衍射的Matlab模拟
光学衍射图样的MATLAB仿真
1、建立几何模型:在Matlab中建立一个单缝衍射模型,包括一个光源、一 个单缝和一个观察点。
2、设置光源和观察条件:设置光源的波长为600纳米,强度为1瓦,方向为 垂直于缝的方向;观察点位于缝的右侧1米处,观察角度为45度。
3、进行仿真计算:利用Matlab中的相关函数进行仿真计算,得到观察点处 光的强度分布。
光学衍射图样的MATLAB仿真
目录
01 摘要
03 二、衍射的基本原理
02 一、引言 04 三、MATLAB在光学仿
真中的应用
目录
05 四、光学衍射图样的 MATLAB仿真
07 六、结论与展望
06 五、具体例子 08 参考内容
摘要
本次演示介绍了使用MATLAB进行光学衍射图样仿真的方法。首先介绍了衍射 的基本原理和MATLAB在光学仿真中的应用,然后详细阐述了如何使用MATLAB进行 衍射图样的仿真。通过具体的例子,展示了如何使用MATLAB模拟不同条件下的衍 射现象,并解释了仿真结果。最后,总结了本次演示的主要内容和贡献,并指出 了未来可能的研究方向。
参考内容
引言
光学衍射在许多领域中都具有重要应用,例如光学仪器设计、光谱分析、光 信息处理等。对光学衍射进行仿真可以帮助人们更好地理解光学系统的性能,预 测光的传播行为,优化光学设计。本次演示将介绍如何使用Matlab进行光学衍射 仿真。
准备工作
在进行光学衍射仿真之前,需要做好以下准备工作: 1、安装Matlab:首先需要安装Matlab软件,版本要求至少为R2018a或更高。
其中E(x,y)是电场强度,λ是光的波长,c是光速。通过求解这个方程,可 以得到衍射图样的电场分布。
三、MATLAB在光学仿真中的应 用
衍射的Matlab 模拟
二、菲涅耳-基尔霍夫衍射公式(确定了C、K()) 基尔霍夫 (Kirchhoff) 从波动方程出发,用场论得出了 比较严格的衍射公式。
A expik l expik r cosn, r cosn, l E P = d i l r 2
菲涅尔假设: 当 = 0 时,K()=Max, p/ 时,K()=0.
(实验证明是不对的) 若S发出的光源振幅为A(单位距离处),整个波面’的贡献
CA expikr ~ E P expikR K d R r
求解此公式主要问题:C、K()没有确切的表达式。
设
l
x sin x , f
a b
m
y sin y f
~ E x, y C 2a 2b exp ik lx1 my1 dx1 dy1
2 2
28
~ E x, y C 2a 2b exp ik lx1 my1 dx1 dy1
2 2
P0 E
17
r z1
2 2 x x1 y y1
2 z1
称为菲涅耳近似。
得到菲涅耳衍射:
e ikz1 ~ E x, y iz1
k ~ 2 2 E x1 , y1 exp i x x1 y y1 2 z1 y y
~ 和E0 abC
则
~ ~ sin sin E x, y E0
子波的复振幅与 cosn, r cosn, l 2 成正比,与波长成反比。 K ( )
1 p i exp[ i ] i 2 表示子波的振动位相超前于入射波90。
12
当光线接近于正入射时
基于matlab的衍射系统仿真(1)
《工程光学》综合性练习二题目:基于matlab的衍射系统仿真综合练习大作业二一、要求3-4人组成小组,对下面给出的各题目利用Matlab等工具进行仿真。
练习结束时每组提交一份报告及仿真程序。
在报告中应注明各仿真结果所对应的参数,如屏与衍射屏间距、孔径形状尺寸等。
二、仿真题目1.改变观察屏与衍射屏间距,观察观察屏上发生的衍射逐渐由菲涅耳衍射转为夫琅和费衍射1)原理图:S点光源发出的波长lam=500纳米S点发出光线经过单缝,缝宽a;单缝到衍射屏的距离L'2)Matlab代码clear;clcl=10; %l=input ('单缝到衍射屏的距离L=');a=0.2; %a=input('单缝的宽度(mm)a=');lam=500e-6; %lam=input('波长(nm)');x=-1:0.001:1; %接收屏边界y=x./sqrt(x.^2+l^2);z=a.*y/lam;I=1000*(sinc(z)).^2; %计算接受屏某点光强subplot(2,1,1) %绘制仿真图样及强度曲线image(2,x,I)colormap(gray(3))title('单缝衍射条纹')subplot(2,1,2)plot(x,I)title(光强分布)3)初始仿真图样(d=10)4)改变d之后的图样(d=1000)5)变化规律根据衍射屏以及接受屏的相对位置不同,由此产生菲涅尔衍射和夫琅禾费衍射的区别,根据我们模拟的情况得到菲涅尔衍射和夫琅禾费衍射的明显不同是夫琅禾费衍射条件下:中央有一条特别明亮的亮条纹,其宽度是其他亮条纹的两倍;其他亮条纹的宽度相等,亮度逐渐下降。
2.改变孔径形状、尺寸,观察图样变化1)原理图矩孔衍射:透镜焦距:1000mm;照射光波长:500nm;孔高:a(mm);孔宽:b(mm);圆孔衍射:圆孔直径:r(mm);照射光波长:500nm;照射光波长:500nm;2)matlab代码矩孔衍射:focallength=1000;lambda=500;a=2.0;b=2.0;resolution=64;center=(resolution)/2;A=zeros(resolution,resolution);for i=1:1:resolutionfor j=1:1:resolutionif abs(i-center)<a*10/2 & abs(j-center)<b*10/2 A(j,i)=255;endendendE=ones(resolution,resolution);k=2*pi*10000/focallength/lambda;imag=sqrt(-1);for m=1:1:resolutionx=m-center;for n=1:1:resolutiony=n-center;C=ones(resolution,resolution);for i=1:1:resolutionp=i-center;for j=1:1:resolutionq=j-center;C(j,i)=A(j,i)*exp(-imag*k*(x*p+y*q)); endendE(n,m)=sum(C(:));endendE=abs(E);I=E.^2;I=I.^(1/3);I=I.*255/max(max(I));L=I;I=I+256;CM=[pink(255).^(2/3);gray(255)];Colormap(CM);edge=(resolution-1)/20;[X,Y]=meshgrid([-edge:0.1:edge]);x=linspace(-edge,edge,resolution);y=linspace(-edge,edge,resolution);subplot(1,2,1);surf(x,y,L);axis([-edge,edge,-edge,edge,0,255]);caxis([0,511]);subplot(1,2,2);image(x,y,I);axis([-edge,edge,-edge,edge,0,511]);view(2);axis square;圆孔衍射:clearlmda=500e-9; %波长r=1.2e-3; %f = 1; %焦距N = 19;K = linspace(-0.1,0.1,N) ;lmda1 = lmda* ( 1 + K) ;xm = 2000* lmda* f;xs = linspace(-xm,xm,2000) ;ys = xs;z0 = zeros( 2000) ;[x,y]= meshgrid( xs) ;for i = 1: 19s = 2*pi*r*sqrt(x.^2 + y.^2)./(lmda1( i) ) ;z = 4* ( besselj( 1,s)./( s + eps) ).^2; %光强公式z0 = z0 + z;endz1 = z0 /19;subplot( 1,2,1)imshow( z1* 255) ; %平面图xlabel( 'x')ylabel( 'y')subplot( 1,2,2)mesh( x,y,z1) %三维图colormap(gray)xlabel( 'x')ylabel( 'y')zlabel( '光强')3)仿真图样:矩孔衍射:a=1,b=2a=2,b=2可知:矩孔在一个维度上展宽一定倍数将导致衍射图样在相同维度上缩短相同倍数,同时能量会更向中心亮斑集中。
光的干涉和衍射的matlab模拟
光的干涉和衍射的matlab模拟摘要:运用matlab强大的计算和绘图能力,对光的双缝干涉、单缝夫琅禾费衍射、双缝衍射和衍射光栅的光谱进行仿真。
仿真程序可以显示单色光入射时的光谱图样和光强分布曲线,并可输入实验参数,观察在不同条件下图像及光强曲线,并分析了它们各自的特点。
关键字:干涉衍射matlab 模拟1引言光的干涉与衍射现象是光波动性的实验基础。
对任何一个物理专业或涉及光学方面专业的人士来讲,认识干涉与衍射现象的图样特征,理解它们的理论推导,辨别它们之间的联系与区别是必须的。
为了使学生比较容易地接受光栅衍射的知识,同时更能对干涉与衍射的区别与联系有深刻的理解,仔细推导杨氏双缝干涉实验、单缝夫琅和费衍射实验、双缝衍射实验和有关衍射光栅光谱在形成条件,光谱特点及光强分布函数的联系与区别是必要的。
同时将上述干涉,衍射图样用计算机模拟的方式表现出来必将有助于加深对干涉与衍射在形成条件,光谱特点上的联系与区别的理解。
数学软件matlab 具有强大的数值计算功能和高级可视化图形功能,而且可以生成用户自己的图像控制界面,所以运用MATLAB软件,在计算机上编制相应的程序,模拟仿真以上四种不同干涉或衍射的光谱图样,并编制可输入参数的用户界面,尝试在不同参数输入情况下它们图样间的光滑过渡成为可能[1-3]。
2杨氏双缝干涉杨氏双缝实验是揭开光的波动本性的一把钥匙,如图1所示,同一波面上的光波被分成两束,然后在光屏pp’上叠加形成干涉条纹。
在这里,双缝的宽度必须非常小,即的情况。
在这个前提下每一束光的传播可以用几何光学来处理。
由叠加原理光屏上任一点的光强等于由两缝的光强的叠加。
由同方向,同频率两波动的叠加公式得:,在两缝宽度相同时,即时:光强。
其中为两缝到屏上P点的相位差,当时,对应的极大光强为,即各级明纹的亮度时相同的。
在输入波长550纳米,双缝宽度0.2毫米,观察屏距双缝一米的情况下,可得明暗相间干涉条纹,即为光强分布曲线。
实验7 衍射的Matlab模拟
实验7衍射的Matlab模拟一、实验目的:掌握衍射的matlab模拟。
二、实验内容:1)单个圆孔夫朗和费衍射的matlab模拟2)双圆孔夫朗和费衍射的matlab模拟3)同一波长,狭缝数量分别为1、2、3、6、9、10时候的夫朗和费衍射的matlab模拟4)对4个不同波长的光照射时,狭缝数量分别为1、3时候的夫朗和费衍射的matlab 模拟5)单个圆孔菲涅尔衍射的matlab模拟6)模拟圆孔(或者单缝)衍射时,衍射屏到接收屏距离不同的时候衍射的图样1)clearclclam=632.8e-9;a=0.0005;f=1;m=300;ym=4000*lam*f;ys=linspace(-ym,ym,m);xs=ys;n=200;for i=1:mr=xs(i)^2+ys.^2;sinth=sqrt(r./(r+f^2));x=2*pi*a*sinth./lam;hh=(2*BESSELJ(1,x)).^2./x.^2;b(:,i)=(hh)'.*5000;B=b/max(b);endimage(xs,ys,b);colormap(gray(n));figure;plot(xs,B);colormap(green);-2.5-2-1.5-1-0.500.51 1.52 2.5x 10-3-2.5-2-1.5-1-0.50.511.522.5x 10-3-3-2-10123x 10-300.10.20.30.40.50.60.70.80.912)%双圆孔夫琅禾费衍射clear all close all clc %lam=632.8e-9;a=0.0005;f=1;m=300;ym=4000*lam*f;ys=linspace(-ym,ym,m);xs=ys;n=200;for i=1:m r=xs(i)^2+ys.^2;sinth=sqrt(r./(r+f^2));x=2*pi*a*sinth./lam;h=(2*BESSELJ(1,x)).^2./x.^2;d=10*a;deltaphi=2*pi*d*xs(i)/lam;hh=4*h*(cos(deltaphi/2))^2;b(:,i)=(hh)'.*5000;end image(xs,ys,b);colormap(gray(n));-2.5-2-1.5-1-0.500.51 1.52 2.5x 10-3-2.5-2-1.5-1-0.50.511.522.5x 10-33)lamda=500e-9;%波长N=[1236910];for j=1:6a=2e-4;D=5;d=5*a;ym=2*lamda*D/a;xs=ym;%屏幕上y 的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for i=1:n sinphi=ys(i)/D;alpha=pi*a*sinphi/lamda;beta=pi*d*sinphi/lamda;B(i,:)=(sin(alpha)./alpha).^2.*(sin(N(j)*beta)./sin(beta)).^2;B1=B/max(B);end NC=256;%确定灰度的等级Br=(B/max(B))*NC;figure(j);subplot(1,2,1);image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2);plot(B1,ys,'k');end-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为1-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为2-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为3-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为9狭缝数为6-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.0254)lamda=400e-9:100e-9:700e-9;%波长N=[13];a=2e-4;D=5;d=5*a;for j=1:4ym=2*lamda(j)*D/a;xs=ym;%屏幕上y 的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for k=1:2for i=1:n sinphi=ys(i)/D;alpha=pi*a*sinphi/lamda(j);beta=pi*d*sinphi/lamda(j);B(i,:)=(sin(alpha)./alpha).^2.*(sin(N(k)*beta)./sin(beta)).^2;B1=B/max(B);end NC=256;%确定灰度的等级Br=(B/max(B))*NC;figure();subplot(1,2,1);image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2);狭缝数为10plot(B1,ys,'k');end end-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02Lamda=400nm,N=1-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025Lamda=400nm,N=3Lamda=500nm,N=1-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03Lamda=500nm,N=3Lamda=600nm,N=1-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.04Lamda=600nm,N=3Lamda=700nm,N=1-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.045)clearclcN=300;r=15;a=1;b=1;I=zeros(N,N);[m,n]=meshgrid(linspace(-N/2,N/2-1,N));D=((m-a).^2+(n-b).^2).^(1/2);i=find(D<=r);I(i)=1;subplot(2,2,1);imagesc(I)colormap([000;111])axis imagetitle('衍射前的图样')L=300;M=300;[x,y]=meshgrid(linspace(-L/2,L/2,M));lamda=632.8e-6;k=2*pi/lamda;z=1000000;Lamda=700nm,N=3h=exp(j*k*z)*exp((j*k*(x.^2+y.^2))/(2*z))/(j*lamda*z); H=fftshift(fft2(h));%传递函数B=fftshift(fft2(I));%圆孔频谱G=H.*B;U=fftshift(ifft2(G));Br=(U/max(U));subplot(2,2,2);imshow(abs(U));axis image;colormap(hot)%figure,imshow(C);title('衍射后的图样');subplot(2,2,3);mesh(x,y,abs(U));subplot(2,2,4);plot(abs(Br))6)lamda=500e-9;%波长N=1;%缝数,可以随意更改变换a=2e-4;D=3:7;d=5*a;for j=1:5ym=2*lamda*D(j)/a;xs=ym;%屏幕上y的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for i=1:nsinphi=ys(i)/D(j);alpha=pi*a*sinphi/lamda;beta=pi*d*sinphi/lamda;B(i,:)=(sin(alpha)./alpha).^2.*(sin(N*beta)./sin(beta)).^2;B1=B/max(B);endNC=256;%确定灰度的等级Br=(B/max(B))*NC;figure();subplot(1,2,1)image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2)plot(B1,ys,'k');end-0.4-0.200.20.4-0.015-0.01-0.00500.0050.010.01500.51-0.015-0.01-0.0050.0050.010.015D=3m-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025D=5m D=4m-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.04D=7m D=6m。
matlab模拟光的菲涅尔衍射积分公式
matlab模拟光的菲涅尔衍射积分
公式
菲涅尔衍射是光在通过孔径或接触边缘时发生的衍射现象。
在matlab中可以通过编写程序模拟光的菲涅尔衍射积分公式,下面详细介绍一下具体步骤。
首先,需要定义一些变量和参数。
比如光源的波长λ、孔径或边缘的大小、距离等。
然后,可以利用傅里叶变换对衍射场进行数值计算,具体公式为:E(x,y) = ∫∫ f(u,v)exp(i2π(xu+yv)/λz) dudv 其中,f(u,v)表示孔径或边缘上的振幅分布,z表示观察平面距离衍射孔径或边缘的距离,x、y表示观察平面上的空间坐标。
接着,可以定义一个二维数组存储孔径或边缘的振幅分布。
这个数组可以理解为一个由像素点组成的图像,每个像素点可以表示一。
模拟夫琅禾费衍射的matlab源代码
源代码:N=512;disp('衍射孔径类型1.圆孔 2.单缝3.方孔')kind=input('please input 衍射孔径类型:');% 输入衍射孔径类型while kind~=1&kind~=2&kind~=3disp('超出选择范围,请重新输入衍射孔径类型');kind=input('please input 衍射孔径类型:');% 输入衍射孔径类型endswitch(kind)case 1r=input('please input 衍射圆孔半径(mm):');% 输入衍射圆孔的半径I=zeros(N,N);[m,n]=meshgrid(linspace(-N/16,N/16-1,N));D=(m.^2+n.^2).^(1/2);I(find(D<=r))=1;subplot(1,2,1),imshow(I);title('生成的衍射圆孔');case 2a=input('please input 衍射缝宽:');% 输入衍射单缝的宽度b=1000;% 单缝的长度I=zeros(N,N);[m,n]=meshgrid(linspace(-N/4,N/4,N));I(-a<m&m<a&-b<n&n<b)=1;subplot(1,2,1);imshow(I);title('生成的衍射单缝');case 3a=input('please input 方孔边长:');% 输入方孔边长I=zeros(N,N);[m,n]=meshgrid(linspace(-N/4,N/4,N));I(-a/2<m&m<a/2&-a/2<n&n<a/2)=1;subplot(1,2,1),imshow(I);title('生成的方孔');otherwise kind=input('please input 衍射孔径类型:');% 输入衍射孔径类型end% 夫琅禾费衍射的实现过程L=500;[x,y]=meshgrid(linspace(-L/2,L/2,N));lamda_1=input('please input 衍射波长(nm):');% 输入衍射波长;lamda=lamda_1/1e6k=2*pi/lamda;z=input('please input 衍射屏距离衍射孔的距离(mm):');% 衍射屏距离衍射孔的距离h=exp(1j*k*z)*exp((1j*k*(x.^2+y.^2))/(2*z))/(1j*lamda*z);%脉冲相应H =fftshift(fft2(h));%传递函数B=fftshift(fft2(I));%孔频谱G=fftshift(ifft2(H.*B));subplot(1,2,2),imshow(log(1+abs(G)),[]);title('衍射后的图样');figuremeshz(x,y,abs(G));title('夫琅禾费衍射强度分布')实验输入:衍射孔径类型1.圆孔 2.单缝3.方孔please input 衍射孔径类型:1please input 衍射圆孔半径(mm):3please input 衍射波长(nm):632lamda =6.3200e-04please input 衍射屏距离衍射孔的距离(mm):1000000实验结果:程序说明:本实验可以选择孔径类型、孔径半径、输入波长、衍射屏和衍射孔的距离等。
多缝的夫琅和费衍射matlab仿真
4、多缝的夫琅和费衍射,使用平行光照明,观察衍射图样随点光源位置(光源上下移动)的变化 θθθ图4-1 图4-2多缝夫琅禾费衍射如图4-1所示。
由于相邻单缝在P 点产生的夫琅禾费衍射的幅值与中心单缝的相同,只是产生一个相位差θλπδsin 2d =,故,经证明,P 点处的光强为:220)2sin 2sin ()sin ()(δδααN I P I =, 其中θλπαsin a =,θλπδsin 2d =。
因而,程序代码如下:clear %清除原有变量Lambda=600*(1e-9); %设置波长为600nma=0.005*(1e-3); %设置衍射屏参数:缝宽为0.005mm , 缝距为0.02mmd=0.02*(1e-3);f=0.01; %汇聚透镜焦距设置为1cmN=20; %设置缝数为20ni=1000;x=linspace(-0.005,0.005,ni); %将衍射屏按照狭缝方向分为ni 个微元 for k=1:nisn=x(k)/sqrt(x(k).^2+f^2);alpha=pi*a*sn/Lambda; %算各微元对应的α和δ值delta=2*pi*d*sn/Lambda;I(k)=(sin(alpha)/alpha).^2*(sin(N*delta/2)/sin(delta/2)).^2; %求出各处的光强endfigure(gcf); %显示图像NCLevels=250;Br=I*NCLevels;image(0,x,Br);colormap(gray(NCLevels));title('二维强度分布');运行后结果如图4-2所示。
将光源上下移动的结果如图4-3所示:图4-3 图4-4点光源发出的光经过准直透镜后形成倾斜入射的平行光,倾斜角度为i 。
此时,P 点强度的公式为:220)sin ()sin ()(ββααN I P I =, 其中)sin (sin i a -=θλπα,)sin (sin i d -=θλπβ。
光的干涉和衍射的matlab模拟
光的干涉和衍射的matlab模拟单缝夫琅和费衍射是光的衍射现象之一,如图2所示。
当单色光波通过一个狭缝时,光波会向周围扩散,形成一系列同心圆环。
这些圆环的亮度分布是由夫琅和费衍射公式描述的,即。
其中为入射光波长,为狭缝宽度,为衍射角。
夫琅和费衍射公式表明,随着衍射角的增大,圆环的半径会减小,而亮度则会逐渐减弱。
在MATLAB中,可以通过输入实验参数,如光波长和狭缝宽度,来观察圆环的亮度分布和半径随衍射角的变化情况。
同时,还可以探讨不同波长和狭缝宽度对圆环亮度和半径的影响。
4双缝衍射双缝衍射是光的干涉和衍射现象的结合,如图3所示。
当一束单色光波通过两个狭缝时,光波会在屏幕上形成一系列干涉条纹和衍射环。
干涉条纹的亮度分布与___双缝干涉相同,而衍射环的亮度分布则由夫琅和费衍射公式描述。
在MATLAB中,可以通过输入实验参数,如光波长、双缝间距和双缝宽度,来观察干涉条纹和衍射环的亮度分布和条纹间距、环半径随实验参数的变化情况。
同时,还可以探讨不同实验参数对干涉条纹和衍射环的影响。
5衍射光栅衍射光栅是一种利用衍射现象制成的光学元件,如图4所示。
当一束单色光波通过光栅时,光波会被分为多个衍射光束,形成一系列亮度不同的衍射条纹。
衍射条纹的亮度分布与夫琅和费衍射公式描述的圆环类似,但是条纹间距和亮度分布会受到光栅常数的影响。
在MATLAB中,可以通过输入实验参数,如光波长和光栅常数,来观察衍射条纹的亮度分布和条纹间距随实验参数的变化情况。
同时,还可以探讨不同实验参数对衍射条纹的影响。
总之,通过MATLAB模拟光的干涉和衍射现象,可以更加直观地理解和掌握这些重要的光学现象,同时也可以为实验设计和数据分析提供有力的工具和支持。
本文介绍了___双缝干涉、单缝夫琅禾费衍射和衍射光栅光谱的计算机模拟。
当一束单色平行光通过宽度可调的狭缝,射到其后的光屏上时,形成一系列亮暗相间的条纹。
单缝夫琅禾费衍射的光强分布可以通过惠更斯-费涅耳原理计算。
Matlab在物理学中的应用--光的衍射
光的干涉和衍射一、实验目的① 学习用用模拟实验方法探究光的干涉和衍射问题.② 进一步熟悉MA TLAB 编程.二、实验内容和要求1. 双缝干涉模拟实验杨氏双缝干涉实验是利用分波前法获得相干光束的典型例子. 如图2.24所示,单色光通过两个窄缝s 1,s 2射向屏幕,相当于位置不同的两个同频率同相位光源向屏幕照射的叠合,由于到达屏幕各点的距离(光程)不同引起相位差,叠合的结果是在有的点加强,在有的点抵消,造成干涉现象.图2.24 双缝干涉示意图 考虑两个相干光源到屏幕上任意点P 的距离差为1221r r r r r ==∆=- (2.19) 引起的相位差为2πrϕλ∆=设两束相干光在屏幕上P 点产生的幅度相同,均为A 0,则夹角为φ的两个矢量A 0的合成矢量的幅度为A =2A 0 cos(φ/2)第二章 数理探究试验 135光强B 正比于振幅的平方,故P 点光强为B =4B 0cos 2(φ/2) (2.20)运行sy211.m 程序得到干涉条纹如图2.27所示.clear all %sy211.mlam=500e-9; %输入波长a=2e-3; D=1;ym=5*lam*D/a; xs=ym; %设定光屏的范围n=101;ys=linspace(-ym,ym,n); % 把光屏的y 方向分成101点for i=1:nr1=sqrt((ys(i)-a/2).^2+D^2);r2=sqrt((ys(i)+a/2).^2+D^2);phi=2*pi*(r2-r1)/lam;B(i,:)=4*cos(phi/2).^2;endN=255; % 确定用的灰度等级为255级Br=(B/4.0)*N; %使最大光强对应于最大灰度级(白色)subplot(1,2,1)image(xs,ys,Br); %画干涉条纹colormap(gray(N));subplot(1,2,2)plot(B,ys) %画出光强变化曲线图2.25中左图是光屏上的干涉条纹,右图是光屏上沿y 轴方向光强的变化曲线. 从图中也不难看出,干涉条纹是以点o 所对应的水平线为对称,沿上下两侧交替,等距离排列,相邻亮条纹中心间距为2.5×10-4m. -0.4-0.200.20.4-1.5-1-0.500.511.5x 10图2.25 单色光的干涉条纹这与理论推导和实验结果基本一致.下面我们从理论上加以推导,由上面的式(2.19)可得22212121()()2d r r r r r r y -=+-=-1.5 -1 -0.5 0 0.5 1 1.5 -0.4 -0.2 0 0.4 0.2基于MA TLAB 的数学实验136 考虑到a ,y 很小,(r 1+r 2)=2D ,所以21D r r y a-= 这样就得到点P 处于亮条纹中心的条件为20122D y k k a λ==±±,,,, (2.21) 因此,亮条纹是等间距的,相邻条纹间距为94150010 2.510m 0.002D a λ--=⨯=⨯. 问题2.39:推导出点P 处于暗条纹中心的条件并与模拟结果相比较,看是否一致? 考虑到纯粹的单色光不易获得,通常都有一定的光谱宽度,这种光的非单色性对光的干涉会产生何种效应,下面我们用MA TLAB 计算并仿真这一问题.非单色光的波长不是常数,必须对不同波长的光分别处理再叠加起来. 我们假定光源的光谱宽度为中心波长的±10%,并且在该区域均匀分布. 近似取11根谱线,相位差的计算表达式求出的将是不同谱线的11个不同相位. 计算光强时应把这11根谱线产生的光强叠加并取平均值,即211012π4cos ()211k kk k r B B ϕλϕ=∆==∑ 将程序sy211.m 中的9,10两句换成以下4句,由此构成的程序就可仿真非单色光的干涉问题. N1=11;dL=linspace(-0.1,0.1,N1);%设光谱相对宽度±10%, lam1=lam*(1+dL');%分11根谱线,波长为一个数组 Phi1=2*pi*(r2-r1)./ lam1;%从距离差计算各波长的相位差 B(i, :)=sum(4*cos(Phi1/2).^2)/N1; %叠加各波长并影响计算光强运行修改后的程序得到的干涉条纹如图2.26所示. 可以看出,光的非单色性导致干涉现象的减弱,光谱很宽的光将不能形成干涉.第二章 数理探究试验 137-0.4-0.200.20.4-1.5-1-0.500.511.5-3-3图2.26 非单色光的干涉条纹 2. 单缝衍射的模拟实验一束单色平行光通过宽度可调的狭缝,射到其后的光屏上. 当缝宽足够小时,光屏上形成一系列亮暗相间的条纹,这是由于从同一个波前上发出的子波产生干涉的结果. 当光源到衍射屏的距离和光屏到衍射屏的距离都是无穷大时,即满足远场条件时,我们称这种衍射为夫琅禾费衍射. 所以夫琅禾费衍射中入射光和衍射光都是平行光. 为了模拟单缝衍射现象,我们把单缝看成一排等间隔光源,共NP 个光源分布在A ~B 区间内,离A 点间距为yp ,则屏幕上任一点S 处的光强为NP 个光源照射结果的合成.如图2.27所示,子波射线与入射方向的夹角ϕ称为衍射角,0=ϕ时,子波射线通过透镜后,必汇聚到O 点,这个亮条纹对应的光强称为主极大. NP 个光源在其他方向的射线到达S 点的光程差,应等于它们到达平面AC 的光程差,即sin yp ϕ∆=,其中sin ys Dϕ≈ ys 为S 点的纵坐标,则与A 点光源位相差为2π2πyP ys Dαλλ=∆=s O基于MA TLAB 的数学实验 138 -0.4-0.200.20.4-1.5-1-0.500.511.5-3-3图2.28 单缝衍射条纹图2.27 单缝衍射的模拟实验设单缝上NP 个光源的振幅都为1,在x ,y 轴上的分量各为cos sin αα,,合振幅的平方为:()()22COSa COSa ∑+∑. 又光强正比于振幅的平方,所以相对于O 点主极大光强也为22(cos )(sin )0I I αα=+∑∑程序sy212.m 模拟了单缝衍射现象,这里取波长λ=500nm ,缝宽a =1mm ,透镜焦距D =1m ,运行结果如图2.28所示.clear all %sy212.mlam=500e-9;a=1e-3;D=1;ymax=3*lam*D/a; %屏幕范围(沿y 向)Ny=51; %屏幕上的点数(沿y 向)ys=linspace(-ymax,ymax,Ny);NP=51;yP=linspace(0,a,NP); %把单缝分成NP 个光源for i=1:Ny %对屏幕上y 向各点作循环SinPhi=ys(i)/D;alpha=2*pi*yP*SinPhi/lam; SumCos=sum(cos(alpha)); SumSin=sum(sin(alpha));B(i,:)=(SumCos^2+SumSin^2)/NP^2;end N=255; % 确定用的灰度等级为255级%使最大光强对应于最大灰度级(白色)Br=B/max(B)*N; subplot(1,2,1)%画衍射条纹,用灰度级颜色图image(ymax,ys,Br); colormap(gray(N));subplot(1,2,2)%画屏幕上光强曲线 plot(B,ys,'*',B,ys);grid;分析图2.28中的衍射条纹,我们可以看出所有亮暗条纹都平行于单缝,O 点光强为最大,这都和理论推导结果相一致.问题2.40: 从理论上讲,中央亮条纹的半角宽和第一条暗条纹的衍射角都应等于λ/a ,各次极大角宽都等于中央亮条纹的半角宽,图2.28模拟的衍射条纹符合这个结论吗?3. 光栅衍射的模拟实验有大量等宽度、等间距的平行狭缝组成的光学系统称为衍射光栅. 单缝宽度a 和刻第二章 数理探究试验 139痕宽度b 之和称为光栅常数d ,d =a +b . 光栅衍射条纹是单缝衍射和缝间干涉的共同结果.设光栅有N 条狭缝,透镜焦距为D ,理论分析可以得到,光屏上P 点的夫琅禾费衍射光强I P /I 0分布为220sin sin ()()sin P I N I αβαβ= 式中sin sin sin s y a d Dππαϕβϕϕλλ==≈,, 运行程序sy213.m 得到衍射条纹如图2.29所示.clear all %sy213.mlam=632.8e-9; N=2;a=2e-4; D=5;d=5*a;ym=1.89*lam*D/a;xs=ym; %设定光屏的范围n=1001;ys=linspace(-ym,ym,n); % y 方向分成1001点for i=1:nSinphi=ys(i)/D;alpha=pi*a*Sinphi/lam;beta=pi*d*Sinphi/lam;B(i, :)=(sin(alpha)./alpha).^2.*(sin(N*beta)./sin(beta)).^2 ;B1=B/max(B); %将最大光强设为1endNC=255;Br=B/max(B)*NC;subplot(1,2,1)image(xs,ys,Br); %画衍射条纹colormap(gray(NC))subplot(1,2,2)plot(B1,ys) %画出沿y 向的相对光强变化曲线问题2.41:程序sy213.m 中d =5a ,观察图2.29衍射条纹,看有无缺级现象,为什么?改变sy213.m 中的波长、缝宽、光栅常数值,看衍射条纹有何变化?试加以解释.基于MA TLAB 的数学实验 140-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025图2.29 光栅衍射条纹第二章数理探究试验141 《车辆制冷与空调》第二次作业参考答案《车辆隔热壁》、《制冷方法与制冷剂》、《蒸汽压缩式制冷》一.简答题1.什么是隔热壁的传热系数?它的意义是什么?答:隔热壁的传热系数指车内外空气温度相差1℃时,在一小时内,通过一平方米热壁表面积所传递的热量。
matlab模拟单缝菲涅尔衍射
matlab模拟单缝菲涅尔衍射3.菲涅尔衍射(2)单缝菲涅尔单缝衍射的相对光强分布公式为:22I(x,y),[C(,),(,)],[S(,),(,)], 2121其中,菲涅尔积分为:,,1122C,(),cos(,t)dt、S(,),sin(,t)dt, ,,2200,,,2/,z(W,y),,,,2/,z(W,y),此外其中W为缝的半宽度,z为接收屏η1,1,距离。
程序如下:clearlam=600e-9; %设置波长为600mm a=0.2e-3; %设置半缝宽为0.2mm z=1e-1; %设置接收屏距离为0.1m N=301; %将屏幕分成301块 ym=1e-3;y=linspace(-ym,ym,N);beta1=-(2/(lam*z))^0.5*(a+y); %求β 1beta2=(2/(lam*z))^0.5*(a-y); %求β2 syms t;cc=cos(0.5*pi*t^2); %C(α)表达式ss=sin(0.5*pi*t^2); %S(α)表达式for i=1:N %由于单缝,从屏幕底到上依次求光强%C(βc2(i)=doubl e(int(cc,t,0,beta2(i))); )的值2c1(i)=double(int(cc,t,0,beta1(i))); %C(β)的值1s2(i)=double(int(ss,t,0,beta2(i))); %C(β)的值2s1(i)=double(int(ss,t,0,beta1(i))); %C(β)的值 1I(i)= ((c2(i)-c1(i)).^2+(s2(i)-s1(i)).^2); %B(i)所在条纹的光强 endN=255;subplot(1,2,1)image(y,y,0.25*N*I); %画出衍射图像 colormap(gray(N));subplot(1,2,2)plot(I,y) %画出光强分布图通过改变程序中的a,可以改变半缝宽度。
MATLAB模拟衍射利用基尔霍夫衍射公式
利用菲涅尔—基尔霍夫衍射公式对问题进行处理,通过去不同的z 值观察近场,菲涅尔区,夫琅和费区的衍射条纹。
菲涅尔—基尔霍夫衍射公式:()()()()000exp cos ,cos ,2jk r r A E P ds j r r λ∑+⎡⎤-⎣⎦=⋅⋅⎰⎰n r n r ()()100exp E E P A jkr ==由于单色平面波垂直照射,()()10, cos ,1E P A ==-n r ,由于一般考虑光强的相对值,所以分析时取A=1,()cos cos ,z r θ==n r ,并对方孔进行微元,将方孔每个点在光屏上衍射的复振幅进行叠加,即计算E x ,y = z iλe ikr z r+12r ds ,从而得到光屏上的衍射条纹。
对于方孔编程时采用循环的方式,对于光屏则利用矩阵对光屏整体的复振幅,光强等进行分析,加快运算速度。
实现代码clear;lambda=6.32e-7;%波长k=2*pi/lambda;z=550;%光屏位置a=0.01;b=0.01;%方孔尺寸x1=linspace(-0.005,0.005,199);y1=linspace(-0.005,0.005,199);%将方孔分为许多小的微元x=linspace(-0.2,0.2,299);y=linspace(-0.2,0.2,299);%将光屏分为许多小的微元[X,Y]=meshgrid(x,y);%用二维矩阵描述光屏上点的位置E=zeros(299,299);%用于存放光屏上每个点的复振幅r=zeros(299,299);%用于存放光屏上没一点对应方孔上点的距离for l=1:199for j=1:199 %计算方孔上的每个点在光屏上的复振幅r=sqrt((X-x1(l)).^2+(Y-y1(j)).^2+z*z); %当前方孔上点到光屏上各个点的距离E=E+(-i/lambda)*(exp(i*k*r)).*(z./(2*r.*r)+1./(2*r))*z; %对不同点在光屏上的复振幅进行累加 endendE1=conj(E);I=E1.*E; %求光强% pcolor(y,x,I) %作图% colorbarIx= I(1:299,200);%光屏中心水平方向光强分布plot(x,Ix)夫琅和费区:Z=550m光强分布光屏中心水平方向光强分布Z=1m近场区:Z=0.001m。
矩孔菲涅而衍射MATLAB模拟
基于Matlab的矩孔菲涅尔衍射仿真摘要光学试验中衍射实验是非常重要的实验. 光的衍射是指光在传播过程中遇到障碍物时能够绕过障碍物的边缘前进的现象, 光的衍射现象为光的波动说提供了有力的证据. 衍射系统一般有光源、衍射屏和接受屏组成, 按照它们相互距离的大小可将衍射分为两大类, 一类是衍射屏与光源和接受屏的距离都是无穷远时的衍射, 称为夫琅禾费衍射, 一类是衍射屏与光源或接受屏的距离为有限远时的衍射称为菲涅尔衍射。
本文用Matlab软件主要针对矩孔菲涅尔衍射现象建立了数学模型,对衍射光强分布进行了编程运算,对衍射实验进行了仿真。
关键字:Matlab;矩孔菲涅尔衍射;仿真;光学实验AbstractOptical diffraction experiment is a very important experiment. is the diffraction of light propagation of light in the obstacles encountered in the process to bypass the obstacles when the forward edge of the phenomenon of light diffraction phenomenon of the wave theory of light provides a strong Evidence. diffraction systems generally have light, diffraction screen and accept the screen composition, size according to their distance from eachother diffraction can be divided into two categories, one is the diffraction screen and the light source and the receiving screen is infinity when the distance between the diffraction Known as Fraunhofer diffraction, one is diffraction screen and the light source or accept a limited away from the screen when the diffraction is called Fresnel diffraction.In this paper, Matlab software on a typical phenomenon of a mathematical model of single slit Fresnel diffraction, the diffraction intensity distribution of the programming operation, the diffraction experiment is simulated.Key word: matlab;single slit Fresnel diffraction; simulation; optical experiment一、菲涅尔衍射原理由惠更斯-菲涅尔原理可知接收屏上的P点的复振幅可以表示为其中为衍射屏上的复振幅分布, 为倾斜因子。
(完整word版)模拟夫琅禾费衍射的matlab源代码
源代码:N=512;disp('衍射孔径类型1.圆孔 2.单缝3.方孔')kind=input('please input 衍射孔径类型:');% 输入衍射孔径类型while kind~=1&kind~=2&kind~=3disp('超出选择范围,请重新输入衍射孔径类型');kind=input('please input 衍射孔径类型:');% 输入衍射孔径类型endswitch(kind)case 1r=input('please input 衍射圆孔半径(mm):');% 输入衍射圆孔的半径I=zeros(N,N);[m,n]=meshgrid(linspace(-N/16,N/16-1,N));D=(m.^2+n.^2).^(1/2);I(find(D<=r))=1;subplot(1,2,1),imshow(I);title('生成的衍射圆孔');case 2a=input('please input 衍射缝宽:');% 输入衍射单缝的宽度b=1000;% 单缝的长度I=zeros(N,N);[m,n]=meshgrid(linspace(-N/4,N/4,N));I(-a<m&m<a&-b<n&n<b)=1;subplot(1,2,1);imshow(I);title('生成的衍射单缝');case 3a=input('please input 方孔边长:');% 输入方孔边长I=zeros(N,N);[m,n]=meshgrid(linspace(-N/4,N/4,N));I(-a/2<m&m<a/2&-a/2<n&n<a/2)=1;subplot(1,2,1),imshow(I);title('生成的方孔');otherwise kind=input('please input 衍射孔径类型:');% 输入衍射孔径类型end% 夫琅禾费衍射的实现过程L=500;[x,y]=meshgrid(linspace(-L/2,L/2,N));lamda_1=input('please input 衍射波长(nm):');% 输入衍射波长;lamda=lamda_1/1e6k=2*pi/lamda;z=input('please input 衍射屏距离衍射孔的距离(mm):');% 衍射屏距离衍射孔的距离h=exp(1j*k*z)*exp((1j*k*(x.^2+y.^2))/(2*z))/(1j*lamda*z);%脉冲相应H =fftshift(fft2(h));%传递函数B=fftshift(fft2(I));%孔频谱G=fftshift(ifft2(H.*B));subplot(1,2,2),imshow(log(1+abs(G)),[]);title('衍射后的图样');figuremeshz(x,y,abs(G));title('夫琅禾费衍射强度分布')实验输入:衍射孔径类型1.圆孔 2.单缝3.方孔please input 衍射孔径类型:1please input 衍射圆孔半径(mm):3please input 衍射波长(nm):632lamda =6.3200e-04please input 衍射屏距离衍射孔的距离(mm):1000000实验结果:程序说明:本实验可以选择孔径类型、孔径半径、输入波长、衍射屏和衍射孔的距离等。
用MATLAB语言模拟光衍射实验
第14卷第4期大 学 物 理 实 验 V ol.14N o.42001年12月出版PHY SIC A L EXPERI ME NT OF C O LLEGE Dec.2001收稿日期:2001-07-30文章编号:1007-2934(2001)04-0047-02用MAT LAB 语言模拟光衍射实验周 忆(安徽省科学技术培训中心,合肥,230031) 梁 齐(合肥工业大学,合肥,230009)摘 要:用M AT LAB 语言模拟编写了光衍射的模拟实验程度,给出了五种元件的夫琅和费衍射图。
关键词:衍射;模拟;M AT LAB 语言中图分类号:O4-39 文献标识码:A光的衍射现象是光具有波动性的重要特征,衍射无论在理论研究还是在大学物理教学中都占有较重要的地位。
笔者利用MAT LAB 较强的绘图和图像功能,针对多种衍射元件(单缝、双缝、光栅、矩孔、圆孔)编写了光衍射的模拟实验程序。
在计算机的模拟光的衍射,条件限制较少,对于衍射的实验教学是一种较好的补充。
程序首先根据衍射强度分布的理论公式及实验参数建立衍射相对强度的数据矩阵B (x ,y )然后利用image (B )和colormap (gray )命令绘出衍射图样。
同时,也绘制了衍射光强分布的二维或三维图。
单缝夫琅和费衍射的模拟结果见图1。
衍射光强公式为I =I 0(sin u/u )2,u =(πa sin θ/λ),a 是缝宽,λ是入射光的波长,θ是衍射角。
设观察屏位于单缝后正透镜的焦平面上,f 为透镜的焦距,x 为屏上横向坐标。
θ=arctan (x/f )。
模拟分成三组:第一组,λ=600nm ,f =600mm ,(a )a =0.20mm ;(b )a =0.10mm ;(c )a =0.05mm 第二组,a =0.10mm ,f =600mm ,(d )λ=500nm ;(e )a =600nm ;(f )λ=700nm第三组,a =0.10mm ,λ=600nm ,(g )f =300mm ;(h )f =600mm ;(i )f =900mm以下内容中,取λ=600nm ,f =600mm ,衍射图样横坐标x 和纵坐标y 的范围均为[-20,20]mm 。
衍射的Matlab 模拟
r
P
则 K
1 1 cos 2
13
将近似条件代入得到:菲涅耳-基尔霍夫衍射近似公式
exp ikR i ~ E P A 2 R
exp ikr 1 cos d r
( n,l ) ( n,r )
2
2
x1 x y1 y x 2 y 2 取上式前三项 r z1+ z1 2 z1
x2 y2 exp[ ik ( z1 )] 2 z1 ~ E x, y iz1 ~ k i xx1 yy1 dx1dy1 E x1 , y1 exp z1
y1 x1
进一步的计算需要 将exp( ikr )中的r表 示成(x,y,z)的函数。
Q C z1 K
r
P
x
P0 E
孔径 的衍射
16
2.菲涅耳近似(对位相项的近似)
r z1 ( x x1 ) 2 y y1 z1 1
2 2
x x1 2 y y1 2
非平行光衍射光源面和接收面非物象共扼面源点和场点均满足远场近似源点和场点均在无限远处平行光衍射光源面和接收面物菲涅耳衍射夫琅和费衍射121
衍射的MATLAB模拟
刘雁 三峡大学理学院 2013.4
内容提要
衍射的基本理论
单缝衍射的Matlab模拟
一衍射的基本原理
光的衍射现象:光波在空间传播遇到障碍时,其传播方
2 2 夫琅合费衍射对z的要求 =600nm, x1 y1
x z
2
1
y1
2
max
2cm2
大学物理-Matlab模拟夫琅禾费衍射
Matlab 模拟夫琅禾费衍射
一、原理
衍射是光波动性的表现,当光波在遇到一定尺寸障碍物时不沿直线传播,偏离原来直线传播。
夫琅禾费衍射,是波动衍射的一种,通过圆孔或狭缝时发生,导致观测到的成像大小有所改变。
夫琅禾费衍射的原理如图1所示,一束平行光照射到衍射屏上,衍射屏开口处AB 的波前向各个方向发出次波,方向彼此相同的衍射次波经透镜L 汇聚到其像方焦平面的同一点P 上。
满足相长干涉条件的位置为亮条纹,满足相消干涉条件的位置为暗条纹,明暗条纹构成了该衍射屏的夫琅禾费衍射图样。
图1 夫琅禾费衍射原理图
1.白光单缝衍射
θ=arctan (x
f
)
光强分布 I (x )=I 0[sin (
πasin(arctan(x f
))
λ
)]2
2.白光圆孔衍射
θ=arctan (r
f
)
光强分布 I (r )=I 0[ J 1(
2πasin(arctan(r
f
))
λ
)πasin(arctan(r f
))
λ]
2
Matlab 模拟中采用等量红(700nm 绿(546.1nm )蓝(435.8nm )混合模拟,把红绿蓝三基色的衍射图样存储在m x n x 3矩阵中,按RGB 图显示产生白光的衍射。
二、代码
设透镜焦距f=800mm, a=0.04mm
图2 白光单缝衍射Matlab模拟代码图3 白光圆孔衍射Matlab模拟代码三、结果
图4 白光单缝衍射Matlab模拟结果
图5 白光圆孔衍射Matlab模拟结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p
?
x
f'
z1
23
二、夫琅合费衍射公式的意义
加有透镜之后,有两个因子与透镜有关:
(1)复数因子
C?
1
i? f
?exp
? ??ik
(
f
??
x2 ? y2 ? 2 f ? )??
? ? 其中 r ? CP ?
f ?2 ? x2 ? y2
?
f ??
x2 ? y2 2f?
结论:若孔径很靠近透镜,r 是孔径原点O处发出的子
y
1、强度分布计算
1
(Intensity distribution calculation )
b
设矩形孔的长和宽分别为 a
x1
和 b,用单位平面波照射,即
E~ ?x1 ,
y1 ??
?1 ? ?0
在矩孔以内 在矩孔以外
ba
27
将矩孔的复振幅分布代入下式:
?? E~?x, y?? C
? -?
E~?x1
?
E0
2
? ?Cab ?2
先讨论沿y轴方向的分布。 I/I0
在Y轴上,? ?
0,
??sin ? ??2 ?
1.0
1
?? ?
0.8
故:
I
y=I
0
????
sin
?
?
????2
0.6 0.4
0.2
(1)主极大值的位置:
0.0
-10
当? =0时,I有主极大值 Imax=I0,
-2-p5
-p
0
p
25p
10
?
30
波到P点的光程,而 kr 则是O点到P点的位相延迟。
QP(x ,y ) 11 ?H
O
C
D
r
?
f'
P(x,y)
24
(2)位相因子
孔径上其它点发出的光波与O 点的光程差:
D=OH=OP ? QP ? x sin? ? y sin? ?
1
x1
y
fx?x1 ?
y f?
y 1
而位相差
2p ?
????
x 1
x? f?
y1
2
(2)在振幅项中
x1
1? 1 r z1
Q C
r
z1
K
孔径 ?的衍射
y x
P
P0 E
15
(3)设定孔径函数 E~ ?x 1 , y 1 ?, d ? ? dx 1 dy 1
它在 ?
之外E~?x1,
y1?=0,在 ?
之内 E~?x1,
y1 ??
A exp(ikR) 。 R
?? E~?x, y?? ? i A ?z
exp(ikl) ? exp(ikR)
l
R
cos(n, l) ? ? 1,
cos(n, r ) ? cos?
( n,l )
( n,r )
?
?r
P
则 K?? ?? 1 ?1 ? cos? ?
2
13
将近似条件代入得到:菲涅耳-基尔霍夫衍射近似公式
?? E~?P ?? ?
i
exp?ikR?
A
exp?ikr ??1 ? cos? ?d?
8 z13
? y1 2 ]2
??
p
y1
Q C
K
x1 r
z1
y x
P
P0 E
17
r
?
z1
?
?x ?
? x1 2 ? ?y ?
2 z1
? y1 2
得到菲涅耳衍射:
称为菲涅耳近似。
?? ? ? E~?x, y?? eikz1 i? z1
? ??
E~?x1
,
y1
?exp ??i
?
k 2 z1
y1
?x ?
x1 ?2
2?
R? r
( n,l )
( n,r )
?
?
r
S
P
R
14
三、基尔霍夫衍射公式的近似
?? E~?P ?? ? i Aexp?ikR? exp?ikr ??1 ? cos? ?d?
2?
R? r
1、傍轴近似(两点近似)
(1) cos?n? ?r??? cos ? ? 1
K?? ?? 1 ?1 ? cos? ?? 1
x1
fx??
y1
fy????????dx1dy1
C ? 1 exp[ik( f ?? x2 ? y2 )]
i?f ?
2f?
O点到P点的位相延迟
孔径上其它点发出的 光波与O 点的位相差。
积分式表示孔径上各点子波的相干叠加。叠 加结果取决于各点发出的子波与中心点发出 子波的位相差。
26
三、矩孔衍射 (Diffraction by a rectangular aperture)
或者
2z
Z<
? ? x12 ? y12 max
?
(菲涅耳衍射)
? ? Z>
x12 ? y12 max ?
(夫琅合费衍射)
20
§2 .典型孔径的夫琅合费衍射
一、衍射系统与透镜作用 1、透镜的作用:无穷远处的衍射图样成象在焦平面上。
? ? 夫琅合费衍射对z的要求 ?=600nm, x12 ? y12 max ? 2cm2
I
y=I
0
????
sin
?
?
????2
(2)极小值的位置:
I/I0
当? =np, n=+1,+2,…时,即 1.0
0.8
pyb ? np , y ? n ?f ? 0.6
?f ?
b
I=0,有极小值。0.4
主极大值的宽度: 0.2
?=? p Y=2 ?f ?
b
0.0
-10
-2-p5 -p 0 p 25p
1 ? ?x ? x1 ?2 ? ?y ? y1 ?2
z1 2
?
z1
?
?x ?
x1 ?2 ? ?y ?
2 z1
y ?y ?
8 z1 3
? y1 2 ]2
? ....
r
?
z1
?
?x ?
x1 ?2 ? ?y ?
2 z1
? y1 2
近似条件:
2p ?
? [?x ?
x1 ?2 ? ?y ?
根据光源、衍射屏和观察屏三者之间的位置确定
(1)夫琅和费衍射(Fraunhofer diffraction): 距离衍射屏远处的衍射。
(2)菲涅耳衍射( Fresnel diffraction ): 距离衍射屏近处的衍射。
K ? S
4
菲涅耳衍射与夫琅和费衍射的区别
菲涅耳衍射
夫琅和费衍射
1
源点和场点均满足傍轴近似 ,但不同时满足远场近似
?=
A i?
?? ?expl?ikl??expr?ikr
??cos?n,
??
r
??
2
cos?n,
l
????d?
子波的复振幅与
K(?) ? cos?n, r ?? cos?n,l ?
2 成正比,与波长? 成反比。
?
i
?
1
?
exp[? i
p ]
i
2
表示子波的振动位相超 前于入射波 90?。
12
当光线接近于正入射时
在傍轴近似下,公式中 x′/Z1 由 x /f ' 代替。计算公式变为:
?? E?x, y?? C
E~
?x1
,
y1
?exp
? ?? ?
ik
????
x1
x? f?
y1
fy????????dx1dy1
C
?
exp[ik
(
f
??
x2 ? y2 2 f?
)]
i?f ?
(x, y )
p' (x', y' )
x'
y1 y
?
x2 ? y2 2z1
E~?x, y??
exp[ik ( z1
?
x2 ? y2 )] 2z1
i? z1
??? ??
E~?x1,
y1 ?exp???
?
i
k z1
?xx1
?
yy1 ???dx1dy1
?
19
菲涅耳衍射和夫琅和费衍射是两个经常应用的衍射计算。
菲涅耳衍射和夫琅合费衍射的判别式;
? ? k x12 ? y12 max ?? p
10
?
Y
31
(3)次极大值的位置:
对于其它的极大值点,有 1.0
d d?
????
sin ?
?
????2
?
0,即tg?
?
?
0.8
0.6
? 可用作图求解。
注意:次极大值位置 不在两暗纹的中间。
(4)暗条纹的间隔
e ? ?f ?
b
0.4
-1.43p
0.2
-2.45p
1.43p 2.45p
0.0
-10
? -5 ?p 0 p 52p
2 ?a
b
2 ?b
exp?? ik?lx1 ? my1 ??dx1dy1
22
a
b
? ? ?
C
2 ?a
exp??
iklx1 ?dx1
? 2
?b
exp