( )A .P =QB .P QC .P QD .P ∩Q =∅[答案] B[解析] P :x =k 3+16=2k +16,k ∈Z ;Q :x =k 6+13=k +26,k ∈Z ,从而P 表示16的奇数倍数组成的集合,而Q 表示16的所有整数倍数组成的集合,故P Q .选B.[点评] 函数值域构成的集合关系的讨论,一般应先求出其值域.如果值域与整数有关,可将两集合中的元素找出它们共同的表达形式,利用整数的性质求解或用列举法讨论.4.(文)满足M ⊆{a 1,a 2,a 3,a 4},且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( ) A .1 B .2C .3D .4[答案] B[解析] 集合M 必须含有元素a 1,a 2,并且不能含有元素a 3,故M ={a 1,a 2}或{a 1,a 2,a 4}.(理)(2010·湖北理,2)设集合A ={(x ,y )|x 24+y 216=1},B ={(x ,y )|y =3x },则A ∩B 的子集的个数是( )A .4B .3C .2D .1[答案] A[解析] 结合椭圆x 24+y 216=1的图形及指数函数y =3x 的图象可知,共有两个交点,故A ∩B 的子集的个数为4.5.(2010·辽宁理,1)已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},(∁U B )∩A ={9},则A =( )A .{1,3}B .{3,7,9}C .{3,5,9}D .{3,9}[答案] D[解析] 由题意知,A 中有3和9,若A 中有7(或5),则∁U B 中无7(或5),即B 中有7(或5),则与A ∩B ={3}矛盾,故选D.6.(文)(2010·合肥市)集合M ={x |x 2-1=0},集合N ={x |x 2-3x +2=0},全集为U ,则图中阴影部分表示的集合是( )A .{-1,1}B .{-1}C .{1}D .∅[答案] B[解析] ∵M ={1,-1},N ={1,2},∴M ∩N ={1}, 故阴影部分表示的集合为{-1}.(理)(2010·山东省实验中学)如图,I 是全集,A 、B 、C 是它的子集,则阴影部分所表示的集合是( )A .(∁I A ∩B )∩C B .(∁I B ∪A )∩C C .(A ∩B )∩∁I CD .(A ∩∁I B )∩C[答案] D[解析] 阴影部分在A 中,在C 中,不在B 中,故在∁I B 中,因此是A 、C 、∁I B 的交集,故选D.高考总复习含详解答案[点评] 解决这类题的要点是逐个集合考察,看阴影部分在哪些集合中,不在哪些集合中,注意不在集合M 中时,必在集合M 的补集中.7.已知钝角△ABC 的最长边长为2,其余两边长为a ,b ,则集合P ={(x ,y )|x =a ,y =b }所表示的平面图形的面积是( )A .2B .4C .π-2D .4π-2[答案] C[解析] 由题中三角形为钝角三角形可得①a 2+b 2<22;②a +b >2;③0<a <2,0<b <2,于是集合P 中的点组成由条件①②③构成的图形,如图所示,则其面积为S =π×224-12×2×2=π-2,故选C.8.(文)(2010·山东滨州)集合A ={-1,0,1},B ={y |y =cos x ,x ∈A },则A ∩B =( ) A .{0}B .{1}C .{0,1}D .{-1,0,1}[答案] B[解析] ∵cos0=1,cos(-1)=cos1,∴B ={1,cos1}, ∴A ∩B ={1}.(理)P ={α|α=(-1,1)+m (1,2),m ∈R },Q ={β|β=(1,-2)+n (2,3),n ∈R }是两个向量集合,则P ∩Q =( )A .{(1,-2)}B .{(-13,-23)}C .{(1,-2)}D .{(-23,-13)}[答案] B[解析] α=(m -1,2m +1),β=(2n +1,3n -2),令a =β,得⎩⎪⎨⎪⎧ m -1=2n +12m +1=3n -2 ∴⎩⎪⎨⎪⎧m =-12n =-7∴P ∩Q ={(-13,-23)}.9.若集合M ={0,1,2},N ={(x ,y )|x -2y +1≥0且x -2y -1≤0,x 、y ∈M },则N 中元素的个数为( )A .9B .6C .4D .2[答案] C[解析] N ={(0,0),(1,0),(1,1),(2,1)},按x 、y ∈M ,逐个验证得出N .10.(文)已知集合{1,2,3,…,100}的两个子集A 、B 满足:A 与B 的元素个数相同,且A ∩B 为空集.若n ∈A 时,总有2n +2∈B ,则集合A ∪B 的元素个数最多为( )A .62B .66C .68D .74[答案] B[解析] 若24到49属于A ,则50至100的偶数属于B 满足要求,此时A ∪B 已有52个元素;集合A 取1到10的数时,集合B 取4到22的偶数,由于A ∩B =∅,∴4,6,8∉A ,此时A ∪B 中将增加14个元素,∴A ∪B 中元素个数最多有52+14=66个.(理)设⊕是R 上的一个运算,A 是R 的非空子集.若对任意a 、b ∈A ,有a ⊕b ∈A ,则称A 对运算⊕封闭.下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是( )A .自然数集B .整数集C .有理数集D .无理数集[答案] C[解析] A :自然数集对减法,除法运算不封闭, 如1-2=-1∉N,1÷2=12∉N .B :整数集对除法运算不封闭,如1÷2=12∉Z .C :有理数集对四则运算是封闭的.D :无理数集对加法、减法、乘法、除法运算都不封闭. 如(2+1)+(1-2)=2,2-2=0,2×2=2,2÷2=1, 其运算结果都不属于无理数集. 二、填空题11.(文)已知集合A ={x |log 12x ≥3},B ={x |x ≥a },若A ⊆B ,则实数a 的取值范围是(-∞,c ],其中的c =______.[答案] 0[解析] A ={x |0<x ≤18},∵A ⊆B ,∴a ≤0,∴c =0.(理)(2010·江苏苏北四市、南京市调研)已知集合A ={0,2,a 2},B ={1,a },若A ∪B ={0,1,2,4},则实数a 的值为________.[答案] 2[解析] ∵A ∪B ={0,1,2,4},∴a =4或a 2=4,若a =4,则a 2=16,但16∉A ∪B ,∴a 2=4,∴a =±2,又-2∉A ∪B ,∴a =2.高考总复习含详解答案12.(2010·浙江萧山中学)在集合M ={0,12,1,2,3}的所有非空子集中任取一个集合,该集合恰满足条件“对∀x ∈A ,则1x∈A ”的概率是________.[答案]331[解析] 集合M 的非空子集有25-1=31个,而满足条件“对∀x ∈A ,则1x ∈A ”的集合A 中的元素为1,2或12,且12,2要同时出现,故这样的集合有3个:{1},{12,2},{1,12,2}.因此,所求的概率为331.13.(文)(2010·江苏,1)设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________.[答案] 1[解析] ∵A ∩B ={3},∴3∈B , ∵a 2+4≥4,∴a +2=3,∴a =1.(理)A ={(x ,y )|x 2=y 2} B ={(x ,y )|x =y 2},则A ∩B =________. [答案] {(0,0),(1,1),(1,-1)}.[解析] A ∩B =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ x 2=y2x =y 2={(0,0),(1,1),(1,-1)}. 14.若A ={x |22x -1≤14},B ={x |log 116x ≥12},实数集R 为全集,则(∁R A )∩B =________.[答案] {x |0<x ≤14}[解析] 由22x -1≤14得,x ≤-12,由log 116x ≥12得,0<x ≤14,∴(∁R A )∩B ={x |x >-12}∩{x |0<x ≤14}={x |0<x ≤14}.三、解答题15.设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +(a 2-5)=0}. (1)若A ∩B ={2},求实数a 的值; (2)若A ∪B =A ,求实数a 的取值范围. [解析] (1)A ={1,2},∵A ∩B ={2},∴2∈B , ∴4+4(a +1)+(a 2-5)=0,∴a =-1或-3. (2)∵A ∪B =A ,∴B ⊆A ,由Δ=4(a +1)2-4(a 2-5)=8(a +3)=0得,a =-3. 当a =-3时,B ={2},符合题意;当a <-3时,Δ<0,B =∅,满足题意; 当a >-3时,∵B ⊆A ,∴B =A ,故⎩⎪⎨⎪⎧2(a +1)=-3a 2-5=2,无解. 综上知,a ≤-3.16.(2010·广东佛山顺德区质检)已知全集U =R ,集合A ={x |x 2-x -6<0},B ={x |x 2+2x -8>0},C ={x |x 2-4ax +3a 2<0},若∁U (A ∪B )⊆C ,求实数a 的取值范围.[解析] A ={x |-2<x <3},B ={x |x <-4,或x >2},A ∪B ={x |x <-4,或x >-2}, ∁U (A ∪B )={x |-4≤x ≤-2},而C ={x |(x -a )(x -3a )<0} (1)当a >0时,C ={x |a <x <3a },显然不成立. (2)当a =0时,C =∅,不成立.(3)当a <0时,C ={x |3a <x <a },要使∁U (A ∪B )⊆C ,只需⎩⎪⎨⎪⎧3a <-4a >-2,即-2<a <-43.综上知实数a 的取值范围是⎝⎛⎭⎫-2,-43. 17.(文)设集合A ={(x ,y )|y =2x -1,x ∈N *},B ={(x ,y )|y =ax 2-ax +a ,x ∈N *},问是否存在非零整数a ,使A ∩B ≠∅?若存在,请求出a 的值;若不存在,说明理由.[解析] 假设A ∩B ≠∅,则方程组⎩⎪⎨⎪⎧y =2x -1y =ax 2-ax +a 有正整数解,消去y 得, ax 2-(a +2)x +a +1=0(*)由Δ≥0,有(a +2)2-4a (a +1)≥0, 解得-233≤a ≤233.因a 为非零整数,∴a =±1,当a =-1时,代入(*),解得x =0或x =-1, 而x ∈N *.故a ≠-1.当a =1时,代入(*),解得x =1或x =2,符合题意. 故存在a =1,使得A ∩B ≠∅, 此时A ∩B ={(1,1),(2,3)}.(理)(2010·厦门三中)已知数列{a n }的前n 项和为S n ,且(a -1)S n =a (a n -1)(a >0,n ∈N *). (1)求证数列{a n }是等比数列,并求a n ;(2)已知集合A ={x |x 2+a ≤(a +1)x },问是否存在实数a ,使得对于任意的n ∈N *,都有S n ∈A ?若存在,求出a 的取值范围;若不存在,说明理由.[解析] (1)①当n =1时,∵(a -1)S 1=a (a 1-1),∴a 1=a (a >0)高考总复习含详解答案②当n ≥2时,由(a -1)S n =a (a n -1)(a >0)得, (a -1)S n -1=a (a n -1-1)∴(a -1)a n =a (a n -a n -1),变形得:a na n -1=a (n ≥2),故{a n }是以a 1=a 为首项,公比为a 的等比数列, ∴a n =a n .(2)①当a ≥1时,A ={x |1≤x ≤a },S 2=a +a 2>a ,∴S 2∉A , 即当a ≥1时,不存在满足条件的实数a . ②0<a <1时,A ={x |a ≤x ≤1} ∵S n =a +a 2+…+a n =a1-a (1-a n ),∴S n ∈[a ,a1-a),因此对任意的n ∈N *,要使S n ∈A ,只需⎩⎪⎨⎪⎧0<a <1a 1-a ≤1,解得0<a ≤12,综上得实数a 的取值范围是(0,12].。
2024年新课标I卷高考数学真题(含答案)
2024年新课标I 卷高考数学真题及答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ( )A. {1,0}- B. {2,3}C. {3,1,0}-- D.{1,0,2}-2. 若1i 1zz =+-,则z =( )A. 1i-- B. 1i-+ C. 1i- D. 1i+3. 已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =( )A. 2- B. 1- C. 1D. 24. 已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=( )A. 3m -B. 3m -C.3m D. 3m5.( )A.B.C.D. 6. 已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是( )A. (,0]-∞ B. [1,0]- C. [1,1]- D.[0,)+∞7. 当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭交点个数为( )A. 3B. 4C. 6D. 88. 已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( )A. (10)100f > B. (20)1000f >C. (10)1000f < D. (20)10000f <二、选择题:本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对得 6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9. 为了解推动出口后亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A. (2)0.2P X >> B. (2)0.5P X ><的的C. (2)0.5P Y >> D. (2)0.8P Y ><10. 设函数2()(1)(4)f x x x =--,则( )A. 3x =是()f x 的极小值点B. 当01x <<时,()2()f x f x<C. 当12x <<时,4(21)0f x -<-< D. 当10x -<<时,(2)()f x f x ->11. 造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A. 2a =- B.点在C 上C. C 在第一象限的点的纵坐标的最大值为1D. 当点()00,x y 在C 上时,0042y x ≤+三、填空题:本题共 3 小题,每小题 5 分,共 15 分.12. 设双曲线2222:1(0,0)x y C a b a b -=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.13. 若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.14. 甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数的字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15. 记ABC 内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC的面积为3,求c .16. 已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭椭圆2222:1(0)x y C a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.17. 如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --,求AD .18. 已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;为(3)若()2f x >-当且仅当12x <<,求b 的取值范围.19. 设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.参考答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.的一、选择题:本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ( )A. {1,0}- B. {2,3}C. {3,1,0}-- D.{1,0,2}-【答案】A 【解析】【分析】化简集合A ,由交集的概念即可得解.【详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2. 若1i 1zz =+-,则z =( )A. 1i -- B. 1i-+ C. 1i- D. 1i+【答案】C 【解析】【分析】由复数四则运算法则直接运算即可求解.【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.3. 已知向量(0,1),(2,)a b x ==,若(4)b b a ⊥-,则x =( )A. 2- B. 1- C. 1D. 2【答案】D 【解析】【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.4. 已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=( )A. 3m - B. 3m -C.3m D. 3m【答案】A 【解析】【分析】根据两角和的余弦可求cos cos ,sin sin αβαβ的关系,结合tan tan αβ的值可求前者,故可求()cos αβ-的值.【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.5. ( )A. B. C. D. 【答案】B 【解析】【分析】设圆柱的底面半径为r ,根据圆锥和圆柱的侧面积相等可得半径r 的方程,求出解后可求圆锥的体积.【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r=即=,故3r=,故圆锥的体积为1π93⨯=.故选:B.6. 已知函数为22,0()e ln(1),0xx ax a xf xx x⎧---<=⎨++≥⎩,在R上单调递增,则a取值的范围是()A. (,0]-∞ B. [1,0]- C. [1,1]- D. [0,)+∞【答案】B【解析】【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【详解】因为()f x在R上单调递增,且0x≥时,()()e ln1xf x x=++单调递增,则需满足()221e ln1aa-⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a-≤≤,即a的范围是[1,0]-.故选:B.7. 当[0,2]xπÎ时,曲线siny x=与2sin36y xπ⎛⎫=-⎪⎝⎭的交点个数为()A. 3B. 4C. 6D. 8【答案】C【解析】【分析】画出两函数在[]0,2π上的图象,根据图象即可求解【详解】因为函数siny x=的的最小正周期为2πT=,函数π2sin 36y x ⎛⎫=-⎪⎝⎭的最小正周期为2π3T =,所以在[]0,2πx ∈上函数π2sin 36y x ⎛⎫=-⎪⎝⎭有三个周期的图象, 在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C8. 已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( )A. (10)100f > B. (20)1000f >C. (10)1000f < D. (20)10000f <【答案】B 【解析】【分析】代入得到(1)1,(2)2f f ==,再利用函数性质和不等式的性质,逐渐递推即可判断.【详解】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用(1)1,(2)2f f ==,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.二、选择题:本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对得 6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9. 为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A. (2)0.2P X >>B. (2)0.5P X ><C. (2)0.5P Y >>D. (2)0.8P Y ><【答案】BC 【解析】【分析】根据正态分布的3σ原则以及正态分布的对称性即可解出.【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC .10. 设函数2()(1)(4)f x x x =--,则( )A. 3x =是()f x 的极小值点B. 当01x <<时,()2()f x f x<C. 当12x <<时,4(21)0f x -<-< D. 当10x -<<时,(2)()f x f x ->【答案】ACD 【解析】【分析】求出函数()f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数()f x 在()1,3上的值域即可判断C ;直接作差可判断D.【详解】对A,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B ,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x>,错误;对C ,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.11. 造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A. 2a =- B.点在C 上C. C 在第一象限的点的纵坐标的最大值为1D. 当点()00,x y 在C 上时,0042y x ≤+【答案】ABD 【解析】【分析】根据题设将原点代入曲线方程后可求a ,故可判断A 的正误,结合曲线方程可判断B 的正误,利用特例法可判断C 的正误,将曲线方程化简后结合不等式的性质可判断D 的正误.【详解】对于A :设曲线上的动点(),P x y ,则2x >-4a =,4a =,解得2a =-,故A 正确.对于B24=,而2x >-,()24x+=.当0x y ==()2844=-=,故()在曲线上,故B 正确.对于C :由曲线的方程可得()()2221622y x x =--+,取32x =,则2641494y =-,而64164525624510494494494---=-=>⨯,故此时21y >,故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D :当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =--≤++,故0004422y x x -≤≤++,故D 正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.三、填空题:本题共 3 小题,每小题 5 分,共 15 分.12. 设双曲线2222:1(0,0)x y C a b a b -=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.【答案】32【解析】【分析】由题意画出双曲线大致图象,求出2AF ,结合双曲线第一定义求出1AF ,即可得到,,a b c 的值,从而求出离心率.【详解】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x ya b-=得2b y a =±,即22,,,b b Ac B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225b AF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25b a=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:3213. 若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.【答案】ln 2【解析】【分析】先求出曲线e xy x =+在()0,1的切线方程,再设曲线()ln 1y x a =++的切点为()()0,ln 1x xa ++,求出y ',利用公切线斜率相等求出0x ,表示出切线方程,结合两切线方程相同即可求解.【详解】由e xy x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e xy x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 214. 甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.【答案】12##0.5【解析】【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382kk k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲总得分不小于2的概率为2312p p +=.故答案为:12.【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15. 记ABC 内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC的面积为3,求c .【答案】(1)π3B = (2)【解析】【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B=得cos B 值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【小问1详解】由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 2a b c C ab +-===,因为()0,πC ∈,所以sin 0C >,的的从而sin C===又因为sin C B=,即1cos2B=,注意到()0,πB∈,所以π3B=.小问2详解】由(1)可得π3B=,cos C=,()0,πC∈,从而π4C=,ππ5ππ3412A=--=,而5πππ1sin sin sin12462A⎛⎫⎛⎫==+=+=⎪ ⎪⎝⎭⎝⎭由正弦定理有5πππsin sin sin1234a b c==,从而,a b====,由三角形面积公式可知,ABC的面积可表示为211sin22ABCS ab C===,由已知ABC面积为323=+,所以c=16. 已知(0,3)A和33,2P⎛⎫⎪⎝⎭为椭圆2222:1(0)x yC a ba b+=>>上两点.(1)求C的离心率;(2)若过P的直线l交C于另一点B,且ABP的面积为9,求l的方程.【答案】(1)12(2)直线l的方程为3260x y--=或20x y-=.【的【解析】【分析】(1)代入两点得到关于,a b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设()00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx =+,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x -=-,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【小问1详解】由题意得2239941b a b =⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ===.【小问2详解】法一:3312032APk -==--,则直线AP 的方程为132y x =-+,即260x y +-=,AP ==,由(1)知22:1129x y C +=,设点B 到直线AP 的距离为d,则d ==则将直线AP沿着与AP 单位即可,此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ++=,6C =或18C =-,当6C =时,联立221129260x y x y ⎧+=⎪⎨⎪++=⎩,解得03x y =⎧⎨=-⎩或332x y =-⎧⎪⎨=-⎪⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,当()0,3B -时,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当33,2B ⎛⎫--⎪⎝⎭时,此时12lk =,直线l 的方程为12y x =,即20x y -=,当18C =-时,联立2211292180x y x y ⎧+=⎪⎨⎪+-=⎩得22271170y y -+=,227421172070∆=-⨯⨯=-<,此时该直线与椭圆无交点.综上直线l 的方程为3260x y --=或20x y -=.法二:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离d =设()00,B x y22001129x y ⎪+=⎪⎩,解得00332x y =-⎧⎪⎨=-⎪⎩或0003x y =⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一.法三:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离d =设(),3sin B θθ,其中[)0,2θ∈π联立22cos sin 1θθ+=,解得cos 1sin 2θθ⎧=⎪⎪⎨⎪=-⎪⎩或cos 0sin 1θθ=⎧⎨=-⎩,即()0,3B -或33,2⎛⎫-- ⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B -,16392PAB S =⨯⨯= ,符合题意,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠-,解得0x =或22443kx k -=+,0k ≠,12k ≠-,令22443k x k -=+,则2212943k y k -+=+,则22224129,4343k k B k k ⎛⎫--+ ⎪++⎝⎭同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离d =,解得32k =,此时33,2B ⎛⎫--⎪⎝⎭,则得到此时12lk =,直线l 的方程为12y x =,即20x y -=,综上直线l 的方程为3260x y --=或20x y -=.法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x -=-,令()()1122,,,P x y B x y ,223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +--+--=,()()()2222Δ24124433636270k kk k k =--+-->,且AP k k ≠,即12k ≠-,21222122241243,36362743k k x x k PB k k x x k ⎧-+=⎪⎪+==⎨--⎪=⎪+⎩,A 到直线PB距离192PABd = ,12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =-,即3260x y --=或20x y -=.法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当直线l 斜率存在时,设3:(3)2l y k x =-+,设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫-+⎪⎝⎭,联立223323436y kx k x y ⎧=-+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,()2223348336362702k xk k x k k ⎛⎫+--+--= ⎪⎝⎭,其中()()22223Δ8343436362702k k k k k ⎛⎫=--+--> ⎪⎝⎭,且12k ≠-,则2222363627121293,3434B B k k k k x x k k----==++,则211312183922234P B k S AQ x x k k +=-=+=+,解的12k =或32k =,经代入判别式验证均满足题意.则直线l 为12y x =或332y x =-,即3260x y --=或20x y -=.17. 如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --,求AD .【答案】(1)证明见解析(2【解析】【分析】(1)先证出AD ⊥平面PAB ,即可得AD AB ⊥,由勾股定理逆定理可得BC AB ⊥,从而 //AD BC ,再根据线面平行的判定定理即可证出;(2)过点D 作DE AC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,根据三垂线法可知,DFE ∠即为二面角A CP D --的平面角,即可求得tan DFE ∠=AD的长度表示出,DE EF ,即可解方程求出AD .【小问1详解】(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥, 根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .【小问2详解】如图所示,过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角A CP D --的平面角,即sin DFE ∠=tan DFE ∠=因为AD DC ⊥,设AD x =,则CD =,由等面积法可得,DE =,又242xCE -==,而EFC 为等腰直角三角形,所以EF =,故tan DFE∠==x =AD =.18. 已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.【答案】(1)2-(2)证明见解析 (3)23b ≥-【解析】【分析】(1)求出()min 2f x a '=+后根据()0f x '≥可求a 的最小值;(2)设(),P m n 为()y f x =图象上任意一点,可证(),P m n 关于()1,a 的对称点为()2,2Q m a n --也在函数的图像上,从而可证对称性;(3)根据题设可判断()12f =-即2a =-,再根据()2f x >-在()1,2上恒成立可求得23b ≥-.【小问1详解】0b =时,()ln2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,【小问2详解】()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .【小问3详解】因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln21102x x b x x +-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln 201t t bt t+-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311tbtbg t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.19. 设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.【答案】(1)()()()1,2,1,6,5,6 (2)证明见解析 (3)证明见解析【解析】【分析】(1)直接根据(),i j -可分数列的定义即可;(2)根据(),i j -可分数列的定义即可验证结论;(3)证明使得原数列是(),i j -可分数列的(),i j 至少有()21m m +-个,再使用概率的定义.【小问1详解】首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d-=+=+',得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可.换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(),i j 就是()()()1,2,1,6,5,6.【小问2详解】由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组.(如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.【小问3详解】定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立,则数列1,2,...,42m +一定是(),i j -可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k ->,故21k k >.由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=.但这导致2112k k -=,矛盾,所以,i B j A ∈∈.设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个.所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>==++++++++.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.。
集合-【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)
【题目来源】2021年新高考全国Ⅱ卷·第2题
6.(2021年新高考Ⅰ卷·第1题)设集合 , ,则 ()
A. B. C. D.
【答案】B
解析:由题设有 ,故选B.
【题目栏目】集合\集合的基本运算
【题目来源】2021年新高考Ⅰ卷·第1题
7.(2020年新高考I卷(山东卷)·第1题)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()
【解析】 或 , ,
故 ,故选A.
【点评】本题主要考查一元二次不等式,一元二次不等式的解法,集合的运算,属于基础题.
本题考点为集合的运算,为基础题目,难度偏易.不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.
【题目栏目】集合\集合的基本运算
【题目来源】2019年高考数学课标全国Ⅱ卷理科·第1题
【题目栏目】集合\集合的基本运算
【题目来源】2021年高考全国甲卷理科·第1题
11.(2020年高考数学课标Ⅰ卷理科·第2题)设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()
A.–4B.–2C.2D.4
【答案】B
【解析】求解二次不等式 可得: ,
求解一次不等式 可得: .
A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}
【答案】A
解析:由题意可得: ,则 .
故选:A
【点睛】本题主要考查并集、补集的定义与应用,属于基础题.
【题目栏目】集合\集合的基本运算
【题目来源】2020年高考数学课标Ⅱ卷理科·第1题
13.(2020年高考数学课标Ⅲ卷理科·第1题)已知集合 , ,则 中元素的个数为()
(完整版)高考数学《集合》专项练习(选择题含答案)
《集合》专项练习参考答案1.(2016全国Ⅰ卷,文1,5分)设集合,,则A ∩B =( ) (A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7}【解析】集合A 与集合B 的公共元素有3,5,故}5,3{=B A I ,故选B .2.(2016全国Ⅱ卷,文1,5分)已知集合,则A ∩B =( ) (A ) (B ) (C ) (D )【解析】由29x <得33x -<<,所以{|33}B x x =-<<,因为{1,2,3}A =,所以{1,2}A B =I ,故选D .3.(2016全国Ⅲ卷,文1,5分)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð=( )(A ){48}, (B ){026},, (C ){02610},,, (D ){0246810},,,,, 【解析】由补集的概念,得{0,2,6,10}A B =ð,故选C .4.(2016全国Ⅰ卷,理1,5分)设集合,,则A ∩B =( )(A ) (B ) (C ) (D )【解析】对于集合A :解方程x 2-4x +3=0得,x 1=1,x 2=3,所以A ={x |1<x <3}(大于取两边,小于取中间).对于集合B :2x -3>0,解得x >23.3{|3}2A B x x ∴=<<I .选D .5.2016全国Ⅱ卷,理1,5分)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( )(A )(31)-, (B )(13)-,(C )(1,)∞+(D )(3)∞--, 【解析】要使复数z 对应的点在第四象限,应满足3010m m +>⎧⎨-<⎩,解得31m -<<,故选A .6.(2016全国Ⅲ卷,理1,5分)设集合{}{}(x 2)(x 3)0,T 0S x x x =--≥=>,则S ∩T =( )(A) [2,3] (B)(-∞ ,2]U [3,+∞)(C) [3,+∞) (D)(0,2]U [3,+∞)7.(2016北京,文1,5分)已知集合{|24},{|3>5}A x x B x x x =<<=<或,则A B =I ( )(A ){|2<<5}x x (B ){|<45}x x x >或 (C ){|2<<3}x x (D ){|<25}x x x >或【解析】画数轴得,,所以,故选C .8.(2016北京,理1,5分)已知集合,,则( )(A )(B )(C )(D )【解析一】对于集合A :(解绝对值不等的常用方法是两边同时平方)|x |<2,两边同时平方{1,3,5,7}A ={|25}B x x =≤≤{123}A =,,,2{|9}B x x =<{210123}--,,,,,{21012}--,,,,{123},,{12},2{|430}A x x x =-+<{|230}B x x =->3(3,)2--3(3,)2-3(1,)23(,3)2(2,3)A B =I {|||2}A x x =<{1,0,1,2,3}B =-A B =I {0,1}{0,1,2}{1,0,1}-{1,0,1,2}-得x 2<4,解方程x 2=4得,x 1=-2,x 2=2,所以A ={x |-2<x <2}(大于取两边,小于取中间).所以A ∩B ={-1,0,1}.故选C .【解析二】对于集合A :(绝对值不等式解法二:|x |<2⇔-2<x <2).A ={x |-2<x <2}.所以A ∩B ={-1,0,1}.故选C .9.(2016上海,文理1,5分)设x ∈R ,则不等式31x -<的解集为_______.【答案】(24),【解析】试题分析:421311|3|<<⇔<-<-⇔<-x x x ,故不等式1|3|<-x 的解集为)4,2(.【解析一】对不等式31x -<:(解绝对值不等的常用方法是两边同时平方)|x -3|<1,两边同时平方得(x -3)2<1,解方程(x -3)2=1得,x 1=2,x 2=4,所以A ={x |2<x <4}.【解析二】对于集合A :(绝对值不等式解法二:|x -3|<1⇔-1<x -3<1,解得2<x <4).A ={x |2<x <4}.10.(2016山东,文1,5分)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B U ð=(A ){2,6} (B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6}【答案】A11.(2016山东,理2,5分)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A ∪B =( )(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞【答案】C【解析】对于集合A :∵y =2x >0,∴A ={y |y >0}.对于集合B :∵x 2-1=0,解得x =±1,∴B ={x |-1<x <1}(大于取两边,小于取中间).∴A ∪B =(1,)-+∞12.(2016四川,文2,5分)设集合A ={x |1≤x ≤5},Z 为整数集,则集合A∩Z 中元素的个数是(A)6 (B)5 (C)4 (D)3【答案】B【解析】{1,2,3,4,5}A =Z I ,由Z 为整数集得Z ={…-3,-2,-1,0,1,2,3…}.故A Z I 中元素的个数为5,选B .13.(2016四川,理1,5分)设集合{|22}A x x =-≤≤,Z 为整数集,则A I Z 中元素的个数是( )(A )3(B )4(C )5(D )6【答案】C【解析】由题意,知{2,1,0,1,2}A =--Z I ,由Z 为整数集得Z ={…-3,-2,-1,0,1,2,3…}.故A I Z 中元素的个数为5,选C .14.(2016天津,文1,5分)已知集合}3,2,1{=A ,},12|{A x x y y B ∈-==,则A B I = (A )}3,1{ (B )}2,1{ (C )}3,2{ (D )}3,2,1{ 【答案】A【解析】∵},12|{A x x y y B ∈-==,∴当x =1时,y =2×1-1=1;当x =2时,y =2×2-1=3;当x =3时,y =2×3-1=5.∴{1,3,5},{1,3}B A B ==I .选A .15.(2016天津,理1,5分)已知集合}{4,3,2,1=A ,}{A x x y y B ∈-==,23,则=B A I (A )}{1 (B )}{4 (C )}{3,1 (D )}{4,1 【答案】D 【解析】∵}{A x x y y B ∈-==,23,∴当x =1时,y =3×1-2=1;当x =2时,y =3×2-2=4;当x =3时,y =3×3-2=7;当x =4时,y =4×3-2=10.∴{14710}{14}B =A B =I ,,,,,.选D .16.(2016浙江,文1,5分)已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U PQ U ()ð=( ) A .{1} B .{3,5} C .{1,2,4,6} D .{1,2,3,4,5}【答案】C17.(2016浙江,理1,5分)已知集合P ={x ∈R |1≤x ≤3},Q ={x ∈R |x 2≥4},则P ∪(C R Q )=( )A .[2,3]B .(-2,3]C .[1,2)D .(−∞,−2]∪[1,+∞)【答案】B【解析】对于集合Q :∵x 2=4,解得x =±2,∴B ={x |x ≤-2或x ≥2}(大于取两边,小于取中间).18.(2016江苏,文理1,5分)已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B I _______.【答案】{}1,2-【解析】{}{}{}1,2,3,6231,2A B x x =--<<=-I I .故答案应填:{}1,2-19.(2015全国Ⅰ卷,文1,5分)已知集合A ={x |x =3n +2,n ∈N},B ={6,8,10,12,14},则集合A∩B 中元素的个数为( )A .5B .4C .3D .2【答案】D【解析】由已知得A ={2,5,8,11,14,17,…},又B ={6,8,10,12,14},所以A∩B ={8,14}.20.(2015全国Ⅱ卷,文1,5分)已知集合A ={x |-1<x <2},B ={x |0<x <3},则A ∪B =( )A .(-1,3)B .(-1,0)C .(0,2)D .(2,3)【答案】A【解析】因为A =(-1,2),B =(0,3),所以A ∪B =(-1,3),故选A .21.(2014全国Ⅰ卷,文1,5分)已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M∩N =( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3)【答案】B【解析】M∩N ={x |-1<x <3}∩{x |-2<x <1}={x |-1<x <1}.22.(2014全国Ⅱ卷,文1,5分)已知集合A ={-2,0,2},B ={x |x 2-x -2=0},则A∩B =( )A .∅B .{2}C .{0}D .{-2}【答案】B【解析】∵集合A ={-2,0,2},B ={x |x 2-x -2=0}={2,-1},∴A∩B ={2},故选B .23.(2013全国Ⅰ卷,文1,5分)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A},则A∩B=( )A .{1,4}B .{2,3}C .{9,16}D .{1,2}【答案】A【解析】∵B ={x |x =n 2,n ∈A}={1,4,9,16},∴A∩B ={1,4},故选A .24.(2013全国Ⅱ卷,文1,5分)已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M∩N =( )A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D .{-3,-2,-1}【答案】C【解析】由题意得M∩N ={-2,-1,0}.选C .25.(2012全国卷,文1,5分)已知集合A ={x |x 2-x -2<0},B ={x |-1<x <1},则( )(A )A ⊂≠B (B )B ⊂≠A (C )A =B (D )A∩B =∅【答案】B【解析】A ={x |-1<x <2},B ={x |-1<x <1},则B ⊂≠A ,故选B .26.(2011全国卷,文1,5分)已知集合M ={0,1,2,3,4},N ={1,3,5},P =M∩N ,则P 的子集共有( )A .2个B .4个C .6个D .8个【答案】B【解析】由题意得P =M∩N ={1,3},∴P 的子集为⌀,{1},{3},{1,3},共4个.27.(2010全国卷,文1,5分)已知集合,则 (A )(0,2)(B )[0,2](C )|0,2|(D )|0,1,2|【解析】,,选D28.(2009全国卷,文2,5分)设集合A ={4,5,7,9},B ={3,4,7,8,9},全集,则集合中的元素共有( )(A)3个 (B )4个 (C )5个 (D )6个【解析】,.故选A .29.(2008全国卷,文1,5分)已知集合M ={x |(x +2)(x -1)<0},N ={x |x +1<0},则M∩N =( )A.(-1,1)B.(-2,1)C.(-2,-1)D.(1,2)【答案】C【解析】易求得{}{}|21,|1=-<<=<-M x x N x x ∴{}|21=-<<-I M N x x30.(2007全国卷,文1,5分)设{|210}S x x =+>,{|350}T x x =-<,则S T ⋂=A .∅B .1{|}2x x <C .5{|}3x x >D .15{|}23x x -<< 【答案】D .2,,4,|A x x x R B x x Z =≤∈=∈A B =I {}|22,{0,1,2}A x x B =-≤≤={}0,1,2A B =I U A B =U ()U A B I ð{3,4,5,7,8,9}A B =U {4,7,9}(){3,5,8}U A B A B =∴=I I ð。
2024年高考数学试题(新课标I卷)解析版
2024年高考数学试题(新课标I 卷)一、选择题:本大题共8小题,每小题5分,共计40分.每小题给出的四个选项中,只有一个选项是正确的.1.已知集合A =x |-5<x 3<5 ,B ={-3,-1,0,2,3},则A ∩B =A.{-1,0} B.{2,3}C.{-3,-1,0}D.{-1,0,2}【答案】A【解析】A =(-35,35)⇒A ∩B ={-1,0},选A.2.若zz -1=1+i ,则z =A.-1-i B.-1+iC.1-iD.1+i【答案】C【解析】z z -1=1+i ⇒z =1+i i =1-i ,选C.3.已知向量a =0,1 ,b =2,x ,若b ⊥b -4a ,则x =A.-2 B.-1C.1D.2【答案】D【解析】b ⊥b -4a ⇒2×2+x (x -4)=0⇒x =2,选D.4.已知cos α+β =m ,tan αtan β=2,则cos α-β =A.-3m B.-m3C.m 3D.3m【答案】A【解析】αcos βcos -αsin βsin =m ,αsin βsin =2αcos βcos ⇒αcos βcos =-m ,αsin βsin =-2m ,所以cos α-β =αcos βcos +αsin βsin =-3m ,选A.5.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为A.23π B.33πC.63πD.93π【答案】B【解析】如图所示,h =3,圆锥母线长l =r 2+3,h h rrl由题知23πr =πr r 2+3⇒r =3⇒V 锥=13×π×32×3=33π.选B.6.已知函数f x =-x 2-2ax -a ,x <0,e x +ln x +1 ,x ≥0 在R 上单调递增,则实数a 的取值范围是A.(-∞,0]B.-1,0C.-1,1D.[0,+∞)【答案】B 【解析】由题知-a ≥0,-a ≤1⇒-1≤a ≤0,选B.7.当x ∈0,2π 时,曲线y =sin x 与y =2sin (3x -π6)的交点个数为A.3 B.4C.6D.8【答案】C【解析】作出两个函数的图象,2π3π2ππ2Oxy 由图知,两个函数的交点个数为6,选C.【总结】五点作图法,处理作图,好像没有其他解法.8.已知函数f x 的定义域为R ,f x >f x -1 +f x -2 ,且当x <3时,f x =x ,则下列结论中一定正确的是A.f 10 >100 B.f 20 >1000C.f 10 <1000D.f 20 <10000【答案】B【解析】由已知得f (1)=1,f (2)=2,思路一:常规推理+计算因为f x >f x -1 +f x -2 ,所以f (3)>3,f (4)>5,f (5)>8,f (6)>13,f (7)>21,f (8)>34,f (9)>55,f (10)>89,f (11)>144,f (12)>233,f (13)>377,f (14)>610,f (15)>987,f (16)>1597,f (17)>2584,f (18)>4181,f (19)>6765,f (20)>10946,⋯,所以f (20)>f (19)>⋯>f (16)>1000,选B.思路二:推理+估算由题知,当x >3时,f (x )上不封顶,C ,D 错误;f (3)>3,f (4)>5,f (5)>8,f (6)>13,f (7)>21,f (8)>34,f (9)>55,f (10)>89,当x >4时,f (x )>f x -1 +f x -2 >2f (x -2),所以f (20)>2f (18)>22f (16)>⋯>25f (10)>1000,A 错误,B 正确;故选B.【总结】需要耐心的计算.二、多选题:本大题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值x=2.1,样本方差s 2=0.01,已知该种植区以往的亩收入X 服从正态分布N 1.8,0.12 ,假设推动出口后的亩收入Y 服从正态分布x ,s 2,则(若随机变量Z 服从正态分布N μ,σ2 ,则P Z <μ+σ ≈0.8413)A.P X >2 >0.2 B.P X >2 <0.5C.P Y >2 >0.5 D.P Y >2 <0.8【答案】BC【解析】画个图,对于X :μ=1.8,σ=0.1;对于Y :μ=2.1,σ=0.1,1.81.7 1.92.12.0 2.22.0由题知P (X <1.9)=0.8413,所以P (X >2)<P (x >1.9)=0.1587<0.2<0.5,A 错误,B 正确;因为P (Y <2.2)=0.8413,所以P Y >2 =P Y <2.2 =0.8413>0.8>0.5,C 正确,D 错误;故选BC.10.设函数f x =x -1 2x -4 ,则A.x =3是f x 的极小值点B.当0<x <1时,f x <f x 2C.当1<x <2时,-4<f 2x -1 <0D.当-1<x <0时,f 2-x >f x【答案】ACD【解析】f '(x )=2(x -1)(x -4)+(x -1)2=3(x -1)(x -3),作出f (x )的图象如图所示,x =1x =3所以x =1是f x 的极大值点,x =3是f x 的极小值点,A 正确;当0<x <1时,f (x )在(0,1)↗,因为x >x 2,所以f (x )>f (x 2),B 错误;当1<x <2时,t =2x -1∈(1,3),因为f (t )在(1,3)↘,所以f (t )∈(-4,0),即-4<f 2x -1 <0,C 正确;当-1<x <0时,x -1<0,f 2-x -f x =(x -1)2(-2-x )-x -1 2x -4 =-2(x -1)3>0,所以f 2-x >f x ,D 正确;综上,选ACD.【总结】选项B 用了单调性法,选项C 转化为值域,选项D 用了最常见的作差法.11.造型Ժ可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O ,且C 上的点满足横坐标大于-2,到点F 2,0 的距离与到定直线x =a a <0 的距离之积为4,则OxyFA.a =-2B.点22,0 在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点x 0,y 0 在C 上时,y 0≤4x 0+2【答案】ABD 【解析】如图所示,OxyFx =aP对于A ,由题知,O 到点F 的距离等于与到定直线x =a a <0 的距离之积为4,所以(-a )∙2=4,解得a =-2,A 正确;对于B ,设点P (x ,y )是曲线C 上任意一点,则(x +2)(x -2)2+y 2=4,即(x -2)2+y 2=(4x +2)2,因为(22-2)2=(422+2)2,所以点22,0 在C 上,B 正确;对于C ,因为y 2=(4x +2)2-(x -2)2,记f (x )=(4x +2)2-(x -2)2,x >0,所以f '(x )=-32(x +2)3-2(x -2)=2[-16(x +2)3+2-x ],发现f (2)=1,f '(2)=-12<0,所以存在0<x 1<2,使得当x ∈(x 1,2)时,f '(x )<0,所以f (x )在(x 1,2)↘,所以f (x )>f (2)=1,即f (x )的最大值一定大于1,C 错误;对于D ,y 02=(4x 0+2)2-(x 0-2)2≤(4x 0+2)2,所以y 0≤4x 0+2,D 正确;综上,选ABD.【总结】本题相对要难一点,选出来一个答案不难.三、填空题:本大题共3小题,每小题5分,共计15分.12.设双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,过F 2作平行于y 轴的直线交C 于A ,B两点,若F 1A =13,AB =10,则C 的离心率为.【答案】32【解析】由题知|F 1F 2|=2c =12,F 2A =b 2a =5,c 2=a 2+b2 ,解得a =4,b =25,c =6,所以C 的离心率e =c a =32.13.若曲线y =e x +x 在点0,1 处的切线也是曲线y =ln x +1 +a 的切线,则a =.【答案】2ln 【解析】设f (x )=e x +x ,g (x )=ln x +1 +a ,则f '(x )=e x +1,g '(x )=1x +1,即f '(0)=2,所以f (x )在(0,1)处的切线方程为l :y -1=2(x -0),即y =2x +1,设l 与g (x )相切于点A (x 0,(x 0+1)ln +a ),则g '(x 0)=1x 0+1=2,解得x 0=-12,所以(-12+1)ln +a =0,解得a =2ln .14.甲乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8.两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上的数字大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用),则四轮比赛后,甲的总得分不小于2的概率为.【答案】12【解析】因为甲出1一定输,要使甲的总分不小于2,则甲得3分或得2分.第一类:甲得3分只有一种可能:1-8,3-2,5-4,7-6.第二类:甲得2分(1)甲出3和出5赢,其余输,共1种:3-2,5-4,1-6,7-8;(2)甲出3和出7赢,其余输,共3种:3-2,7-6,1-4,5-8;3-2,7-4,1-6,5-8;3-2,7-4,1-8,5-6;(3)甲出5和出7赢,其余输,共7种:5-4,7-6,1-2,3-8;5-4,7-2,1-6,3-8;5-4,7-2,1-8,3-6;5-2,7-6,1-4,3-8;5-2,7-6,1-8,3-4;5-2,7-4,1-6,3-8;5-2,7-4,1-8,3-6;所以甲的总得分不小于2的共有12种可能,所以所求的概率p =12A 44=12.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin C =2cos B ,a 2+b 2-c 2=2ab .(1)求B ;(2)若△ABC 的面积为3+3,求c .【答案】(1)B =π3;(2)2 2.【解析】(1)因为a 2+b 2-c 2=2ab ,所以C cos =a 2+b 2-c 22ab =2ab 2ab=22,因为0<C <π,所以C =π4,又sin C =2cos B ,所以22=2B cos ,即B cos =12,因为0<B <π,所以B =π3.(2)方法一:由(1)知A =π-B -C =5π12,所以A sin =(π6+π4)sin =6+24,因为a A sin =b B sin =cCsin =k >0,所以S =12ac B sin =12k 2A sin B sin C sin =12k 2∙6+24∙32∙22=3+3,所以k 2=16,即k =4,所以c =k C sin =4×22=2 2.16.(15分)已知A 0,3 和P (3,32)为椭圆C :x 2a 2+y 2b2=1a >b >0 上两点.(1)求椭圆C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求直线l 的方程.【答案】(1)12;(2)x -2y =0或3x -2y -6=0.【解析】(1)由题知b =3,9a 2+94b2=1,解得a =23,b =3 ,所以c =a 2-b 2=3,所以椭圆C的离心率e=ca=12.(2)由(1)知,椭圆C的方程为x212+y29=1.O xyPABD当直线l的斜率不存在时,B(3,-32),此时S=92,不满足题意;当直线l的斜率存在时,设l:y=k(x-3)+3 2,代入x212+y29=1,整理得(3+4k2)x2-8k(3k-32)x+36k2-36k-27=0,设B(x1,y1),由韦达定理得3+x1=8k(3k-32)3+4k2,3x1=36k2-36k-273+4k2所以|BP|=1+k2|x1-3|=1+k2(8k(3k-32)3+4k2)2-364k2-4k-33+4k2=43k2+13k2+9k+2744k2+3,点A到直线PB的距离h2=|3k+32|k2+1,所以△ABP的面积S=12|BP|∙h2=|3k+32|k2+1=9,解得k=12或32,所以直线l的方程为y=12x或y=32x-3.综上,直线l的方程为x-2y=0或3x-2y-6=0.17.(15分)如图,四棱锥P-ABCD中,P A⊥底面ABCD,P A=AC=2,BC=1,AB=3.(1)若AD⊥PB,证明:AD⎳平面PBC;(2)若AD⊥DC,且二面角A-CP-D的正弦值为427,求AD.AB CDP 【答案】(1)略;(2)3.【解析】(1)证明:因为P A ⊥底面ABCD ,BC ⊂底面ABCD ,所以P A ⊥BC ,P A ⊥AD ,因为AC =2,BC =1,AB =3,所以AB 2+BC 2=AC 2,即AB ⊥BC ,又P A ∩AB =A ,P A ,AB ⊂平面P AB ,所以BC ⊥平面P AB ,因为PB ⊥AD ,P A ∩PB =P ,P A ,PB ⊂平面P AB ,所以AD ⊥平面P AB ,所以AD ⎳BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC ,所以AD ⎳平面PBC .(2)过D 作DQ ⊥平面ABCD ,以DA ,DC ,DQ 分别为x ,y ,z 轴,建立空间直角坐标系D -xyz ,A BCDPz xyQ设DA =a ,DC =b ,则D (0,0,0),A (a ,0,0),C (0,b ,0),P (a ,0,2),且a 2+b 2=4,①所以AC =(-a ,b ,0),AP =(0,0,2),DC =(0,b ,0),DP =(a ,0,2),设平面APC 的一个法向量为n 1=(x 1,y 1,z 1),则AC∙n 1=0,AP ∙n 1=0 ,即-ax 1+by 1=0,2z 1=0 ,令x 1=b ,则n 1=(b ,a ,0),设平面PCD 的一个法向量为n 2=(x 2,y 2,z 2),则DC∙n 2=0,DP ∙n 2=0 ,即by 2=0,ax 1+2z 1=0 ,令x 1=2,则n 2=(2,0,-a ),所以‹n 1,n 2›cos =n 1∙n 2|n 1||n 2|=2ba 2+b 2a 2+4=ba 2+4,设二面角A -CP -D 的平面角为θ,则θsin =427,所以|θcos |=|‹n 1,n 2›cos |=b a 2+4=17,即7b 2=a 2+4,②由①②得a =3,b =1,所以AD =a = 3.【总结】本题建系可以设两个变量,也可以设一个变量,注意运算.18.(17分)已知函数f x =lnx2-x+ax +b x -1 3.(1)若b =0,且f x ≥0,求a 的最小值;(2)证明:曲线y =f x 是中心对称图形;(3)若f x >-2当且仅当1<x <2,求b 的取值范围.【答案】(1)-2;(2)略;(3)[-23,+∞).【解析】(1)由x2-x>0,得0<x <2,所以f (x )的定义域为(0,2),当b =0时,f (x )=ln x 2-x +ax ,f '(x )=1x +12-x +a ≥0,因为1x +12-x ≥(1+1)2x +2-x =2,当且仅当x =1时取等号,所以f '(x )min =2+a ≥0,解得a ≥-2,所以a 的最小值为-2;(2)发现f (1)=a ,猜测f (x )关于(1,a )对称,下面尝试证明此结论,因为f (1+x )+f (1-x )=ln 1+x 1-x +a (1+x )+bx 3+ln 1-x1+x+a (1-x )+b -x 3=2a ,所以f (x )关于(1,a )对称.(3)当且仅当1<x <2时f (x )>-2,则f (1)=a =-2,所以f (x )=ln x2-x-2x +b x -1 3,f '(x )=1x +12-x -2+3b (x -1)2=(x -1)22(2-x )+3b (x -1)2=(x -1)2[2x (2-x )+3b ]~2x (2-x )+3b ,发现f '(1)=2+3b ≥0,则b ≥-23,当b ≥-23时,2x (2-x )+3b ≥2x (2-x )-2=2(x -1)22(2-x )≥0,即f '(x )≥0,所以f (x )在(0,2)↗,因为f (1)=-2,所以f (x )>-2=f (1)⇔1<x <2,符合题意;当b <-23时,则2x (2-x )∈[2,+∞),f '(x )∈[3b +2,+∞),存在1<x 1<2,使得当x ∈(1,x 1)时,f '(x )<0,f (x )在(1,x 1)↘,所以f (x )<f (1)=-2,不符合题意;综上,实数b 的取值范围是[-23,+∞).19.(17分)设m 为正整数,数列a 1,a 2,⋯,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,⋯,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使得数列a 1,a 2,⋯,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,⋯,a 4m +2是2,13 -可分数列;(3)从1,2,⋯,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,⋯,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.【答案】(1)(1,2),(5,6),(1,6);(2)略;(3)略.【解析】(1)对于特殊的情况,我们不难分析出来,要么一边删除2个,要么两边各删除1个,所以满足题意的(i ,j )为:(1,2),(5,6),(1,6).(2)下标和项是成等差的充要条件,即m ,n ,k 成等差⇔a m ,a n ,a k 成等差(证明略).首先我们证明,当m =3时成立,那么m ≥3时都会成立.当m =3时,4m +2=14,那么当m >3时,整个{a n }可以拆成两段,为1≤n ≤14和n >14,不管m 取值如何,都有4m -12个数,也就是可以分成m -3组,而这m -3组只要按照原来的顺序依次分组,显然都是等差数列.如:m =6,前面14个按照m =3分组,后面的按照顺序,每4个一组,显然这样分满足题意.下面证明m =3时成立,可以采用列举法,只要有一种方法成立就行,去掉i =2,j =13,可以分为{1,4,7,10},{5,8,11,14},{3,6,9,12}这三组,满足题意.(3)设在给定m 的情况下,(i ,j )的组数为b m ,当m 变成m +1时,数列就变成了a 1,a 2,a 3,a 4,a 5,⋯,a 4m +2,a 4m +3,a 4m +4,a 4m +5,a 4m +6,这里可以分成3组,前4个一组即{a 1,a 2,a 3,a 4},中间的一组,后4个一组即{a 4m +3,a 4m +4,a 4m +5,a 4m +6},此时我们要在这里面删除2个数,那么会有以下几种情况:一、两个都在中间中间有4m -2个数,且为等差数列,删除2个的话,总数为b m -1种;二、一个在第一组,一个在中间组或两个都在第一组第一组和中间组连起来,会变成4m +2个数的等差数列,这里面总共有b m 种方法,但是要去掉两个都在中间的情况,共有b m -b m -1种;三、一个在中间组,一个在最后一组,或者都在最后一组和上面一样,也是共有b m -b m -1种;四、一个在第一组,一个在最后一组此时,将a 1,a 4m +6同时删除是肯定可以的,这算一种;然后,从(2)的结果来看,把a 2,a 4m +5同时删除也是可以的,因为m =3成立之后,当m >3时,只是相当于往中间加了4个连续的等差数而已,其它是不变的,这也算一种.综上,就会有b m +1≥b m -1+2(b m -b m -1)+2=2b m -b m -1+2,因为b 0=0,b 1=3,所以b m ≥m 2+2m ,如果你是随便删除,总共有C 24m +2=8m 2+6m +1种,所以P m =b m C 24m +2≥m 2+2m 8m 2+6m +1>18.。
集合真题新高考答案及解析
集合真题新高考答案及解析在备战高考的过程中,真题是考生备考的重要参考资料之一。
通过分析真题,了解题型的出题思路和考点分布,有助于帮助考生制定复习计划,提高应试能力。
本文将就集合真题新高考的答案及解析进行详细的分析,帮助考生更好地应对考试。
一、数学1. 高考数学是考生最为关注的科目之一。
在集合部分,常见的考点有集合的概念,集合的运算,集合的图示等。
例如一道典型的集合真题题目如下:已知集合A={x│x>0},B={x│x≤4},则A∪B的值为()解析:根据集合的概念和运算规则,我们可以知道A={x│x>0}表示大于0的所有实数,B={x│x≤4}表示小于等于4的所有实数。
将两个集合取并集,即A∪B,意味着取出满足A或B的所有实数。
根据这个规则,我们可以得出A∪B={x│x>0或x≤4}。
由此可知,A∪B的值是所有大于0或小于等于4的实数。
2. 在集合的图示题中,考生需要通过对集合的元素进行图示,来解答与集合有关的问题。
例如一道典型的集合图示题目如下:下图中的阴影部分表示元素属于集合()(图中是一个圆中央有X,圆的外部有两个分割的阴影环)解析:通过观察这个图示,我们可以知道阴影部分代表的是集合的元素。
而圆中央的X代表排除了X的值,相当于从整体的集合中剔除了X。
因此,图示的含义是所有在两个分割的阴影环内,但不包括圆中央的X的元素都属于集合。
二、语文1. 语文是高考的一门综合性科目,不仅考察考生的文学修养,还着重考察考生的阅读理解和写作能力。
在考点分布上,集合真题中常见的有文章阅读理解和语法概念的应用。
例如一道典型的阅读理解题目如下:请根据以下材料,回答问题:(一段文章)问:根据文章内容,阐述作者的观点是什么?解析:阅读理解题目要求考生通过理解材料的内容,抓住其中的关键信息,然后分析作者的观点。
对于这种题目,考生可以先整体把握文章的主题和基本内容,然后逐句进行解析,找出作者的观点。
通过归纳总结,得出准确的答案。
高考文科数学集合专题讲解及高考真题精选(含答案)
集合、简易逻辑(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N*或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等 名称记号意义性质示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或B A真子集A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂B A集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B (2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.集合的基本运算1. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 2. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B )简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
高考数学真题题型分类解析专题01 集合与常用逻辑用语
高考数学真题题型分类解析高考数学真题题型分类解析 专题01集合与常用逻辑用语集合与常用逻辑用语命题解读考向 考查统计1.高考对集合的考查,重点是集合间的基本运算,主要考查集合的交、并、补运算,常与一元二次不等式解法、一元一次不等式解法、分式不等式解法、指数、对数不等式解法结合.2.高考对常用逻辑用语的考查重点关注如下两点:(1)集合与充分必要条件相结合问题的解题方法;(2)全称命题与存在命题的否定和以全称命题与存在命题为条件,求参数的范围问题. 交集的运算2022·新高考Ⅰ卷,12023·新高考Ⅰ卷,1 2024·新高考Ⅰ卷,1 2022·新高考Ⅱ卷,1根据集合的包含关系求参数 2023·新高考Ⅱ卷,2 充分必要条件的判定2023·新高考Ⅰ卷,7全称、存在量词命题真假的判断 2024·新高考Ⅱ卷,2命题分析2024年高考新高考Ⅱ卷未考查集合,Ⅰ卷依旧考查了集合的交集运算,常用逻辑用语在新高考Ⅱ卷中考查了全称、存在量词命题真假的判断,这也说明了现在新高考“考无定题”,以前常考的现在不一定考了,抓住知识点和数学核心素养是关键!集合和常用逻辑用语考查应关注:(1)集合的基本运算和充要条件;(2)集合与简单的不等式、函数的定义域、值域的联系。
预计2025年高考还是主要考查集合的基本运算。
试题精讲1.(2024新高考Ⅰ卷·1)已知集合{}355,{3,1,0,2,3}A xx B =−<<=−−∣,则A B =∩( ) A .{1,0}− B .{2,3} C .{3,1,0}−− D .{1,0,2}−【答案答案】】A2.(2024新高考Ⅱ卷·2)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( ) A .p 和q 都是真命题 B .p ¬和q 都是真命题 C .p 和q ¬都是真命题D .p ¬和q ¬都是真命题1.(2022新高考Ⅰ卷·1)若集合{4},{31}M x N x x =<=≥∣,则M N ∩=( ) A .{}02x x ≤<B .123x x≤<C .{}316x x ≤<D .1163x x≤<A .{}2,1,0,1−−B .{}0,1,2C .{}2−D .{}2A .{1,2}−B .{1,2}C .{1,4}D .{1,4}−4.(2023新高考Ⅱ卷·2)设集合,,若,则().A .2B .1C .23D .1−【答案答案】】B【分析分析】】根据包含关系分20a −=和220a −=两种情况讨论,运算求解即可. 【详解详解】】因为A B ⊆,则有则有::若20a −=,解得2a =,此时{}0,2A =−,{}1,0,2B =,不符合题意不符合题意;; 若220a −=,解得1a =,此时{}0,1A =−,{}1,1,0B =−,符合题意符合题意;; 综上所述综上所述::1a =. 故选故选::B. 5.(2023新高考Ⅰ卷·7)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件一、元素与集合1、集合的含义与表示某些指定对象的部分或全体构成一个集合.构成集合的元素除了常见的数、点等数学对象外,还可以是其他对象.2、集合元素的特征(1)确定性:集合中的元素必须是确定的,任何一个对象都能明确判断出它是否为该集合中的元素. (2)互异性:集合中任何两个元素都是互不相同的,即相同元素在同一个集合中不能重复出现. (3)无序性:集合与其组成元素的顺序无关. 3、元素与集合的关系元素与集合之间的关系包括属于(记作a A ∈)和不属于(记作a A ∉)两种. 4、集合的常用表示法集合的常用表示法有列举法、描述法、图示法(韦恩图). 5、常用数集的表示数集 自然数集 正整数集 整数集 有理数集 实数集 符号N*N 或N +ZQR二、集合间的基本关系(1)子集:一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记作A B ⊆(或B A ⊇),读作“A 包含于B ”(或“B 包含A ”).(2)真子集:对于两个集合A 与B ,若A B ⊆,且存在b B ∈,但b A ∉,则集合A 是集合B 的真子集,记作A B Ü(或B A ⊃≠).读作“A 真包含于B ”或“B 真包含A ”. (3)相等:对于两个集合A 与B ,如果A B ⊆,同时B A ⊆,那么集合A 与B 相等,记作A B =. (4)空集:把不含任何元素的集合叫做空集,记作∅;∅是任何集合的子集,是任何非空集合的真子集.三、集合的基本运算(1)交集:由所有属于集合A 且属于集合B 的元素组成的集合,叫做A 与B 的交集,记作A B ∩,即{}|A B x x A x B ∩=∈∈且.(2)并集:由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 与B 的并集,记作A B ∪,即{}|A B x x A x B ∪=∈∈或.(3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作U C A ,即{|,}U C A x x U x A =∈∉且.四、集合的运算性质(1),,A B B A =∩∩,A B A ∩⊆,A B B ∩⊆. (2)A A A =∪,A A ∅=∪,A B B A =∪∪,A A B ⊆∪,B A B ⊆∪. (3),()U A C A U =∪,()U U C C A A =. (4)U UU A B A A B B A B B A A B ∩=⇔∪=⇔⊆⇔⊆⇔∩=∅痧?A A A =∩A ∅=∅∩()U A C A =∅∩【集合常用结论集合常用结论】】(1)若有限集A 中有n 个元素,则A 的子集有2n 个,真子集有21n −个,非空子集有21n −个,非空真子集有22n −个.(2)空集是任何集合A 的子集,是任何非空集合B 的真子集. (3)U U A B A B A A B B C B C A ⊆⇔=⇔=⇔⊆∩∪. (4)()()()U U U C A B C A C B =∩∪,()()()U U U C A B C A C B =∪∩.五、充分条件充分条件、、必要条件必要条件、、充要条件1、定义如果命题“若p ,则q ”为真(记作p q ⇒),则p 是q 的充分条件;同时q 是p 的必要条件. 2、从逻辑推理关系上看(1)若p q ⇒且q p ¿,则p 是q 的充分不必要条件; (2)若p q ¿且q p ⇒,则p 是q 的必要不充分条件;(3)若p q ⇒且q p ⇒,则p 是q 的的充要条件(也说p 和q 等价); (4)若p q ¿且q p ¿,则p 不是q 的充分条件,也不是q 的必要条件.六、全称量词与存在量词(1)全称量词与全称量词命题.短语“所有的”、“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题叫做全称量词命题.全称量词命题“对M 中的任意一个x ,有()p x 成立”可用符号简记为“,()x M p x ∀∈”,读作“对任意x 属于M ,有()p x 成立”.(2)存在量词与存在量词命题.短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.含有存在量词的命题叫做存在量词命题.存在量词命题“存在M 中的一个0x ,使0()p x 成立”可用符号简记为“00,()x M P x ∃∈”,读作“存在M 中元素0x ,使0()p x 成立”(存在量词命题也叫存在性命题). 七、含有一个量词的命题的否定(1)全称量词命题:,()p x M p x ∀∈的否定p ¬为0x M ∃∈,0()p x ¬. (2)存在量词命题00:,()p x M p x ∃∈的否定p ¬为,()x M p x ∀∈¬. 注:全称、存在量词命题的否定是高考常见考点之一. 【常用逻辑用语常用结论常用逻辑用语常用结论】】 1、从集合与集合之间的关系上看设{}{}|(),|()A x p x B x q x ==.(1)若A B ⊆,则p 是q 的充分条件(p q ⇒),q 是p 的必要条件;若A B 躡,则p 是q 的充分不必要条件,q 是p 的必要不充分条件,即p q ⇒且q p ¿; 注:关于数集间的充分必要条件满足:“小⇒大”. (2)若B A ⊆,则p 是q 的必要条件,q 是p 的充分条件;(3)若A B =,则p 与q 互为充要条件.集合三模题一、单选题1.(2024·河南·三模)命题“20,10x x x ∃>+−>”的否定是( ) A .20,10x x x ∀>+−> B .20,10x x x ∀>+−≤ C .20,10x x x ∃≤+−>D .20,10x x x ∃≤+−≤【答案答案】】B【分析分析】】根据存在量词命题的否定形式根据存在量词命题的否定形式,,即可求解. 【详解详解】】根据存在量词命题的否定为全称量词命题根据存在量词命题的否定为全称量词命题,, 即命题“20,10x x x ∃>+−>”的否定为“20,10x x x ∀>+−≤”. 故选故选::B. 2.(2024·湖南长沙·三模)已知集合{}2,{|ln 1}M x x N x x ==<∣…,则M N ∩=( ) A .[)2,eB .[]2,1−C .[)0,2D .(]0,2【答案答案】】D【分析分析】】由对数函数单调性解不等式由对数函数单调性解不等式,,化简N ,根据交集运算求解即可. 【详解详解】】因为[]()2,2,0,e M N =−=, 所以(]0,2M N =∩. 故选故选::D. 3.(2024·河北衡水·三模)已知集合{}()11,2,3,4,51lg 12A B x x==−≤−≤,,则A B =∩( ) A .11510x x≤≤B .{2,3,4}C .{2,3}D .11310x x≤≤4.(2024·陕西·三模)已知集合A =A .RB .(]0,2【答案答案】】D【分析分析】】先解一元二次不等式求出集合【详解详解】】由230x x −+>,解得03x <<所以3|}1{A B x x ∪=−≤<,所以A 故选故选::D. 5.(2024·安徽·三模)已知集合A x=为( )A .{}21x x −≤≤ C .{}52x x −≤≤−6.(2024·湖南长沙·三模)已知直线使点P 在圆O 内”的( ) A .充分不必要条件 C .充要条件【答案答案】】B【分析分析】】由直线与圆相交可求得1−<【详解详解】】由直线l 上存在点P ,使点解得11k −<<,即()1,1k ∈−,因为1k <不一定能得到11k −<<,而11k −<<可推出1k <,所以“k <1”是“直线l 上存在点P ,使点P 在圆O 内”的必要不充分条件. 故选故选::B 7.(2024·湖北荆州·三模)已知集合{}220A x x x =−≤,B A =R ð,其中R 是实数集,集合(],1C ∞=−,则B C ∩=( )A .(],0−∞B .(]0,1C .(),0∞−D .()0,18.(2024·北京·三模)已知集合ln 1A x x =<,若a A ∉,则a 可能是() A .1eB .1C .2D .3【答案答案】】D【分析分析】】解对数不等式化简集合A ,进而求出a 的取值集合即得.【详解详解】】由ln 1x <,得0e x <<,则{|0e}A x x =<<,R {|0A x x =≤ð或e}≥, 由a A ∉,得R a A ∈ð,显然选项ABC 不满足不满足,,D 满足. 故选故选::D 9.(2024·河北衡水·三模)已知函数()()22sin x xf x m x −=+⋅,则“21m =”是“函数()f x 是奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案答案】】B【分析分析】】由函数()f x 是奇函数是奇函数,,可求得1m =,可得结论. 【详解详解】】若函数()f x 是奇函数是奇函数,,则()()()()()22sin 22sin (1)22sin 0x x x x x xf x f x m x m x m x −−−+−=+⋅−+⋅=−−=恒成立恒成立,,即1m =,而21m =,得1m =±.故“21m =”是“函数()f x 是奇函数”的必要不充分条件的必要不充分条件.. 故选故选::B .10.(2024·内蒙古·三模)设α,β是两个不同的平面,m ,l 是两条不同的直线,且l αβ=∩则“//m l ”是“//m β且//m α”的( )A .充分不必要条件B .充分必要条件C .必要不充分条件D .既不充分也不必要条件【答案答案】】C【分析分析】】根据题意根据题意,,利用线面平行的判定定理与性质定理利用线面平行的判定定理与性质定理,,结合充分条件结合充分条件、、必要条件的判定方法必要条件的判定方法,,即可求解.【详解详解】】当//m l 时,m 可能在α内或者β内,故不能推出//m β且//m α,所以充分性不成立所以充分性不成立;; 当//m β且//m α时,设存在直线n ⊂α,n β⊄,且//n m ,因为//m β,所以//n β,根据直线与平面平行的性质定理根据直线与平面平行的性质定理,,可知//n l , 所以//m l ,即必要性成立即必要性成立,,故“//m l ”是“//m β且//m α”的必要不充的必要不充分条件分条件. 故选故选::C. 11.(2024·北京·三模)已知(){}2log 11A x x =−≤,{}32B x x =−>,则A B =∩( )A .空集B .{3x x ≤或}5x >C .{3x x ≤或5x >且}1x ≠D .以上都不对A .∅B .{}0C .{}0,2,3,5D .{}0,3A .(1,4)−B .1,14C .1,12D .1,22A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件有下列两个结论:①存在a和b,使得集合B中恰有5个元素;②存在a和b,使得集合B中恰有4个元素.则下列判断正确的是()A.①②都正确B.①②都错误C.①错误,②正确D.①正确,②错误二、多选题16.(2024·江西南昌·三模)下列结论正确的是()A .若{}{}300x x x x a +>∩−<=∅,则a 的取值范围是3a <−B .若{}{}300x x x x a +>∩−<=∅,则a 的取值范围是3a ≤−C .若{}{}300x x x x a +>∪−<=R ,则a 的取值范围是3a ≥−D .若{}{}300x x x x a +>∪−<=R ,则a 的取值范围是3a >−17.(2024·辽宁·三模)已知12max ,,,n x x x 表示12,,,n x x x 这个数中最大的数.能说明命题“,R d ∈,{}{}{}max ,max ,max ,,,a b c d a b c d +≥”是假命题的对应的一组整数a ,b ,c ,d 值的选项有( )A .1,2,3,4B .3−,1−,7,5C .8,1−,2−,3−D .5,3,0,1−【答案答案】】BC【分析分析】】根据{}12max ,,,n x x x 的含义说明AD 不符合题意,举出具体情况说明BC ,符合题意即可.【详解详解】】对于A ,D ,从其中任取两个数作为一组从其中任取两个数作为一组,,剩下的两数作为另一组剩下的两数作为另一组,,由于这两组数中的最大的数都不是负数由于这两组数中的最大的数都不是负数,,其中一组中的最大数即为这四个数中的最大值其中一组中的最大数即为这四个数中的最大值,,故都能使得命题“,,,R a b c d ∀∈,{}{}{}max ,max ,max ,,,a b c d a b c d +≥”成立成立;;对于B ,当{}{}{}max ,max 3,11,max 7,57a b =−−=−=时,而{}max 3,1,7,57−−=,此时177−+<,即命题“,,a b c ∀,R d ∈,{}{}{}max ,max ,max ,,,a b c d a b c d +≥”是假命题是假命题;; 对于C ,当{}{}{}max ,max 8,18,max 2,32a b =−=−−=−时,而{}max 8,1,2,38−−−=,此时288−+<,即命题“,,a b c ∀,R d ∈,{}{}{}max ,max ,max ,,,a b c d a b c d +≥”是假命题是假命题;; 故选故选::BC 18.(2024·重庆·三模)命题“存在0x >,使得2210mx x +−>”为真命题的一个充分不必要条件是()A .2m >−B .1m >−C .0m >D .1m >A .11a b <B .|2||2|a b −>−C .22a b ab a b −>−D .()()22ln 1ln 1a b +>+有且仅有3个不同元素,则实数m 的值可以为( )A .0B .1C .2D .3三、填空题21.(2024·湖南长沙·三模)已知集合{}1,2,4A =,{}2,B a a =,若A B A ∪=,则=a .【答案答案】】{}0,1【分析分析】】把集合中的元素代入不等式331x x −≤检验可求得{0,1}A B =∩.【详解详解】】当0x =时,303001−×=≤,所以0B ∈,当1x =时,313121−×=−≤,所以1B ∈,当2x =时,323221−×=>,所以2∉B ,所以{0,1}A B =∩.23.(2024·湖南衡阳·三模)已知集合{},1A a a =+,集合{}2N 20|B x x x =∈−−≤,若A B ⊆,则=a .25.(2024·安徽·三模)已知集合,2,1,,A B yy x x A λ=−==∈∣,若A B ∪的所有元素之和为12,则实数λ=. 【答案答案】】3−【分析分析】】分类讨论λ是否为1,2−,进而可得集合B ,结合题意分析求解.【详解详解】】由题意可知由题意可知::1λ≠−且2λ≠,当x λ=,则2y λ=;当2x =,则4y =;当=1x −,则1y =;若1λ=,则{}1,4B =,此时A B ∪的所有元素之和为6,不符合题意不符合题意,,舍去舍去;;若2λ=−,则{}1,4B =,此时A B ∪的所有元素之和为4,不符合题意不符合题意,,舍去舍去;;若1λ≠且2λ≠−,则{}21,4,B λ=,故2612λλ++=,解得3λ=−或2λ=(舍去舍去););综上所述综上所述::3λ=−.26.(2024·山东聊城·三模)已知集合{}{}21,5,,1,32A a B a ==+,且A B A ∪=,则实数a 的值为.C 的个数为.A B ∪=.。
高考数学最新真题专题解析—集合与常用逻辑用语
【解析】
【分析】
先确定 的充要条件,再由充分不必要条件的定义求解,
【详解】
等价于 或 ,而且“ ”是“ ”的充分不必要条件,则 .
故答案为: .
16.(2022·北京·人大附中三模)能够说明“若 均为正数,则 ”是真命题的充分必要条件为___________.
【答案】
【解析】
【分析】
利用充分必要条件的定义判断.
高考数学最新真题专题解析—集合与常用逻辑用语
考向一集合的概念及运算
【母题来源】2022年高考全国甲卷
【母题题文】设全集 ,集合 ,则 ()
A. B. C. D.
【答案】D
【试题解析】由题意, ,所以 ,
所以 .故选:D.
【命题意图】本类题通常主要考查简单不等式解法、交集、并集、补集等运算.
【命题方向】这类试题在考查题型上主要以选择题的形式出现.试题难度不大,多为低档题,集合的基本运算是历年高考的热点.集合运算多与解简单的不等式、函数的定义域、值域相联系,考查对集合的理解及不等式的有关知识;有些集合题为抽象集合题或新定义型集合题,考查学生的灵活处理问题的能力.
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件
【答案】B
【解析】
【分析】
根据充分必要条件的定义判断.
【详解】
首先不必要,如 是实数,但 ,
其次,是充分的,若 ,设 ( ),
则 , ,解得 或 ,
或 是实数,因此应为充分不必要条件.
故选:B.
二、填空题
11.(2022·北京八十中模拟预测)已知 , ,则 ___________.
【详解】
由题意可知,命题“ , ”为真命题.
全国卷Ⅰ2023年新高考数学真题及答案解析(多解版)
绝密★启用前2023年普通高等学校招生全国统一考试数学一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N = ()A.{}2,1,0,1-- B.{}0,1,2 C.{}2- D.2【答案】C 【解析】方法一:因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--,所以M N ⋂={}2-.故选:C .方法二:因为{}2,1,0,1,2M =--,将2,1,0,1,2--代入不等式260x x --≥,只有2-使不等式成立,所以M N ⋂={}2-.故选:C .2.已知1i22iz -=+,则z z -=()A.i -B.iC.0D.1【答案】A 【解析】因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-.故选:A .3.已知向量()()1,1,1,1a b ==-,若()()a b a b λμ+⊥+ ,则()A.1λμ+=B.1λμ+=-C.1λμ= D.1λμ=-【答案】D 【解析】因为()()1,1,1,1a b ==- ,所以()1,1a b λλλ+=+- ,()1,1a b μμμ+=+-,由()()a b a b λμ+⊥+可得,()()0a b a b λμ+⋅+= ,即()()()()11110λμλμ+++--=,整理得:1λμ=-.故选:D .4.设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是()A.(],2-∞- B.[)2,0- C.(]0,2 D.[)2,+∞【答案】D 【解析】函数2x y =在R 上单调递增,而函数()()2x x a f x -=在区间()0,1上单调递减,则有函数22()()24a a y x x a x =-=--在区间()0,1上单调递减,因此12a ≥,解得2a ≥,所以a 的取值范围是[)2,+∞.故选:D5.设椭圆2222122:1(1),:14x x C y a C y a +=>+=的离心率分别为12,e e .若21e =,则=a ()A.3B.C.D.【答案】A 【解析】由21e =,得22213e e =,因此2241134a a --=⨯,而1a >,所以233a =.故选:A 6.过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=()A.1B.154C.104D.64【答案】B 【解析】方法一:因为22410x y x +--=,即()2225x y -+=,可得圆心()2,0C ,半径r =,过点()0,2P -作圆C 的切线,切点为,A B ,因为PC ==,则PA ==可得106sin44APC APC ∠==∠=,则10615sin sin 22sin cos 2444APB APC APC APC ∠=∠=∠∠=⨯⨯=,22226101cos cos 2cos sin 0444APB APC APC APC ⎛⎫⎛∠=∠=∠-∠=-=-< ⎪ ⎪ ⎝⎭⎝⎭,即APB ∠为钝角,所以()15sin sin πsin 4APB APB =-∠=∠=α;法二:圆22410x y x +--=的圆心()2,0C,半径r =,过点()0,2P -作圆C 的切线,切点为,A B ,连接AB ,可得PC ==,则PA PB ===,因为22222cos 2cos PA PB PA PB APB CA CB CA CB ACB +-⋅∠=+-⋅∠且πACB APB ∠=-∠,则()336cos 5510cos πAPB APB +-∠=+--∠,即3cos 55cos APB APB -∠=+∠,解得1cos 04APB ∠=-<,即APB ∠为钝角,则()1cos cos πcos 4APB APB =-∠=-∠=α,且α为锐角,所以15sin 4α==;方法三:圆22410x y x +--=的圆心()2,0C ,半径r =,若切线斜率不存在,则切线方程为0y =,则圆心到切点的距离2d r =>,不合题意;若切线斜率存在,设切线方程为2y kx =-,即20kx y --=,=,整理得2810k k ++=,且644600∆=-=>设两切线斜率分别为12,k k ,则12128,1k k k k +=-=,可得12k k -==所以1212tan 1k k k k -==+α,即sin cos αα=,可得cos =α,则2222sin sin cos sin 115+=+=αααα,且π0,2α⎛⎫∈ ⎪⎝⎭,则sin 0α>,解得15sin 4α=.故选:B.7.记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】C 【解析】方法一,甲:{}n a 为等差数列,设其首项为1a ,公差为d ,则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a n n n +--=+=+=+--=+,因此{}nS n为等差数列,则甲是乙的充分条件;反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立,因此{}n a 为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件,C 正确.方法二,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2n n n S na d -=+,则11(1)222n S n d d a d n a n -=+=+-,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}nS n 为等差数列,即11,(1)1n n n S S S D S n D n n n+-==+-+,即1(1)n S nS n n D =+-,11(1)(1)(2)n S n S n n D -=-+--,当2n ≥时,上两式相减得:112(1)n n S S S n D --=+-,当1n =时,上式成立,于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数,因此{}n a 为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件.故选:C 8.已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=().A.79 B.19C.19-D.79-【答案】B 【解析】因为1sin()sin cos cos sin 3αβαβαβ-=-=,而1cos sin 6αβ=,因此1sin cos 2αβ=,则2sin()sin cos cos sin 3αβαβαβ+=+=,所以2221cos(22)cos 2()12sin ()12()39αβαβαβ+=+=-+=-⨯=.故选:B 二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.有一组样本数据126,,,x x x ⋅⋅⋅,其中1x 是最小值,6x 是最大值,则()A.2345,,,x x x x 的平均数等于126,,,x x x ⋅⋅⋅的平均数B.2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数C.2345,,,x x x x 的标准差不小于126,,,x x x ⋅⋅⋅的标准差D.2345,,,x x x x 的极差不大于126,,,x x x ⋅⋅⋅的极差【答案】BD 【解析】对于选项A :设2345,,,x x x x 的平均数为m ,126,,,x x x ⋅⋅⋅的平均数为n ,则()()165234123456234526412x x x x x x x x x x x x x x x x n m +-+++++++++++-=-=,因为没有确定()1652342,x x x x x x ++++的大小关系,所以无法判断,m n 的大小,例如:1,2,3,4,5,6,可得 3.5m n ==;例如1,1,1,1,1,7,可得1,2m n ==;例如1,2,2,2,2,2,可得112,6m n ==;故A 错误;对于选项B :不妨设123456x x x x x x ≤≤≤≤≤,可知2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数均为342x x +,故B 正确;对于选项C :因为1x 是最小值,6x 是最大值,则2345,,,x x x x 的波动性不大于126,,,x x x ⋅⋅⋅的波动性,即2345,,,x x x x 的标准差不大于126,,,x x x ⋅⋅⋅的标准差,例如:2,4,6,8,10,12,则平均数()12468101276n =+++++=,标准差13s =,4,6,8,10,则平均数()14681074m =+++=,标准差2s =,显然53>,即12s s >;故C 错误;对于选项D :不妨设123456x x x x x x ≤≤≤≤≤,则6152x x x x -≥-,当且仅当1256,x x x x ==时,等号成立,故D 正确;故选:BD.10.噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级020lgp pL p =⨯,其中常数()000p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级:声源与声源的距离/m声压级/dB已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为123,,p p p ,则().A.12p p ≥B.2310p p >C.30100p p =D.12100p p ≤【答案】ACD 【解析】由题意可知:[][]12360,90,50,60,40p p p L L L ∈∈=,对于选项A :可得1212100220lg20lg 20lg p p p p p L L p p p =-⨯=⨯-⨯,因为12p p L L ≥,则121220lg0p p p L L p =-⨯≥,即12lg 0pp ≥,所以121p p ≥且12,0p p >,可得12p p ≥,故A 正确;对于选项B :可得2332200320lg20lg 20lg p p p p pL L p p p =-⨯=⨯-⨯,因为2324010p p p L L L -=-≥,则2320lg10p p⨯≥,即231lg 2p p ≥,所以23p p ≥23,0p p >,可得23p ≥,当且仅当250p L =时,等号成立,故B 错误;对于选项C :因为33020lg40p p L p =⨯=,即30lg 2pp =,可得3100p p =,即30100p p =,故C 正确;对于选项D :由选项A 可知:121220lgp p p L L p =-⨯,且12905040p p L L ≤-=-,则1220lg40p p ⨯≤,即12lg2p p ≤,可得12100pp ≤,且12,0p p >,所以12100p p ≤,故D 正确;故选:ACD.11.已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则().A.()00f =B.()10f =C.()f x 是偶函数 D.0x =为()f x 的极小值点【答案】ABC 【解析】方法一:因为22()()()f xy y f x x f y =+,对于A ,令0x y ==,(0)0(0)0(0)0f f f =+=,故A 正确.对于B ,令1x y ==,(1)1(1)1(1)f f f =+,则(1)0f =,故B 正确.对于C ,令1x y ==-,(1)(1)(1)2(1)f f f f =-+-=-,则(1)0f -=,令21,()()(1)()y f x f x x f f x =--=+-=,又函数()f x 的定义域为R ,所以()f x 为偶函数,故C 正确,对于D ,不妨令()0f x =,显然符合题设条件,此时()f x 无极值,故D 错误.方法二:因为22()()()f xy y f x x f y =+,对于A ,令0x y ==,(0)0(0)0(0)0f f f =+=,故A 正确.对于B ,令1x y ==,(1)1(1)1(1)f f f =+,则(1)0f =,故B 正确.对于C ,令1x y ==-,(1)(1)(1)2(1)f f f f =-+-=-,则(1)0f -=,令21,()()(1)()y f x f x x f f x =--=+-=,又函数()f x 的定义域为R ,所以()f x 为偶函数,故C 正确,对于D ,当220x y ≠时,对22()()()f xy y f x x f y =+两边同时除以22x y ,得到2222()()()f xy f x f y x y x y=+,故可以设2()ln (0)f x x x x =≠,则2ln ,0()0,0x x x f x x ⎧≠=⎨=⎩,当0x >肘,2()ln f x x x =,则()212ln (2ln 1)x x x x xf x x =+⋅=+',令()0f x '<,得120ex -<<;令()0f x ¢>,得12e x ->;故()f x 在120,e -⎛⎫⎪⎝⎭上单调递减,在12e ,-⎛⎫+∞ ⎪⎝⎭上单调递增,因为()f x 为偶函数,所以()f x 在12,0e -⎛⎫- ⎪⎝⎭上单调递增,在12,e -⎛⎫ ⎪⎝∞⎭-上单调递减,显然,此时0x =是()f x 的极大值,故D 错误.故选:ABC .12.下列物体中,能够被整体放入棱长为1(单位:m )的正方体容器(容器壁厚度忽略不计)内的有()A.直径为0.99m 的球体B.所有棱长均为1.4m 的四面体C.底面直径为0.01m ,高为1.8m 的圆柱体D.底面直径为1.2m ,高为0.01m 的圆柱体【答案】ABD 【解析】对于选项A :因为0.99m 1m <,即球体的直径小于正方体的棱长,所以能够被整体放入正方体内,故A 正确;对于选项B 1.4>,所以能够被整体放入正方体内,故B 正确;对于选项C 1.8<,所以不能够被整体放入正方体内,故C 正确;对于选项D :因为1.2m 1m >,可知底面正方形不能包含圆柱的底面圆,如图,过1AC 的中点O 作1OE AC ⊥,设OE AC E =I ,可知1131,=2AC CC AC ===,则11tan CC OE CAC AC AO ∠==,=,解得64OE =,且2263990.6482425⎛==>= ⎝⎭,即0.64>,故以1AC 为轴可能对称放置底面直径为1.2m 圆柱,若底面直径为1.2m 的圆柱与正方体的上下底面均相切,设圆柱的底面圆心1O ,与正方体的下底面的切点为M ,可知:111,0.6AC O M O M ⊥=,则1111tan CC O MCAC AC AO ∠==,10.6AO =,解得1AO =,根据对称性可知圆柱的高为2 1.732 1.21.4140.03520.01-⨯≈-⨯=>,所以能够被整体放入正方体内,故D 正确;故选:ABD.三、填空题:本题共4小题,每小题5分,共20分.13.某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).【答案】64【解析】(1)当从8门课中选修2门,则不同的选课方案共有144116C C =种;(2)当从8门课中选修3门,①若体育类选修课1门,则不同的选课方案共有1244C C 24=种;②若体育类选修课2门,则不同的选课方案共有2144C C 24=种;综上所述:不同的选课方案共有16242464++=种.故答案为:64.14.在正四棱台1111ABCD A B C D -中,1112,1,AB A B AA ===的体积为________.【答案】6【解析】【分析】结合图像,依次求得111,,AO AO A M ,从而利用棱台的体积公式即可得解.【详解】如图,过1A 作1A M AC ⊥,垂足为M ,易知1A M 为四棱台1111ABCD A B C D -的高,因为1112,1,AB A B AA ===则1111111111222222A O A C B AO AC ==⨯⨯====故()111222AM AC A C =-=,则162A M ===,所以所求体积为1676(41326V =⨯++⨯=.故答案为:766.15.已知函数()cos 1(0)f x x ωω=->在区间[]0,2π有且仅有3个零点,则ω的取值范围是________.【答案】[)2,3【解析】【分析】令()0f x =,得cos 1x ω=有3个根,从而结合余弦函数的图像性质即可得解.【详解】因为02x π≤≤,所以02x πωω≤≤,令()cos 10f x x ω=-=,则cos 1x ω=有3个根,令t x ω=,则cos 1t =有3个根,其中[0,2π]t ω∈,结合余弦函数cos y t =的图像性质可得4π2π6πω≤<,故23ω≤<,故答案为:[)2,3.16.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F .点A 在C 上,点B 在y 轴上,11222,3F A F B F A F B ⊥=-,则C 的离心率为________.【答案】355【解析】方法一:依题意,设22AF m =,则2113,22BF m BF AF a m ===+,在1Rt ABF 中,2229(22)25m a m m ++=,则(3)()0a m a m +-=,故a m =或3a m =-(舍去),所以124,2AF a AF a ==,213BF BF a ==,则5AB a =,故11244cos 55AF a F AF ABa ∠===,所以在12AF F △中,2221216444cos 2425a a c F AF a a +-∠==⨯⨯,整理得2259c a =,故355c e a ==.方法二:依题意,得12(,0),(,0)F c F c -,令()00),,(0,A x y B t ,因为2223F A F B =- ,所以()()002,,3x c y c t -=--,则00235,3x c y t ==-,又11F A F B ⊥ ,所以()1182,,33F A F B c t c t ⎛⎫⋅=-⎪⎝⎭ 2282033c t =-=,则224t c =,又点A 在C 上,则2222254991c t a b -=,整理得2222254199c t a b -=,则22222516199c c a b-=,所以22222225169c b c a a b -=,即()()2222222225169cca a c a c a --=-,整理得424255090c c a -+=,则()()22225950c a ca --=,解得2259c a =或225c a =,又1e >,所以5e =或5e =(舍去),故5e =.故答案为:355.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知在ABC 中,()3,2sin sin A B C A C B +=-=.(1)求sin A ;(2)设5AB =,求AB 边上的高.【答案】(1)31010(2)6【解析】【小问1详解】3A B C += ,π3C C ∴-=,即π4C =,又2sin()sin sin()A C B A C -==+,2sin cos 2cos sin sin cos cos sin A C A C A C A C ∴-=+,sin cos 3cos sin A C A C ∴=,sin 3cos A A ∴=,即tan 3A =,所以π02A <<,sin10A∴==.【小问2详解】由(1)知,10cos10A==,由sin sin()B A C=+sin cos cos sin)210105A C A C=+==,由正弦定理,sin sinc bC B=,可得255522b⨯==,11sin22AB h AB AC A∴⋅=⋅⋅,sin610h b A∴=⋅==.18.如图,在正四棱柱1111ABCD A B C D-中,12,4AB AA==.点2222,,,A B C D分别在棱111,,AA BB CC,1DD上,22221,2,3AA BB DD CC====.(1)证明:2222B C A D∥;(2)点P在棱1BB上,当二面角222P A C D--为150︒时,求2B P.【答案】(1)证明见解析;(2)1【解析】【小问1详解】以C为坐标原点,1,,CD CB CC所在直线为,,x y z轴建立空间直角坐标系,如图,则2222(0,0,0),(0,0,3),(0,2,2),(2,0,2),(2,2,1)C C B D A ,2222(0,2,1),(0,2,1)B C A D ∴=-=-,2222B C A D ∴ ∥,又2222B C A D ,不在同一条直线上,2222B C A D ∴∥.【小问2详解】设(0,2,)(04)P λλ≤≤,则22222(2,2,2)(0,2,3),=(2,0,1),A C PC D C λ=--=---,设平面22PA C 的法向量(,,)n x y z =,则22222202(3)0n A C x y z n PC y z λ⎧⋅=--+=⎪⎨⋅=-+-=⎪⎩ ,令2z =,得3,1y x λλ=-=-,(1,3,2)n λλ∴=--,设平面222A C D 的法向量(,,)m a b c =,则2222222020m A C a b c m D C a c ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩ ,令1a =,得1,2==b c ,(1,1,2)m ∴=,2263cos ,cos150264(1)(3)n m n m n m λλ⋅∴==︒=+-+- ,化简可得,2430λλ-+=,解得1λ=或3λ=,(0,2,1)P ∴或(0,2,3)P ,21B P ∴=.19.已知函数()()e xf x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()32ln 2f x a >+.【答案】(1)答案见解析(2)证明见解析【解析】【小问1详解】因为()()e xf x a a x =+-,定义域为R ,所以()e 1xf x a '=-,当0a ≤时,由于e 0x >,则e 0x a ≤,故()0e 1xf x a -'=<恒成立,所以()f x 在R 上单调递减;当0a >时,令()e 10xf x a '=-=,解得ln x a =-,当ln x a <-时,()0f x '<,则()f x 在(),ln a -∞-上单调递减;当ln x a >-时,()0f x ¢>,则()f x 在()ln ,a -+∞上单调递增;综上:当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞-上单调递减,()f x 在()ln ,a -+∞上单调递增.【小问2详解】方法一:(函数最值)由(1)得,()()()ln min 2ln ln ln e 1af a a x a f a a a --+=++=+=,要证3()2ln 2f x a >+,即证2312ln 2ln a a a ++>+,即证21ln 02a a -->恒成立,令()()21ln 02g a a a a =-->,则()21212a g a a a a-'=-=,令()0g a '<,则202a <<;令()0g a '>,则22a >;所以()g a 在20,2⎛⎫⎪ ⎪⎝⎭上单调递减,在2,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以()2min 2212ln ln 02222g a g ⎛⎫⎛==--=⎪ ⎪ ⎪⎝⎭⎝⎭,则()0g a >恒成立,所以当0a >时,3()2ln 2f x a >+恒成立,证毕.方法二:(切线放缩1x e x ≥+)令()e 1xh x x =--,则()e 1xh x '=-,由于e x y =在R 上单调递增,所以()e 1xh x '=-在R 上单调递增,又()00e 10h '=-=,所以当0x <时,()0h x '<;当0x >时,()0h x '>;所以()h x 在(),0∞-上单调递减,在()0,∞+上单调递增,故()()00h x h ≥=,则e 1x x ≥+,当且仅当0x =时,等号成立,因为()2ln 22()e e eln 1xx x af x a a x a a x a x x a a x +=+-=+-=+-≥+++-,当且仅当ln 0x a +=,即ln x a =-时,等号成立,所以要证3()2ln 2f x a >+,即证23ln 12ln 2x a a x a +++->+,即证21ln 02a a -->,令()()21ln 02g a a a a =-->,则()21212a g a a a a-'=-=,令()0g a '<,则02a <<;令()0g a '>,则2a >;所以()g a 在20,2⎛⎫⎪ ⎪⎝⎭上单调递减,在2,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以()2min 1ln ln 02222g a g ⎛⎫⎛==--= ⎪ ⎪ ⎪⎝⎭⎝⎭,则()0g a >恒成立,所以当0a >时,3()2ln 2f x a >+恒成立,证毕.方法三:(切线放缩ln 1x x ≤-)由(1)得,()()()ln min 2ln ln ln e1af a a x a f a a a --+=++=+=,要证3()2ln 2f x a >+,即证2312ln 2ln a a a ++>+,即证21ln 02a a -->恒成立,又因为221110224a a a ⎛⎫-+=-+> ⎪⎝⎭,所以2112a a ->-,而ln 1a a ≤-,所以21ln 2a a ->,故3()2ln 2f x a >+成立,得证明.方法四:(同构+切线放缩)当0a >时,要证3()2ln 2f x a >+,即证明()32ln 2x a e a x a +->+,只需证:232ln 02x ae x a a -+-->,即证()()ln 22211ln 11ln 022x a e x a a a a +-+++--+>,因为1x e x ≥+,故()ln ln 10x a e x a +-++≥,因为ln 1x x ≤-,故()2211ln 02a a --≥,又2102a >,故()()ln 22211ln 11ln 022x a e x a a a a +-+++--+>成立,即3()2ln 2f x a >+成立,得证明.20.设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记,n n S T 分别为数列{}{},n n a b 的前n 项和.(1)若2133333,21a a a S T =++=,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999S T -=,求d .【答案】(1)3n a n =(2)5150d =【解析】【小问1详解】21333a a a =+ ,132d a d ∴=+,解得1a d =,32133()6d d S a a =+==∴,又31232612923T b b b d d d d=++=++=,339621S T d d∴+=+=,即22730d d -+=,解得3d =或12d =(舍去),1(1)3n a a n d n∴=+-⋅=.【小问2详解】{}n b 为等差数列,2132b b b ∴=+,即21312212a a a =+,2323111616()d a a a a a ∴-==,即2211320a a d d -+=,解得1a d =或12a d =,1d > ,0n a ∴>,又999999S T -=,由等差数列性质知,5050999999a b -=,即50501a b -=,505025501a a ∴-=,即2505025500a a --=,解得5051a =或5050a =-(舍去)当12a d =时,501495151a a d d =+==,解得1d =,与1d >矛盾,无解;当1a d =时,501495051a a d d =+==,解得5150d =.综上,5150d =.21.甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n ni i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .【答案】(1)0.6(2)1121653i -⎛⎫⨯+ ⎪⎝⎭(3)52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【解析】【小问1详解】记“第i 次投篮的人是甲”为事件i A ,“第i 次投篮的人是乙”为事件i B ,所以,()()()()()()()21212121121||P B P A B P B B P A P B A P B P B B =+=+()0.510.60.50.80.6=⨯-+⨯=.【小问2详解】设()i i P A p =,依题可知,()1i i P B p =-,则()()()()()()()11111||i i i i i i i i i i i P A P A A P B A P A P A A P B P A B +++++=+=+,即()()10.610.810.40.2i i i i p p p p +=+-⨯-=+,构造等比数列{}i p λ+,设()125i i p p λλ++=+,解得13λ=-,则1121353i i p p +⎛⎫-=- ⎪⎝⎭,又11111,236p p =-=,所以13i p ⎧⎫-⎨⎬⎩⎭是首项为16,公比为25的等比数列,即11112121,365653i i i i p p --⎛⎫⎛⎫-=⨯=+ ⎪ ⎪⎝⎭⎝⎭.【小问3详解】因为1121653i i p -⎛⎫=⨯+ ⎪⎝⎭,1,2,,i n =⋅⋅⋅,所以当*N n ∈时,()122115251263185315nnnn n E Y p p p ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭=+++=⨯+=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦- ,故52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.22.在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点10,2⎛⎫ ⎪⎝⎭的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD的周长大于【答案】(1)214y x =+(2)见解析【解析】【小问1详解】设(,)P x y ,则y =,两边同平方化简得214y x =+,故21:4W y x =+.【小问2详解】法一:设矩形的三个顶点222111,,,,,444A a a B b b C c c ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭在W 上,且a b c <<,易知矩形四条边所在直线的斜率均存在,且不为0,则1,AB BC k k a b b c =⋅-+<+,令2240114AB k b a b a b am ⎛⎫+-+ ⎪⎝=+⎭==<-,同理令0BC k b c n =+=>,且1mn =-,则1m n=-,设矩形周长为C ,由对称性不妨设||||m n ≥,1BC AB k k c a n m n n-=-=-=+,则11||||(((2C AB BC b a c b c a n n ⎛=+=--≥-=+ ⎝.0n >,易知10n n ⎛+> ⎝则令()222111()1,0,()22f x x x x f x x x x x x '⎛⎫⎛⎫⎛⎫=++>=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令()0f x '=,解得22x =,当0,2x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x '<,此时()f x 单调递减,当2,2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭,()0f x '>,此时()f x 单调递增,则min 227()24f x f ⎛⎫== ⎪⎪⎝⎭,故122C ≥=,即C ≥.当C =时,2,2n m ==,且((b a b a -=-m n =时等号成立,矛盾,故C >得证.法二:不妨设,,A B D 在W 上,且BA DA ⊥,依题意可设21,4A a a ⎛⎫+⎪⎝⎭,易知直线BA ,DA 的斜率均存在且不为0,则设BA ,DA 的斜率分别为k 和1k-,由对称性,不妨设1k ≤,直线AB 的方程为21()4y k x a a =-++,则联立22141()4y x y k x a a ⎧=+⎪⎪⎨⎪=-++⎪⎩得220x kx ka a -+-=,()()222420k ka a k a ∆=--=->,则2k a≠则||2|AB k a =-,同理||2AD a =,||||2|2AB AD k a a ∴+=-1122k a ak k ⎫≥-++≥+=⎪⎭令2k m =,则(]0,1m ∈,设32(1)1()33m f m m m m m +==+++,则2221(21)(1)()23m m f m m m m '-+=+-=,令()0'=f m ,解得12m =,当10,2m ⎛⎫∈ ⎪⎝⎭时,()0f m '<,此时()f m 单调递减,当1,2m ⎛⎫∈+∞⎪⎝⎭,()0f m '>,此时()f m 单调递增,则min 127()24f m f ⎛⎫==⎪⎝⎭,||||2AB AD ∴+≥,12|2|2|2k a a k a a k ⎫-≥-++⎪⎭,此处取等条件为1k =,与最终取等时22k =不一致,故332AB AD +>.法三:为了计算方便,我们将抛物线向下移动14个单位得抛物线2:W y x '=,矩形ABCD 变换为矩形A B C D '''',则问题等价于矩形A B C D ''''的周长大于设()()()222001122,,,,,B t t A t t C t t ''',根据对称性不妨设00t ≥.则1020,A B B C k t t k t t ''''=+=+,由于A B B C ''''⊥,则()()10201t t t t ++=-.由于1020,A B t B C t ''''=-=-,且0t 介于12,t t 之间,则1020A B B C t t ''''+=-+-.令20tan t t θ+=,10πcot ,0,2t t θθ⎛⎫+=-∈ ⎪⎝⎭,则2010tan ,cot t t t t θθ=-=--,从而))002cot tan 2A B B C t t θθ''''+=++-故330022222(cos sin )11sin cos sin cos 2sin cos cos sin sin cos sin cos t A B B C t θθθθθθθθθθθθθθ''''-+⎛⎫+=-++=+⎪⎝⎭①当π0,4θ⎛⎤∈ ⎥⎝⎦时,332222sin cos sin cos sin cos cos sin A B B C θθθθθθθθ''''++≥=+≥=≥②当ππ,42θ⎛⎫∈⎪⎝⎭时,由于102t t t <<,从而000cot tan t t t θθ--<<-,从而0cot tan 22t θθ-<<又00t ≥,故0tan 02t θ≤<,由此330222(cos sin )sin cos sin cos sin cos t A B B C θθθθθθθθ''''-++=+3323222sin (cos sin )(sin cos )sin cos 1cos sin cos sin cos cos sin θθθθθθθθθθθθθθ-+>+=+==2≥,当且仅当cos 3θ=时等号成立,故332A B B C''''+>,故矩形周长大于..。
高考数学专题复习-集合真题练习(附答案)
专题一集合与常用逻辑用语1.1集合考点一集合及其关系1.(2013山东理,2,5分)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A.1B.3C.5D.9答案C因为x∈A,y∈A,所以=0,=0或=0,=1或=0,=2或=1,=0或=1,=1或=1,=2或=2,=0或=2,=1或=2,=2,所以B={0,-1,-2,1,2},所以集合B中有5个元素,故选C.2.(2013江西文,2,5分)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=()A.4B.2C.0D.0或4答案A若a=0,则A=Ø⌀,不符合要求;若a≠0,则Δ=a2-4a=0,得a=4,故选A.3.(2012课标理,1,5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为()A.3B.6C.8D.10答案D解法一:由x-y∈A及A={1,2,3,4,5}得x>y,当y=1时,x可取2,3,4,5,有4个;当y=2时,x可取3,4,5,有3个;当y=3时,x可取4,5,有2个;当y=4时,x可取5,有1个.故共有1+2+3+4=10(个),选D.解法二:因为A中元素均为正整数,所以从A中任取两个元素作为x,y,满足x>y的(x,y)即为集合B中的元素,故共有C52=10个,选D.4.(2011福建理,1,5分)i是虚数单位,若集合S={-1,0,1},则()A.i∈SB.i2∈SC.i3∈SD.2i∈S答案B i2=-1,-1∈S,故选B.5.(2015重庆理,1,5分)已知集合A={1,2,3},B={2,3},则()A.A=BB.A∩B=Ø⌀C.A⫋BD.B⫋A答案D∵A={1,2,3},B={2,3},∴A≠B,A∩B={2,3}≠Ø;又1∈A且1∉B,∴A不是B的子集,故选D.6.(2013课标Ⅰ理,1,5分)已知集合A={x|x2-2x>0},B={x|-5<x<5},则()A.A∩B=ØB.A∪B=RC.B⊆AD.A⊆B答案B化简A={x|x>2或x<0},而B={x|-5<x<5},所以A∩B={x|-5<x<0或2<x<5},A项错误;A∪B=R,B项正确;A与B没有包含关系,C项与D项均错误.故选B.7.(2012课标文,1,5分)已知集合A={x|x2-x-2<0},B={x|-1<x<1},则()A.A⫋BB.B⫋AC.A=BD.A∩B=Ø答案B A={x|-1<x<2},B={x|-1<x<1},则B⫋A,故选B.8.(2012大纲全国文,1,5分)已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x 是菱形},则()A.A⊆BB.C⊆BC.D⊆CD.A⊆D答案B由已知x是正方形,则x必是矩形,所以C⊆B,故选B.9.(2012湖北文,1,5分)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C 的个数为()A.1B.2C.3D.4答案D A={1,2},B={1,2,3,4},所以满足条件的集合C的个数为24-2=22=4,即C={1,2},{1,2,3},{1,2,4},{1,2,3,4}.故选D.评析本题考查集合之间的关系.10.(2016四川,1,5分)设集合A={x|-2≤x≤2},Z为整数集,则集合A∩Z中元素的个数是()A.3B.4C.5D.6答案C A中包含的整数元素有-2,-1,0,1,2,共5个,所以A∩Z中的元素个数为5.11.(2012天津文,9,5分)集合A={x∈R||x-2|≤5}中的最小整数为.答案-3解析由|x-2|≤5,得-5≤x-2≤5,即-3≤x≤7,所以集合A中的最小整数为-3.12.(2013江苏,4,5分)集合{-1,0,1}共有个子集.答案8解析集合{-1,0,1}的子集有Ø,{-1},{0},{1},{-1,0},{-1,1},{0,1},{-1,0,1},共8个.评析本题考查子集的概念,忽视Ø是学生出错的主要原因.考点二集合的基本运算1.(2021北京,1,4分)已知集合A={x|-1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|-1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}答案B因为集合A={x|-1<x<1},B={x|0≤x≤2},所以用数轴表示两集合中元素如图,可知A∪B={x|-1<x≤2},故选B.2.(2021浙江,1,4分)设集合A={x|x≥1},B={x|-1<x<2},则A∩B=()A.{x|x>-1}B.{x|x≥1}C.{x|-1<x<1}D.{x|1≤x<2}答案D利用数轴可得A∩B={x|1≤x<2}.3.(2022浙江,1,4分)设集合A={1,2},B={2,4,6},则A∪B=()A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}答案D由题意得A∪B={1,2,4,6}.故选D.4.(2022全国乙文,1,5分)集合M={2,4,6,8,10},N={x|-1<x<6},则M∩N=()A.{2,4}B.{2,4,6}C.{2,4,6,8}D.{2,4,6,8,10}答案A由题意知M∩N={2,4},故选A.5.(2022全国甲文,1,5分)设集合A={-2,-1,0,1,2},B=U0≤<A∩B=()A.{0,1,2}B.{-2,-1,0}C.{0,1}D.{1,2}答案A集合A中的元素只有0,1,2属于集合B,所以A∩B={0,1,2}.故选A.6.(2022全国乙理,1,5分)设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈MB.3∈MC.4∉MD.5∉M答案A由题意知M={2,4,5},故选A.7.(2022新高考Ⅱ,1,5分)已知集合A={-1,1,2,4},B={x||x-1|≤1},则A∩B=()A.{-1,2}B.{1,2}C.{1,4}D.{-1,4}答案B由|x-1|≤1得0≤x≤2,则B={x|0≤x≤2},∴A∩B={1,2},故选B.8.(2022北京,1,4分)已知全集U={x|-3<x<3},集合A={x|-2<x≤1},则∁U A=()A.(-2,1]B.(-3,-2)∪[1,3)C.[-2,1)D.(-3,-2]∪(1,3)答案D在数轴上作出全集U及集合A,如图所示,可知∁U A=(-3,-2]∪(1,3).故选D.易错警示:集合A中含有元素1,不含元素-2,故∁U A中含有元素-2,不含元素1,注意区间的开闭.9.(2022天津,1,5分)设全集U={-2,-1,0,1,2},集合A={0,1,2},B={-1,2},则A∩(∁U B)=()A.{0,1}B.{0,1,2}C.{-1,1,2}D.{0,-1,1,2}答案A∵U={-2,-1,0,1,2},B={-1,2},∴∁U B={-2,0,1},又A={0,1,2},∴A∩(∁U B)={0,1}.故选A.10.(2022新高考Ⅰ,1,5分)若集合M={x|<4},N={x|3x≥1},则M∩N=()A.{x|0≤x<2}B.U13≤<2C.{x|3≤x<16}D.U13≤<16答案D由题意知M={x|0≤x<16},N=U≥M∩N=U13≤<16,故选D.11.(2022全国甲理,3,5分)设全集U={-2,-1,0,1,2,3},集合A={-1,2},B={x|x2-4x+3=0},则∁U(A∪B)=() A.{1,3} B.{0,3} C.{-2,1} D.{-2,0}答案D因为B={x|x2-4x+3=0}={1,3},所以A∪B={-1,1,2,3},所以∁U(A∪B)={-2,0},故选D. 12.(2021全国甲理,1,5分)设集合M={x|0<x<4},N=U13≤≤5,则M∩N=()A.U0<≤B.U13≤<4C.{x|4≤x<5}D.{x|0<x≤5}答案B<<4,≤5,得13≤x<4,故选B.13.(2021全国甲文,1,5分)设集合M={1,3,5,7,9},N={x|2x>7},则M∩N=()A.{7,9}B.{5,7,9}C.{3,5,7,9}D.{1,3,5,7,9}答案B解题指导:对可化简的集合,先化成最简形式;注意仔细审题,利用“∩”的含义,进行基本运算.解析N={x|2x>7}=U M∩N={5,7,9},故选B.易错警示:区分“∩”与“∪”.14.(2021新高考Ⅰ,1,5分)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}答案B在数轴上表示出集合A,如图,由图知A∩B={2,3}.15.(2021全国乙理,2,5分)已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.ØB.SC.TD.Z答案C解题指导:首先结合集合S、T的元素特征得到T⫋S,然后依据集合的交集运算得出结果.解析依题知T⫋S,则S∩T=T,故选C.16.(2021全国乙文,1,5分)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则∁U(M∪N)=()A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}答案A解题指导:先求M∪N,再求∁U(M∪N),即可得出结果.解析由题意得M∪N={1,2,3,4},则∁U(M∪N)={5},故选A.易错警示学生易因混淆交集和并集的运算而出错.17.(2020新高考Ⅰ,1,5分)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}答案C已知A={x|1≤x≤3},B={x|2<x<4},在数轴上表示出两个集合,由图易知A∪B={x|1≤x<4}.故选C.18.(2020新高考Ⅰ,5,5分)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是() A.62% B.56% C.46% D.42%答案C用Venn图表示学生参加体育锻炼的情况,A+B表示喜欢游泳的学生数占该校学生总数的比例,B+C表示喜欢足球的学生数占该校学生总数的比例,A+B+C表示喜欢足球或游泳的学生数占该校学生总数的比例,即A+B=82%,B+C=60%,A+B+C=96%,B表示既喜欢足球又喜欢游泳的学生数占该校学生总数的比例,故B=82%+60%-96%=46%.故选C.19.(2020北京,1,4分)已知集合A={-1,0,1,2},B={x|0<x<3},则A∩B=()A.{-1,0,1}B.{0,1}C.{-1,1,2}D.{1,2}答案D集合A与集合B的公共元素为1,2,由交集的定义知A∩B={1,2},故选D.20.(2019课标Ⅱ理,1,5分)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=()A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)答案A本题考查了集合的运算;以集合的交集为载体,考查运算求解能力,旨在考查数学运算的素养要求.由题意得A={x|x<2或x>3},B={x|x<1},∴A∩B={x|x<1}.21.(2019课标Ⅱ文,1,5分)已知集合A={x|x>-1},B={x|x<2},则A∩B=()A.(-1,+∞)B.(-∞,2)C.(-1,2)D.Ø答案C本题主要考查集合的交集运算;考查数学运算的核心素养.∵A={x|x>-1},B={x|x<2},∴A∩B={x|-1<x<2},即A∩B=(-1,2).故选C.22.(2019课标Ⅲ理,1,5分)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=()A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}答案A本题考查集合的运算,通过集合的不同表示方法考查学生对知识的掌握程度,考查了数学运算的核心素养.由题意可知B={x|-1≤x≤1},又∵A={-1,0,1,2},∴A∩B={-1,0,1},故选A.23.(2019北京文,1,5分)已知集合A={x|-1<x<2},B={x|x>1},则A∪B=()A.(-1,1)B.(1,2)C.(-1,+∞)D.(1,+∞)答案C本题主要考查集合的并集运算,考查学生运算求解的能力,考查的核心素养是数学运算.∵A={x|-1<x<2},B={x|x>1},∴A∪B={x|x>-1},故选C.A)∩B=()24.(2019浙江,1,4分)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁UA.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}答案A本题考查补集、交集的运算;旨在考查学生的运算求解的能力;以列举法表示集合为背景体现数学运算的核心素养.∵∁U A={-1,3},∴(∁U A)∩B={-1},故选A.25.(2018课标Ⅰ文,1,5分)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=()A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}答案A本题主要考查集合的基本运算.∵A={0,2},B={-2,-1,0,1,2},∴A∩B={0,2},故选A.26.(2018课标Ⅱ文,2,5分)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}答案C本题主要考查集合的运算.由题意得A∩B={3,5},故选C.27.(2018课标Ⅲ理,1,5分)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}答案C本题考查集合的运算.∵A={x|x≥1},B={0,1,2},∴A∩B={1,2},故选C.28.(2018北京理,1,5分)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=()A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}答案A本题主要考查集合的运算.化简A={x|-2<x<2},∴A∩B={0,1},故选A.29.(2018天津文,1,5分)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=()A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}答案C本题主要考查集合的运算.由题意得A∪B={1,2,3,4,-1,0},∴(A∪B)∩C={1,2,3,4,-1,0}∩{x∈R|-1≤x<2}={-1,0,1}.故选C.A=()30.(2018浙江,1,4分)已知全集U={1,2,3,4,5},A={1,3},则∁UA.Ø⌀B.{1,3}C.{2,4,5}D.{1,2,3,4,5}答案C本题考查集合的运算.∵U={1,2,3,4,5},A={1,3},∴∁U A={2,4,5}.31.(2017课标Ⅱ理,2,5分)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3}B.{1,0}C.{1,3}D.{1,5}答案C本题主要考查集合的运算.∵A∩B={1},∴1∈B,∴1-4+m=0,∴m=3.由x2-4x+3=0,解得x=1或x=3.∴B={1,3}.经检验符合题意.故选C.32.(2017课标Ⅰ文,1,5分)已知集合A={x|x<2},B={x|3-2x>0},则()A.A∩B=<B.A∩B=ØC.A∪B=<D.A∪B=R答案A本题考查集合的运算.由3-2x>0得x<32,则B=<所以A∩B=<故选A.33.(2017课标Ⅱ文,1,5分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}答案A本题考查集合的并集.A∪B={1,2,3}∪{2,3,4}={1,2,3,4}.故选A.34.(2017课标Ⅲ文,1,5分)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1B.2C.3D.4答案B因为集合A和集合B有共同元素2,4,所以A∩B={2,4},所以A∩B中元素的个数为2.35.(2017天津理,1,5分)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=()A.{2}B.{1,2,4}C.{1,2,4,6}D.{x∈R|-1≤x≤5}答案B本题主要考查集合的表示和集合的运算.因为A={1,2,6},B={2,4},所以A∪B={1,2,4,6},又C={x∈R|-1≤x≤5},所以(A∪B)∩C={1,2,4}.故选B.36.(2017北京理,1,5分)若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=()A.{x|-2<x<-1}B.{x|-2<x<3}C.{x|-1<x<1}D.{x|1<x<3}答案A本题考查集合的交集运算,考查运算求解能力.由集合的交集运算可得A∩B={x|-2<x<-1},故选A.37.(2017北京文,1,5分)已知全集U=R,集合A={x|x<-2或x>2},则∁A=()UA.(-2,2)B.(-∞,-2)∪(2,+∞)C.[-2,2]D.(-∞,-2]∪[2,+∞)答案C本题考查集合的补集运算.根据补集的定义可知,∁U A={x|-2≤x≤2}=[-2,2].故选C.38.(2016课标Ⅰ理,1,5分)设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=()A.−3,−B.C.1,3答案D因为A={x|x2-4x+3<0}={x|1<x<3},B=>所以A∩B={x|1<x<3}∩>=< x<3.故选D.思路分析通过不等式的求解分别得出集合A和集合B,然后根据交集的定义求得A∩B的结果,从而得出正确选项.方法总结集合的运算问题通常是先化简后运算,可借助数轴或韦恩图解决.39.(2016课标Ⅱ理,2,5分)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=()A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}答案C由(x+1)(x-2)<0⇒-1<x<2,又x∈Z,∴B={0,1},∴A∪B={0,1,2,3}.故选C.40.(2016课标Ⅲ理,1,5分)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(-∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)答案D S={x|(x-2)(x-3)≥0}={x|x≤2或x≥3},在数轴上表示出集合S,T,如图所示:由图可知S∩T=(0,2]∪[3,+∞),故选D.评析本题主要考查了集合的运算,数轴是解决集合运算问题的“利器”.41.(2016课标Ⅰ文,1,5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}答案B∵A={1,3,5,7},B={x|2≤x≤5},∴A∩B={3,5},故选B.42.(2016课标Ⅱ文,1,5分)已知集合A={1,2,3},B={x|x2<9},则A∩B=()A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,2}C.{1,2,3}D.{1,2}答案D由已知得B={x|-3<x<3},∵A={1,2,3},∴A∩B={1,2},故选D.B=()43.(2016课标Ⅲ文,1,5分)设集合A={0,2,4,6,8,10},B={4,8},则∁AA.{4,8}B.{0,2,6}C.{0,2,6,10}D.{0,2,4,6,8,10}答案C由补集定义知∁A B={0,2,6,10},故选C.44.(2016天津理,1,5分)已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}答案D由题易知B={1,4,7,10},所以A∩B={1,4},故选D.45.(2016山东理,2,5分)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=()A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)答案C∵A=(0,+∞),B=(-1,1),∴A∪B=(-1,+∞).故选C.Q)=()46.(2016浙江,1,5分)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁RA.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)答案B∵Q=(-∞,-2]∪[2,+∞),∴∁R Q=(-2,2),∴P∪(∁R Q)=(-2,3],故选B.47.(2015课标Ⅱ,1,5分)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=()A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}答案A因为B={x|(x-1)(x+2)<0}={x|-2<x<1},A={-2,-1,0,1,2},故A∩B={-1,0}.选A.48.(2015课标Ⅰ文,1,5分)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3D.2答案D由已知得A={2,5,8,11,14,17,…},又B={6,8,10,12,14},所以A∩B={8,14}.故选D.49.(2015课标Ⅱ文,1,5分)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=()A.(-1,3)B.(-1,0)C.(0,2)D.(2,3)答案A因为A=(-1,2),B=(0,3),所以A∪B=(-1,3),故选A.50.(2015陕西文,1,5分)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]答案A由题意知M={0,1},N={x|0<x≤1},所以M∪N=[0,1].故选A.51.(2014课标Ⅰ理,1,5分)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=()A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)答案A由不等式x2-2x-3≥0解得x≥3或x≤-1,因此集合A={x|x≤-1或x≥3},又集合B={x|-2≤x<2},所以A∩B={x|-2≤x≤-1},故选A.52.(2014课标Ⅱ理,1,5分)设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}答案D由已知得N={x|1≤x≤2},∵M={0,1,2},∴M∩N={1,2},故选D.53.(2014课标Ⅱ文,1,5分)已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=()A.⌀B.{2}C.{0}D.{-2}答案B∵集合A={-2,0,2},B={x|x2-x-2=0}={2,-1},∴A∩B={2},故选B.54.(2013课标Ⅱ理,1,5分)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=()A.{0,1,2}B.{-1,0,1,2}C.{-1,0,2,3}D.{0,1,2,3}答案A化简得M={x|-1<x<3},所以M∩N={0,1,2},故选A.55.(2013课标Ⅰ文,1,5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}答案A∵B={x|x=n2,n∈A}={1,4,9,16},∴A∩B={1,4},故选A.56.(2013课标Ⅱ文,1,5分)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=()A.{-2,-1,0,1}B.{-3,-2,-1,0}C.{-2,-1,0}D.{-3,-2,-1}答案C由题意得M∩N={-2,-1,0}.选C.57.(2013上海理,15,5分)设常数a∈R,集合A={x|(x-1)(x-a)≥0},B={x|x≥a-1},若A∪B=R,则a的取值范围为()A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)答案B当a=1时,集合A=R,满足A∪B=R.当a>1时,A=(-∞,1]∪[a,+∞),由A∪B=R,得a-1≤1,所以1<a≤2;当a<1时,A=(-∞,a]∪[1,+∞),由A∪B=R,得a-1≤a,所以a<1.综上所述,a≤2.58.(2012大纲全国理,2,5分)已知集合A={1,3,},B={1,m},A∪B=A,则m=()A.0或3B.0或3C.1或3D.1或3答案B由A∪B=A得B⊆A,则m∈A,所以有m=或m=3,所以m=3或m=1或m=0,又由集合中元素的互异性知m≠1,故选B.59.(2011课标文,1,5分)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个答案B由题意得P=M∩N={1,3},∴P的子集为⌀,{1},{3},{1,3},共4个,故选B.M=⌀,则M∪N=() 60.(2011辽宁理,2,5分)已知M,N为集合I的非空真子集,且M,N不相等,若N∩∁IA.MB.NC.ID.⌀答案A∵N∩∁I M=⌀,∴N⊆M.又M≠N,∴N⫋M,∴M∪N=M.故选A.61.(2020江苏,1,5分)已知集合A={-1,0,1,2},B={0,2,3},则A∩B=.答案{0,2}解析∵A={-1,0,1,2},B={0,2,3},∴A∩B={0,2}.62.(2018江苏,1,5分)已知集合A={0,1,2,8},B={-1,1,6,8},那么A∩B=.答案{1,8}解析本题考查集合的运算.∵A={0,1,2,8},B={-1,1,6,8},∴A∩B={1,8}.。
高考数学专题《集合》习题含答案解析
分析:由题意首先求得 CR B ,然后进行交集运算即可求得最终结果.
详解:由题意可得: CR B x | x 1 ,
结合交集的定义可得: A CR B 0 x 1 .
本题选择 B 选项.
8.(2017·全国高考真题(理))已知集合 A={x|x<1},B={x| 3x 1 },则(
故选:C
8.(2019·北京临川学校高二期末(文))已知集合 = { ―1,3}, = {2,2},若 ∪ = { ―1,3,2,9},则实数
)
的值为(
A. ± 1
B. ± 3
C. ― 1
D.3
【答案】B
【解析】
∵ 集合 = { ―1,3}, = {2,2},且 ∪ = { ―1,3,2,9}, ∴ 2 = 9,因此, =± 3,
对③: {0,1, 2} 是集合, {1, 2, 0} 也是集合,由于一个集合的本身也是该集合的子集,故③正确.
对④: 0 是元素, 是不含任何元素的空集,所以 0 ,故④错误.
对⑤: 0 是元素, 是不含任何元素的空集,所以两者不能进行取交集运算,故⑤错误.
故选:C.
3.(2021·浙江高一期末)已知集合 M 0,1, 2,3, 4 , N 2, 4, 6 , P M N ,则满足条件的 P 的非
则集合 A B 的所有元素之和为(
A.16
B.18
)
C.14
D.8
【答案】A
【解析】
由题设,列举法写出集合 A B ,根据所得集合,加总所有元素即可.
【详解】
由题设知: A B {1, 2,3, 4, 6} ,
∴所有元素之和 1 2 3 4 6 16 .
2024年高考真题——数学(天津卷)含答案
2024年普通高等学校招生全国统一考试(天津卷)数学(答案在最后)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共9小题,每小题5分,共45分.参考公式:·如果事件A B ,互斥,那么()()()P A B P A P B =+ .·如果事件A B ,相互独立,那么()()()P AB P A P B =.·球的体积公式34π3V R =,其中R 表示球的半径.·圆锥的体积公式13V Sh=,其中S 表示圆锥的底面面积,h 表示圆锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}1,2,3,4A =,{}2,3,4,5B =,则A B = ()A.{}1,2,3,4 B.{}2,3,4 C.{}2,4 D.{}12.设,a b ∈R ,则“33a b =”是“33a b =”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.下列图中,相关性系数最大的是()A. B.C.D.4.下列函数是偶函数的是()A.22e 1x x y x -=+ B.22cos 1x x y x +=+ C.e 1x xy x -=+ D.||sin 4e x x x y +=5.若0.30.3 4.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为()A.a b c>> B.b a c>> C.c a b>> D.b c a >>6.若,m n 为两条不同的直线,α为一个平面,则下列结论中正确的是()A.若//m α,n ⊂α,则//m nB.若//,//m n αα,则//m nC.若//,αα⊥m n ,则m n⊥ D.若//,αα⊥m n ,则m 与n 相交7.已知函数()()πsin303f x x ωω⎛⎫=+> ⎪⎝⎭的最小正周期为π.则函数在ππ,126⎡⎤-⎢⎥⎣⎦的最小值是()A.32B.32-C.0D.328.双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为()A.22182y x -= B.22184x y -= C.22128x y -= D.22148x y -=9.一个五面体ABC DEF -.已知AD BE CF ∥∥,且两两之间距离为1.并已知123AD BE CF ===,,.则该五面体的体积为()A.6B.33142+ C.32D.142-第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共11小题,共105分.二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10.已知i 是虚数单位,复数))i 2i +⋅=______.11.在63333x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项为______.12.22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF的距离为______.13.,,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.(1)甲选到A 的概率为______;已知乙选了A 活动,他再选择B 活动的概率为______.14.在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC ==+uur uu r uu u r λμ,则λμ+=______;若F 为线段BE 上的动点,G 为AF 中点,则AF DG ⋅的最小值为______.15.若函数()21f x ax =--+有唯一零点,则a 的取值范围为______.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤16.在ABC 中,92cos 5163a Bbc ===,,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -.17.已知四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,//AB CD ,1A A ⊥平面ABCD ,AD AB ⊥,其中12,1AB AA AD DC ====.N 是11B C 的中点,M 是1DD的中点.(1)求证1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB CC 的夹角余弦值;(3)求点B 到平面1CB M 的距离.18.已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S =△.(1)求椭圆方程.(2)过点30,2⎛⎫- ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤ 恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.19.已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=⎧=⎨+<<⎩,11b =,其中k 是大于1的正整数.(ⅰ)当1k n a +=时,求证:1n k n b a b -≥⋅;(ⅱ)求1nS ii b =∑.20.设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ≥-在()0,x ∞∈+时恒成立,求a 的取值范围;(3)若()12,0,1x x ∈,证明()()121212f x f x x x -≤-.2024年普通高等学校招生全国统一考试(天津卷)数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共9小题,每小题5分,共45分.参考公式:·如果事件A B ,互斥,那么()()()P A B P A P B =+ .·如果事件A B ,相互独立,那么()()()P AB P A P B =.·球的体积公式34π3V R =,其中R 表示球的半径.·圆锥的体积公式13V Sh =,其中S 表示圆锥的底面面积,h 表示圆锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B 【2题答案】【答案】C 【3题答案】【答案】A 【4题答案】【答案】B 【5题答案】【答案】B【6题答案】【答案】C【7题答案】【答案】A【8题答案】【答案】C【9题答案】【答案】C第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共11小题,共105分.二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.【10题答案】【答案】7【11题答案】【答案】20【12题答案】【答案】45##0.8【13题答案】【答案】①.35②.12【14题答案】【答案】①.43②.518-【15题答案】【答案】()(1-⋃三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤【16题答案】【答案】(1)4(2)4(3)5764【17题答案】【答案】(1)证明见解析(2)11(3)21111【18题答案】【答案】(1)221129x y +=(2)存在()30,32T t t ⎛⎫-≤≤⎪⎝⎭,使得0TP TQ ⋅≤ 恒成立.【19题答案】【答案】(1)21n n S =-(2)①证明见详解;②()131419nn S ii n b=-+=∑【20题答案】【答案】(1)1y x =-(2){}2(3)证明过程见解析。
(完整版)集合有关近年高考题50道及答案解析
【经典例题】【例1】(2009年广东卷文)已知全集U R =,则正确表示集合{1,0,1}M =-和{}2|0N x x x =+=关系的韦恩(Venn )图是 ( )【答案】B【解析】 由{}2|0N x x x =+=,得{1,0}N =-,则N M ⊂,选B.【例2】(2011广东)已知集合{(,)|,A x y x y =为实数,且}221,x y +={(,)|,B x y x y =为实数,且},AB y x =则的元素个数为 ( ) A 、0 B 、1 C 、2 D 、3 【答案】C【解析】A 为圆心在原点的单位圆,B 为过原点的直线,故有2个交点,故选C.【例3】(2010天津理)设集合A={}{}|||1,,|||2,.x x a x R B x x b x R -<∈=->∈若A ⊆B ,则实数a,b 必满足( ) A 、||3a b +≤ B 、||3a b +≥ C 、||3a b -≤ D 、||3a b -≥【答案】D【解析】A={x|a-1<x<a+1},B={x|x<b-2或x>b+2},因为A ⊆B,所以a+1≤b-2或a-1≥b+2,即a-b ≤-3或a-b ≥3,即|a-b|≥3【例4】(2009广东卷理)已知全集U R =,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-=的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有 ( )A. 3个B. 2个C. 1个D. 无穷多个 【答案】 B【解析】 由{212}M x x =-≤-≤得31≤≤-x ,则{}3,1=⋂N M ,有2个,选B. 【例5】(2010天津文)设集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值范围是 ( ) A 、{}a |0a 6≤≤ B 、{}|2,a a ≤≥或a 4C 、{}|0,6a a ≤≥或aD 、{}|24a a ≤≤ 【答案】 C【解析】由|x-a|<1得-1<x-a<1,即a-1<x<a+1.如图由图可知a+1≦1或a-1≧5,所以a ≦0或a ≧6.【例6】(2012大纲全国)已知集合{}{}1,3,,1,,A m B m A B A ==⋃=,则m = ( )A 、0或3B 、0或3C 、1或3D 、1或3 【答案】B 【解析】A B A ⋃= B A ∴⊂,{}{}1,3,,1,A m B m ==m A ∴∈,故m m =或3m =,解得0m =或3m =或1m =,又根据集合元素的互异性1m ≠,所以0m =或3m =。
2023年高考真题及答案解析《数学理》(全国甲卷)
甲卷理科2023年普通高等学校招生全国统一考试(全国甲卷)理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A =x x =3k +1,k ∈Z ,B =x x =3k +2,k ∈Z ,U 为整数集,则∁U A ∪B =()A.x x =3k ,k ∈ZB.x x =3k -1,k ∈ZC.x x =3k -2,k ∈ZD.∅2.若复数(a +i )(1-a i )=2,则a =()A.-1B.0C.1D.23.执行下面的程序框图,输出的B =()n ≤3n =1,A =1,B =2开始A =A +B B =A +B n =n +1结束输出B否A.21B.34C.55D.894.向量a =b =1,c =2,且a +b +c =0,则cos a -c ,b -c =()A.-15B.-25C.25D.455.已知等比数列a n 中,a 1=1,S n 为a n 前n 项和,S 5=5S 3-4,则S 4=()A.7B.9C.15D.306.有50人报名报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报名足球俱乐部,则其报名乒乓球俱乐部的概率为()A.0.8B.0.4C.0.2D.0.17.“sin 2α+sin 2β=1”是“sin α+cos β=0”()A.充分条件但不是必要条件 B.必要条件但不是充分条件C.充要条件D.既不是充分条件也不是必要条件8.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为5,其中一条渐近线与圆(x -2)2+(y -3)2=1交于A ,B 两点,则AB =()A.15B.55C.255D.4559.有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则恰有一人连续参加两天服务的选择种数为()A.120B.60C.40D.3010.已知f (x )为函数y =cos 2x +π6 向左平移π6个单位所得函数,则y =f (x )与y =12x -12的交点个数为()A.1B.2C.3D.411.在四棱锥P -ABCD 中,底面ABCD 为正方形,AB =4,PC =PD =3,∠PCA =45°,则△PBC 的面积为()A.22B.32C.42D.5212.已知椭圆x 29+y 26=1,F 1,F 2为两个焦点,O 为原点,P 为椭圆上一点,cos ∠F 1PF 2=35,则OP =()A.25B.302C.35D.352二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年数学全国1卷2.已知集合{}220A x x x =-->,则A =RBA .{}12x x -<< B .{}12x x -≤≤ C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥2017年数学全国1卷已知集合A ={x |x <1},B ={x |31x <},则 A A .{|0}A B x x =< B .A B =R C .{|1}AB x x =>D .AB =∅2016年数学全国1卷设集合2{|430}A x x x =-+< ,{|230}B x x =->,则AB =(A )3(3,)2-- (B )3(3,)2- (C )3(1,)2(D )3(,3)2【答案】D2013年数学全国1卷已知集合{}{}2|20,|55A x x x B x x =->=-<<,则 ( ) A.A ∪B=R B.A ∩B=C.B ⊆AD.A ⊆B解析】A=(-∞,0)∪(2,+∞), ∴A ∪B=R,故选A.2012年数学全国1卷已知集合{1,2,3,4,5}A =,{(,)|,,}B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为(A ) 3 (B ) 6 (C ) 8 (D ) 10 【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[()u AB 中的元素共有(A )(A )3个 (B )4个 (C )5个 (D )6个解:{3,4,5,7,8,9}AB =,{4,7,9}(){3,5,8}U AB C A B =∴=故选A 。
也可用摩根律:()()()U U U C A B C A C B =设集合{}1|3,|04x A x x B x x -⎧⎫=>=<⎨⎬-⎩⎭,则A B = BA. ∅B. ()3,4C.()2,1-D. ()4.+∞已知集合A ={1.3. m },B ={1,m} ,AB =A, 则m=A 0或3B 0或3C 1或3D 1或3已知集合M ={x|(x -1)2<4,x ∈R},N ={-1,0,1,2,3},则M∩N=( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, 设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为A .9B .8C .5D .4已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为A .3B .2C .1D .0已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,, 已知全集U =R ,集合{}|23A x x =-≤≤,{}|14B x x x =<->或,那么集合()UAB 等于( )A .{}|24x x -<≤ B .{}|34x x x 或≤≥ C .{}|21x x -<-≤D .{}|13x x -≤≤集合2{03},{9}P x Z x M x Z x =∈≤<=∈≤,则P M =(A) {1,2} (B) {0,1,2} (C){x|0≤x<3} (D) {x|0≤x ≤3}已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是(A )(-∞, -1] (B )[1, +∞) (C )[-1,1] (D )(-∞,-1] ∪[1,+∞)已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B= A (-∞,-1)B (-1,-23) C (-23,3)D (3,+∞) 已知集合{1,0,1}A =-,{|11}B x x =-≤<,则A B = ( )(A ){0}(B ){1,0}-(C ){0,1}(D ){1,0,1}-已知集合2{|20},{0,1,2}A x x x B =-==,则A B =( ).{0}A .{0,1}B .{0,2}C .{0,1,2}D【答案】C【解析】∵{}2,0=A ,∴{}{}{}2,02,1,02,0== B A . 已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则AB =(A ){0,1} (B ){0,1,2}(C ){1,0,1}- (D ){1,0,1,2}- 【答案】C已知集合A ={x ||x |<2},B ={–2,0,1,2},则A B =(A ){0,1}(B ){–1,0,1} (C ){–2,0,1,2}(D ){–1,0,1,2}设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =______▲_____. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A ▲ .已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A 中元素的个数为_______. 已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B ▲ .【答案】{}1,2- 【解析】 试题分析:{}{}{}1,2,3,6231,2AB x x =--<<=-.故答案应填:{}1,2-已知集合{}=1,2A ,{}=+2,3B a a ,若A B ={1}则实数a 的值为________已知集合{0,1,2,8}A =,{1,1,6,8}B =-,那么A B = ▲ . 设集合{|22}A x x =-≤≤,Z 为整数集,则集合A Z 中元素的个数是(A )3 (B )4 (C )5 (D )6 【答案】C 【解析】试题分析:由题意,知{2,1,0,1,2}A=--Z ,故A Z 中元素的个数为5,选C.设集合A ={x |x +2=0},集合B ={x |x 2-4=0},则A ∩B =( ).A .{-2}B .{2}C .{-2,2}D .∅ 答案:A解析:由题意可得,A ={-2},B ={-2,2}, ∴A ∩B ={-2}.故选A . 设集合{}{}2|5,|4210,S x x T x x x =<=+-<则ST =A.{}|75x x -<<- B.{}|35x x << C.{}|53x x -<< D.{}|75x x -<< 【考点定位】本小题考查解含有绝对值的不等式、一元二次不等式,考查集合的运算,基础题。
解析:由题)3,7(T ),5,5(-=-=S ,故选择C 。
解析2:由{|55},S x x =-<<{|73}T x x =-<<故{|53}ST x x =-<<,故选C .已知集合},32|{<+∈=x R x A 集合},0)2)((|{<--∈=x m x R x B 且),,1(n B A -= 则m =__________,n = __________.已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂= (A) (,2]-∞ (B) [1,2] (C) [2,2](D) [-2,1]已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合UAB =(A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,8 【答案】A 【解析】 试题分析:{2,5,8}UB =,所以{2,5}UAB =,故选A.已知集合}{4,3,2,1=A ,}{A x x y y B ∈-==,23,则=B A (A )}{1(B )}{4 (C )}{3,1(D )}{4,1 设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R A B(A) {01}x x <≤ (B) {01}x x << (C) {12}x x ≤<(D) {02}x x <<(1) 设U=R ,{|0}{|1}u A x x B x x B =>=>⋂=,,则A(A ){|01}x x ≤<(B ){|01}x x <≤ (C ){|0}x x < (D ){|1}x x > 设P={x ︱x <4},Q={x ︱2x <4},则(A )p Q ⊆ (B )Q P ⊆ (C )Rp Q C ⊆ (D )RQ P C⊆设集合{|2}S x x =>-,2{|340}T x x x =+-≤,则()R C S T ⋃= A .(21]-, B .(4]-∞-, C .(1]-∞, D .[1)+∞, 已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()PQ =RA .[2,3]B .( -2,3 ]C .[1,2)D .(,2][1,)-∞-+∞ 【答案】B【考点】一元二次不等式;集合的并集、补集. 已知集合{}{}x -1<x Q x =<<<1,=0x 2P ,那么PQ =A.(-1,2)B.(0,1)C.(-1,0)D.(1,2) 已知全集U ={1,2,3,4,5},A ={1,3},则=UAA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}。