单缝衍射的matlab分析教程
衍射的Matlab 模拟

二、菲涅耳-基尔霍夫衍射公式(确定了C、K()) 基尔霍夫 (Kirchhoff) 从波动方程出发,用场论得出了 比较严格的衍射公式。
A expik l expik r cosn, r cosn, l E P = d i l r 2
菲涅尔假设: 当 = 0 时,K()=Max, p/ 时,K()=0.
(实验证明是不对的) 若S发出的光源振幅为A(单位距离处),整个波面’的贡献
CA expikr ~ E P expikR K d R r
求解此公式主要问题:C、K()没有确切的表达式。
设
l
x sin x , f
a b
m
y sin y f
~ E x, y C 2a 2b exp ik lx1 my1 dx1 dy1
2 2
28
~ E x, y C 2a 2b exp ik lx1 my1 dx1 dy1
2 2
P0 E
17
r z1
2 2 x x1 y y1
2 z1
称为菲涅耳近似。
得到菲涅耳衍射:
e ikz1 ~ E x, y iz1
k ~ 2 2 E x1 , y1 exp i x x1 y y1 2 z1 y y
~ 和E0 abC
则
~ ~ sin sin E x, y E0
子波的复振幅与 cosn, r cosn, l 2 成正比,与波长成反比。 K ( )
1 p i exp[ i ] i 2 表示子波的振动位相超前于入射波90。
12
当光线接近于正入射时
基于matlab的衍射系统仿真(1)

《工程光学》综合性练习二题目:基于matlab的衍射系统仿真综合练习大作业二一、要求3-4人组成小组,对下面给出的各题目利用Matlab等工具进行仿真。
练习结束时每组提交一份报告及仿真程序。
在报告中应注明各仿真结果所对应的参数,如屏与衍射屏间距、孔径形状尺寸等。
二、仿真题目1.改变观察屏与衍射屏间距,观察观察屏上发生的衍射逐渐由菲涅耳衍射转为夫琅和费衍射1)原理图:S点光源发出的波长lam=500纳米S点发出光线经过单缝,缝宽a;单缝到衍射屏的距离L'2)Matlab代码clear;clcl=10; %l=input ('单缝到衍射屏的距离L=');a=0.2; %a=input('单缝的宽度(mm)a=');lam=500e-6; %lam=input('波长(nm)');x=-1:0.001:1; %接收屏边界y=x./sqrt(x.^2+l^2);z=a.*y/lam;I=1000*(sinc(z)).^2; %计算接受屏某点光强subplot(2,1,1) %绘制仿真图样及强度曲线image(2,x,I)colormap(gray(3))title('单缝衍射条纹')subplot(2,1,2)plot(x,I)title(光强分布)3)初始仿真图样(d=10)4)改变d之后的图样(d=1000)5)变化规律根据衍射屏以及接受屏的相对位置不同,由此产生菲涅尔衍射和夫琅禾费衍射的区别,根据我们模拟的情况得到菲涅尔衍射和夫琅禾费衍射的明显不同是夫琅禾费衍射条件下:中央有一条特别明亮的亮条纹,其宽度是其他亮条纹的两倍;其他亮条纹的宽度相等,亮度逐渐下降。
2.改变孔径形状、尺寸,观察图样变化1)原理图矩孔衍射:透镜焦距:1000mm;照射光波长:500nm;孔高:a(mm);孔宽:b(mm);圆孔衍射:圆孔直径:r(mm);照射光波长:500nm;照射光波长:500nm;2)matlab代码矩孔衍射:focallength=1000;lambda=500;a=2.0;b=2.0;resolution=64;center=(resolution)/2;A=zeros(resolution,resolution);for i=1:1:resolutionfor j=1:1:resolutionif abs(i-center)<a*10/2 & abs(j-center)<b*10/2 A(j,i)=255;endendendE=ones(resolution,resolution);k=2*pi*10000/focallength/lambda;imag=sqrt(-1);for m=1:1:resolutionx=m-center;for n=1:1:resolutiony=n-center;C=ones(resolution,resolution);for i=1:1:resolutionp=i-center;for j=1:1:resolutionq=j-center;C(j,i)=A(j,i)*exp(-imag*k*(x*p+y*q)); endendE(n,m)=sum(C(:));endendE=abs(E);I=E.^2;I=I.^(1/3);I=I.*255/max(max(I));L=I;I=I+256;CM=[pink(255).^(2/3);gray(255)];Colormap(CM);edge=(resolution-1)/20;[X,Y]=meshgrid([-edge:0.1:edge]);x=linspace(-edge,edge,resolution);y=linspace(-edge,edge,resolution);subplot(1,2,1);surf(x,y,L);axis([-edge,edge,-edge,edge,0,255]);caxis([0,511]);subplot(1,2,2);image(x,y,I);axis([-edge,edge,-edge,edge,0,511]);view(2);axis square;圆孔衍射:clearlmda=500e-9; %波长r=1.2e-3; %f = 1; %焦距N = 19;K = linspace(-0.1,0.1,N) ;lmda1 = lmda* ( 1 + K) ;xm = 2000* lmda* f;xs = linspace(-xm,xm,2000) ;ys = xs;z0 = zeros( 2000) ;[x,y]= meshgrid( xs) ;for i = 1: 19s = 2*pi*r*sqrt(x.^2 + y.^2)./(lmda1( i) ) ;z = 4* ( besselj( 1,s)./( s + eps) ).^2; %光强公式z0 = z0 + z;endz1 = z0 /19;subplot( 1,2,1)imshow( z1* 255) ; %平面图xlabel( 'x')ylabel( 'y')subplot( 1,2,2)mesh( x,y,z1) %三维图colormap(gray)xlabel( 'x')ylabel( 'y')zlabel( '光强')3)仿真图样:矩孔衍射:a=1,b=2a=2,b=2可知:矩孔在一个维度上展宽一定倍数将导致衍射图样在相同维度上缩短相同倍数,同时能量会更向中心亮斑集中。
基于matlab的单缝衍射计算机模拟研究

课程设计说明书(论文)基于matlab的单缝衍射计算机模拟研究学院:数理学院专业班级:学生姓名:学生学号:指导老师:2014年月号摘要:美国Mathworks公司推出的MATLAB,是一种集数值计算、符号预算、可视化建模、仿真和图形处理等多种功能于一体的优秀图形化软件。
本文将会通过MATLAB软件编程用衍射积分的方法对单缝衍射进行计算机模拟。
计算机模拟为衍射实验的验证提供一条简捷、直观的途径。
从而可以加深我们对物理原理、概念和图像的理解。
关键词:MATLAB;衍射积分;单缝衍射;计算机模拟一、单缝衍射原理惠更斯原理表明,波源发出的波阵面上的每一点都可视为一个新的子波源。
这些子波源发出次级子波,其后任一时刻次级子波的包迹决定新的波阵面。
惠更斯原理用光波能确定光波的传播方向,但不能确定沿不同方向传播的光振动的振幅。
菲涅尔在次级子波概念的基础上,提出的“子波相干叠加”理论,又称为惠更斯-菲涅尔原理。
这个原理表述为:同一波面上的每一微小面元都可以看作是新的振动中心,它们发出次级子波。
这些次级子波经传播而在空间某点相遇时,该点的振动是所有这些次级子波在该点的相干叠加。
二、编程原理把单缝看作是np个分立的相干光源,屏幕上任意一点复振幅为np个光源照射结果的合成,对每个光源,光程差Δ=ypsinΦ,sinΦ=ys/D,光强I=I0(Σcosα)2+(Σsinα)2,其中α=2Δ/λ=πypys/λD三、程序的编写编写程序如下:clearlam=500e-9;a=1e-3;D=1;ym=3*lam*D/a;ny=51;ys=linspace(-ym,ym,ny);np=51;yp=linspace(0,a,np);for i=1:nysinphi=ys(i)/D;alpha=2*pi*yp*sinphi/lam;sumcos=sum(cos(alpha));sumsin=sum(sin(alpha));B(i,:)=(sumcos^2+sumsin^2)/np^2;endN=255;Br=(B/max(B))*N;subplot(1,2,1)image(ym,ys,Br);colormap(gray(N));subplot(1,2,2)plot(B,ys);四、运行程序程序运行结果如下:-0.4-0.200.20.4-1.5-1-0.500.511.5x 10-300.51-1.5-1-0.50.511.5-3五、对实验结果的分析 1主极大具有相同θ角的屏上部位具有相同的光强,因而屏上的衍射图样是一些相互平行的条纹,他们都平行于狭缝。
实验7 衍射的Matlab模拟

实验7衍射的Matlab模拟一、实验目的:掌握衍射的matlab模拟。
二、实验内容:1)单个圆孔夫朗和费衍射的matlab模拟2)双圆孔夫朗和费衍射的matlab模拟3)同一波长,狭缝数量分别为1、2、3、6、9、10时候的夫朗和费衍射的matlab模拟4)对4个不同波长的光照射时,狭缝数量分别为1、3时候的夫朗和费衍射的matlab 模拟5)单个圆孔菲涅尔衍射的matlab模拟6)模拟圆孔(或者单缝)衍射时,衍射屏到接收屏距离不同的时候衍射的图样1)clearclclam=632.8e-9;a=0.0005;f=1;m=300;ym=4000*lam*f;ys=linspace(-ym,ym,m);xs=ys;n=200;for i=1:mr=xs(i)^2+ys.^2;sinth=sqrt(r./(r+f^2));x=2*pi*a*sinth./lam;hh=(2*BESSELJ(1,x)).^2./x.^2;b(:,i)=(hh)'.*5000;B=b/max(b);endimage(xs,ys,b);colormap(gray(n));figure;plot(xs,B);colormap(green);-2.5-2-1.5-1-0.500.51 1.52 2.5x 10-3-2.5-2-1.5-1-0.50.511.522.5x 10-3-3-2-10123x 10-300.10.20.30.40.50.60.70.80.912)%双圆孔夫琅禾费衍射clear all close all clc %lam=632.8e-9;a=0.0005;f=1;m=300;ym=4000*lam*f;ys=linspace(-ym,ym,m);xs=ys;n=200;for i=1:m r=xs(i)^2+ys.^2;sinth=sqrt(r./(r+f^2));x=2*pi*a*sinth./lam;h=(2*BESSELJ(1,x)).^2./x.^2;d=10*a;deltaphi=2*pi*d*xs(i)/lam;hh=4*h*(cos(deltaphi/2))^2;b(:,i)=(hh)'.*5000;end image(xs,ys,b);colormap(gray(n));-2.5-2-1.5-1-0.500.51 1.52 2.5x 10-3-2.5-2-1.5-1-0.50.511.522.5x 10-33)lamda=500e-9;%波长N=[1236910];for j=1:6a=2e-4;D=5;d=5*a;ym=2*lamda*D/a;xs=ym;%屏幕上y 的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for i=1:n sinphi=ys(i)/D;alpha=pi*a*sinphi/lamda;beta=pi*d*sinphi/lamda;B(i,:)=(sin(alpha)./alpha).^2.*(sin(N(j)*beta)./sin(beta)).^2;B1=B/max(B);end NC=256;%确定灰度的等级Br=(B/max(B))*NC;figure(j);subplot(1,2,1);image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2);plot(B1,ys,'k');end-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为1-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为2-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为3-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为9狭缝数为6-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.0254)lamda=400e-9:100e-9:700e-9;%波长N=[13];a=2e-4;D=5;d=5*a;for j=1:4ym=2*lamda(j)*D/a;xs=ym;%屏幕上y 的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for k=1:2for i=1:n sinphi=ys(i)/D;alpha=pi*a*sinphi/lamda(j);beta=pi*d*sinphi/lamda(j);B(i,:)=(sin(alpha)./alpha).^2.*(sin(N(k)*beta)./sin(beta)).^2;B1=B/max(B);end NC=256;%确定灰度的等级Br=(B/max(B))*NC;figure();subplot(1,2,1);image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2);狭缝数为10plot(B1,ys,'k');end end-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02Lamda=400nm,N=1-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025Lamda=400nm,N=3Lamda=500nm,N=1-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03Lamda=500nm,N=3Lamda=600nm,N=1-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.04Lamda=600nm,N=3Lamda=700nm,N=1-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.045)clearclcN=300;r=15;a=1;b=1;I=zeros(N,N);[m,n]=meshgrid(linspace(-N/2,N/2-1,N));D=((m-a).^2+(n-b).^2).^(1/2);i=find(D<=r);I(i)=1;subplot(2,2,1);imagesc(I)colormap([000;111])axis imagetitle('衍射前的图样')L=300;M=300;[x,y]=meshgrid(linspace(-L/2,L/2,M));lamda=632.8e-6;k=2*pi/lamda;z=1000000;Lamda=700nm,N=3h=exp(j*k*z)*exp((j*k*(x.^2+y.^2))/(2*z))/(j*lamda*z); H=fftshift(fft2(h));%传递函数B=fftshift(fft2(I));%圆孔频谱G=H.*B;U=fftshift(ifft2(G));Br=(U/max(U));subplot(2,2,2);imshow(abs(U));axis image;colormap(hot)%figure,imshow(C);title('衍射后的图样');subplot(2,2,3);mesh(x,y,abs(U));subplot(2,2,4);plot(abs(Br))6)lamda=500e-9;%波长N=1;%缝数,可以随意更改变换a=2e-4;D=3:7;d=5*a;for j=1:5ym=2*lamda*D(j)/a;xs=ym;%屏幕上y的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for i=1:nsinphi=ys(i)/D(j);alpha=pi*a*sinphi/lamda;beta=pi*d*sinphi/lamda;B(i,:)=(sin(alpha)./alpha).^2.*(sin(N*beta)./sin(beta)).^2;B1=B/max(B);endNC=256;%确定灰度的等级Br=(B/max(B))*NC;figure();subplot(1,2,1)image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2)plot(B1,ys,'k');end-0.4-0.200.20.4-0.015-0.01-0.00500.0050.010.01500.51-0.015-0.01-0.0050.0050.010.015D=3m-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025D=5m D=4m-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.04D=7m D=6m。
matlab计算衍射

matlab计算衍射衍射是一种波传播时遇到障碍物或开口时发生的现象,对于光学、声学等领域具有重要意义。
本文将介绍MATLAB在衍射计算中的基本原理、常用方法以及实际应用,旨在为研究者提供一个全面的MATLAB衍射计算指南。
一、引言衍射是波在传播过程中遇到障碍物或开口时发生的波动现象,广泛应用于光学、声学、天文学等领域。
MATLAB作为一种高效的数学建模和计算工具,在衍射计算中有着广泛的应用。
本文将深入探讨MATLAB在衍射计算中的基本原理、方法和实际应用。
二、MATLAB中的衍射基本原理赫姆霍兹方程:衍射计算的基础是赫姆霍兹方程,描述了波场的传播和衍射现象。
MATLAB通过数值方法求解赫姆霍兹方程,实现波场的模拟。
傅里叶光学:利用傅里叶光学原理,将衍射问题转化为频域中的问题。
MATLAB提供了强大的傅里叶变换工具,可以对衍射场景进行频谱分析。
三、MATLAB中的衍射计算方法傅里叶衍射公式:利用傅里叶变换和逆变换,可以在频域中高效计算衍射场景。
MATLAB的fft和ifft函数可用于实现这一计算过程。
衍射积分公式:利用衍射积分公式,通过对波场的积分来计算衍射图样。
MATLAB的数值积分函数可以方便地应用于这一过程。
四、MATLAB中的衍射实际应用光学衍射模拟:MATLAB可用于模拟各种光学衍射现象,如单缝衍射、双缝衍射、光栅衍射等。
通过调整参数,可以实时观察衍射图样的变化。
声学衍射计算:在声学领域,MATLAB可以用于计算声波在不同环境中的衍射效应,对声学设备的设计和优化提供支持。
天文学应用:对于射电天文学等领域,MATLAB可用于计算射电波在宇宙中的传播和衍射,帮助天文学家理解观测数据。
五、MATLAB衍射计算的优势与挑战优势:MATLAB提供了丰富的数学函数和工具箱,使得衍射计算更加简便高效。
其图形用户界面(GUI)也有助于直观地展示计算结果。
挑战:随着衍射计算问题的复杂化,需要更高级的数值方法和算法,这对MATLAB的计算性能提出了一定的挑战。
matlab作业(衍射实验)

基于MATLAB 模拟演示衍射实验阚亮亮 李宗景 吴小龙 尹岩 将matlab 应用与以前学习过的课程是学习该课程的最重要的意义,通过matlab 演示衍射实验效果好,简洁,直观。
下图是单缝衍射是matlab 所得到的图像-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025附上MATLAB 程序:lamda=500e-9; %波长N=1; %缝数 ,可以随意更改变换a=2e-4;D=5;d=5*a;ym=2*lamda*D/a;xs=ym;%屏幕上y 的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for i=1:nsinphi=ys(i)/D;alpha=pi*a*sinphi/lamda;beta=pi*d*sinphi/lamda;B(i,:)=(sin(alpha)./alpha).^2.*(sin(N*beta)./sin(beta)).^2;B1=B/max(B);endNC=256; %确定灰度的等级Br=(B/max(B))*NC;subplot(1,2,1)image(xs,ys,Br);colormap(hot(NC)); %色调处理subplot(1,2,2)plot(B1,ys,'k');衍射现象的模拟结果与讨论在实验时改变N的值可以得到单缝以及多缝衍射的输出结果,并可以得到这样的结论:(1)当入射光波长一定时,单缝宽度a越小,衍射条纹越宽,衍射现象越显著;(2)单缝越宽,衍射越不明显,单缝宽度逐渐增大,衍射条纹越来越窄;(3)当缝宽a>>λ时,各级衍射条纹向中央明纹靠拢,而无法分辨,这时衍射现象消失。
结束语利用MATLAB对抽象物理现象进行计算机仿真时,首先必须对物理过程进行数学抽象,建立适合程序实现的数学模型,其次利用MATLAB软件包中的有关工具编制m文件,最后对物理过程和物理现象进行模拟,从而可以把抽象的物理问题进行简明、直观的动态展现。
单缝衍射的matlab分析

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载单缝衍射的matlab分析地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容单缝衍射的MATLAB分析学院:精密仪器与光电子工程学院专业:生物医学工程班级: 1班姓名:单缝衍射的MATLAB分析摘要:在光的衍射概述和发展历史的基础上,说明了单缝衍射的图样特点,介绍了夫琅禾费衍射和菲涅耳衍射,几种实现夫琅禾费衍射的方法和原理及光强、条纹分布特点。
并利用衍射公式的近似对基尔霍夫衍射公式进行了推导,从理论上得出了夫琅禾费单缝衍射的光强公式,利用Matlab软件进行了光强分布的图样仿真,并用实验采集到的图样对理论和仿真的结论进行了验证,计算结果与实验结果得到了很好的吻合。
关键字:单缝衍射夫琅禾费单缝衍射光强分布条纹分布一、光的衍射概述1.光的衍射现象物理光学中,光的衍射现象是指光波在空间传播遇到障碍时,其传播方向会偏离直线传播,弯入到障碍物的几何阴影中,并呈现光强的不均匀分布的现象。
通常将观察屏上的不均匀的光强分布称为衍射图样。
光的衍射是光的波动性的主要标志之一。
光波遇到障碍物以后会或多或少地偏离几何光学传播定律的现象。
几何光学表明,光在均匀媒质中按直线定律传播,光在两种媒质的分界面按反射定律和折射定律传播。
但是,光是一种电磁波,当一束光通过有孔的屏障以后,其强度可以波及到按直线传播定律所划定的几何阴影区内,也使得几何照明区内出现某些暗斑或暗纹。
1.1衍射现象的基本问题1.已知照明光场和衍射屏的特征,求屏幕上衍射光场的分布;2.已知衍射屏及屏幕上衍射光场的发布,去探索照明光场的某些特性;3.已知照明光场及屏幕上所需的衍射光场发布,设计、计算衍射屏的结构和制造衍射光学元件。
Matlab数字衍射光学实验讲义(一)

2015 级光电工程专业综合实验-信息光学专题实验
imagesc(z) figure(2) mesh(z) %%---------------------matlab 代码-------------------------
改变参数 a,b 的取值,观察模拟结果变化。 4)第一类贝塞尔函数 besselj(v,z)
1. 实验目的:
掌握基本的 Matlab 编程语言,了解其编程特点;模拟几种常用函数,了解其编 程过程及图像显示命令函数,掌握 Matlab 画图方法;通过设计制作一系列光学 研究物体掌握其编程方法; 掌握光波的 matlab 编程原理及方法, 初步了解 Matlab
2
2015 级光电工程专业综合实验-信息光学专题实验
4
2015 级光电工程专业综合实验-信息光学专题实验
figure(4) surfl(x,y,z)%三维 %%---------------------matlab 代码-------------------------
改变变量 a,b 观察模拟图像变化。
x 2 x 3)高斯函数:一维高斯函数 Gauss exp a a
二维高斯函数: sinc
x y x y , sinc sinc ,a,b 为正数。 a b a b
2 2 x y x y x y Gauss , Gauss Gauss exp a b a b a b
二维 sinc 函数: sinc
x y x y , sinc sinc ,a,b 为正数。 a b a b
%%---------------------matlab 代码------------------------clear %清除内存 close all %关闭所有窗口 [x,y] = meshgrid(-2:.05:2, -2:.05:2); %设置二维网格 z=sinc(x).*sinc(y); %sinc 函数 figure(1) imshow(z) %二维灰度图 figure(2) imagesc(z) %二维彩色 figure(3) mesh(z)%三维
光的干涉和衍射的matlab模拟

光的干涉和衍射的matlab模拟单缝夫琅和费衍射是光的衍射现象之一,如图2所示。
当单色光波通过一个狭缝时,光波会向周围扩散,形成一系列同心圆环。
这些圆环的亮度分布是由夫琅和费衍射公式描述的,即。
其中为入射光波长,为狭缝宽度,为衍射角。
夫琅和费衍射公式表明,随着衍射角的增大,圆环的半径会减小,而亮度则会逐渐减弱。
在MATLAB中,可以通过输入实验参数,如光波长和狭缝宽度,来观察圆环的亮度分布和半径随衍射角的变化情况。
同时,还可以探讨不同波长和狭缝宽度对圆环亮度和半径的影响。
4双缝衍射双缝衍射是光的干涉和衍射现象的结合,如图3所示。
当一束单色光波通过两个狭缝时,光波会在屏幕上形成一系列干涉条纹和衍射环。
干涉条纹的亮度分布与___双缝干涉相同,而衍射环的亮度分布则由夫琅和费衍射公式描述。
在MATLAB中,可以通过输入实验参数,如光波长、双缝间距和双缝宽度,来观察干涉条纹和衍射环的亮度分布和条纹间距、环半径随实验参数的变化情况。
同时,还可以探讨不同实验参数对干涉条纹和衍射环的影响。
5衍射光栅衍射光栅是一种利用衍射现象制成的光学元件,如图4所示。
当一束单色光波通过光栅时,光波会被分为多个衍射光束,形成一系列亮度不同的衍射条纹。
衍射条纹的亮度分布与夫琅和费衍射公式描述的圆环类似,但是条纹间距和亮度分布会受到光栅常数的影响。
在MATLAB中,可以通过输入实验参数,如光波长和光栅常数,来观察衍射条纹的亮度分布和条纹间距随实验参数的变化情况。
同时,还可以探讨不同实验参数对衍射条纹的影响。
总之,通过MATLAB模拟光的干涉和衍射现象,可以更加直观地理解和掌握这些重要的光学现象,同时也可以为实验设计和数据分析提供有力的工具和支持。
本文介绍了___双缝干涉、单缝夫琅禾费衍射和衍射光栅光谱的计算机模拟。
当一束单色平行光通过宽度可调的狭缝,射到其后的光屏上时,形成一系列亮暗相间的条纹。
单缝夫琅禾费衍射的光强分布可以通过惠更斯-费涅耳原理计算。
Matlab在物理学中的应用--光的衍射

光的干涉和衍射一、实验目的① 学习用用模拟实验方法探究光的干涉和衍射问题.② 进一步熟悉MA TLAB 编程.二、实验内容和要求1. 双缝干涉模拟实验杨氏双缝干涉实验是利用分波前法获得相干光束的典型例子. 如图2.24所示,单色光通过两个窄缝s 1,s 2射向屏幕,相当于位置不同的两个同频率同相位光源向屏幕照射的叠合,由于到达屏幕各点的距离(光程)不同引起相位差,叠合的结果是在有的点加强,在有的点抵消,造成干涉现象.图2.24 双缝干涉示意图 考虑两个相干光源到屏幕上任意点P 的距离差为1221r r r r r ==∆=- (2.19) 引起的相位差为2πrϕλ∆=设两束相干光在屏幕上P 点产生的幅度相同,均为A 0,则夹角为φ的两个矢量A 0的合成矢量的幅度为A =2A 0 cos(φ/2)第二章 数理探究试验 135光强B 正比于振幅的平方,故P 点光强为B =4B 0cos 2(φ/2) (2.20)运行sy211.m 程序得到干涉条纹如图2.27所示.clear all %sy211.mlam=500e-9; %输入波长a=2e-3; D=1;ym=5*lam*D/a; xs=ym; %设定光屏的范围n=101;ys=linspace(-ym,ym,n); % 把光屏的y 方向分成101点for i=1:nr1=sqrt((ys(i)-a/2).^2+D^2);r2=sqrt((ys(i)+a/2).^2+D^2);phi=2*pi*(r2-r1)/lam;B(i,:)=4*cos(phi/2).^2;endN=255; % 确定用的灰度等级为255级Br=(B/4.0)*N; %使最大光强对应于最大灰度级(白色)subplot(1,2,1)image(xs,ys,Br); %画干涉条纹colormap(gray(N));subplot(1,2,2)plot(B,ys) %画出光强变化曲线图2.25中左图是光屏上的干涉条纹,右图是光屏上沿y 轴方向光强的变化曲线. 从图中也不难看出,干涉条纹是以点o 所对应的水平线为对称,沿上下两侧交替,等距离排列,相邻亮条纹中心间距为2.5×10-4m. -0.4-0.200.20.4-1.5-1-0.500.511.5x 10图2.25 单色光的干涉条纹这与理论推导和实验结果基本一致.下面我们从理论上加以推导,由上面的式(2.19)可得22212121()()2d r r r r r r y -=+-=-1.5 -1 -0.5 0 0.5 1 1.5 -0.4 -0.2 0 0.4 0.2基于MA TLAB 的数学实验136 考虑到a ,y 很小,(r 1+r 2)=2D ,所以21D r r y a-= 这样就得到点P 处于亮条纹中心的条件为20122D y k k a λ==±±,,,, (2.21) 因此,亮条纹是等间距的,相邻条纹间距为94150010 2.510m 0.002D a λ--=⨯=⨯. 问题2.39:推导出点P 处于暗条纹中心的条件并与模拟结果相比较,看是否一致? 考虑到纯粹的单色光不易获得,通常都有一定的光谱宽度,这种光的非单色性对光的干涉会产生何种效应,下面我们用MA TLAB 计算并仿真这一问题.非单色光的波长不是常数,必须对不同波长的光分别处理再叠加起来. 我们假定光源的光谱宽度为中心波长的±10%,并且在该区域均匀分布. 近似取11根谱线,相位差的计算表达式求出的将是不同谱线的11个不同相位. 计算光强时应把这11根谱线产生的光强叠加并取平均值,即211012π4cos ()211k kk k r B B ϕλϕ=∆==∑ 将程序sy211.m 中的9,10两句换成以下4句,由此构成的程序就可仿真非单色光的干涉问题. N1=11;dL=linspace(-0.1,0.1,N1);%设光谱相对宽度±10%, lam1=lam*(1+dL');%分11根谱线,波长为一个数组 Phi1=2*pi*(r2-r1)./ lam1;%从距离差计算各波长的相位差 B(i, :)=sum(4*cos(Phi1/2).^2)/N1; %叠加各波长并影响计算光强运行修改后的程序得到的干涉条纹如图2.26所示. 可以看出,光的非单色性导致干涉现象的减弱,光谱很宽的光将不能形成干涉.第二章 数理探究试验 137-0.4-0.200.20.4-1.5-1-0.500.511.5-3-3图2.26 非单色光的干涉条纹 2. 单缝衍射的模拟实验一束单色平行光通过宽度可调的狭缝,射到其后的光屏上. 当缝宽足够小时,光屏上形成一系列亮暗相间的条纹,这是由于从同一个波前上发出的子波产生干涉的结果. 当光源到衍射屏的距离和光屏到衍射屏的距离都是无穷大时,即满足远场条件时,我们称这种衍射为夫琅禾费衍射. 所以夫琅禾费衍射中入射光和衍射光都是平行光. 为了模拟单缝衍射现象,我们把单缝看成一排等间隔光源,共NP 个光源分布在A ~B 区间内,离A 点间距为yp ,则屏幕上任一点S 处的光强为NP 个光源照射结果的合成.如图2.27所示,子波射线与入射方向的夹角ϕ称为衍射角,0=ϕ时,子波射线通过透镜后,必汇聚到O 点,这个亮条纹对应的光强称为主极大. NP 个光源在其他方向的射线到达S 点的光程差,应等于它们到达平面AC 的光程差,即sin yp ϕ∆=,其中sin ys Dϕ≈ ys 为S 点的纵坐标,则与A 点光源位相差为2π2πyP ys Dαλλ=∆=s O基于MA TLAB 的数学实验 138 -0.4-0.200.20.4-1.5-1-0.500.511.5-3-3图2.28 单缝衍射条纹图2.27 单缝衍射的模拟实验设单缝上NP 个光源的振幅都为1,在x ,y 轴上的分量各为cos sin αα,,合振幅的平方为:()()22COSa COSa ∑+∑. 又光强正比于振幅的平方,所以相对于O 点主极大光强也为22(cos )(sin )0I I αα=+∑∑程序sy212.m 模拟了单缝衍射现象,这里取波长λ=500nm ,缝宽a =1mm ,透镜焦距D =1m ,运行结果如图2.28所示.clear all %sy212.mlam=500e-9;a=1e-3;D=1;ymax=3*lam*D/a; %屏幕范围(沿y 向)Ny=51; %屏幕上的点数(沿y 向)ys=linspace(-ymax,ymax,Ny);NP=51;yP=linspace(0,a,NP); %把单缝分成NP 个光源for i=1:Ny %对屏幕上y 向各点作循环SinPhi=ys(i)/D;alpha=2*pi*yP*SinPhi/lam; SumCos=sum(cos(alpha)); SumSin=sum(sin(alpha));B(i,:)=(SumCos^2+SumSin^2)/NP^2;end N=255; % 确定用的灰度等级为255级%使最大光强对应于最大灰度级(白色)Br=B/max(B)*N; subplot(1,2,1)%画衍射条纹,用灰度级颜色图image(ymax,ys,Br); colormap(gray(N));subplot(1,2,2)%画屏幕上光强曲线 plot(B,ys,'*',B,ys);grid;分析图2.28中的衍射条纹,我们可以看出所有亮暗条纹都平行于单缝,O 点光强为最大,这都和理论推导结果相一致.问题2.40: 从理论上讲,中央亮条纹的半角宽和第一条暗条纹的衍射角都应等于λ/a ,各次极大角宽都等于中央亮条纹的半角宽,图2.28模拟的衍射条纹符合这个结论吗?3. 光栅衍射的模拟实验有大量等宽度、等间距的平行狭缝组成的光学系统称为衍射光栅. 单缝宽度a 和刻第二章 数理探究试验 139痕宽度b 之和称为光栅常数d ,d =a +b . 光栅衍射条纹是单缝衍射和缝间干涉的共同结果.设光栅有N 条狭缝,透镜焦距为D ,理论分析可以得到,光屏上P 点的夫琅禾费衍射光强I P /I 0分布为220sin sin ()()sin P I N I αβαβ= 式中sin sin sin s y a d Dππαϕβϕϕλλ==≈,, 运行程序sy213.m 得到衍射条纹如图2.29所示.clear all %sy213.mlam=632.8e-9; N=2;a=2e-4; D=5;d=5*a;ym=1.89*lam*D/a;xs=ym; %设定光屏的范围n=1001;ys=linspace(-ym,ym,n); % y 方向分成1001点for i=1:nSinphi=ys(i)/D;alpha=pi*a*Sinphi/lam;beta=pi*d*Sinphi/lam;B(i, :)=(sin(alpha)./alpha).^2.*(sin(N*beta)./sin(beta)).^2 ;B1=B/max(B); %将最大光强设为1endNC=255;Br=B/max(B)*NC;subplot(1,2,1)image(xs,ys,Br); %画衍射条纹colormap(gray(NC))subplot(1,2,2)plot(B1,ys) %画出沿y 向的相对光强变化曲线问题2.41:程序sy213.m 中d =5a ,观察图2.29衍射条纹,看有无缺级现象,为什么?改变sy213.m 中的波长、缝宽、光栅常数值,看衍射条纹有何变化?试加以解释.基于MA TLAB 的数学实验 140-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025图2.29 光栅衍射条纹第二章数理探究试验141 《车辆制冷与空调》第二次作业参考答案《车辆隔热壁》、《制冷方法与制冷剂》、《蒸汽压缩式制冷》一.简答题1.什么是隔热壁的传热系数?它的意义是什么?答:隔热壁的传热系数指车内外空气温度相差1℃时,在一小时内,通过一平方米热壁表面积所传递的热量。
基于Matlab可视化界面的单缝衍射仿真分析

[ 6]G l a e S, i a . lo l r e cn e u  ̄ r i [ ]/ o w s r Kl Am s a i s a i yc t e C / d s lJ i t lp m b q c ei d f
.
件 的点 , K算法失效 , G 由此得 知本算 法有一 定的实际 应用 的价
值 , 以上定理相吻合 。 与
r l )l P十1+2 ≤ ( +1 ≤ 帖 ( ≤ )
≤ (/ +1 =( +1  ̄ ) )
与假设矛盾 , 即证 。
4 结
+曰
语
定理 3 设 n为大于 3的整数 , A, a ba 均 为模 n的 有 B, , , 整数 , b 为整数 , 得 ( ,), 使 a b 为椭 圆曲线 E:。; Y + ( o ) o r dn 上阶为 r 的点 , ( b) 点 a, 为椭圆曲线 E: Y +4 』 +
H se 理 有 : as 定
来判 断阶的时候 , 现很容 易找 到满足 条件 的点 ( 4 7 ) 发 9 ,3 阶为
3 ( 1阶的点有很 多个 ) 又存 在 阶为 4的 点( 6 8 14) 即可 13 , (2 ,2 ,
以 判定 9 1 拟 素 数 , 7 为 而用 r> ( 彳 n1+1 z一4 3, 有 满 足条 ) 3 没
那么如果 r 为素数 , n为拟素数。 则
证明
( )椭 圆 曲线 的素 性检 验都 需 要构 造 z 2 / z上 的椭 圆曲
1
假 设 n至 少 可 分 解 为 三 个 互 不 相 同 的素 因 子 之 积 ,
线, 满足 >( 亍 +1 , 1 常大时 , 也需要非 常大 , n ) 当 7 , 非 r 要寻
matlab模拟单缝菲涅尔衍射

matlab模拟单缝菲涅尔衍射3.菲涅尔衍射(2)单缝菲涅尔单缝衍射的相对光强分布公式为:22I(x,y),[C(,),(,)],[S(,),(,)], 2121其中,菲涅尔积分为:,,1122C,(),cos(,t)dt、S(,),sin(,t)dt, ,,2200,,,2/,z(W,y),,,,2/,z(W,y),此外其中W为缝的半宽度,z为接收屏η1,1,距离。
程序如下:clearlam=600e-9; %设置波长为600mm a=0.2e-3; %设置半缝宽为0.2mm z=1e-1; %设置接收屏距离为0.1m N=301; %将屏幕分成301块 ym=1e-3;y=linspace(-ym,ym,N);beta1=-(2/(lam*z))^0.5*(a+y); %求β 1beta2=(2/(lam*z))^0.5*(a-y); %求β2 syms t;cc=cos(0.5*pi*t^2); %C(α)表达式ss=sin(0.5*pi*t^2); %S(α)表达式for i=1:N %由于单缝,从屏幕底到上依次求光强%C(βc2(i)=doubl e(int(cc,t,0,beta2(i))); )的值2c1(i)=double(int(cc,t,0,beta1(i))); %C(β)的值1s2(i)=double(int(ss,t,0,beta2(i))); %C(β)的值2s1(i)=double(int(ss,t,0,beta1(i))); %C(β)的值 1I(i)= ((c2(i)-c1(i)).^2+(s2(i)-s1(i)).^2); %B(i)所在条纹的光强 endN=255;subplot(1,2,1)image(y,y,0.25*N*I); %画出衍射图像 colormap(gray(N));subplot(1,2,2)plot(I,y) %画出光强分布图通过改变程序中的a,可以改变半缝宽度。
基于Matlab可视化界面的单缝衍射仿真分析

基于Matlab可视化界面的单缝衍射仿真分析李伟;赵建军;王超【期刊名称】《计算机应用与软件》【年(卷),期】2012(29)7【摘要】基于传统的单缝衍射试验,经常受设备和环境因素的制约,且一般的仿真实验需多次输入参数和重复编译程序.提出一种基于Matlab可视化控制的单缝衍射试验仿真方法,并编写其仿真程序.分析表明,仿真结果与单缝衍射理论完全吻合,利用Matlab可视化控制的单缝衍射仿真方法具有精确性、直观性和可操作性.%Traditional single-slit diffraction tests are usually restrained by apparatus and environmental conditions. Moreover, repeated parameters inputting and compilation exist in normal simulation experiments. Therefore, a simulation method for single-slit diffraction on Matlab with the function of visualisation is proposed, and the simulation program has been written as well. By analysis, the simulation result is entirely consistent with the theory, and the method has the properties of accuracy, visualisation and operation.【总页数】4页(P220-222,293)【作者】李伟;赵建军;王超【作者单位】昆明理工大学理学院云南昆明650500;昆明理工大学理学院云南昆明650500;昆明理工大学理学院云南昆明650500【正文语种】中文【中图分类】TP302【相关文献】1.基于MATLAB GUI的夫琅禾费单缝衍射仿真 [J], 高峰;赵文丽;曹学成2.基于MATLAB的光的单缝衍射实验模拟研究 [J], 夏漫;陈佳;徐扬子;丁益民3.基于Matlab的夫琅和费单缝衍射的仿真分析 [J], 曾霞;詹宝容4.基于Matlab的表面等离子体共振可视化界面仿真 [J], 齐晓岩;吕尊仁;杨叶;韩建;刘书钢5.基于MATLAB/GUI的水质参数光谱分析可视化界面设计 [J], 陈希;李丽娜因版权原因,仅展示原文概要,查看原文内容请购买。
基于Matlab的夫琅和费单缝衍射的仿真分析

( a g h uU i ri o tnCo e eG a g h u 5 7 , ia Gu n z o nv syS na l g , u n z o 1 0Ch ) e t o 1 3 n
Ab t a tF e n l n e r l meh d t d r e s ge si F a n o e if ci n itn i it b t n f r ls n i a sr c : r s e itg a to o e v i l-l r u h fr d f a to n e s y d s i ui o mu a , d vs l i n t r t r o a u
衍 射 分为 菲涅 尔衍射 与 夫琅禾 费 衍射 。一 般将 满足 远场 近似 鱼 P 椭 f 条 件 的衍射 称 为夫 琅禾 费衍射 ,满 足 近场 近似 条件 的衍 射称 为 菲 b 涅 耳衍 射 。研 究夫 琅禾 费单缝 衍射 的方法 用传 统 的半波 带理 论及 所 以 由惠一 菲原理 可得 沿 0 向传 播 的所 有 次波 在 P点叠 加 方 振 幅矢 量 叠加 法 , 只 能给 出某些 特 定平 面上光 场 的近似 分 布 。 但 的合 振 幅为 本 文用 菲 涅尔积 分 法得 出衍射 屏 上 的光强 分布 公式 并 结合计 算机 仿 真技 术研 究 夫琅和 费衍 射 的光 强分 布 问题 ,给 出 了衍 射光 场 复 4 d E 振 幅及 强度 在任 意 平面上 的详 细分 布 , 并用 M ta 拟 出光学 成 alb模 像 过程 ,给 出指定 光学元 件 的衍射 特性 或成 像特 性 。 鱼8 令ux / =-2 b 山 b 。 单缝衍 射理 论 推导 单 缝衍 射 如示 意 图 1 所示 ,平 行光 束垂 直入射 ,光强 均匀 。 r 鱼P ( 8 f 啪 等 设 在缝 平 面时初 相 为 0 ,整个 缝所 发此 波在 0=0 向上 的总振 幅 方 tn b b 为 。 惠更 斯一 涅耳 原理 , 们把 缝 内的波 前 B 分割 为许 多 按 菲 我 B。 等 宽 的窄 条 , 们 是振 幅相 等 的次波源 , 多个 方 向发 出次 波 。 它 朝 接 收屏 位 于透镜 厶的 后方 ,角度 0 相 同 的衍 射 光线 会聚 于观 察
matlab衍射程序

一、衍射积分相关程序如下:1.单缝衍射clearlamba=500e-9;%波长a=1e-3;D=1;ym=3*lamba*D/a;%屏幕上y的范围n=51;%屏幕上的点数ys=linspace(-ym,ym,n);n=51;%屏幕上的点数yp=linspace(0,a,n);for i=1:nsinphi=ys(i)/D;alpha=pi*yp*sinphi/lamba;sumcos=sum(cos(alpha));sumsin=sum(sin(alpha));B(i,:)=(sumcos^2+sumsin^2)/n^2;endN=256;%确定灰度的等级Br=(B/max(B))*N;subplot(1,2,1)image(ym,ys,Br);colormap(gray(N));%色调处理subplot(1,2,2)plot(B,ys,'k');2.多缝衍射clearlamda=500e-9; %波长N=2; %缝数,可以随意更改变换a=2e-4;D=5;d=5*a;ym=2*lamda*D/a;xs=ym;n=1001;ys=linspace(-ym,ym,n);for i=1:nsinphi=ys(i)/D;alpha=pi*a*sinphi/lamda;beta=pi*d*sinphi/lamda;B(i,:)=(sin(alpha)./alpha).^2.*(sin(N*beta)./sin(beta)).^2;B1=B/max(B);endNC=256; %确定灰度的等级Br=(B/max(B))*NC;subplot(1,2,1)image(xs,ys,Br);colormap(gray(NC)); %色调处理subplot(1,2,2)plot(B1,ys,'k');3.矩孔衍射clearlamda=500e-9;a=1e-3;b=1e-3;f=1;m=500;ym=8000*lamda*f;ys=linspace(-ym,ym,m);xs=ys;n=255;for i=1:msinth1=xs(i)/sqrt(xs(i)^2+f^2);sinth2=ys./sqrt(ys.^2+f^2);angleA=pi*a*sinth1/lamda;angleB=pi*b*sinth2./lamda;B(:,i)=(sin(angleA).^2.*sin(angleB).^2.*5000./(angleA.^2.*angleB.^2)); endsubplot(1,2,1)image(xs,ys,B)colormap(gray(n))subplot(1,2,2)plot(B(m/2,:),ys,'k')4.正弦光栅clear allxm=10*pi;ys=xm;xs=linspace(-xm,xm,500);B=cos(xs)+1;N=255;Br=B/2*N;image(xs,ys,Br);colormap(gray(N));***还可以编写成GUI具体参考:二、傅里叶变换(1)基本思想:在傅立叶变换光学中夫琅和费衍射场的强度分布就等于屏函数的功率谱。
用MATLAB语言模拟光衍射实验

第14卷第4期大 学 物 理 实 验 V ol.14N o.42001年12月出版PHY SIC A L EXPERI ME NT OF C O LLEGE Dec.2001收稿日期:2001-07-30文章编号:1007-2934(2001)04-0047-02用MAT LAB 语言模拟光衍射实验周 忆(安徽省科学技术培训中心,合肥,230031) 梁 齐(合肥工业大学,合肥,230009)摘 要:用M AT LAB 语言模拟编写了光衍射的模拟实验程度,给出了五种元件的夫琅和费衍射图。
关键词:衍射;模拟;M AT LAB 语言中图分类号:O4-39 文献标识码:A光的衍射现象是光具有波动性的重要特征,衍射无论在理论研究还是在大学物理教学中都占有较重要的地位。
笔者利用MAT LAB 较强的绘图和图像功能,针对多种衍射元件(单缝、双缝、光栅、矩孔、圆孔)编写了光衍射的模拟实验程序。
在计算机的模拟光的衍射,条件限制较少,对于衍射的实验教学是一种较好的补充。
程序首先根据衍射强度分布的理论公式及实验参数建立衍射相对强度的数据矩阵B (x ,y )然后利用image (B )和colormap (gray )命令绘出衍射图样。
同时,也绘制了衍射光强分布的二维或三维图。
单缝夫琅和费衍射的模拟结果见图1。
衍射光强公式为I =I 0(sin u/u )2,u =(πa sin θ/λ),a 是缝宽,λ是入射光的波长,θ是衍射角。
设观察屏位于单缝后正透镜的焦平面上,f 为透镜的焦距,x 为屏上横向坐标。
θ=arctan (x/f )。
模拟分成三组:第一组,λ=600nm ,f =600mm ,(a )a =0.20mm ;(b )a =0.10mm ;(c )a =0.05mm 第二组,a =0.10mm ,f =600mm ,(d )λ=500nm ;(e )a =600nm ;(f )λ=700nm第三组,a =0.10mm ,λ=600nm ,(g )f =300mm ;(h )f =600mm ;(i )f =900mm以下内容中,取λ=600nm ,f =600mm ,衍射图样横坐标x 和纵坐标y 的范围均为[-20,20]mm 。
基于Matlab的光单缝衍射的图样表现

(3) 式中 r0 是 O 点到 P 点的光程。波面上任意一点 C,宽度为 dx 的细带在 P 点引起的振动为
(4) 式中 Δ 为 O 点和 C 点光线到 P 点的光程差,它仅决定于 C 点距 O 点的距离 x 和衍射角 θ,Δ= xsin (θ),代入上述(4) 式,
(5) 所有细带在 P 点引起的振动,必须对(5)式积分计算,便可得到光强的 分布公式。单缝衍射的实验装置的示意图如图 1 所示:
图 1 单缝衍射示意图 波长为 λ 的平面波射向缝宽为 AB=a 的狭缝,衍射后经透 镜 L 会聚在焦平面上。设坐标原点 O 在缝的中心。将狭缝分成 许多平行于缝的细带,首先考虑位于 O 点,宽度为 dx 的细带在 P 点引起的振动。在近轴条件下,忽略倾斜因子和振幅与距离的 反比关系,并取系数为 1,则(1)式简化为
Matlab 是一种高效能的、用于科学和工程计算的计算机语 言,它通过简单编程,能使复杂计算变得相当容易,并能实现计 算和图象一体化,从而使数学分析和计算成为轻松和有意义的 事情。本文应用 Matlab 的数值计算和绘图功能,根据夫琅禾费 衍射场的理论公式,计算得出光强分布矩阵并绘制出光强分布 曲线及其衍射图样。
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
则 P 点光强与中央零级光强之比为: (10)
3.2 运用 Matlab 模拟单缝衍射 由图 1 中的几何关系可得单缝衍射角 θ=arctan(y/f),再根据 (8)、(10)即可算出单缝衍射的相对光强矩阵 I,用 Matlab 实现 如下: Theta=atan (y./f); %计算衍射角 θ,y 为设定的衍射场的范 围,f 为透镜焦距 U=(pi*a/lambda)*sin(theta); %计算 U,a 为单缝宽度,lambda 为波长 I=(sin(U)./U).^2; %生成光强分布矩阵 Plot(U,I) %绘制单缝衍射强度分布图,以 U 为横坐标 Image(I) %画单缝衍射图样 由图 2 光强分布和衍射图样可以得出单缝衍射图样的主要 特征。单缝衍射图样是在中央最大值两侧对称排列着明暗相间 的一系列光强度递减的条纹。另外,缝宽 a,波长 λ,焦距 f 的改 变均可影响图样的改变。当给定波长,单缝宽度的改变会影响半
衍射的Matlab 模拟

r
P
则 K
1 1 cos 2
13
将近似条件代入得到:菲涅耳-基尔霍夫衍射近似公式
exp ikR i ~ E P A 2 R
exp ikr 1 cos d r
( n,l ) ( n,r )
2
2
x1 x y1 y x 2 y 2 取上式前三项 r z1+ z1 2 z1
x2 y2 exp[ ik ( z1 )] 2 z1 ~ E x, y iz1 ~ k i xx1 yy1 dx1dy1 E x1 , y1 exp z1
y1 x1
进一步的计算需要 将exp( ikr )中的r表 示成(x,y,z)的函数。
Q C z1 K
r
P
x
P0 E
孔径 的衍射
16
2.菲涅耳近似(对位相项的近似)
r z1 ( x x1 ) 2 y y1 z1 1
2 2
x x1 2 y y1 2
非平行光衍射光源面和接收面非物象共扼面源点和场点均满足远场近似源点和场点均在无限远处平行光衍射光源面和接收面物菲涅耳衍射夫琅和费衍射121
衍射的MATLAB模拟
刘雁 三峡大学理学院 2013.4
内容提要
衍射的基本理论
单缝衍射的Matlab模拟
一衍射的基本原理
光的衍射现象:光波在空间传播遇到障碍时,其传播方
2 2 夫琅合费衍射对z的要求 =600nm, x1 y1
x z
2
1
y1
2
max
2cm2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单缝衍射的MATLAB分析学院:精密仪器与光电子工程学院专业:生物医学工程班级:1班姓名:单缝衍射的MATLAB分析摘要:在光的衍射概述和发展历史的基础上,说明了单缝衍射的图样特点,介绍了夫琅禾费衍射和菲涅耳衍射,几种实现夫琅禾费衍射的方法和原理及光强、条纹分布特点。
并利用衍射公式的近似对基尔霍夫衍射公式进行了推导,从理论上得出了夫琅禾费单缝衍射的光强公式,利用Matlab软件进行了光强分布的图样仿真,并用实验采集到的图样对理论和仿真的结论进行了验证,计算结果与实验结果得到了很好的吻合。
关键字:单缝衍射夫琅禾费单缝衍射光强分布条纹分布一、光的衍射概述1.光的衍射现象物理光学中,光的衍射现象是指光波在空间传播遇到障碍时,其传播方向会偏离直线传播,弯入到障碍物的几何阴影中,并呈现光强的不均匀分布的现象。
通常将观察屏上的不均匀的光强分布称为衍射图样。
光的衍射是光的波动性的主要标志之一。
光波遇到障碍物以后会或多或少地偏离几何光学传播定律的现象。
几何光学表明,光在均匀媒质中按直线定律传播,光在两种媒质的分界面按反射定律和折射定律传播。
但是,光是一种电磁波,当一束光通过有孔的屏障以后,其强度可以波及到按直线传播定律所划定的几何阴影区内,也使得几何照明区内出现某些暗斑或暗纹。
1.1衍射现象的基本问题1.已知照明光场和衍射屏的特征,求屏幕上衍射光场的分布;2.已知衍射屏及屏幕上衍射光场的发布,去探索照明光场的某些特性;3.已知照明光场及屏幕上所需的衍射光场发布,设计、计算衍射屏的结构和制造衍射光学元件。
1.2衍射现象的分类根据光源、衍射物(衍射屏)和衍射场(观察屏)三者之间的位置确定1.夫琅和费衍射:(远场衍射)光源和衍射场都在衍射物无限远处的衍射。
2.菲涅耳衍射:(近场衍射)光源和衍射场或二者之一到衍射物的距离比较小时的衍射。
1.3衍射现象及单缝衍射图样让一个足够亮的点光源S发出的光透过一个圆孔∑,照射到屏幕K上,并且逐渐改变圆孔的大小,就会发现:当圆孔足够大时,在屏幕上看到一个均匀光斑,光斑的大小就是圆孔的几何投影,随着圆孔逐渐减小,起初光斑也相应的变小,而后光斑开始模糊,并且在圆斑外面产生若干围绕圆斑的同心圆环,当使用单色光源时,是一组明暗相见的同心环带,当使用白色光源时,是一组色彩相间的彩色环带;此后再使圆孔变小,光斑及圆环不跟着变小,反而会增大起来。
单色红光衍射图样白光衍射图样1.4衍射的应用光的衍射决定光学仪器的分辨本领;气体或液体中的大量悬浮粒子对光的散射,衍射也起重要的作用。
衍射应用大致可以概括为以下四个方面:1、光谱分析:如衍射光栅光谱仪。
2、结构分析:衍射图样对精细结构有一种相当敏感的“放大”作用,故而利用图样分析结构。
如X射线结构学。
3、成像:在相干光成像系统中,引进两次衍射成像概念,由此发展成为空间滤波技术和光学信息处理。
如光瞳衍射导出成像仪器的分辨本领。
4、波阵面再现: 一种全新的两步无透镜成像法,也称为波阵面再现术,这是全息术原理中的重要一步。
2. 衍射现象的发展过程大约1818年前,一直没有人注意到有可能根据波动理论说明衍射效应。
1818年,菲涅耳的著作问世。
他在论文中证明,应用慧更斯作图法,结合干涉原理,能够解释衍射现象。
菲涅耳的分析后来由基而霍夫在1882年给出了完善的数学描述。
衍射问题是光学中遇到的最为困难的问题之一。
在衍射理论中,那种在某种意义上可以认为是严格的解,是很少有的。
直至1896年,才由索末菲给出了第一个解。
他在一篇重要论文中讨论了一个完全导电的半无限平面屏对平面波的衍射。
此后,对少数其它衍射问题(二维)也求得了严格解。
由于在数学上的困难,在大多数有实际意义情况下,必须采用近似方法。
这些方法中惠更斯-菲涅耳理论是最富成效的,它适用于处理光学仪器中所遇到的大多数光学衍射问题。
二、单缝衍射原理1.惠更斯—菲涅耳原理最早成功地用波动理论解释衍射现象的是菲涅耳,他将惠更斯原理用光的干涉理论加以补充,并予以发展。
惠更斯原理是描述波动传播过程的一个重要原理,其主要内容是:如图2-1所示的波源S,在某一时刻所产生波的波阵面为∑,则∑面上的每一点都可以看作是一个次波源,它们发出球面次波,其后某一时刻的波阵面∑'即是该时刻这些球面次波的包络面,波阵面的法线面的法线方向就是该波的传播方向。
惠更斯原理能够很好地解释光的直线传播,光的反射和折射方向,但不能说明衍射过程及其强度分布。
菲涅耳在研究了光的干涉现象后,考虑到次波来自于同一光源,应该相干,因而波阵面∑'上每一点的光振动应该是在光源和该点之间任一波面上的各点发出的次波场叠加的结果。
这就是惠更斯—菲涅耳原理。
利用惠更斯—菲涅耳原理可以解释衍射现象:在任意给定的时刻,任一波面上的点都起着次波波源的作用,它们各自发出球面次波,障碍物以外任意点上的光强分布,即是没有被阻挡的各个次波源发出的次波在该点相干叠加的结果。
根据惠更斯—菲涅耳原理,图2-2所示的一个单色光源S 对于空间任意点P 的作用,可以看作是S 和P 之间任一波面∑上各点发出的次波在P 点相干叠加的结果。
假设波面Σ上任意点Q 的光场复振幅为)(~Q E ,在Q 点取一个面元d δ,则d δ面元上的次波源对P 点光场的贡献为:式中,C 是比例系数;rQP =,()K θ称为倾斜因子,它是与元波面法线和P Q 的夹角θ(称为衍射角)有关的量,按照菲涅耳的假设:当0θ=时,K 有最大值;随着θ的增大,K 迅速减小;当/2θπ≥时K =0。
因此,途中波面∑上只有ZZ '范围内的部分对P 点光振动有贡献。
所以P 点的光场复振幅为:()()()ikre E P C E Q K d r θσ∑=⎰⎰这就是惠更斯-菲涅耳原理的数学表达式,称为惠更斯-菲涅耳公式。
当S 是点光源时,Q 点的光场复振幅为:()ikRA E Q e R=式中,R 是光源到Q 点的距离。
在这种情况下,)(~Q E 可以从积分号中提出来,但是由于()K θ的具体形式未知,不可能由(2-1)式确切地确定()E P 值。
因此,从理论上来讲,这个原理是不够完善的。
2.实现夫琅禾费衍射的几种方法无论是在实验室中或者别的什么地方,都不可能将光源和衍射场放在无限远,实际接收夫琅禾费衍射的装置有以下四种:1.焦面接收装置(以单缝衍射为例,下同)把点光源S 放在凸透镜1L 的前焦平面上,在凸透镜2L 的后焦平面上接收衍射场,见图2-5。
图 2-5 焦面接收装置图 2-6 远场接收装置2、 远场接收装置θDZP θ0P∑ θSD∑P θP fL 1L 2当满足远场条件时,狭缝前后也可以不用透镜,而直接获得夫琅禾费衍射图样。
远场条件是:① 光源离狭缝很远,即λρ2>>R ,其中,R 是光源到狭缝的距离,ρ为狭缝宽度的一半;② 接收场距狭缝足够远,即λρ2>>z ,其中,z 为衍射场距狭缝的距离。
观察点P在λρ2>>z 的条件下,只要求其满足傍轴条件即可,而这一般都是满足的。
图2-6为远场接收光路,假设一束平行光垂直入射到狭缝上。
3、象面接收装置(一)衍射屏处于透镜的后方,如图2-7所示。
S 在光轴上,∑代表点光源的象面,S '为S 的象点。
理论上已经证明了∑面上呈现的图样为夫琅禾费衍射图样,即屏上任一点P θ的复振幅与角度θ的函数关系符合夫琅禾费衍射的积分形式。
图 2-7 象面接收装置(一)图 2-8 象面接收装置(二)4、象面接收装置(二)衍射屏处于透镜的前方,如图2-8所示。
P θ'点是场点P θ的共轭点,S 也在光轴上。
如果光路逆转自右向左,S '变为点光源,衍射屏便处于透镜的后方了,'∑面上的衍射图样就θDZP θS '∑ SθP θS '∑ θ'S'∑ P θ'Z 'u vxx 'D L同象面接收装置(一)∑面上的情况,z '相应地取代z ,所以实际呈现在图2-8的∑面上的衍射图样可由物面上设想的共轭衍射图样导出,二者为物象关系。
3.夫琅禾费衍射光强强度的计算现在我们用惠更新-菲涅耳原理来解释上述现象。
如图2-13所示。
为了清楚起见,图中狭缝的宽度'BB 已经放大。
平行光束垂直于缝的平面入射时,波面和缝平面重合(垂直于图面)。
将缝的面积分为一组平行于缝长的窄带,从每一条这样的窄带发出次波。
其振幅正比于窄带的宽度dx ,设光波的初位相为零,b 为缝'BB 的宽度,b A 0,而宽度dx 的窄条上次波的振幅为b dx A 0,则狭缝处各窄带所发次波的振动可用下式表示:00cos A dxdE t b ω=这些次波都可认为是球面波,各自向前传播。
现在,首先对其中沿图面与原入射方向成θ角(称为衍射角)的方向传播的所有各次波进行研究。
在入射光束的平面波面BB’上各次波的位相都相等,通过透镜2L 后在焦平面FF 上的同一点P 处叠加。
要计算P 点的合振幅,必须考虑到各次波的位相关系,这取决于由各窄带到P 点的光程如何。
现在作平面BD 垂直于衍射方向'B D ,根据BD 面上各点的位相分布情况即可决定在P 点相遇的各次波的位相关系。
我们知道,从平面BD 上各点沿衍射方向通过透镜而达到P 点的光程都相等。
这就只要算出从平面'BB 到平面BD 的各平行直线段之间的光程差就可以了。
MN 为沿着衍射角θ进行的任一条路程,令BM =x ,则sin MN x θ=,这就是从M 和从B 两点所发次波沿平行于MN 方向到达平面BD 时的光程差。
得BD 面上N 点的光振动的表达式为02cos(sin )A dx dE x t b πθωλ=-或 2(sin )0i x t A dx dE eb πθωλ-=其复振幅为: 2sin 0i x A dx dE eb πθλ=为简化计算起见,上式中假设各次波到达P 点时有相同的振幅(不考虑振幅与光程与反比的关系以及华侨因数)。
根据惠更斯—菲涅耳原理,将上式对整个缝宽(从x=0到x=b )积分。
最后可得沿着衍射角θ方向传播的所有次波在观察点P 叠加起来的合振幅:sin(sin )sin P bA A bπθλπθλ=令(sin )/u b πθλ=,通常称(sin )/u u 为u 的sin c 函数,并写成sin cu ,故P 点的光强为20sin P I I c u =4.夫琅禾费衍射图样的光强分布当光屏放置在透镜L 2的焦平面上时,屏上出现衍射花样,光强的分布可由上式决定。
不同的衍射角θ对应于光屏上不同的观察点。
首先来决定衍射花样中光强最大值和最小值的位置。
即求出满足光强的一阶导数为零的那些点:223sin 2sin (cos sin )()0d u u u u u du u u -==由此得 sin 0,u u tgu == 分别解以上两式,可得出所有的极值点。