行测数量关系49个常见问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列数,从n个中取m个排一下,有n(n-1)(n-2)...(n-m+1)种,即n!/(n-m)!
组合数,从n个中取m个,相当于不排,就是n!/[(n-m)!m!]
1.元素与集合是属于和不属于的关系。
2.得摩根公式:(A交B)的补==(A的补)并(B的补)
(A并B)的补==(A的补)交(B的补)
3.包含关系:是表示集合A和集合B之间的关系。如果集合A中的全部元素都在集合B中,那么集合B包含集合A,集合A包含于集合B
4.容斥原理:
两个集合的容斥关系公式:A∪B = A+B - A∩B (∩:重合的部分)
三个集合的容斥关系公式:A∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C
5.子集个数:如果集合中共有n个元素,那么子集个数是2的n次方。
真子集个数是2的n次方-1。
公务员考试行测数量关系49个常见问题公式法巧解
五,往返平均速度公式及其应用(引用)
某人以速度a从A地到达B地后,立即以速度b返回A地,那么他往返的平均速度v=2ab/(a+b )。
证明:设A、B两地相距S,则
往返总路程2S,往返总共花费时间s/a+s/b
故v=2s/(s/a+s/b)=2ab/(a+b)
四,时钟成角度的问题
设X时时,夹角为30X ,Y分时,分针追时针5.5,设夹角为A.(请大家掌握)
钟面分12大格60小格每一大格为360除以12等于30度,每过一分钟分针走6度,时针走0.5度,能追5.5度。
1.【30X-5.5Y】或是360-【30X-5.5Y】【】表示绝对值的意义(求角度公式)
变式与应用
2.【30X-5.5Y】=A或360-【30X-5.5Y】=A (已知角度或时针或分针求其中一个角)
六,空心方阵的总数
空心方阵的总数= (最外层边人(物)数-空心方阵的层数)×空心方阵的层数×4
= 最外层的每一边的人数^2-(最外层每边人数-2*层数)^2
=每层的边数相加×4-4×层数
空心方阵最外层每边人数=总人数/4/层数+层数
方阵的基本特点:①方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层边上的人数就少2;
②每边人(或物)数和四周人(或物)数的关系:
③中实方阵总人(或物)数=(每边人(或物)数)2=(最外层总人数÷4+1)2
七,青蛙跳井问题
例如:①青蛙从井底向上爬,井深10米,青蛙每跳上5米,又滑下4米,这样青蛙需跳几次方可出井?(6)
②单杠上挂着一条4米长的爬绳,小赵每次向上爬1米又滑下半米来,问小赵几次才能爬上单杠?(7)
总解题方法:完成任务的次数=井深或绳长- 每次滑下米数(遇到半米要将前面的单位转化成半米)
例如第二题中,每次下滑半米,要将前面的4米转换成8个半米再计算。
完成任务的次数=(总长-单长)/实际单长+1
八,容斥原理
总公式:满足条件一的个数+满足条件2的个数-两个都满足的个数=总个数-两个都不满足的个数
【国2006一类-42】现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都做错的有4人,则两种实验都做对的有多少人?
A.27人
B.25人
C.19人
D.10人
上题就是数学运算试题当中经常会出现的“两集合问题”,这类问题一般比较简单,使用容斥原理或者简单画图便可解决。但使用容斥原理对思维要求比较高,而画图浪费时间比较多。鉴于此类问题一般都按照类似的模式来出,下面华图名师李委明给出一个通解公式,希望对大家解题能有帮助:
例如上题,代入公式就应该是:40+31-x=50-4,得到x=25。我们再看看其它题目:【国2004A-46】某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是多少?A.22 B.18 C.28 D.26
代入公式:26+24-x=32-4,得到x=22
九,传球问题
这道传球问题是一道非常复杂麻烦的排列组合问题。
【李委明解三】不免投机取巧,但最有效果(根据对称性很容易判断结果应该是3的倍数,如果答案只有一个3的倍数,便能快速得到答案),也给了一个启发----
传球问题核心公式
N个人传M次球,记X=[(N-1)^M]/N,则与X最接近的整数为传给“非自己的某人”的方法数,与X第二接近的整数便是传给自己的方法数。大家牢记一条公式,可以解决此类至少三人传球的所有问题。
四人进行篮球传接球练习,要求每人接球后再传给别人。开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有传球方式:
A.60种
B.65种
C.70种
D.75种
x=(4-1)^5/4 x=60
十,圆分平面公式:
N^2-N+2,N是圆的个数
十一,剪刀剪绳
对折N次,剪M刀,可成M*2^n+1段
将一根绳子连续对折3次,然后每隔一定长度剪一刀,共剪6刀。问这样操作后,原来的绳子被剪成了几段?
A.18段
B.49段
C.42段
D.52段
十二,四个连续自然数,
性质一,为两个积数和两个偶数,它们的和可以被2整除,但是不能被4整除
性质二,他们的积+1是一个奇数的完全平方数
十三,骨牌公式
公式是:小于等于总数的2的N次方的最大值就是最后剩下的序号
十四,指针重合公式
关于钟表指针重合的问题,有一个固定的公式:61T=S(S为题目中最小的单位在题目所要求的时间内所走的格书,确定S后算出T的最大值知道相遇多少次。)
十五,图色公式
公式:(大正方形的边长的3次方)—(大正方形的边长—2)的3次方。
十六,装错信封问题
小明给住在五个国家的五位朋友分别写信,这些信都装错的情况共有多少种44种f(n)=n!(1-1/1!+1/2!!-1/3!......+(-1)n(1/n!))
或者可以用下面的公式解答
装错1信0种
装错2信:1种
3 2