人教版二次根式单元检测

合集下载

人教版八年级数学下册试卷二次根式单元测试题及答案

人教版八年级数学下册试卷二次根式单元测试题及答案

人教版八年级数学下册试卷二次根式单元测试题及答案八年级下册数学目标单元检测题(一)《二次根式》一、选择题:(每小题2分,共26分)1、下列代数式中,属于二次根式的是()A、3√x-2B、-AC、-4BD、a-√21(a≥1)2、在二次根式√x-1中,x的取值范围是()C、x≤13、已知(x-1)²=0,则(x+y)²的算术平方根是()A、14、下列计算中正确的是()C、√(a/3)=√(2/3)5、化简√(2/3)+√(1/3),得()B、√56、下列二次根式:12.5a,a,b,1/a,m+y/√(2anx)中最简二次根式的有()D、4个7、若等式(m-3)/(m+3)=1成立,则m的取值范围是()B、m>38、已知直角三角形有两条边的长分别是3cm,4cm,那么第三条边的长是()A、5cm9、把二次根式√(x^4+x^2y^2)化简,得()A、x^2+xy10、下列各组二次根式中,属于同类二次根式的为()C、a+1/12a^2b和D、a-1/ab^211、如果a≤1,那么化简√(a/(1-a))=()C、1/√(1-a)12、下列各组二次根式中,x的取值范围相同的是()B、x+1与x-1二、填空题:(每小题3分,共36分)13、化简√(42x-3)/(x-4x+1),得()B、4-4x14、用“>”或“<”符号连接:(1)-26<-33;(2)3<5;(3)3/(-5)>-7/(-3)26<-33<3<5<3/(-5)>-7/(-3)15、3(-5)的相反数是-15,绝对值是1516、如果最简二次根式3a-3与7-2a是同类二次根式,那么a的值是a=3/217、计算:8√(24)=8√3;(1/2)²=1/4;(-5)²=2518、当$x\geq -\frac{1}{3}$时,二次根式$3x+1$有意义;当$x>-1$时,代数式$x+1$有意义。

人教版 八年级数学下册 第十六章 二次根式 单元测试

人教版 八年级数学下册 第十六章 二次根式 单元测试

2022年春人教版初中八年级数学下册第十六章二次根式班级:________ 姓名:________ 分数:________ 一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.下列各式一定是二次根式的是( )A.xB. 2C.-4D.352.下列二次根式中,是最简二次根式的是()A.0.1B. 3C.12 D.x33.当x=0时,二次根式4+2x的值等于( ) A.4 B.2 C. 2 D.04.下列各式中不正确的是( )A.(x-2)2=-2 B.(2)2=2C.-(-2)2=-2 D.±(-2)2=±2 5.计算18×12的结果是()A.6 B.6 2 C.6 3 D.6 66.代数式x+1x在实数范围内有意义时,x的取值范围为( )A.x>-1 B.x≥-1 C.x≥-1且x≠0 D.x≠07.如果12·x是一个正整数,那么x可取的最小正整数值为( ) A.2 B.4 C.3 D.128. 2,5,m是某三角形三边的长,则(m-3)2+(m-7)2等于( )A .2m -10B .10-2mC .10D .49. 设x ,y 为实数,且y =4+5-x +x -5,则|y -x|的值是( ) A .1 B .9 C .4 D .510. 化简二次根式1x -x 3的正确结果是( ) A.-x B.x C .-x D .--x11. 如图,从一个大正方形中裁去面积为16 cm 2和24 cm 2的两个小正方形,则余下的面积为( )A .16 6 cm2B .40 cm 2C .8 6 cm2D .(26+4)cm 212. 设a 1=1+112+122,a 2=1+122+132,a 3=1+132+142,…,a n =1+1n 2+1(n +1)2,其中n 为正整数,则a 1+a 2+a 3+…+a 2 021的值是( )A .2 0202 0192 020B .2 0202 0202 021C .2 0212 0202 021D .2 0212 0212 022 二、填空题:每小题4分,共16分.13. 若最简二次根式3a -1与2a +3可以合并,则a 的值为__ _.14.实数a 在数轴上的位置如图所示,则化简|a -2|+(a -4)2的结果是 __ __.15.(河北模拟)32+8=a b ,则ab =__ __.16.对于任意不相等且和大于0的两个实数a ,b ,定义运算※为a ※b =a +b a -b ,如3※2=3+23-2=5,那么8※12=__ __.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本题满分12分)计算:(1)⎝ ⎛⎭⎪⎪⎫27-43÷3;(2)20.75+12-|3-2|;(3)-12÷2-13×12+1224;(4)(5+3)(5-3)-(3-1)2.18.(本题满分10分)计算: (1)239a +a 4-a1a ;(2)48a2÷2a2·⎝⎛⎭⎪⎪⎫-232a.19.(本题满分10分求代数式a+1-2a+a2的值,其中a=1 007,如图是小亮和小芳的解答过程:(1)________的解法是错误的;(2)求代数式a+2a2-6a+9的值,其中a=-2 022.20.(本题满分10分)已知11-1的整数部分是a,小数部分是b,试求(11+a)(b+1)的值.21.(本题满分10分)如图,有一张边长为6 3 cm 的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为 3 cm.求:(1)剪掉四个角后,制作长方体盒子的纸板的面积; (2)长方体盒子的体积.22.(本题满分10分)先化简,再求值.⎝⎛⎭⎪⎪⎫6x y x +3y xy 3-⎝ ⎛⎭⎪⎪⎫4yx y +36xy ,其中x =32,y =3.23.(本题满分12分)已知x =3+2,y =3-2,求: (1)x 2-y 2的值; (2)x y +yx 的值.24.(本题满分12分)据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t =h5(不考虑风速的影响).(1)求从40 m 高空抛物到落地时间;(2)小明说从80 m 高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由;(3)已知高空坠落物体动能=10×物体质量×高度(单位:J),质量为0.05 kg 的鸡蛋经过6 s 后落在地上,这个鸡蛋产生的动能是多少?25.(本题满分12分)(1)有理化因式:两个含有根号的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:2的有理化因式是2;1-x2+2的有理化因式是1+x2+2.(2)分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘分母的有理化因式,达到化去分母中根号的目的.如:11+2=1×(2-1)(2+1)(2-1)=2-1,13+2=1×(3-2)(3+2)(3-2)=3- 2. 【知识理解】(1)填空:2x的有理化因式是________;(2)直接写出下列各式分母有理化的结果:①17+6=________;②132+17=________.【启发运用】(3)计算:11+2+13+2+12+3+…+1n+1+n.参考答案一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.下列各式一定是二次根式的是( B)A.xB. 2C.-4D.352.下列二次根式中,是最简二次根式的是( B)A.0.1B. 3C.12 D.x33.当x=0时,二次根式4+2x的值等于( B) A.4 B.2 C. 2 D.04.下列各式中不正确的是( A)A.(x-2)2=-2 B.(2)2=2C.-(-2)2=-2 D.±(-2)2=±25. 计算18×12的结果是( D ) A .6 B .6 2 C .6 3 D .6 66. 代数式x +1x 在实数范围内有意义时,x 的取值范围为( C ) A .x >-1 B .x ≥-1 C .x ≥-1且x ≠0 D .x ≠07. 如果12·x 是一个正整数,那么x 可取的最小正整数值为( C ) A .2 B .4 C .3 D .128. 2,5,m 是某三角形三边的长,则(m -3)2+(m -7)2等于( D )A .2m -10B .10-2mC .10D .49. 设x ,y 为实数,且y =4+5-x +x -5,则|y -x|的值是( A ) A .1 B .9 C .4 D .510. 化简二次根式1x -x 3的正确结果是( D ) A.-x B.x C .-x D .--x11. 如图,从一个大正方形中裁去面积为16 cm 2和24 cm 2的两个小正方形,则余下的面积为( A )A .16 6 cm2B .40 cm 2C .8 6 cm2D .(26+4)cm 212. 设a 1=1+112+122,a 2=1+122+132,a 3=1+132+142,…,a n =1+1n 2+1(n +1)2,其中n 为正整数,则a 1+a 2+a 3+…+a 2 021的值是( D )A .2 0202 0192 020B .2 0202 0202 021C .2 0212 0202 021D .2 0212 0212 02213. 若最简二次根式3a -1与2a +3可以合并,则a 的值为__4__.14.实数a 在数轴上的位置如图所示,则化简|a -2|+(a -4)2的结果是 __2__.15. 32+8=a b ,则ab =__10__.16.对于任意不相等且和大于0的两个实数a ,b ,定义运算※为a ※b =a +b a -b ,如3※2=3+23-2=5,那么8※12=__-2_. 三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本题满分12分)计算:(1)⎝ ⎛⎭⎪⎪⎫27-43÷3;解:原式=⎝ ⎛⎭⎪⎫33-233÷3=73.(2)20.75+12-|3-2|;解:原式=3+23-(2-3)=43-2.(3)-12÷2-13×12+1224;解:原式=-6-2+6=-2.(4)(5+3)(5-3)-(3-1)2.解:原式=5-9-(3-23+1)=-8+2 3.18.(本题满分10分)计算: (1)239a +a 4-a1a ;解:原式=2a +12a - a =32 a. (2)48a 2÷2a 2·⎝ ⎛⎭⎪⎪⎫-232a .解:原式=⎝ ⎛⎭⎪⎫-4× 12× 23·8a 2·2a ·2a=-1623.19.(本题满分10分) 求代数式a +1-2a +a 2的值,其中a =1 007,如图是小亮和小芳的解答过程: (1)________的解法是错误的;(2)求代数式a +2a 2-6a +9的值,其中a =-2 022.解:(1)小亮.(2)∵a=-2 022,∴a+2a2-6a+9=a+2(a-3)2=a+2|a-3|=a+2(3-a)=-a+6,=2 022+6=2 028.20.(本题满分10分)已知11-1的整数部分是a,小数部分是b,试求(11+a)(b+1)的值.解:∵9<11<16,∴3<11<4,∴2<11-1<3,∴a=2,∴b=11-1-2=11-3,∴(11+2)(11-3+1)=(11+2)(11-2)=11-4=7.21.(本题满分10分) 如图,有一张边长为6 3 cm的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为 3 cm.求:(1)剪掉四个角后,制作长方体盒子的纸板的面积;(2)长方体盒子的体积.解:(1)制作长方体盒子的纸板的面积为(63)2-4×(3)2=108-12=96(cm2).(2)长方体盒子的体积为(63-23)(63-23)×3=43×43×3=483(cm 3).22.(本题满分10分)先化简,再求值.⎝⎛⎭⎪⎪⎫6x y x +3y xy 3-⎝ ⎛⎭⎪⎪⎫4yx y +36xy ,其中x =32,y =3.解:原式=6xy +3xy -4xy -6xy =-xy ,当x =32,y =3时,原式=-32×3=-322.23.(本题满分12分) 已知x =3+2,y =3-2,求: (1)x 2-y 2的值; (2)x y +yx 的值.解:(1)∵x =3+2,y =3-2,∴x +y =(3+2)+(3-2)=23,x -y =(3+2)-(3-2)=22,∴x 2-y 2=(x +y)(x -y)=23×22=4 6. (2)xy =(3+2)(3-2)=1,则x y +y x =x 2+y 2xy =(x +y )2-2xy xy =(23)2-2×11=10. 24.(本题满分12分) 据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t =h5(不考虑风速的影响).(1)求从40 m高空抛物到落地时间;(2)小明说从80 m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由;(3)已知高空坠落物体动能=10×物体质量×高度(单位:J),质量为0.05 kg的鸡蛋经过6 s后落在地上,这个鸡蛋产生的动能是多少?解:(1)由题意知h=40 m,t=h5=405=8=22(s).(2)不正确,理由:当h2=80 m时,t2=805=16=4(s),∵4≠2×22,∴不正确.(3)当t=6 s时,6=h5,h=180 m,鸡蛋产生的动能=10×0.05×180=90(J).25.(本题满分12分)(1)有理化因式:两个含有根号的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:2的有理化因式是2;1-x2+2的有理化因式是1+x2+2.(2)分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘分母的有理化因式,达到化去分母中根号的目的.如:11+2=1×(2-1)(2+1)(2-1)=2-1,13+2=1×(3-2)(3+2)(3-2)=3- 2. 【知识理解】(1)填空:2x的有理化因式是________;(2)直接写出下列各式分母有理化的结果:①17+6=________;②132+17=________.【启发运用】(3)计算:11+2+13+2+12+3+…+1n+1+n.解:(1)∵2x×x=2x,∴2x的有理化因式是x.故答案为x.(2)①原式=7-6(7+6)(7-6)=7- 6.②原式=32-17(32+17)(32-17)=32-17. 故答案为①7-6;②32-17.(3)原式=2-1(1+2)(2-1)+3-2(3+2)(3-2)+2-3(2+3)(2-3)+…+n+1-n(n+1+n)(n+1-n),=2-1+3-2+2-3+…+n+1-n,=n+1-1.。

人教版二次根式单元达标综合模拟测评检测试卷

人教版二次根式单元达标综合模拟测评检测试卷

一、选择题1.下列计算正确的是( )A 3=±B 2=C .2=D 2=2.下列二次根式中是最简二次根式的为( )A B C D3.a 的值可能是( )A .2-B .2C .32D .84.下列计算正确的是( )A 2=±B 3=-C .(25=D .(23=-5.下列计算结果正确的是( )A B .3=C =D=6.下列二次根式是最简二次根式的是( )A B C D7.下列各式中,正确的是( )A B .C =D = - 48.m 的值为( )A .7B .11C .2D .19.x ≥3是下列哪个二次根式有意义的条件( )A B C D10.下列运算一定正确的是( )A a =B =C .222()a b a b ⋅=⋅D ()0n a m=≥ 二、填空题11.2==________.12.设a ﹣b=2b ﹣c=2a 2+b 2+c 2﹣ab ﹣ac ﹣bc=_____.13.已知a =﹣73+,则代数式a 3+5a 2﹣4a ﹣6的值为_____. 14.已知实数a 、b 、c 在数轴上的位置如图所示,化简2a ﹣|a ﹣c |+2()c b -﹣|﹣b |=_______.15.若2x ﹣3x 2﹣x=_____. 16.(623÷=________________ . 17.11122323-=11113-23438⎛⎫= ⎪⎝⎭11114-345415⎛⎫= ⎪⎝⎭据上述各等式反映的规律,请写出第5个等式:___________________________.18.4102541025-+++=_______.19.已知23x =243x x --的值为_______.20.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b c p ++=,那么三角形的面积()()()S p p a p b p c =---ABC 中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若4a =,5b =,7c =,则ABC 面积是_______. 三、解答题 21.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a a a =,)21211=a a 2121互为有理化因式.(1)231的有理化因式是 ;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:3233333==⨯, ()()25353521538215415535353++++====--+2323-+进行分母有理化.(3)利用所需知识判断:若a =,2b =a b ,的关系是 . (4)直接写结果:)1= . 【答案】(1)1;(2)7-;(3)互为相反数;(4)2019【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(2,化简即可;(3)将a = (4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()1111=,∴1的有理化因式是1; (22243743--==-- (3)∵2a ===,2b =-, ∴a 和b 互为相反数;(4))1++⨯=)11⨯ =)11 =20201-=2019,故原式的值为2019.【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.22.计算:(1(041--;(2⎛- ⎝【答案】(1;(2)【解析】试题分析:根据二次根式的性质及分母有理化,化简二次根式,然后合并同类二次根式即可解答.试题解析:(1(041--(2⎛- ⎝-0-=23.计算:(1)+(2(33+-【答案】(1)2) -10【分析】(1)原式二次根式的乘除法法则进行计算即可得到答案;(1)原式第一项运用二次根式的性质进行化简,第二项运用平方差公式进行化简即可.【详解】解:(1)+===(2(33+-=5+9-24=14-24=-10.【点睛】此题主要考查了二次根式的化简,熟练掌握二次根式的性质是解答此题的关键.24.已知x y ==求下列各式的值: (1)22x xy y -+; (2).y x x y+ 【答案】(1) 72;(2)8. 【分析】 计算出xy=12, (1)把x 2-xy+y 2变形为(x+y )2-3xy ,然后利用整体代入的方法计算;(2)把原式变形为2()2x y xy xy+-,然后利用整体代入的方法计算. 【详解】∵x =,y ==32∴xy=12, (1)22x xy y -+=(x+y )2-3xy,=2132-⨯=72; (2)y x x y +=2212()22812x y xy xy -⨯+-==.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.25.观察下列各式.====……根据上述规律回答下列问题.(1)接着完成第⑤个等式: _____;(2)请用含(1)n n ≥的式子写出你发现的规律;(3)证明(2)中的结论.【答案】(1=2(n =+3)见解析 【分析】(1)当n=5=(2(n =+ (3)直接根据二次根式的化简即可证明.【详解】解:(1=(2(n =+(3=(n ==+【点睛】此题主要考查探索数与式的规律,熟练发现规律是解题关键.26.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答.【详解】解:原式11=+=【点睛】本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.27.(1|5-+;(2)已知实数a 、b 、c 满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可;(2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可.【详解】解:(15-+5)=+5=+5=(2)由题意可知:5050b b -≥⎧⎨-≥⎩, 解得5b =由此可化简原式得,30a +=30a ∴+=,20c -=3a ∴=-,2c =22((534b a ∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.28.已知长方形的长a =b =. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.【答案】(1)2)长方形的周长大.【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可. 试题解析:(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝∴长方形的周长为 .(2)11 4.23=⨯⨯=正方形的面积也为4. 2.=⨯=周长为:428.8.>∴长方形的周长大于正方形的周长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据算术平方根、立方根、二次根式的乘法逐项判断即可得.【详解】A3=,此项错误;B2=-,此项错误;=≠C、27D2==,此项正确;故选:D.【点睛】本题考查了算术平方根、立方根、二次根式的乘法,熟练掌握算术平方根与立方根是解题关键.2.B解析:B【分析】利用最简二次根式定义判断即可.【详解】解:A=不是最简二次根式,本选项错误;BC=不是最简二次根式,本选项错误;=D2故选:B.【点睛】本题考查了最简二次根式,熟练掌握最简二次根式定义是解题的关键.3.B解析:B【分析】直接利用最简二次根式的定义分析得出答案.【详解】∴a≥0,且a故选项中-2,32,8都不合题意,∴a的值可能是2.故选:B.【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.4.C解析:C【分析】直接利用二次根式的性质分别求解,即可得出答案.【详解】解:A,故A选项错误;B,故B选项错误;C选项:2=5,故C选项正确;D选项:2=3,故D选项错误,故选:C.【点睛】此题主要考查了二次根式的性质,正确求解二次根式是解题的关键.5.C解析:C【分析】根据二次根式的加法、减法、乘法、分母有理化逐一进行计算判断即可.【详解】A不能合并,故A选项错误;B.-=B选项错误;C=D5==,故D选项错误,故选C.【点睛】本题考查了二次根式的运算,分母有理化,熟练掌握各运算法则是解题的关键.6.A解析:A【分析】根据最简二次根式的定义即可得.【详解】A是最简二次根式,此项符合题意=B5x<C、当0D=不是最简二次根式,此项不符题意故选:A.【点睛】本题考查了最简二次根式的定义,熟记定义是解题关键.7.C解析:C【分析】根据算术平方根与平方根的定义、二次根式的加法与乘除法逐项判断即可.【详解】A4=,此项错误B、4=±,此项错误C==,此项正确D==故选:C.【点睛】本题考查了算术平方根与平方根的定义、二次根式的加法与乘除法,掌握二次根式的运算法则是解题关键.8.C解析:C【分析】几个二次根式化为最简二次根式后,如果被开方数相同,则这几个二次根式即为同类二次根式.【详解】解=m=7时==,故A错误;当m=11时==B错误;当m=1时=故D错误;当m=2时=故C正确;故选择C.【点睛】本题考查了同类二次根式的定义.9.D解析:D【分析】根据二次根式有意义的条件逐项求解即可得答案.【详解】A、x+3≥0,解得:x≥-3,故此选项错误;B、x-3>0,解得:x>3,故此选项错误;C、x+3>0,解得:x>-3,故此选项错误;D、x-3≥0,解得:x≥3,故此选项正确,故选D.【点睛】本题考查了二次根式和分式有意义的条件,二次根式的被开方数是非负数.分式的分母不能等于0.10.C解析:C【分析】直接利用二次根式的性质与化简以及积的乘方运算法则分别计算即可得出答案.【详解】A|a|,故此选项错误;B.,则a,b均为非负数,故此选项错误;C.a2•b2=(a•b)2,正确;D m n a(a≥0),故此选项错误.故选C.【点睛】本题主要考查了二次根式的性质与化简以及积的乘方运算,正确掌握相关运算法则是解题的关键.二、填空题11.【解析】【分析】用换元法代替两个带根号的式子,得出m 、n 的关系式,解方程组求m 、n 的值即可.【详解】设m =,n =,那么m −n =2①,m2+n2=()2+()2=34②.由①得,m =2解析:13【解析】【分析】用换元法代替两个带根号的式子,得出m 、n 的关系式,解方程组求m 、n 的值即可.【详解】设m n那么m−n =2①,m 2+n 2=2+2=34②.由①得,m =2+n ③,将③代入②得:n 2+2n−15=0,解得:n =−5(舍去)或n =3,因此可得出,m =5,n =3(m≥0,n≥0).n +2m =13.【点睛】此题考查二次根式的减法,本题通过观察,根号里面未知数的系数为相反数,可通过换元法求解.12.15【解析】根据题意,由a ﹣b=2+,b ﹣c=2﹣,两式相加得,得到a ﹣c=4,然后根据配方法,把式子各项变为:a2+b2+c2﹣ab ﹣bc ﹣ac=====15.故答案为:15.解析:15【解析】根据题意,由a ﹣b ﹣c=2,两式相加得,得到a ﹣c=4,然后根据配方法,把式子各项变为:a 2+b 2+c 2﹣ab ﹣bc ﹣ac=2222222222a b c ab ac bc ++﹣﹣﹣=2222222222a ab b b bc c a ac c +++++﹣﹣﹣=222()()()2a b b c a c -+-+-=222(2(242++=15.故答案为:15.13.-4【分析】先将a 进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】解:当a =-=-=-3时,原式=a3+6a2+9a -(a2+6a+9)-7a+3=a(a+3)2-(解析:-4【分析】先将a 进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】解:当a-3时, 原式=a 3+6a 2+9a -(a 2+6a +9)-7a +3=a (a +3)2-(a +3)2-7a +3=7a -7-7a +3=-4.故答案为:-4.【点睛】本题综合运用了二次根式的化简,提公因式及完全平方公式法分解因式,熟练掌握分母有理化的方法及因式分解的方法是解题的关键.14.-2a【分析】根据数轴判断出a 、b 、c 的正负情况以及大小情况,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【详解】由图可知,∴∴﹣|a ﹣c|+﹣|﹣b|=解析:-2a【分析】根据数轴判断出a 、b 、c 的正负情况以及大小情况,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【详解】由图可知,0c a b <<<∴00.a c c b >,<|a ﹣c ﹣|﹣b |=||()||a ac c b b =()aa cbc b =aa cbc b =-2a .【点睛】本题考查二次根式的性质与化简和化简绝对值.在解决本题时需注意①对于任意实数a ,都有||a =;②在化简绝对值时,绝对值内如果是一个多项式,要给化简后的结果带上括号.15.【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x ﹣1= ,∴(2x ﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x )=2∴x2﹣x=故答案为【点 解析:12【解析】【分析】 根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x ﹣,∴(2x ﹣1)2=3∴4x 2﹣4x+1=3∴4(x 2﹣x )=2∴x 2﹣x=12故答案为12【点睛】 本题考查二次根式的运算,解题的关键是熟练运用完全平方公式,本题属于基础题型.16.【解析】=,故答案为.解析:【解析】÷=()()2232===--, 故答案为17.【解析】上述各式反映的规律是(n ⩾1的整数),得到第5个等式为: (n ⩾1的整数).故答案是: (n ⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n ⩾1的整数), 得到第5==n ⩾1的整数). =n ⩾1的整数). 点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n 个等式.18.【分析】设,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】解:设,由算术平方根的非负性可得t≥0,则.故答案为:.【点睛】此题考查的是二【分析】t=,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t=,由算术平方根的非负性可得t≥0,则244t=+=+8=+8=+81)=+62=1)∴=.1t.【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.19.-4【分析】把代入计算即可求解.【详解】解:当时,=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题解析:-4【分析】把2x =243x x --计算即可求解.【详解】解:当2x =243x x --((22423=---4383=--+=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题关键.20.【分析】根据a ,b ,c 的值求得p =,然后将其代入三角形的面积S =求值即可.【详解】解:由a =4,b =5,c =7,得p ===8.所以三角形的面积S ===4.故答案为:4.【点睛】本题主解析:【分析】根据a ,b ,c 的值求得p =2a b c ++,然后将其代入三角形的面积S =【详解】解:由a =4,b =5,c =7,得p =2a b c ++=4572++=8.所以三角形的面积S .故答案为:.【点睛】本题主要考查了二次根式的应用和数学常识,解题的关键是读懂题意,利用材料中提供的公式解答,难度不大.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

人教版八年级数学下册《第十六章二次根式》单元检测题(附带答案)

人教版八年级数学下册《第十六章二次根式》单元检测题(附带答案)

人教版八年级数学下册《第十六章二次根式》单元检测题(附带答案)总分150分时间120分钟一、选择题(本大题共10小题每小题3分共30分)1.下列的式子一定是二次根式的是()A.√−x−2B.√x C.√x2+2D.√x2−2思路引领:根据二次根式的被开方数是非负数对每个选项做判断即可.解:A、当x=0时﹣x﹣2<0 √−x−2无意义故本选项错误;B、当x=﹣1时√x无意义;故本选项错误;C、∵x2+2≥2 ∴√x2+2符合二次根式的定义;故本选项正确;D、当x=±1时x2﹣2=﹣1<0 √x2−2无意义;故本选项错误;故选:C.总结提升:本题考查了二次根式的定义.一般形如√a(a≥0)的代数式叫做二次根式.当a≥0时√a表示a的算术平方根.2.若√48n是正整数最小的正整数n是()A.6B.3C.48D.2思路引领:先将所给二次根式化为最简二次根式然后再判断n的最小正整数值.解:√48n=4√3n由于√48n是正整数所以n的最小正整数值是3故选:B.总结提升:此题考查二次根式的定义解答此题的关键是能够正确的对二次根式进行化简.3.如果√x(x−6)=√x⋅√x−6那么()A.x≥0B.x≥6C.0≤x≤6D.x为一切实数思路引领:根据二次根式的性质√ab=√a×√b(a≥0 b≥0)得出x≥0且x﹣6≥0 求出组成的不等式组的解集即可.解:∵√x(x−6)=√x⋅√x−6∴x≥0且x﹣6≥0∴x≥6故选:B.总结提升:本题考查了二次根式的乘除法的应用注意:要使√ab=√a×√b成立必须a≥0 b≥0.4.若式子√m+1|m−3|有意义 则实数m 的取值范围是( ) A .m ≥﹣1 B .m >﹣1 C .m >﹣1且m ≠3 D .m ≥﹣1且m ≠3思路引领:根据二次根式有意义的条件和分式有意义的条件列出不等式组 通过解不等式组即可求出答案.解:依题意得:{m +1≥0m −3≠0. 解得 m ≥﹣1且m ≠3.故选:D .总结提升:本题考查二次根式有意义的条件 分式有意义的条件 解题的关键是熟练运用二次根式的条件 本题属于基础题型.5.若x ﹣y =√2−1 xy =√2 则代数式(x ﹣1)(y +1)的值等于( )A .2√2+2B .2√2−2C .2√2D .2思路引领:将所求代数式展开 然后将(x ﹣y )和xy 的值整体代入求解.解:原式=(x ﹣1)(y +1)=xy +x ﹣y ﹣1=√2+√2−1﹣1=2√2−2;故选:B .总结提升:此题主要考查了整体代入在代数求值中的应用.6.实数a 、b 在数轴上的位置如图所示 且|a |>|b | 则化简√a 2−|a +b|的结果为( )A .2a +bB .﹣2a +bC .bD .2a ﹣b思路引领:现根据数轴可知a <0 b >0 而|a |>|b | 那么可知a +b <0 再结合二次根式的性质、绝对值的计算进行化简计算即可.解:根据数轴可知 a <0 b >0:|a |>|b |则a +b <0原式=﹣a ﹣[﹣(a +b )]=﹣a +a +b =b .故选:C .总结提升:本题考查了二次根式的化简和性质、实数与数轴 解题的关键是注意开方结果是非负数、以及绝对值结果的非负性.7.下列各数中与2+√3的积是有理数的是( )A .2+√3B .2C .√3D .2−√3思路引领:利用平方差公式可知与2+√3的积是有理数的为2−√3.解:(2+√3)(2−√3)=4﹣3=1;故选:D.总结提升:本题考查二次根式的混合运算;熟练掌握运算规律是解题的关键.8.如图正方形ABCD被分成两个小正方形和两个长方形如果两小正方形的面积分别是2和5 那么两个长方形的面积和为()A.√7B.2√10C.7D.√10思路引领:先根据两个小正方形的面积求出两个小正方形的边长从而可求大正方形的边长可得大正方形的面积再用大正方形的面积减去两个小正方形的面积即可得出两个长方形的面积和.解:∵两小正方形的面积分别是2和5∴两小正方形的边长分别是√2和√5∴大正方形的边长为(√2+√5)则大正方形的面积为(√2+√5)2=2+2√10+5=7+2√10∴两个长方形的面积和为7+2√10−2﹣5=2√10.故选:B.总结提升:本题考查完全平方公式以及二次根式解题时注意运用数形结合的思想.9.下列各式是最简二次根式的是()A.√13B.√12C.√a3(a≥0)D.√5 3思路引领:根据最简二次根式的定义判断即可.解:A、√13是最简二次根式故A符合题意;B、√12=2√3不是最简二次根式故B不符合题意;C、√a3=a√a(a≥0)不是最简二次根式故C不符合题意;D、√53=√153不是最简二次根式故D不符合题意;故选:A.总结提升:本题考查了最简二次根式熟练掌握最简二次根式的定义是解题的关键.10.若等腰三角形的两边长分别为√32和√50则这个三角形的周长为()A.9√2B.8√2或10√2C.13√2或14√2D.14√2思路引领:分腰长为√32和√50两种情况可求得三角形的三边再利用三角形的三边关系进行验证可求得其周长.解:当腰长为√32时则三角形的三边长分别为√32√32√50满足三角形的三边关系此时周长为13√2;当腰长为√50时则三角形的三边长分别为√32√50√50满足三角形的三边关系此时周长为14√2.综上可知三角形的周长为13√2或14√2.故选:C.总结提升:本题主要考查等腰三角形的性质掌握等腰三角形的两腰相等是解题的关键注意利用三角形的三边关系进行验证.二、填空题(本大题共8小题第11~12题每题3分第13~18题每题4分共30分.)11.比较大小:3√2>√17.(选填“>”、“=”或“<”)思路引领:求出3√2=√18再比较即可.解:3√2=√18>√17故答案为:>.总结提升:本题考查了实数的大小比较能选择适当的方法比较两个数的大小是解此题的关键.12.化简√(π−3)2=.思路引领:根据二次根式的性质解答.解:∵π>3∴π﹣3>0;∴√(π−3)2=π﹣3.总结提升:解答此题要弄清性质:√a2=|a| 去绝对值的法则.13.按如图所示的程序计算若开始输入的n值为√2则最后输出的结果是.思路引领:将n=√2代入n(n+1)比较>15还是≤15 若>15输出结果;若≤15 再输入直到结果大于15是输出结果即可.解:将n =√2代入n (n +1)得√2(√2+1)=2+√2<15∴将n =2+√2代入n (n +1)得(2+√2)(3+√2)=6+5√2+2=8+5√2>15故答案为8+5√2.总结提升:本题考查了实数的运算 找出运算的公式是解题的关键.14.已知a 、b 满足√(2−a)2=a +3,且√a −b +1=a ﹣b +1 则ab 的值为 .思路引领:直接利用二次根式性质进而分析得出a b 的值 进而得出答案.解:∵√(2−a)2=a +3若a ≥2 则a ﹣2=a +3 不成立故a <2∴2﹣a =a +3∴a =−12∵√a −b +1=a ﹣b +1∴a ﹣b +1=1或0∴b =−12或12 ∴ab =±14. 故答案为:±14. 总结提升:此题主要考查了二次根式的性质与化简 正确得出a 的值是解题关键.15.若x =√5−3 则√x 2+6x +5的值为 .思路引领:先将被开方数分解因式 再把x 代入二次根式 运用平方差公式进行计算.解:∵x =√5−3∴√x 2+6x +5=√(x +1)(x +5)=√(√5−2)(√5+2)=√1=1.总结提升:主要考查了二次根式的化简和因式分解以及平方差公式的运用.注意最简二次根式的条件是:①被开方数的因数是整数 因式是整式;②被开方数中不含能开得尽方的因数因式.上述两个条件同时具备的二次根式叫最简二次根式.16.若√11−x +√6−x =7 则√11−x −√6−x 的值是 .思路引领:先变形得到√6−x =7−√11−x 两边平方后得到√11−x =277 则√6−x =227 然后计算√11−x −√6−x .解:∵√11−x +√6−x =7∴√6−x =7−√11−x两边平方得6﹣x =49﹣14√11−x +11﹣x∴√11−x =277∴√6−x =7−277=227∴√11−x −√6−x =277−227=57.故答案为:57. 总结提升:本题考查了二次根式的化简求值 利用整体的数学思想解决问题.17.对于实数p q 我们用符号min {p q }表示p q 两数中较小的数.例如:min {1 2}=1.因此 min {−√2,−√3}= −√3 ;若min {(x ﹣1)2 x 2}=1 则x = ﹣1或2 .思路引领:通过比较−√2与−√3的大小填空;通过先比较(x ﹣1)2与x 2的大小 然后根据新定义运算法则得到方程并解答.解:∵−√3<−√2∴min {−√2 −√3}=−√3;∵min {(x ﹣1)2 x 2}=1∵(x ﹣1)2﹣x 2=x 2﹣2x +1﹣x 2=1﹣2x∴当x <12时 则x 2=1∴x =﹣1或1(舍)当x >12时 则(x ﹣1)2=1解得:x =2或0(舍)综上所述:x 的值为﹣1或2.故答案为:−√3;﹣1或2.总结提升:此题主要考查了实数的比较大小新定义关键是正确理解题意和分情况讨论.18.小明做数学题时发现√1−12=√12;√2−25=2√25;√3−310=3√310;√4−417=4√417;…;按此规律若√a−8b=a√8b(a b为正整数)则a+b=73.思路引领:找出一系列等式的规律为√n−nn2+1=n√nn2+1(n≥1的正整数)令n=8求出a与b的值即可确定出a+b的值.解:根据题中的规律得:a=8 b=82+1=65则a+b=8+65=73.故答案为:73.总结提升:此题考查了二次根式的性质及化简找出题中的规律是解本题的关键.三、解答题(本大题共8小题共90分请在答题卡指定区域内作答解答时应写出文字说明、证明过程或演算步骤)19.(20分)计算:(1)2√8+13√18−34√32;(2)(−12)﹣1−√12+(1−√2)0﹣|√3−2|;(3)√48÷√3−√12×√12+√24;(4)(3+√5)(3−√5)﹣(√3−1)2.思路引领:(1)先把二次根式化为最简二次根式然后合并即可;(2)利用负整数指数幂、零指数幂和绝对值的意义计算;(3)利用二次根式的乘除法则运算;(4)利用平方差公式和完全平方公式计算.解:(1)原式=4√2+13×3√2−34×4√2=4√2+√2−3√2=2√2;(2)原式=﹣2﹣2√3+1﹣(2−√3)=﹣2﹣2√3+1﹣2+√3=﹣3−√3;(3)原式=√16−√6+2√6=4−√6+2√6=4+√6;(4)原式=32﹣(√5)2﹣(3﹣2√3+1)=9﹣5﹣(4﹣2√3)=4﹣4+2√3=2√3.总结提升:本题考查了二次根式的混合运算:先把二次根式化为最简二次根式然后合并同类二次根式即可.在二次根式的混合运算中如能结合题目特点灵活运用二次根式的性质选择恰当的解题途径往往能事半功倍.20.(10分)(1)已知y=√2x−1−√1−2x+8x求√4x+5y−6的平方根;(2)当﹣4<x<1时化简√x2+8x+16−2√x2−2x+1.思路引领:(1)根据二次根式有意义的条件求出x的值进而得到y的值代入代数式求出代数式的值最后求平方根即可;(2)根据完全平方公式对原式进行变形根据二次根式的性质化简即可.解:(1)∵2x﹣1≥0 1﹣2x≥0∴2x﹣1=0解得x=1 2∴y=4∴原式=√4×12+5×4−6=4∴4的平方根是±2;故原式的平方根是±2;(2)∵﹣4<x<1∴原式=√(x+4)2−2√(x−1)2=|x+4|﹣2|x﹣1|=x+4+2(x﹣1)=x+4+2x﹣2=3x+2.总结提升:本题考查了二次根式有意义的条件平方根掌握二次根式有意义的条件:被开方数是非负数是解题的关键.21.(10分)已知x=1√5−2y=1√5+2.(1)求x2+xy+y2.(2)若x的小数部分为a y的整数部分为b求ax+by的平方根.思路引领:(1)先分母有理化求出x、y的值再求出x+y和xy的值最后根据完全平方公式进行变形代入求出即可;(2)先求出x、y的范围再求出a、b的值最后代入求出即可.解:(1)x=√5−2=√5+2)(√5−2)×(√5+2)=√5+2 y=√5+2=√5−2x+y=(√5+2)+(√5−2)=2√5xy=(√5+2)×(√5−2)=5﹣4=1x2+xy+y2=(x+y)2﹣xy=(2√5)2﹣1=19;(2)∵2<√5<3∴4<√5+2<5 0<√5−2<1∴a=√5+2﹣4=√5−2 b=0∴ax+by=(√5−2)(√5+2)+(√5−2)×0=5﹣4=1∴ax+by的平方根是±√1=±1.总结提升:本题考查了完全平方公式、分母有理化、估算无理数的大小、平方根等知识点能求出x+y和xy的值是解(1)的关键能估算出x、y的范围是解(2)的关键.22.(12分)观察、思考、解答:(√2−1)2=(√2)2﹣2×1×√2+12=2﹣2√2+1=3﹣2√2反之3﹣2√2=2﹣2√2+1=(√2−1)2∴3﹣2√2=(√2−1)2∴√3−2√2=√2−1(1)仿上例化简:√6−2√5;(2)若√a+2√b=√m+√n则m、n与a、b的关系是什么?并说明理由;(3)已知x=√4−√12求(1x−2+1x+2)•x2−42(x−1)的值(结果保留根号)思路引领:(1)根据题目中的例题可以解答本题;(2)根据题目中的例题可以将√a+2√b=√m+√n变形从而可以得到m、n、a、b的关系;(3)先化简x然后再化简所求的式子再将x的值代入即可解答本题.解:(1)√6−2√5=√5−2√5+1=√(√5−1)2=√5−1;(2)a=m+n b=mn理由:∵√a+2√b=√m+√n∴a+2√b=m+2√mn+n∴a=m+n b=mn;(3)∵x=√4−√12=√3−2√3+1=√(√3−1)2=√3−1∴(1x−2+1x+2)•x2−42(x−1)=x+2+x−2 (x−2)(x+2)⋅(x−2)(x+2)2(x−1)=2x(x−2)(x+2)⋅(x−2)(x+2)2(x−1)=x x−1=√3−1√3−1−1=√3−1√3−2=(√3−1)(√3+2)(√3−2)(√3+2)=﹣1−√3.总结提升:本题考查二次根式的化简求值、分式的混合运算解答本题的关键是明确题意利用题目中的例题解答问题.23.(8分)小莉在如图所示的矩形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片请你帮她求出图中空白部分的面积.思路引领:根据正方形的面积求出两个正方形的边长 从而求出AB 、BC 再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.解:∵两张正方形纸片的面积分别为16cm 2和12cm 2∴它们的边长分别为√16=4cm √12=2√3cm∴AB =4cm BC =(2√3+4)cm∴空白部分的面积=(2√3+4)×4﹣12﹣16=8√3+16﹣12﹣16=(﹣12+8√3)cm 2.总结提升:本题考查了二次根式的应用 解题的关键在于根据正方形的面积求出两个正方形的边长.24.(10分)一个三角形的三边长分别为5√x 5 12√20x 54x √45x. (1)求它的周长(要求结果化简);(2)请你给出一个适当的x 值 使它的周长为整数 并求出此时三角形周长的值.思路引领:(1)根据题目中的数据可以求得该三角形的周长;(2)根据(1)中的结果 选择一个符合题意的x 的值即可解答本题.解:(1)∵一个三角形的三边长分别为5√x 512√20x 54x √45x ∴这个三角形的周长是:5√x 5+12√20x +54x √45x=√5x +√5x +√5x 2=5√5x 2; (2)当x =20时 这个三角形的周长是:5√5x 2=5×√5×202=25. 总结提升:本题考查二次根式的性质与化简 解答本题的关键是明确二次根式的意义.25.(10分)阅读理解题:学习了二次根式后你会发现一些含有根号的式子可以写成另一个式子的平方如3+2√2=(1+√2)2我们来进行以下的探索:设a+b√2=(m+n√2)2(其中a b m n都是正整数)则有a+b√2=m2+2n2+2mn√2∴a=m+2n2b=2mn 这样就得出了把类似a+b√2的式子化为平方式的方法.请仿照上述方法探索并解决下列问题:(1)当a b m n都为正整数时若a﹣b√5=(m﹣n√5)2用含m n的式子分别表示a b得a=b =;(2)利用上述方法找一组正整数a b m n填空:﹣√5=(﹣√5)2(3)a﹣4√5=(m﹣n√5)2且a m n都为正整数求a的值.思路引领:(1)利用完全平方公式把(m﹣n√5)2展开即可得到用含m n的式子分别表示出a b;(2)利用(1)中的表达式令m=2 n=1 则可计算出对应的a和b的值;(3)利用(1)的结果得到2mn=4 则mn=2 再利用m n都为正整数得到m=2 n=1或m=1 n=2 然后计算对应的a的值即可.解:(1)∵a﹣b√5=(m﹣n√5)2∴a﹣b√5=m2﹣2√5mn+5n2∴a=m2+5n2b=2mn;(2)取m=2 n=1则a=4+5=9 b=4;(3)∵2mn=4∴mn=2而m n都为正整数∴m=2 n=1或m=1 n=2当m=2 n=1时a=9;当m=1 n=2时a=21.即a的值为9或21.故答案为m2+5n2 2mn;9 4 2 1.总结提升:本题考查了二次根式的混合运算:先把二次根式化为最简二次根式然后进行二次根式的乘除运算再合并即可.在二次根式的混合运算中如能结合题目特点灵活运用二次根式的性质选择恰当的解题途径往往能事半功倍.26.(10分)阅读下列解题过程:√2+1=√2−1)(√2+1)×(√2−1)=√2−1(√2)2−12=√2−1;√3+√2=√3−√2)(√3+√2)(√3−√2)=√3−√2(√3)2−(√2)2=√3−√2.请回答下列问题:(1)归纳:观察上面的解题过程请直接写出下列各式的结果.①√7+√6=√7−√6;②√n+√n−1=√n−√n−1;(2)应用:求√2+1+√3+√2+√4+√3+√5+√4+⋯+√10+√9的值;(3)拓广:√3−1−√5−√3+√7−√5−√9−√7=﹣1.思路引领:(1)①直接利用找出分母有理化因式进而化简求出答案;②直接利用找出分母有理化因式进而化简求出答案;(2)直接利用找出分母有理化因式进而化简求出答案;(3)直接利用找出分母有理化因式进而化简求出答案.解:(1)①√7+√6=√7−√6)(√7+√6)(√7−√6)=√7−√6;②√n+√n−1=√n−√n−1)(√n+√n−1)(√n−√n−1)=√n−√n−1;故答案为:√7−√6;√n−√n−1;(2)√2+1+√3+√2+√4+√3+√5+√4+⋯+√10+√9=√2−1+√3−√2+√4−√3+⋯+√10−√9 =√10−1;(3)√3−1−√5−√3+√7−√5−√9−√7=√3+1 (√3−1)(√3+1)√5+√3(√5−√3)(√5+√3)√7+√5(√7−√5)(√7+√5)√9+√7(√9−√7)(√9+√7)=√3+12−√5+√32+√7+√52−√9+√72=√3+1−√5−√3+√7+√5−√9−√72=﹣1.故答案为:﹣1.总结提升:此题主要考查了分母有理化正确找出分母有理化因式是解题关键.。

人教版八年级下册数学《二次根式》单元测试卷(含答案)

人教版八年级下册数学《二次根式》单元测试卷(含答案)

人教版八年级下册数学《二次根式》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.2得( ).A.2B.C. D.2.化简后,与2的被开方数相同的二次根式是( ).A .12B .18C .41 D .61 3.下列式子中,是二次根式的是( ).A ..x4.下列计算正确的是( )= =5.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11 C .44- D .446.下列各式中,一定是二次根式的是( ).A .23-B .2)3.0(-C .2-D .x7.设22a b c ====,则a ,b ,c 的大小关系是( )A.a b c >>B.a c b >>C.c b a >>D.b c a >>8.若x x +=-11 )A .1x -B .1x -C .1D .1-9.=( )A BC D .不同于以上三个答案10.计算:下列三个命题:①若α,β是互不相等的无理数,则αβαβ+-是无理数;②若α,β是互不相等的无理数,则αβαβ-+是无理数;③若α,β其中正确命题的个数是( )A . 0B .1C .2D .3二 、填空题(本大题共5小题,每小题3分,共15分) 11.485127-=______.12.的有理化因式是 ;y 的有理化因式是 .的有理化因式是 .14.是可以合并的二次根式,则____a =.15.已知254245222+-----=x x x x y ,则22y x += .三 、解答题(本大题共7小题,共55分)16.计算:(1) (2(3(417.先化简,再求值:((6)a a a a -+--,其中215+=a18.若最简二次根式a 2b a -的值19.已知x ,求32353x x x +-+的值.20.若a a ,b 的值.21.已知1018222=++a a a a,求a 的值.22.比较大小(1(2人教版八年级下册数学《二次根式》单元测试卷答案解析一 、选择题1.A ;因为230x -≥,23232x x ≥=-,所以210|21|21x x x ->=-=-221(23)2x x =---=.2.B .3.A4.A5.D6.B7.A ;1a ===,同理1122bc ==220>+,所以1110,c b a c b a >>><<.8.B9.C =====10.A ;①1)1)1)]123++-=+=是有理数;13==是有理数; 0=是有理数.二 、填空题11.-12.直接比较大小,无从入手,所以可以通过做差的方法比较大小.0=<,13.(1(2)y ; (3).14.4;依题意,得,3a-5=a+3 ,解得a=4 .15.6;因一个等式中含两个未知量,初看似乎条件不足,不妨从二次根式的定义入手. 由题可知:22222205420,262045x x x y x y x x⎧-≥⎪⎪-→-==→+=⎨-⎪≥⎪-⎩.三 、解答题16.(1)2;(2)(3)2;(4.17.原式223663a a a a =--+=-,把215+=a 代入得原式=16)32⨯-=.18.222a b a b a b +=⎧⎨+=+⎩,解得11a b =⎧⎨=⎩,∴原式211=-=-.19.由条件得2x ,即2x +=两边平方并整理得 2410x x +-=故原式322(4)(41)2x x x x x =+--+-+22(41)(41)22x x x x x =+--+-+=20.11a b =⎧⎨=⎩. 21.先化原方程中的二次根式为最简二次根式,然后按着解一般整式方程的步骤去解即可.10102a=22.(1====+65(2==,,2011+∴(1(2。

人教版初中数学八年级数学下册第一单元《二次根式》检测(答案解析)(1)

人教版初中数学八年级数学下册第一单元《二次根式》检测(答案解析)(1)

一、选择题1.下列是最简二次根式的是( )AB CD 2.已知2252a b ab +=,且a >b >0,则a b a b +-的值为( ) A .3 B .3± C .2 D .2±3.下列运算正确的是( ).A +=B .3=C =D 2=4.是同类二次根式的是( )A B C D5.a 的值不可以是( )A .12B .8C .18D .286.下列计算中,正确的是( )A +=B =C .2=12D =7.下列计算正确的是( )A .236a a a +=B .22(3)6a a -=C .-=D .()222x y x y -=-8.下列计算正确的是( )A 2=B 1=C .22=D =9.(a ﹣4)2=0 )A B . C D .10.已知三个数2,4如果再添加一个数,使这四个数成比例,则添加的数是( ).A .B .或2C .D .2或11.下列各式不是最简二次根式的是( )A .21a + B.21π+ C .24b D .0.1y 12.估计26的大小应( ) A .在2~3之间 B .在3~4之间 C .在4~5之间 D .在5~6之间二、填空题13.若式子11x x +-有意义,则x 的取值范围是______________. 14.已知最简根式125b a +-与31b -是同类二次根式,则a =________,b =________.15.实数a ,b 在数轴上的位置如图所示,化简:|a +1|﹣22(1)()b a b -+-=_____.16.已知2443y x x x =-++,当x 分别取1,2,3,,2020⋯时,所对应的y 值的总和是_________.1723-分母有理化后得__________. 18.33919.已知51x =,求229x x ++=______. 20.200520062323=________.三、解答题21.计算(121850(2)()()()2323331244272⎛⎫---- ⎪⎝⎭. 22.计算:(1483(2632⨯1 (3)(55﹣2)(4)2(323)23.(1)解不等式组3(2)42513x x x x --≥-⎧⎪-⎨<-⎪⎩,并写出该不等式组的整数解;(2)计算:24.先化简,再求值:(1+12x +)÷293x x --,其中x 2.25.计算:(1); (2)()()()2322x x x +-+-.26.计算:(1(2)+【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据最简二次根式的定义逐项分析即可.【详解】,是最简二次根式;=2,故不是最简二次根式,不符合题意;5=,故不是最简二次根式,不符合题意;D.=,故不是最简二次根式,不符合题意; 故选A.【点睛】本题考查了最简二次根式的识别,如果二次根式的被开方式中都不含分母,并且也都不含有能开的尽方的因式,像这样的二次根式叫做最简二次根式.2.A解析:A【分析】用完全平方公式,把两数和与差都转化为两数积的代数式,再代入原式计算便可.【详解】解:∵a 2+b 2=52ab , ∴a 2+b 2﹣2ab =12ab ,a 2+b 2+2ab =92ab , ∴(a ﹣b )2=12ab ,(a +b )2=92ab , ∵a >b >0, ∴a ﹣b >0,a +b >0,∴a ﹣ba +b =2 ∴3a b a b+=- 故选:A .【点睛】本题主要考查了完全平方公式的应用,求代数式的值,关键是运用完全平方公式,把两数和与差表示成这两数积的代数式.3.C解析:C【分析】二次根式的加减法法则,乘除法法则计算并依次判断.【详解】A ∴A 选项不符合题意;B 选项:原式=∴B 选项不符合题意;C 选项:原式==∴C 选项符合题意;D =∴D 选项不符合题意. 故选:C .【点睛】此题考查二次根式的运算,掌握二次根式的加减法法则,乘除法法则是解题的关键. 4.D解析:D【分析】将各个二次根式化成最简二次根式后,选被开方数为2的根式即可.【详解】A 不符合题意;B 不符合题意;,因此选项C 不符合题意;是同类二次根式,因此选项D 符合题意;故选:D .【点睛】本题考查同类二次根式的意义,将二次根式化成最简二次根式后,被开方数相同的二次根式是同类二次根式.5.D解析:D【分析】是否为同类二次根式即可.【详解】是同类二次根式,当a=122=是同类二次根式,故该项不符合题意;当a=8=是同类二次根式,故该项不符合题意;当a=18=是同类二次根式,故该项不符合题意;当a=28=不是同类二次根式,故该项符合题意;故选:D .【点睛】此题考查最简二次根式的定义,同类二次根式的定义,化简二次根式,正确化简二次根式是解题的关键.6.C解析:C【分析】根据二次根式加法法则、乘法法则、除法法则依次计算得到结果,即可作出判断.【详解】A 、原式不能合并,不符合题意;B 、原式==C 、原式12=,符合题意;D、原式.故选:C.【点评】 此题考查了二次根式的乘除法,以及二次根式的加减法,熟练掌握运算法则是解本题的关键.7.C解析:C【分析】根据合并同类项、幂的乘方与积的乘方、二次根式的加减及完全平方公式逐个进行判断即可.【详解】解:A.2a+3a=5a,因此选项A不符合题意;B.(-3a)2=9a2,因此选项B不符合题意;C.(3=-=C符合题意;D.(x-y)2=x2-2xy+y2,因此选项D不符合题意;故选:C.【点睛】本题考查合并同类项、幂的乘方与积的乘方、二次根式的加减及完全平方公式,依据法则或运算性质逐个进行计算才能得出正确答案.8.D解析:D【分析】根据二次根式加法以及二次根式的性质逐项排查即可.【详解】解:A A选项错误;B77=+,故B选项错误;C、2=22=1,故C选项错误;D=D选项正确.故答案为D.【点睛】本题主要考查了二次根式加法以及二次根式的性质,掌握二次根式的加法运算法则是解答本题的关键.9.A解析:A【分析】先根据算术平方根的非负性、偶次方的非负性求出a、b的值,再代入化简二次根式即可得.【详解】由算术平方根的非负性、偶次方的非负性得:4030ab-=⎧⎨-=⎩,解得43ab=⎧⎨=⎩,===,故选:A.【点睛】本题考查了算术平方根的非负性、偶次方的非负性、化简二次根式,熟练掌握算术平方根和偶次方的非负性是解题关键.10.D解析:D【分析】运用比例的基本性质,将所添的数当作比例式a:b=c:d中的任何一项,进行计算即可,【详解】设添加的这个数是x当24:x=时,2x=x=当2:4x=时,2x=x=x=,当2:4x=时,4x=2当2:4=,解得x==8x故选D.【点睛】本题考查比例的基本性质,注意写比例式的时候,一定要按照顺序写,顺序不同,结果不同.11.D解析:D【分析】满足下列条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式,据此判断即可.【详解】A是最简二次根式,故本选项错误;B是最简二次根式,故本选项错误;C.是最简二次根式,故本选项错误;4D=,不是最简二次根式.故选:D.【点睛】本题考查了最简二次根式的定义,掌握最简二次根式条件,是解题的关键.12.C解析:C【分析】先根据二次根式的乘法法则可知,再由16<24<25,利用算术平方根的性质可得4<5,可得结果.【详解】解:∵16<24<25,∴45,即4<5,故选:C .【点睛】本题主要考查了估算无理数的大小,熟练掌握算术平方根的性质及二次根式的乘法法则是解答此题的关键.二、填空题13.且【分析】根据分式有意义可得根据二次根式有意义的条件可得再解即可【详解】由题意得:且解得:且故答案为:且【点睛】本题主要考查了分式有意义和二次根式有意义的条件关键是掌握分式有意义的条件是分母不等于零 解析:0x ≥且1x ≠【分析】根据分式有意义可得10x -≠,根据二次根式有意义的条件可得0x ≥,再解即可.【详解】由题意得:10x -≠,且0x ≥,解得:0x ≥且1x ≠,故答案为:0x ≥且1x ≠.【点睛】本题主要考查了分式有意义和二次根式有意义的条件,关键是掌握分式有意义的条件是分母不等于零,二次根式中的被开方数是非负数.14.【分析】根据同类二次根式的定义得到解方程组即可【详解】由题得:解得:故答案为:1【点睛】此题考查最简二次根式同类二次根式的定义解二元一次方程组正确理解最简二次根式同类二次根式的定义列出方程组是解题的 解析:72【分析】根据同类二次根式的定义得到122531b a b +=⎧⎨-=-⎩,解方程组即可. 【详解】由题得:122531b a b +=⎧⎨-=-⎩,解得:721a b ⎧=⎪⎨⎪=⎩. 故答案为:72,1. 【点睛】此题考查最简二次根式、同类二次根式的定义,解二元一次方程组,正确理解最简二次根式、同类二次根式的定义列出方程组是解题的关键. 15.﹣2a 【分析】依据数轴即可得到a+1<0b ﹣1>0a ﹣b <0即可化简|a+1|﹣【详解】解:由题可得﹣2<a <﹣11<b <2∴a+1<0b ﹣1>0a ﹣b <0∴|a+1|﹣=|a+1|﹣|b ﹣1|+|解析:﹣2a .【分析】依据数轴即可得到a +1<0,b ﹣1>0,a ﹣b <0,即可化简|a +1|.【详解】解:由题可得,﹣2<a <﹣1,1<b <2,∴a +1<0,b ﹣1>0,a ﹣b <0,∴|a +1|=|a +1|﹣|b ﹣1|+|a ﹣b |=﹣a ﹣1﹣(b ﹣1)+(﹣a +b )=﹣a ﹣1﹣b +1﹣a +b=﹣2a ,故答案为:﹣2a .【点睛】本题考查了二次根式的性质,绝对值的意义,数轴的定义,解题的关键是熟练掌握所学的知识,正确的进行化简.16.2022【分析】将原式化简为然后根据x 的不同取值求出y 的值最后把所有的y 值加起来即可【详解】解:当时当时当时∴当分别取时所有值的总和是:故答案是:2022【点睛】本题考查二次根式的化简解题的关键是掌解析:2022【分析】 将原式化简为23y x x =--+,然后根据x 的不同取值,求出y 的值,最后把所有的y 值加起来即可.【详解】解:3323y x x x x =+=+=--+,当2x ≥时,231y x x =--+=,当2x <时,2352y x x x =--+=-,当1x =时,523y =-=,∴当x 分别取1,2,3,,2020⋯时,所有y 值的总和是:312019320192022+⨯=+=. 故答案是:2022.【点睛】本题考查二次根式的化简,解题的关键是掌握二次根式的性质进行化简.17.【分析】根据分数的性质:分子分母同时乘以计算求出结果【详解】故答案为:【点睛】此题考查分数的性质分母有理化的计算方法根据分母得到分子分母都乘以使分母有理化是解题的关键解析:2+【分析】根据分数的性质:分子、分母同时乘以2+【详解】2==,故答案为:2+【点睛】此题考查分数的性质,分母有理化的计算方法,根据分母得到分子、分母都乘以2+分母有理化是解题的关键.18.【分析】首先把和化成与原根式相等的根指数相等的根式再进行比较即可【详解】故答案为:【点睛】本题考查了实数的大小比较和根式的性质的应用关键是把根式化成与原根式相等的根指数相等的根式解析:<【分析】【详解】63327==,62981==,66∴<,<故答案为:<.【点睛】本题考查了实数的大小比较和根式的性质的应用,关键是把根式化成与原根式相等的根指数相等的根式.19.13【分析】先变形为然后代入求值即可【详解】解:当时原式==13故答案是:13【点睛】本题考查了利用完全平方公式进行求值及二次根式的性质熟悉公式是解题关键【分析】先变形为222918x x x ++=++(),然后代入求值即可.【详解】解:2222921818x x x x x ++=+++=++(),当1x =时,原式2118++=13.故答案是:13.【点睛】本题考查了利用完全平方公式进行求值及二次根式的性质,熟悉公式是解题关键. 20.【分析】逆用积的乘方法则和平方差公式计算即可【详解】解:原式=故答案为:【点睛】本题考查了二次根式的混合运算熟练掌握二次根式的运算法则是解答本题的关键整式的乘法的运算公式及运算法则对二次根式的运算同解析:【分析】逆用积的乘方法则和平方差公式计算即可.【详解】解:原式=20052005⋅⋅ 2005⎡⎤=⋅⋅⎣⎦=-=故答案为:-【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键,整式的乘法的运算公式及运算法则对二次根式的运算同样适应.三、解答题21.(1);(2)-36【分析】(1)由二次根式的性质进行化简,再计算加减运算即可;(2)先由乘方、二次根式的性质、立方根进行化简,然后计算乘法,再计算加减即可.【详解】(1)解:原式=(135=+-=(2)原式()()184434=-⨯+-⨯-3213=---36=-.本题考查了二次根式的性质,实数的混合运算,解题的关键是熟练掌握运算法则,正确的进行化简.22.(1);(2)2;(31;(4)21﹣【分析】(1)先化简二次根式,再合并同类项即可求解;(2)根据二次根式乘除法性质进行化简计算即可解答;(3)根据二次根式的乘法运算法则进行求解即可;(4)利用完全平方公式进行计算即可.【详解】解:(1(21=1 =3﹣1=2;(3)(﹣2)6+5﹣=1;(4)2=222-⨯=18﹣+3=21﹣.【点睛】本题考查了二次根式的加减乘除混合运算、完全平方公式,熟记公式,掌握二次根式的运算法则是解答的关键.23.(1)-2<x≤1;整数解为-1,0,1;(2)【分析】(1)分别求出各不等式的解集,再求出其公共解集,据此即可写出不等式组的整数解. (2)先化简二次根式,再合并即可.【详解】解:(1)()3x24x?2x5x1?3⎧--≥-⎪⎨-<-⎪⎩①②由①去括号得,-3x+6≥4-x,移项、合并同类项得,-2x≥-2,化系数为1得,x≤1.由②去分母得,2x-5<3x-3,移项、合并同类项得,-x<2,化系数为1得,x>-2.故原不等式组的解集为:-2<x≤1.∴不等式组的整数解为-1,0,1.(2)=55-=【点睛】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).也考查了二次根式的加减运算,掌握二次根式的化简是关键.24.12x+,3【分析】首先计算括号里面的加法,再算括号外的除法,化简后,再代入x的值可得答案.【详解】解:原式=(22xx+++12x+)•3(3)(3)xx x-+-,=32xx++•3(3)(3)xx x-+-,=12x+,当x2=3.【点睛】此题主要考查了分式的化简求值,关键是掌握计算顺序和计算法则,正确进行化简.25.(1)6;(2)6x + 13【分析】(1)先利用乘法分配律去括号,然后再进行二次根式的混合运算即可;(2)利用乘法公式进行整式的运算即可.【详解】⨯解:(1)原式=122=6-=6;(2)原式=x2 + 6x + 9-(x2-4)=x2 + 6x + 9-x2 + 4=6x + 13.【点睛】本题主要考查二次根式的混合运算及乘法公式,熟练掌握二次根式的混合运算及乘法公式是解题的关键.26.(1)2【分析】(1)把每个二次根式化成最简后再把被开方数相同的项合并;(2)按照乘法分配律去括号,按照除法法则计算二次根式的商,再把所得结果各项化简后合并同类二次根式即可得到最终答案.【详解】解:(1)原式=+-=(241=(2)原式=3-+=(121.【点睛】本题考查二次根式的运算,熟练掌握二次根式的运算法则和化简方法是解题关键.。

人教版八年级下册数学二次根式测试题

人教版八年级下册数学二次根式测试题

二次根式单元测试(二)班级:__________ 座号:__________ 姓名:__________________成绩:___________一、选择题(每小题4分,共24分)1.要使二次根式2x-6 有意义,x应满足的条件是…………………………………()A.x≥3 B.x<3 C.x>3 D.x ≤32.下列二次根式中,与24 是同类二次根式的是……………………………………()A.18 B.30 C.48 D.54 3.根式-(-3)2的值是…………………………………………………………………()A.-3 B.-3或3 C.3 D.94. 若x·x-6 = x(x-6) ,则………………………………………………………()A.x≥0 B.x≥6 C.0≤x≤6 D.x 为一切实数5.下列根式中是最简二次根式的是……………………………………………………()A.a2+1 B.12C.8 D.276. 24n 是整数,则正整数n的最小值为………………………………………()A.4 B.5错误!未指定书签。

C.6 D.7二、填空题(每题3分,共36分)7.在函数y=x-2中,自变量x的取值范围是______________;8.比较大小:3_______10 ;9.计算:12 - 3 的结果是_____________;10.化简:(-4)2 =_________;11. 如果最简二次根式2a-3与7是同类二次根式,那么a的值是_________;12. 计算:8·24 =________________;13. 化简:18a2b3 ( a>0 ,b>0)=_________;14.请写出3的两个同类二次根式:____________________;15.化简:( 3 -2)2 =________;16.在△ABC中,∠C=90°,AC=10 cm,AB=34 cm,则BC=___________cm;17.在数轴上与表示 3 的点的距离最近的整数点所表示的数是______________;18.如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和103cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是_____________cm。

数学八年级下册人教版第十六章 二次根式单元测试(无答案)

数学八年级下册人教版第十六章 二次根式单元测试(无答案)

数学八年级下册人教版第十六章二次根式(满分:120分,时间:90分钟)一、选择题(每小题3分,共30分)1.化简8 ( )A. -2 B 2 C.4 D. 22. 若二次根式1−x在实数范围有意义,则x的取值范围是 ( )A. x≤1B. x<1C. x≥1D. x≠13. 下列各式中属于最简二次根式的是 ( )A.23B.0.5C.16 D34. 下列计算正确的是 ( )A.23−3=2B.2÷2=2C.2+3=5D.(23)2=65.下列式子中一定是二次根式的是 ( )A.−aB.a2C.−a2D.a36. 已知20n是整数,则满足条件的最小正整数n 的值是 ( )A.5B.1C.2D.37.若(3−b)2=b−3,则 ( )A. b>3B. b<3C. b≥3D. b≤38. 下列各式中,与2−3相乘后,积为有理数的是 ( )A.2+3B.2−3C.−2+3 D39. 计算3−33的结果为 ( )A.1−3B.1+3 C3D.−310. 设10的小数部分为b,则(10+3)b的结果是 ( )A.1B.是一个无理数C.3D.无法确定二、填空题(每小题3分,共15分)11. 计算32+8的结果为 .12.化简:2xy⋅8y=¯.13. 已知x=3+1,则x²−2x+1的值为 .14.使代数式x−13−x有意义的x的取值范围是 .15. 已知a+b=23+1,ab=3,则(a+1)(b+1)= .三、解答题(一)(每小题8分,共24分)16. 计算:(1)3×2−122+|−24|;(2)18÷22×1 2 .17. 计算:(48−613)÷3×12.18. 当a=3+1,b=3−1时,求代数式ab+b²的值.四、解答题(二)(每小题9分,共27分)19. 化简求值:a 2−1a2−2a+1+2a−a2a−2÷a,其中a=2+1.20.已知一个三角形的三边长分别为239x,6x4,2x1x,(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.21.一个矩形的长为a=6+5,宽为b=6−5.(1)求该矩形的面积和周长;(2)求a²+b²的值.五、解答题(三)(每小题12分,共24分)22.已知矩形的周长为( (48+72)cm,一边长为(3+12)cm.(1)求此矩形的另一边长;(2)求此矩形的面积23.小芳在解决问题:已知a=12+3,求2a²−8a+1的值.他是这样分析与解的:a=12+3=2−3(2+3)(2−3)=2−3,∴a=2−3,∴(a−2)²=3,a²−4a+4=3,∴a²−4a=−1,∴2a²−8a+1=2(a²−4α)+1=2×(−1)+1=−1.请你根据小芳的分析过程,解答下列问题:(1)计算(2)若a=12−1①化简α,求4a²−8a−1的值;②求a³−3a²+a+1的值.。

人教版二次根式单元 期末复习自检题检测试卷

人教版二次根式单元 期末复习自检题检测试卷

一、选择题1.下列计算正确的是( )A .916916+=+B .2222-=C .()2236=D .1515533== 2.下列式子为最简二次根式的是( ) A .22a b + B .2a C .12a D .12 3.二次根式1x -中字母x 的取值可以是( )A .2B .0C .12-D .-14.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D .5.下列计算正确的是( )A .2510⨯=B .623÷=C .12315+=D .241-= 6.将1、、、按图2所示的方式排列,若规定(m ,n )表示第m 排从左到右第n 个数,则(4,2)与(21,2)表示的两数的积是( )A .1B .2C .D .67.下列二次根式是最简二次根式的是( )A 0.1B 19C 8D 1448.下列二次根式中,最简二次根式是( )A 23aB 13C 2.5D 22a b -9.751m +m 的值为( )A .7B .11C .2D .110.下列各式计算正确的是( )A .()233=B .()255-=±C .523-=D .3223-=二、填空题11.化简322+=___________.12.已知2216422x x ---=,则22164x x -+-=________.13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.14.观察下列等式:第1个等式:a 12112=+, 第2个等式:a 23223=+, 第3个等式:a 332+3, 第4个等式:a 45225=+, …按上述规律,回答以下问题:(1)请写出第n 个等式:a n =__________.(2)a 1+a 2+a 3+…+a n =_________ 15.已知a 73+a 3+5a 2﹣4a ﹣6的值为_____. 16.已知a ,b 是正整数,若有序数对(a ,b )使得11)a b的值也是整数,则称(a ,b )是11)a b 的一个“理想数对”,如(1,4)使得112(a b=3,所以(1,4)是11)a b 的一个“理想数对”.请写出11)a b其他所有的“理想数对”: __________. 17.36,3,2315,,则第100个数是_______. 18.已知4a 2(3)|2|a a +--=_____.19.若a 、b 都是有理数,且2222480a ab b a -+++=ab .20.函数y =42x x --中,自变量x 的取值范围是____________. 三、解答题21.先阅读材料,再回答问题:因为)111=1=;因为1=,所以=1== (1= ,= ; (2⋅⋅⋅+的值.【答案】(12)9【分析】(1)仿照例子,由1+=的值;由1+=1的值;(2)根据(1)中的规律可将每个二次根式分母有理化,可转化为实数的加减法运算,再寻求规律可得答案.【详解】解:(1)因为1-=;因为1=1(2⋅⋅⋅+1=+⋅⋅⋅1=1019=-=.【点睛】本题考查了分母有理化,分子分母都乘以分母这两个数的差进行分母有理化是解题关键.22.小明在解决问题:已知2a 2﹣8a+1的值,他是这样分析与解的:∵=2 ∴a ﹣2=∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1(2)若,求4a2﹣8a+1的值.【答案】(1)9;(2)5.【解析】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a1,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a-的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a===,解法一:∵22(1)11)2a-=-=,∴2212a a-+=,即221a a-=∴原式=24(2)14115a a-+=⨯+=解法二∴原式=24(211)1a a-+-+24(1)3a=--211)3=--4235=⨯-=点睛:(1得22=-=-a b,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.23.观察下列一组等式,然后解答后面的问题=,1)1=,1=,1=⋯⋯1(1)观察以上规律,请写出第n个等式:(n为正整数).(2(3【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小.【详解】解:(1)根据题意得:第n个等式为1=;故答案为1=;(2)原式111019==-=;-==,(3<∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.24.在一个边长为(cm的正方形的内部挖去一个长为()cm,cm的矩形,求剩余部分图形的面积.【答案】【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.试题解析:剩余部分的面积为:(2﹣()=()﹣(﹣)=(cm2).考点:二次根式的应用25.已知a,b(1)求a2﹣b2的值;(2)求ba+ab的值.【答案】(1);(2)10【分析】(1)先计算出a+b、a-b的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;(2)先计算ab的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可.【详解】(1)∵ab,∴a+ba﹣b=,∴a2﹣b2=(a+b)(a﹣b)==;(2)∵ab,∴ab=)×)=3﹣2=1,则原式=22b aab+=()22a b abab+-=(2211-⨯=10.【点睛】本题考查了二次根式的化简求值,熟练掌握整体代入思想是解题的关键.26.先化简,再求值:2443(1)11m mmm m-+÷----,其中2m=.【答案】22mm-+1.【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.详解:原式=221 mm--()÷(31m-﹣211mm--)=221 mm--()÷2 41m m--=221 mm--()•122mm m--+-()()=﹣22 mm-+=22m m-+当m ﹣2时,原式===﹣1+=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.27.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答.【详解】解:原式11=+=【点睛】本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.28.计算:(1)13⎛+-⨯ ⎝⎭(2))()2221+.【答案】(1)6-;(2)12-【分析】(1)原式化简后,利用二次根式乘法法则计算即可求出值;(2)原式利用平方差公式,以及完全平方公式计算即可求出值.【详解】解:(1)原式=1(23⨯⨯=-⨯=⨯⎭=6-;(2)原式=3﹣4+12﹣=12﹣.【点睛】此题考查了二次根式的混合运算,以及平方差公式、完全平方公式,熟练掌握运算法则及公式是解本题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】==,5=⨯=,选项D正确.=,(243122.A解析:A【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【详解】AB|a|,可以化简,故不是最简二次根式;C==,可以化简,故不是最简二次根式;D2故选:A.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.解析:A【分析】根据二次根式有意义,被开方数非负列出不等式,求解,再依此选择合适的选项.【详解】解:由题意得:x-1≥0解之:x≥1.>.1故选:A.【点睛】本题考查二次根式有意义的条件.理解二次根式有意义,被开方数非负是解题关键.4.D解析:D【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件. 5.A解析:A【分析】分别进行二次根式的乘除法、加减法运算,然后选择正确答案.【详解】解:======,原式计算错误;D. 2220=-=,原式计算错误;故应选:A【点睛】本题考查了二次根式的乘除法和加减法,掌握运算法则是解答本题的关键.6.D【解析】(4,2)表示第4排从左向右第2个数是:,(21,2)表示第21排从左向右第2个数,可以看出奇数排最中间的一个数都是1, 第21排是奇数排,最中间的也就是这排的第1个数是1,那么第2个就是:, •=6,故选D7.B解析:B【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A 、被开方数含分母,故A 错误;B 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B 正确;C 、被开方数含能开得尽方的因数,故C 错误;D 、被开方数含分母,故D 错误;故选B .【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.8.A解析:A【解析】试题分析:最简二次根式是指不能继续化简的二次根式,A 、原式=;B 、是最简二次根式,不能化简;C 、原式=;D 、原式=. 考点:最简二次根式 9.C解析:C【分析】几个二次根式化为最简二次根式后,如果被开方数相同,则这几个二次根式即为同类二次根式.【详解】解7553=m=7时1822m +==,故A 错误;当m=11时11223m +==1m +B 错误;当m=1时12m +=故D 错误;当m=2时13m +=故C 正确;故选择C.【点睛】本题考查了同类二次根式的定义.10.A解析:A【分析】根据二次根式的性质和运算法则逐一计算可得.【详解】A、23=此选项计算正确,符合题意;B 、5=此选项计算错误,不符合题意;C-不是同类二次根式,不能合并,此选项计算错误,不符合题意;D、-=故选:A .【点睛】本题主要考查了利用二次根式的性质化简以及二次根式的加减运算,准确利用二次根式的性质计算是解题的关键.二、填空题11.+1【分析】先将用完全平方式表示,再根据进行化简即可.【详解】因为,所以,故答案为:.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二+1【分析】先将3+,()()()0000a a a a a a ⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为(2231211+=+=+=+,11===故答案为:1.【点睛】 本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解.12.3【解析】设,则 可化为:,∴,两边同时平方得:,即:,∴,解得:,∴.故答案为:.点睛:本题的解题要点是:设原式中的,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形解析:【解析】设24x a -====两边同时平方得:128a a +=++4=, ∴3216a =,解得:12a =,===故答案为: 点睛:本题的解题要点是:设原式中的24x a -=,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形即可求得a 的值,使问题得到解决.13.﹣2b【解析】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣b|+=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b .故答案为﹣2b .点睛:本题主要考查了二次根式和绝对解析:﹣2b【解析】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b .故答案为﹣2b .点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a .b 都是数轴上的实数,注意符号的变换. 14.【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a1=,第2个等式:a2=,第3个等式:=1-【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a 11=,第2个等式:a 2=,第3个等式:a 3,第4个等式:a 42=, ……∴第n== (2)123(21)(32)(23)(1)n a a a a n n +++=-+-+-+++-=121n +++=1-;1-.【点睛】本题考查了二次根式的加减混合运算,以及数字规律问题,解题的关键是掌握题目中的规律,从而进行解题15.-4【分析】先将a 进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】解:当a =-=-=-3时,原式=a3+6a2+9a -(a2+6a+9)-7a+3=a(a+3)2-(解析:-4【分析】先将a 进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】解:当a-3时, 原式=a 3+6a 2+9a -(a 2+6a +9)-7a +3=a (a +3)2-(a +3)2-7a +3=7a -7-7a +3=-4.故答案为:-4.【点睛】本题综合运用了二次根式的化简,提公因式及完全平方公式法分解因式,熟练掌握分母有理化的方法及因式分解的方法是解题的关键.16.(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a=1,=1,要使为整数,=1或时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,解析:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a =1,要使或12时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,当a =412,要使+或12时,分别为3和2,得出(4,1)和(4,4)是的“理想数对”,当a =913,要使16时,=1,得出(9,36)是的“理想数对”,当a =1614,要使14时,=1,得出(16,16)是的“理想数对”,当a =3616,要使13时,=1,得出(36,9)是的“理想数对”, 即其他所有的“理想数对”:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9).故答案为:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9). 17.【分析】原来的一列数即为,,,,,,于是可得第n 个数是,进而可得答案.【详解】解:原来的一列数即为:,,,,,,∴第100个数是.故答案为:.【点睛】本题考查了数的规律探求,属于常考解析:【分析】,,于是可得第n 进而可得答案.【详解】,∴第100=.故答案为:【点睛】本题考查了数的规律探求,属于常考题型,熟练掌握二次根式的性质、找到规律是解题的关键.18.-5【分析】根据a的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∵,∴a+3<0,2-a>0,∴-a-3-2+a=-5,故答案为:-5.【点睛】此解析:-5【分析】根据a的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】a,∵4∴a+3<0,2-a>0,-=-a-3-2+a=-5,|2|a故答案为:-5.【点睛】此题考查二次根式的化简,绝对值的化简,整式的加减法计算法则,正确化简代数式是解题的关键.19.【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b的值,然后代入即可.【详解】解:∵∴∴∴∵∴解得:a=-4,b=-2∴=故答案为:.【点睛解析:【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b 的值,然后代入即可.【详解】解:∵2222480a ab b a -+++=∴222448160a ab b a -+++=∴()()222448160a ab ba a -+++=+ ∴()()22240ab a +-+=∵()()2220,40a b a +-≥≥∴20,40a b a +-==解得:a=-4,b=-2=故答案为:【点睛】此题考查的是配方法、非负性的应用和化简二次根式,掌握完全平方公式、平方的非负性和二次根式的乘法公式是解决此题的关键.20.x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由y=,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方解析:x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案. 【详解】解:由y=2x -,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方数是非负数、分母不能为零得出4-x≥0且x-2≠0是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

人教版初中数学八年级数学下册第一单元《二次根式》检测(包含答案解析)

人教版初中数学八年级数学下册第一单元《二次根式》检测(包含答案解析)

一、选择题1.当x 为何值时,1x -在实数范围内有意义( ) A .1x > B .1≥x C .1x < D .1x ≤ 2.一个等腰三角形两边的长分别为75和18,则这个三角形的周长为( ) A .10332+B .5362+C .10332+或5362+D .无法确定 3.下列计算正确的是( )A .()277-=±B .()277-=-C .111142=D .1514= 4.下列运算中错误的是( ) A .236⨯= B .1333= C .322252+= D .32230-=5.如图为实数a ,b 在数轴上的位置,则222()()()b a a b +---=( )A .-aB .bC .0D .a-b 6.下列各式中,正确的是( ) A .2(3)9= B 2(3)3-=- C 93-=-D 93= 7.估计162)2-⨯) A .0到1之间 B .1到2之间C .2到3之间D .3到4之间 8.下列运算正确的是( )A 235+=B 119342=C (2)(3)23-⋅---D .221)1=9.下列计算正确的是( )A .3236362⨯==B 164=±C .()()15242⎛⎫-÷-⨯-=± ⎪⎝⎭D .(25235410-⨯++= 10.下列运算正确的是( ) A 628=B .66-=C 623= D ()266-=11.下列各式成立的是( )A.23=B2=- C7= Dx 12.函数y =x 的取值范围是( ). A .2x > B .2x ≠ C .2x < D .0x ≠二、填空题13.计算:2=___________.14.23()a -=______(a≠0),2-=______,1-=______.15.已知a +b =﹣8,ab =6__. 16.==ab =________.17.若6y =,则xy 的平方根为________.18.已知263(5)36m n m -+-=-m n -=_______.19.在实数范围内有意义,则x 的取值范围是______. 20.(1015293-⎛⎫++= ⎪⎝⎭__________. 三、解答题21.计算:(1+(2(÷; (3)52311x y x y +=⎧⎨+=⎩; (4)4(2)153123x y y x +=-⎧⎪+⎨=-⎪⎩. 22.计算:(1(2(3))0π(4))(21-23.|2|x -.24.先化简,再求值:211(1)a a a -++,其中1a =.25.先化简,再求值:22111121x x x x x x --÷+--+,其中x .26.-.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据分式的分母不等于0的条件及二次根式非负性解答.【详解】由题意得:x-1>0,解得x>1,故选:A .【点睛】此题考查未知数的取值范围的确定,掌握分式的分母不等于0的条件及二次根式非负性是解题的关键.2.A解析:A【分析】满足三角形成立的条件,最后对三边求和即可.【详解】若,则周长为+若=,∴,此三角形不存在,∴这个三角形的周长为故选:A.【点睛】本题考查等腰三角形的性质,涉及化简二次根式,熟练掌握等腰三角形的性质以及三角形成立的条件是解题的关键.3.D解析:D【分析】根据二次根根式的运算法则即可求出答案.【详解】A77=-=,故该选项错误;B77=-=,故该选项错误;C====,故该选项正确;D2故选:D.【点睛】本题主要考查了利用二次根式的性质化简,正确掌握相关运算法则是解题关键.4.D解析:D【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的加减法对C、D进行判断.【详解】解:A,所以A选项的计算正确;B选项的计算正确;BC、原式=,所以C选项的计算正确;D、原式==,所以D选项的计算错误;故选:D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.解析:C【分析】由数轴可得a 、b 和a-b 的正负,再由二次根式性质去根号、合并同类项即可.【详解】根据实数a 、b 在数轴上的位置得知:-1<a <0<b <1,∴a-b <0,则原式=b-a-(b-a )=b-a-b+a=0.故选:C .【点睛】考查了数轴及二次根式的化简,解题关键是由数轴得出a 、b 和a-b 的正负情况. 6.D解析:D【分析】根据二次根式的性质逐项判断即可.【详解】解:A 、2(3=,故本选项错误;B 3=,故本选项错误;CD 3=,故本选项正确.故选:D .【点睛】a =,2(0)a a =≥.7.B解析:B【分析】直接利用二次根式的性质结合估算无理数的大小方法得出答案.【详解】解:2, ∵34<<, ∴.122<<,故选:B .【点睛】此题主要考查了估算无理数的大小,正确估算无理数是解题关键.解析:D【分析】根据二次根式运算求解即可.【详解】A. 原式不能合并,不符合题意;B. 原式2==,不符合题意;C. 原式=D. 原式=2−1=1,符合题意,故选:D.【点睛】此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.9.D解析:D【分析】根据乘方运算,算术平方根的定义,有理数的乘除运算以及二次根式的加减的混合运算进行判断.【详解】A 、32322754⨯=⨯=,故A 错误;B 4=,故B 错误;C 、()()()11155252224⎛⎫⎛⎫⎛⎫-÷-⨯-=-⨯-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故C 错误;D 、(22346410-⨯+=-+=,故D 正确.故选:D .【点睛】本题考查了有理数的乘方,算术平方根的定义,有理数的乘除运算以及二次根式的加减的混合运算,熟记运算法则是解题的关键. 10.B解析:B【分析】根据二次根式的加法与除法、绝对值运算、算术平方根逐项判断即可得.【详解】A 不是同类二次根式,不能加减合并,此项错误;B、=C=D6==,此项错误;故选:B .【点睛】本题考查了二次根式的加法与除法、绝对值运算、算术平方根,熟练掌握各运算法则是解题关键.11.C解析:C【分析】利用二次根式的性质进行化简判断选项的正确性.【详解】解:A 2=32=9,错误;B 、原式=|﹣2|=2,错误;C 、原式=|﹣7|=7,正确;D 、原式=|x |,错误,故选:C .【点睛】本题考查二次根式的化简,解题的关键是掌握二次根式的化简方法.12.C解析:C【分析】0≠;根据二次根式的性质,得20x -≥,从而得到自变量x 的取值范围.【详解】结合题意,得:200x -≥⎧⎪≠ ∴22x x ≤⎧⎨≠⎩ ∴2x <故选:C .【点睛】本题考查了分式、二次根式的知识;解题的关键是熟练掌握分式、二次根式的性质,从而完成求解.二、填空题13.2【分析】根据二次根式的性质化简即可【详解】2故答案为:2【点睛】此题考查二次根式的性质掌握二次根式的性质:是解答此题的关键解析:2【分析】根据二次根式的性质化简即可.【详解】2=2,故答案为:2【点睛】此题考查二次根式的性质.掌握二次根式的性质:2a a ==,是解答此题的关键. 14.【分析】根据负整数指数幂的运算法则计算即可【详解】=;;【点睛】此题考查了负整数指数幂:a-n=也考查了分母有理化解析:61a 13+ 【分析】 根据负整数指数幂的运算法则计算即可.【详解】23()a -=661a a -==;2-==13;1-=== 【点睛】 此题考查了负整数指数幂:a -n =1(0)n a a ≠.也考查了分母有理化. 15.【分析】先根据判断出再将原式化简成进行求解【详解】解:∵∴∴故答案为:【点睛】本题考查二次根式的化简求值解题的关键是掌握二次根式的性质进行化简求值【分析】先根据8a b +=-,6ab =判断出0a <,0b <,再将原式化简成a b ab+进行求解.【详解】解:∵8a b +=-,6ab =,∴0a <,0b <,∴86a b ab +⎛⎫===-= ⎪⎝⎭【点睛】本题考查二次根式的化简求值,解题的关键是掌握二次根式的性质进行化简求值. 16.20【分析】运用二次根式化简的法则先化简再得出的值即可【详解】解:∵∴∴故答案为:20【点睛】本题考查了二次根式的化简求值解题的关键是掌握二次根式运算法则解析:20【分析】运用二次根式化简的法则先化简,再得出a b ,的值即可.【详解】解:∵==,∴a 5=,b 4=,∴ab 20=,故答案为:20.【点睛】本题考查了二次根式的化简求值,解题的关键是掌握二次根式运算法则.17.±3【分析】根据二次根式有意义的条件求出x 进而求出y 根据平方根的概念解答即可【详解】解:要使有意义则x-3≥0同理3-x≥0解得x=3则y=6∴xy=18∵18的平方根是±3∴xy 的平方根为±3故答解析:.【分析】根据二次根式有意义的条件求出x ,进而求出y ,根据平方根的概念解答即可.【详解】有意义,则x-3≥0,同理,3-x≥0,解得,x=3,则y=6,∴xy=18,∵18的平方根是,∴xy 的平方根为,故答案为:.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键. 18.-2【分析】先根据二次根式的定义判断出m 的范围从而化简绝对值再根据非负性分别求解mn 的具体值从而得出结果【详解】由题意:则∴原式化简为:即:根据非负性:∴故答案为:-2【点睛】本题考查二次根式的定义 解析:-2【分析】先根据二次根式的定义判断出m 的范围,从而化简绝对值,再根据非负性分别求解m ,n 的具体值,从而得出结果.【详解】由题意:()230m n -≥,则3m ≥,630m -<,∴原式化简为:236(5)36m n m -+-=-即:2(5)n -,根据非负性:()25030n m n -=-=,, ∴53n m ==,,352m n -=-=-,故答案为:-2.【点睛】本题考查二次根式的定义,及绝对值的非负性,熟练根据定义进行推理证明是解题关键. 19.【分析】根据二次根式的被开方数大于或等于0分式的分母不能为0即可得【详解】由二次根式的被开方数大于或等于0得:解得由分式的分母不能为0得:解得则x 的取值范围是故答案为:【点睛】本题考查了分式有意义的 解析:1x >【分析】根据二次根式的被开方数大于或等于0、分式的分母不能为0即可得.【详解】由二次根式的被开方数大于或等于0得:10x -≥,解得1≥x ,由分式的分母不能为0得:10x -≠,解得1x ≠,则x 的取值范围是1x >,故答案为:1x >.【点睛】本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式和二次根式的概念是解题关键.20.5【分析】根据零指数幂负整指数幂绝对值二次根式化简的运算法则化简然后根据实数的运算法则计算即可【详解】==5答案为:5【点睛】本题考查实数的综合运算能力是各地中考题中常见的计算题型解决此类题目的关键解析:5【分析】根据零指数幂、负整指数幂、绝对值、二次根式化简的运算法则化简,然后根据实数的运算法则计算即可.【详解】(115293-⎛⎫++⎪⎝⎭52314=-++-,=544--=5,答案为:5.【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.三、解答题21.(1;(2;(3)41xy=⎧⎨=⎩;(4)31xy=-⎧⎨=⎩【分析】(1)先进行二次根式的乘法运算,然后化简后合并即可;(2)利用二次根式的乘除法则运算;(3)利用加减消元法解方程组;(4)先把原方程组整理后,然后利用加减消元法解方程组.【详解】(1++=;(2(÷=-16;(3)52311x yx y+=⎧⎨+=⎩①②,②﹣①×2得3y﹣2y=1,解得y=1,把y=1代入①得x+1=5,解得x=4,所以方程组的解为41 xy=⎧⎨=⎩;(4)原方程组整理为457 233x yx y+=-⎧⎨+=-⎩①②,①﹣②×2得﹣y=﹣1,解得y=1,把y=1代入②得2x+3=﹣3,解得x=﹣3,所以原方程组的解为31xy=-⎧⎨=⎩.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解二元一次方程组.22.(1)3;(2)3;(31;(4)2【分析】(1)先进行二次根式的乘法运算,然后进行二次根式的除法运算即可;(2)先把立方根、二次根式化简,然后合并即可;(3)先计算零指数幂和二次根式的除法,再计算加减法即可;(4)利用平方差公式和完全平方公式计算后再合并.【详解】解:(13 =;(2=342-⨯+=3-=3;(3))0π=1-=12-=1;(4))(21-=31(1812)+--=2【点睛】本题考查了二次根式的混合运算:先计算乘除,再计算加减,掌握运算法则及乘法公式是关键.23.5【分析】先根据二次根式的意义求出取值范围,再根据绝对值和二次根式的性质进行化简合并即可.【详解】2x -⋅=2030x x -≥⎧∴⎨+≥⎩, 32x ∴-≤≤,20x ∴-≤,30x +≥,|2|x ∴-(2)(3)x x =--++23x x =-+++5=.【点睛】(0)0(0)(0)a a a a a a >⎧⎪==>⎨⎪->⎩是解题的关键.24.21(1)a +;12【分析】先进行分式的减法,化简后,代入求值即可.【详解】解: 211(1)a a a -++, 221(1)(1)a a a a +=-++,21(1)a =+,当1a =时,原式12==. 【点睛】本题考查了分式的化简求值,熟练按照分式减法进行化简,代入后准确计算是解题关键.25.11x x -+,3. 【分析】 先根据分式的混合运算法则化简原式,然后再将x 的值代入计算即可.【详解】 解:22111121x x x x x x --÷+--+ 21(1)1(1)(1)1x x x x x x -=-++--111x x x =-++ 11x x -=+,当1x =时,原式==3=.【点睛】本题主要考查分式的混合运算和化简求值,分母有理化,灵活运用分式的混合运算顺序和运算法则是解答本题的关键.26.【分析】先化简二次根式,然后进行求解即可.【详解】33=⨯+==【点睛】本题考查了二次根式的运算,解题的关键是掌握二次根式的运算法则.。

【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)

【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)

人教版数学八年级下第16章二次根式单元考试题(有答案)人教版八年级数学下册第十六章二次根式单元检测卷总分:150分,时间:120分钟;姓名:;成绩:;一、选择题(4分×12=48分)1、下列二次根式是最简二次根式的是()C.B.2)A. B.C.3a能够取的值是()A. 0B. 1C. 2D.34有意义的条件是()A.x≥1B.x≤1C.x≠1D.x<15、若135a是整数,则a的最小正整数值是( )A.15 B.45 C.60 D.1356、则实数x的取值范围在数轴上的表示正确的是( )=-)7aA. -B.C. -D.8、已知(5m=n,如果n是整数,则m可能是()A. 5 C.9、下列计算正确的是( )A. 4B. 1C. 3 210、若a 、b 、c )A. 2a -2cB. -2cC. 2bD.2a11、已知a ,b a 、b ,则下列表示正确的是( )A. 0.3abB. 3abC. 0.1abD.0.9ab12、定义:m Δn =(m+n )2,m ※n =mn -2,则[(]Δ)的值是()C. 5二、填空题(4分×6=24分)13= ;14、已知矩形的长为cm cm ,则矩形的面积为 ;15、当a = 时,16、已知a =,b =,则a 2b+ab 2= ;171x =成立的条件是 ;1822510b b +=,则a+b 的平方根是 ;三、22a 10分×2=20分)19、计算(1)21+( (2)2019+(-1)20、计算:(1)220,0)a a b >>(2)2(0,0)aa b m n ÷>>四、解答题(9分×4=36分)21、用四张一样大小的长方形纸片拼成一个正方形ABCD ,如图所示,它的面积是75,AE=22、化简求值:2(2)(2)(2)(43)a b a b a b b a b +-+--+,其中a 1,b ;23、观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式: 121212)12)(12()12(1121-=--=-+-⨯=+ 232323)23)(23()23(1231-=--=-+-⨯=+ 同理可得:32321-=+ 从计算结果中找出规律,并利用这一规律计算.......1)的值24、已知a,b,c在数轴上如图所示,化简:+b c五、解答题(10分+12分=22分)25、现有一组有规律的数:1,-1,2,-2,3,-3,1,-1,2,-2,3,-3,…,其中1,-1,2,-2,3,-3这6个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2018个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加,如果和为520,那么一共是多少个数的平方相加?26、小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+()2.善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为整数),则有=m2+2n2∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若=()2,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若)2,且a 、m 、n 均为正整数,求a 的值?2019年春人教版数学八年级下第16章二次根式单元考试题答案一、选择题CDBDA CABDA AB二、填空题13、1; 14、2; 15、6; 16、6; 17、x ≥-1;18、±3三、解答题19、计算:(1)5; (2)0;20、(1)12a 3b 2;(2)2221a ab a b -+; 四、解答题21、22、;23、2017;24、-a五、解答题25、(1)第50个数是-1.(2)从第1个数开始的前2018个数的和是0.(3)一共是261个数的平方相加.26、26、(1)223,2m n mn + (2)16,8,2,2(答案不唯一)(3)7或13.人教版初中数学八年级下册第十六章《二次根式》单元基础卷一、选择题(每小题3分,共30分)1x 的取值范围是( ).A. 1x >B. 1x ≥C. 1x <D. 1x ≤ 2.若a -1+b 2-4b +4=0,则ab 的值等于( )A .-2B .0C .1D .23.=x 的取值范围是( ) A. 2x ≠B. 0x ≥C. 2x >D. 2x ≥4.是同类二次根式的是( )。

人教版数学八年级下册:第16章《二次根式》单元测试(附答案)

人教版数学八年级下册:第16章《二次根式》单元测试(附答案)

第十六章 二次根式16.1 二次根式第1课时 二次根式的概念01 基础题知识点1 二次根式的定义1.下列式子不是二次根式的是( B )A . 5B .3-π C.0.5 D.132.下列各式中,一定是二次根式的是( C ) A .-7 B .3m C .1+x 2 D .2x3.已知a 是二次根式,则a 的值可以是( C )A .-2B .-1C .2D .-54.若-3x 是二次根式,则x 的值可以为答案不唯一,如:-1(写出一个即可).知识点2 二次根式有意义的条件5.x 取下列各数中的哪个数时,二次根式x -3有意义(D )A .-2B .0C .2D .46.(2017·广安)要使二次根式2x -4在实数范围内有意义,则x 的取值范围是(B)A .x >2B .x ≥2C .x <2D .x =27.当x 是怎样的实数时,下列各式在实数范围内有意义? (1)-x ;解:由-x ≥0,得x ≤0.(2)2x +6;解:由2x +6≥0,得x ≥-3.(3)x 2;解:由x 2≥0,得x 为全体实数.(4)14-3x; 解:由4-3x>0,得x<43.(5) x -4x -3. 解:由⎩⎪⎨⎪⎧x -4≥0,x -3≠0 得x ≥4.知识点3 二次根式的实际应用8.已知一个表面积为12 dm 2的正方体,则这个正方体的棱长为(B)A .1 dm B. 2 dmC. 6 dm D .3 dm9.若一个长方形的面积为10 cm 2,它的长与宽的比为5∶1,则它的长为,02 中档题10.下列各式中:①12;②2x ;③x 3;④-5.其中,二次根式的个数有(A ) A .1个B .2个C .3个D .4个11.(2017·济宁)若2x -1+1-2x +1在实数范围内有意义,则x 满足的条件是(C)A .x ≥12B .x ≤12C .x =12D .x ≠12 12.使式子1x +3+4-3x 在实数范围内有意义的整数x 有(C ) A .5个B .3个C .4个D .2个13.如果式子a +1ab有意义,那么在平面直角坐标系中点A(a ,b)的位置在(A) A .第一象限B .第二象限C .第三象限D .第四象限 14.使式子-(x -5)2有意义的未知数x 的值有1个.15.若整数x 满足|x|≤3,则使7-x 为整数的x 的值是3或-2.16.要使二次根式2-3x 有意义,则x 的最大值是23. 17.当x 是怎样的实数时,下列各式在实数范围内有意义?(1)32x -1; 解:x>12.(2)21-x;解:x≥0且x≠1.(3)1-|x|;解:-1≤x≤1.(4)x-3+4-x.解:3≤x≤4.03综合题18.已知a,b分别为等腰三角形的两条边长,且a,b满足b=4+3a-6+32-a,求此三角形的周长.解:∵3a-6≥0,2-a≥0,∴a=2,b=4.当边长为4,2,2时,不符合实际情况,舍去;当边长为4,4,2时,符合实际情况,4×2+2=10.∴此三角形的周长为10.第2课时 二次根式的性质01 基础题知识点1 a ≥0(a ≥0)1.(2017·荆门)已知实数m ,n 满足|n -2|+m +1=0,则m +2n 的值为3.2.当x =2__017时,式子2 018-x -2 017有最大值,且最大值为2__018.知识点2 (a )2=a (a ≥0)3.把下列非负数写成一个非负数的平方的形式:(1)5 (2)3.4(3)16= (4)x ≥0). 4.计算:( 2 018)2=2__018.5.计算: (1)(0.8)2;解:原式=0.8.(2)(-34)2; 解:原式=34.(3)(52)2;解:原式=25×2=50.(4)(-26)2.解:原式=4×6=24.知识点3 a 2=a (a ≥0)6.计算(-5)2的结果是(B )A .-5B .5C .-25D .257.已知二次根式x 2的值为3,那么x 的值是(D)A .3B .9C .-3D .3或-38.当a ≥0时,化简:9a 2=3a .9.计算:(1)49;解:原式=7.(2)(-5)2;解:原式=5.(3)(-13)2; 解:原式=13.(4)6-2.解:原式=16.知识点4 代数式10.下列式子不是代数式的是(C )A .3xB .3xC .x>3D .x -311.下列式子中属于代数式的有(A )①0;②x ;③x +2;④2x ;⑤x =2;⑥x>2;⑦x 2+1;⑧x ≠2.A .5个B .6个C .7个D .8个02 中档题12.下列运算正确的是(A ) A .-(-6)2=-6B .(-3)2=9C .(-16)2=±16D .-(-5)2=-2513.若a <1,化简(a -1)2-1的结果是(D )A .a -2B .2-aC .aD .-a14.(2017·枣庄)实数a ,b 在数轴上对应点的位置如图所示,化简|a|+(a -b )2的结果是(A )A .-2a +bB .2a -bC .-bD .b15.已知实数x ,y ,m 满足x +2+|3x +y +m|=0,且y 为负数,则m 的取值范围是(A)A .m >6B .m <6C .m >-6D .m <-616.化简:(2-5)217.在实数范围内分解因式:x 2-518.若等式(x -2)2=(x -2)2成立,则x 的取值范围是x ≥2.19.若a 2=3,b =2,且ab <0,则a -b =-7.20.计算:(1)-2(-18)2; 解:原式=-2×18=-14.(2)4×10-4;解:原式=2×10-2.(3)(23)2-(42)2; 解:原式=12-32=-20.(4)(213)2+(-213)2.解:原式=213+213=423.21.比较211与35的大小.解:∵(211)2=22×(11)2=44, (35)2=32×(5)2=45,又∵44<45,且211>0,35>0,∴211<3 5.22.先化简a +1+2a +a 2,然后分别求出当a =-2和a =3时,原代数式的值.解:a +1+2a +a 2=a +(a +1)2=a +|a +1|,当a =-2时,原式=-2+|-2+1|=-2+1=-1;当a =3时,原式=3+|3+1|=3+4=7.03 综合题23.有如下一串二次根式: ①52-42;②172-82;③372-122;④652-162…(1)求①,②,③,④的值;(2)仿照①,②,③,④,写出第⑤个二次根式; (3)仿照①,②,③,④,⑤,写出第个二次根式,并化简.解:(1)①原式=9=3.②原式=225=15.③原式= 1 225=35.(3)第个二次根式为(4n2+1)2-(4n)2.化简:(4n2+1)2-(4n)2=(4n2-4n+1)(4n2+4n+1)=(2n-1)2(2n+1)2=(2n-1)(2n+1).16.2 二次根式的乘除第1课时 二次根式的乘法01 基础题知识点1 a·b =ab (a ≥0,b ≥0)1.计算2×3的结果是(B )A . 5B . 6C .2 3D .3 22.下列各等式成立的是(D ) A .45×25=8 5 B .53×42=20 5C .43×32=7 5D .53×42=20 63.下列二次根式中,与2的积为无理数的是(B )A .12B .12C .18D .32 4.计算:8×12=2. 5.计算:26×(-36)=-36.6.一个直角三角形的两条直角边分别为a =2 3 cm ,b =3 6 cm ,那么这个直角三角形的面积为2.7.计算下列各题:(1)3×5; (2)125×15; 解:原式=15. 解:原式=25=5.(3)(-32)×27; (4)3xy·1y. 解:原式=-62×7 解:原式=3x. =-614.知识点2 ab =a·b (a ≥0,b ≥0)8.下列各式正确的是( D )A .(-4)×(-9)=-4×-9B .16+94=16×94C .449=4×49D .4×9=4×9 9.(2017·益阳)下列各式化简后的结果是32的结果是( C ) A . 6 B .12 C .18 D .3610.化简(-2)2×8×3的结果是(D )A .224B .-224C .-4 6D .4 611.化简:(1)100×36=60;(2)2y312.化简:(1)4×225;解:原式=4×225=2×15=30.(2)300;解:原式=10 3.(3)16y;解:原式=4y.(4)9x2y5z.解:原式=3xy2yz.13.计算:(1)36×212;解:原式=662×2=36 2.(2)15ab2·10ab.解:原式=2a2b=a2b.02中档题14.50·a的值是一个整数,则正整数a的最小值是(B)A.1 B.2 C.3 D.515.已知m=(-33)×(-221),则有(A)A.5<m<6 B.4<m<5C.-5<m<-4 D.-6<m<-5 16.若点P(a,b)在第三象限内,化简a2b2的结果是ab.17.计算:(1) 75×20×12;解:原式=25×3×4×5×3×4=60 5.(2)(-14)×(-112);=2×72×42=28 2.(3) -32×45×2;解:原式=-3×16×2 2=-96 2.(4)200a 5b 4c 3(a >0,c >0). 解:原式=2×102·(a 2)2·a ·(b 2)2·c 2·c=10a 2b 2c 2ac.18.交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v =16df ,其中v 表示车速(单位:km /h ),d 表示刹车后车轮滑过的距离(单位:m ),f 表示摩擦因数,在某次交通事故调查中,测得d =20 m ,f =1.2,肇事汽车的车速大约是多少?(结果精确到0.01 km /h ) 解:当d =20 m ,f =1.2时,v =16df =16×20×1.2=1624=326≈78.38.答:肇事汽车的车速大约是78.38 km /h .19.一个底面为30 cm ×30 cm 的长方体玻璃容器中装满水,现将一部分水倒入一个底面为正方形、高为10 cm 的长方体铁桶中,当铁桶装满水时,容器中的水面下降了20 cm ,铁桶的底面边长是多少厘米?解:设铁桶的底面边长为x cm ,则x 2×10=30×30×20,x 2=30×30×2,x =30×30×2=30 2.答:铁桶的底面边长是30 2 cm.03 综合题 20. (教材P 16“阅读与思考”变式)阅读:古希腊的几何家海伦,在数学史上以解决几何测量问题而闻名,在他的著作《度量》一书中,给出了一个公式:如果一个三角形的三边长分别为a 、b 、c.记:p =a +b +c 2,则三角形的面积S =p (p -a )(p -b )(p -c ),此公式称为“海伦公式”.思考运用:已知李大爷有一块三角形的菜地,如图,测得AB =7 m ,AC =5 m ,BC =8 m ,你能求出李大爷这块菜地的面积吗?试试看.解:∵AB =7 m ,AC =5 m ,BC =8 m ,∴p =a +b +c 2=7+5+82=10. ∴S =p (p -a )(p -b )(p -c )=10×(10-7)×(10-5)×(10-8)=10×3×5×2=10 3.∴李大爷这块菜地的面积为10 3 m 2.第2课时 二次根式的除法01 基础题知识点1 a b =a b (a ≥0,b >0)1.计算:10÷2=(A ) A . 5B .5C .52D .102 2.计算23÷32的结果是(B ) A .1B .23C .32D .以上答案都不对 3.下列运算正确的是(D )A .50÷5=10B .10÷25=2 2C .32+42=3+4=7D .27÷3=3 4.计算:123=2. 5.计算:(1)40÷5; (2)322; 解:原式=8=2 2. 解:原式=4.(3)45÷215; (4)2a 3b ab(a>0). 解:原式= 6. 解:原式=2a.知识点2a b =a b(a ≥0,b >0) 6.下列各式成立的是(A ) A .-3-5=35=35 B .-7-6=-7-6C .2-9=2-9D .9+14=9+14=3127.实数0.5的算术平方根等于(C ) A .2B . 2C .22D .12 8.如果(x -1x -2)2=x -1x -2,那么x 的取值范围是(D )A .1≤x ≤2B .1<x ≤2C .x ≥2D .x >2或x ≤19.化简: (1)7100; 解:原式=7100=710.(2)11549; 解:原式=6449=6449=87.(3)25a 49b 2(b>0). 解:原式=25a 49b 2=5a 23b.知识点3 最简二次根式10.(2017·荆州)下列根式是最简二次根式的是(C )A .13B .0.3C . 3D .2011.把下列二次根式化为最简二次根式:(1) 2.5;解:原式=52=102.(2)85; 解:原式=2510.(3)122; 解:原式=232= 3.(4)2340. 解:原式=232×20=13×20=13×25 =530.02 中档题12.下列各式计算正确的是(C ) A .483=16B .311÷323=1C .3663=22D .54a 2b 6a =9ab 13.计算113÷213÷125的结果是(A ) A .27 5B .27C . 2D .27 14.在①14;②a 2+b 2;③27;④m 2+1中,最简二次根式有3个.15.如果一个三角形的面积为15,一边长为3,那么这边上的高为16.不等式22x -6>0的解集是x >2 17.化简或计算:(1)0.9×121100×0.36; 解:原式=9×12136×10=32×11262×10=336110 =336×1010=111020.(2) 12÷27×(-18);解:原式=-12×1827 =-4×3×2×93×9=-2 2.(3)27×123; 解:原式=3×9×123 =3×2 3=6 3.(4)12x÷25y. 解:原式=(1÷25)12x÷y =5212xy y 2 =53xy y.18.如图,在Rt △ABC 中,∠C =90°,S △ABC =18 cm 2,BC = 3 cm ,AB =3 3 cm ,CD ⊥AB 于点D.求AC ,CD 的长.解:∵S △ABC =12AC·BC =12AB·CD ,∴AC =2S △ABC BC =2183=26(cm ),CD =2S △ABCAB =21833=236(cm ).03 综合题19.阅读下面的解题过程,根据要求回答下列问题. 化简:a b -a b 3-2ab 2+a 2ba (b<a<0).解:原式=ab -a b (b -a )2a ①=a (b -a )b -a ba ②=a·1a ab ③=ab.④(1)上述解答过程从哪一步开始出现错误?请写出代号②;(2)错误的原因是什么?(3)请你写出正确的解法.解:(2)∵b<a ,∴b -a<0.∴(b -a)2的算术平方根为a -b.(3)原式=a b -ab (b -a )2a =a b -a ·(a -b)b a=-a·(-1aab) =ab.16.3 二次根式的加减第1课时 二次根式的加减01 基础题知识点1 可以合并的二次根式1.(2016·巴中)下列二次根式中,与3可以合并的是(B )A .18B .13C .24D .0.32.下列各个运算中,能合并成一个根式的是(B ) A .12- 2B .18-8C .8a 2+2aD .x 2y +xy 23.若最简二次根式2x +1和4x -3能合并,则x 的值为(C )A .-12B .34C .2D .54.若m 与18可以合并,则m 的最小正整数值是(D )A .18B .8C .4D .2知识点2 二次根式的加减5.(2016·桂林)计算35-25的结果是(A )A . 5B .2 5C .3 5D .6 6.下列计算正确的是(A )A .12-3= 3B .2+3= 5C .43-33=1D .3+22=5 27.计算27-1318-48的结果是(C ) A .1 B .-1 C .-3- 2 D .2- 38.计算2+(2-1)的结果是(A)A .22-1B .2- 2C .1- 2D .2+ 29.长方形的一边长为8,另一边长为50,则长方形的周长为10.三角形的三边长分别为20 cm ,40 cm ,45 cm ,. 11.计算:(1)23-32; 解:原式=(2-12) 3 =332.(2)16x +64x ;=(4+8)x=12x.(3) 125-25+45;解:原式=55-25+3 5 =6 5.(4)(2017·黄冈)27-6-1 3.解:原式=33-6-3 3=833- 6.02中档题12.若x与2可以合并,则x可以是(A) A.0.5 B.0.4C.0.2 D.0.1 13.计算|2-5|+|4-5|的值是(B) A.-2 B.2C.25-6 D.6-2 514.计算412+313-8的结果是(B)A.3+ 2B. 3C.33 D.3- 2习题解析15.若a ,b 均为有理数,且8+18+18=a +b 2,则a =0,b =214.16.已知等腰三角形的两边长分别为27和55,则此等腰三角形的周长为 17.在如图所示的方格中,横向、纵向及对角线方向上的实数相乘都得出同样的结果,则两个空格中的实数之和为18.计算: (1)18+12-8-27;解:原式=32+23-22-3 3=(32-22)+(23-33) =2- 3.(2) b 12b 3+b 248b ;解:原式=2b 23b +4b 23b=6b 23b.(3)(45+27)-(43+125); 解:原式=35+33-233-5 5 =733-2 5.(4) 34(2-27)-12(3-2). 解:原式=342-943-123+122 =(34+12)2-(94+12) 3 =542-114 3.19.已知3≈1.732,求(1327-413)-2(34-12)的近似值(结果保留小数点后两位). 解:原式=3-433-3+4 3 =833≈83×1.732≈4.62.03综合题20.若a,b都是正整数,且a<b,a与b是可以合并的二次根式,是否存在a,b,使a+b=75?若存在,请求出a,b的值;若不存在,请说明理由.解:∵a与b是可以合并的二次根式,a+b=75,∴a+b=75=5 3.∵a<b,∴当a=3,则b=48;当a=12,则b=27.第2课时 二次根式的混合运算01 基础题知识点1 二次根式的混合运算1.化简2(2+2)的结果是(A )A .2+2 2B .2+ 2C .4D .3 22.计算(12-3)÷3的结果是(D )A .-1B .- 3C . 3D .13.(2017·南京)计算:12+8×6 4.(2017·青岛)计算:(24+16)×6=13.5.计算:40+55 6.计算:(1)3(5-2);解:原式=15- 6.(2)(24+18)÷2;解:原式=23+3.(3)(2+3)(2+2);解:原式=8+5 2.(4)(m +2n)(m -3n).解:原式=m -mn -6n.知识点2 二次根式与乘法公式7.(2017·天津)计算:(4+7)(4-7)的结果等于9. 8.(2016·包头)计算:613-(3+1)2=-4. 9.计算:解:原式=12.(2)(2+3)(2-3);解:原式=-1.(3)(5+32)2.解:原式=23+610.10.(2016·盐城)计算:(3-7)(3+7)+2(2-2).解:原式=9-7+22-2=2 2.02 中档题11.已知a =5+2,b =2-5,则a 2 018b 2 017的值为(B )A .5+2B .-5-2C .1D .-112.按如图所示的程序计算,若开始输入的n 值为2,则最后输出的结果是(C )A .14B .16C .8+5 2D .14+ 2 13.计算:(1)(1-22)(22+1);(2)12÷(34+233); 解:原式=12÷(3312+8312) =12÷11312=23×12113 =2411. (3)(46-412+38)÷22; 解:原式=(46-22+62)÷2 2=(46+42)÷2 2=23+2.(4)24×13-4×18×(1-2)0. 解:原式=26×33-4×24×1 =22- 2= 2.14.计算: (1)(1-5)(5+1)+(5-1)2;解:原式=1-5+5+1-2 5=2-2 5.(2)(3+2-1)(3-2+1).解:原式=(3)2-(2-1)2=3-(2+1-22)=3-2-1+2 2=2 2.15. 已知a =7+2,b =7-2,求下列代数式的值:(1)ab 2+ba 2;(2)a 2-2ab +b 2;(3)a 2-b 2. 解:由题意得a +b =(7+2)+(7-2)=27,a -b =(7+2)-(7-2)=4,ab =(7+2)(7-2)=(7)2-22=7-4=3.(1)原式=ab(b +a)=3×27=67.(2)原式=(a —b)2=42=16.(3)原式=(a +b)(a —b)=27×4=87.03综合题16.观察下列运算:①由(2+1)(2-1)=1,得12+1=2-1;②由(3+2)(3-2)=1,得13+2=3-2;③由(4+3)(4-3)=1,得14+3=4-3;…(1)通过观察你得出什么规律?用含n的式子表示出来;(2)利用(1)中你发现的规律计算:(12+1+13+2+14+3+…+12 017+ 2 016+12 018+ 2 017)×( 2 018+1).解:(1)1n+1+n=n+1-n(n≥0).(2)原式=(2-1+3-2+4-3+…+ 2 017- 2 016+ 2 018- 2 017)×( 2 018+1) =(-1+ 2 018)( 2 018+1)=2 017.小专题(一) 二次根式的运算类型1 与二次根式有关的计算1.计算: (1)62×136; 解:原式=(6×13)2×6 =212=4 3.(2)(-45)÷5145; 解:原式=-45÷(5×355) =-45÷3 5=-43.(3)72-322+218; 解:原式=62-322+6 2 =122-32 2 =212 2. (4)(25+3)×(25-3).解:原式=(25)2-(3)2=20-3=17.2.计算:(1)334÷(-12123); 解:原式=[3÷(-12)]34÷53 =-6920 =-69×520×5=-95 5.=32+15 2=18 2.(3)354×(-89)÷7115; 解:原式=3×(-1)×54×89÷7115 =-348÷765=-3748×56 =-6710.(4)(12-418)-(313-40.5); 解:原式=23-2-3+2 2 =3+ 2.(5)(32-6)2-(-32-6)2.解:原式=(32-6)2-(32+6)2=18+6-123-(18+6+123)=-24 3.3.计算:(1)(2 018-3)0+|3-12|-63; 解:原式=1+23-3-2 3=-2.(2)(2017·呼和浩特)|2-5|-2×(18-102)+32. 解:原式=5-2-12+5+32 =25-1.类型2 与二次根式有关的化简求值4.已知a =3+22,b =3-22,求a 2b -ab 2的值.解:原式=a 2b -ab 2=ab(a -b).当a =3+22,b =3-22时,原式=(3+22)(3-22)(3+22-3+22) =4 2.5.已知实数a ,b ,定义“★”运算规则如下:a ★b =⎩⎨⎧b (a ≤b ),a 2-b 2(a>b ),求7★(2★3)的值. 解:由题意,得2★3= 3. ∴7★(2★3)=7★3=7-3=2.6.已知x =2+3,求代数式(7-43)x 2+(2-3)x +3的值.解:当x =2+3时, 原式=(7-43)×(2+3)2+(2-3)×(2+3)+ 3=(7-43)×(7+43)+4-3+ 3=49-48+1+ 3=2+ 3.7.(2017·襄阳)先化简,再求值:(1x +y +1x -y )÷1xy +y 2,其中x =5+2,y =5-2. 解:原式=2x (x +y )(x -y )·y(x +y) =2xy x -y . 当x =5+2,y =5-2时, 原式=2(5+2)(5-2)5+2-5+2=12.8.小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2,善于思考(1)当a ,b ,m ,n 均为正整数时,若a +b 3=(m +n 3)2,用含m ,n 的式子分别表示a ,b ,得a =m 2+3n 2,b =2mn ;(2)利用所探索的结论,找一组正整数a ,b ,m ,n 填空:4+(1+2;(答案不唯一)(3)若a +43=(m +n 3)2,且a ,m ,n 均为正整数,求a 的值.解:根据题意,得⎩⎪⎨⎪⎧a =m 2+3n 2,4=2mn. ∵2mn =4,且m ,n 为正整数,∴m =2,n =1或m =1,n =2.∴a =7或13.章末复习(一) 二次根式01 基础题知识点1 二次根式的概念及性质1.(2016·黄冈)在函数y =x +4x中,自变量x 的取值范围是(C) A .x >0 B .x ≥-4C .x ≥-4且x ≠0D .x >0且x ≠-42.(2016·自贡)下列根式中,不是最简二次根式的是(B) A.10 B.8C. 6D. 23.若xy <0,则x 2y 化简后的结果是(D )A .x yB .x -yC .-x -yD .-x y知识点2 二次根式的运算4.与-5可以合并的二次根式的是(C )A .10B .15C .20D .255.(2017·十堰)下列运算正确的是(C )A .2+3= 5B .22×32=6 2C .8÷2=2D .32-2=3 6.计算5÷5×15所得的结果是1. 7.计算:(1)(2017·湖州)2×(1-2)+8; 解:原式=2-22+2 2=2.(2)(43+36)÷23;解:原式=43÷23+36÷2 3=2+322.(3)1232-275+0.5-3127; 解:原式=22-103+22-33=(2+12)×2+(-10-13)× 3 =52-31 3.=9×2-4×3=6.知识点3 二次根式的实际应用8.两个圆的圆心相同,它们的面积分别是25.12和50.24.求圆环的宽度d.(π取3.14,结果保留小数点后两位)解:d =50.243.14-25.123.14=16-8=4-2 2≈1.17.答:圆环的宽度d 约为1.17.02 中档题9.把-a -1a中根号外面的因式移到根号内的结果是(A ) A .-a B .- a C .--aD . a 10.已知x +1x =7,则x -1x的值为(C) A. 3B .±2C .± 3 D.711.在数轴上表示实数a 的点如图所示,化简(a -5)2+|a -2|的结果为3.12.(2016·青岛)计算:32-82=2. 13.计算:(3+2)3×(3-2)3=-1. 14.已知x =5-12,则x 2+x +1=2. 15.已知16-n 是整数,则自然数n 所有可能的值为0,7,12,15,16.16.计算:(1)(3+1)(3-1)-16+(12)-1; 解:原式=3-1-4+2=0.(2)(3+2-6)2-(2-3+6)2.解:原式=(3+2-6+2-3+6)×(3+2-6-2+3-6)=22×(23-26)=46-8 3.17.已知x =3+7,y =3-7,试求代数式3x 2-5xy +3y 2的值.解:当x =3+7,y =3-7时,3x 2-5xy +3y 2=3(x 2-2xy +y 2)+xy=3(x -y)2+xy=3(3+7-3+7)2+(3+7)×(3-7)=3×28-4=80.18.教师节要到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画准备送给老师,其中一张面积为800 cm 2,另一张面积为450 cm 2,他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有1.2 m 长的金彩带,请你帮助算一算,他的金彩带够用吗?如果不够,还需买多长的金彩带?(2≈1.414,结果保留整数)解:正方形壁画的边长分别为800 cm ,450 cm . 镶壁画所用的金彩带长为4×(800+450)=4×(202+152)=1402≈197.96(cm).因为1.2 m=120 cm<197.96 cm,所以小明的金彩带不够用,197.96-120=77.96≈78(cm).故还需买约78 cm长的金彩带.03综合题19.已知a,b,c满足|a-8|+b-5+(c-18)2=0.(1)求a,b,c的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,请求出三角形的周长;若不能,请说明理由.解:(1)由题意,得a-8=0,b-5=0,c-18=0,即a=22,b=5,c=3 2.(2)∵22+32=52>5,∴以a,b,c为边能构成三角形.三角形的周长为22+32+5=52+5.。

人教版八年级下册 第16章《二次根式》单元培优测试卷(解析版)

人教版八年级下册 第16章《二次根式》单元培优测试卷(解析版)

第16章《二次根式》单元培优测试卷、选择题工.下列各式成立的是正=a D J(-3)〜=3A.7H F=-2【1题答案】【答案】D【解析】【分析】根据二次根式的性质化简即可.【详解】A.J(_2)2 =2,故本选项错误;B.(") =4,故本选项错误;C.J后=同,故本选项错误;D.J(-3『=3,故本选项正确.故选D.【点睛】本题考查了二次根式的基本性质:①〃K); V^>()(双重非负性).②(&)2%(生0)(任何一个非负数都可以写成一个数的平方的形式).③日=a(。

加)(算术平方根的意义).2.下列二次根式中,是最简二次根式的是()2B.耳【2题答案】【答案】A【解析】【分析】直接利用最简二次根式的定义分析得出答案.【详解】A.且是最简二次根式,故此选项正确;2D ・ 阮二xH ,故此选项错误•故选A.【点睛】本题考查了最简二次根式,正确把握最简二次根式的定义是解题的关键.3 .若二次根式:7有意义,则x 的取值范围是()A. x> —B. —C. —D. xW5 5 5 5【3题答案】【答案】B【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得,5x- 1>0,解得,[,故选人【点睛】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键. 4.如图,从一个大正方形中裁去面积为30cm2和48 cm2的两个小正方形,则余下部分的面积为()A. 78 cm 2B. + \/30) cm 2C. 12M cm 2 【4题答案】【答案】P【解析】 【分析】根据两小正方形的面积求出大正方形的边长及面积,然后减去两个小正方形的面积,即可求出阴影 c.D. 24M cm 2故此选项错误;部分的面积进而得出答案.【详解】解:从一个大正方形中裁去面积为300层和48cm2的两个小正方形,大正方形的边长是同+ A =同+ ,留下部分(即阴影部分)的面积是:2(46 +而)-30-48 = 24V10(c/722)故选:D.【点睛】此题主要考查了二次根式的应用,正确求出大正方形的面积是关键.5.已知百砺是正整数,则满足条件的最大负整数m为()A. -10B. -40C. -90D. -160 【5题答案】【答案】A【解析】【详解】依题意可得,T0m>0且是完全平方数,因此可求得mVO,所以满足条件的m的值为TO.故选A.6.已知X=g + 1, —则/+个+)2的值为( )A 4 B. 6 C. 8 D. 1() 【6题答案】【答案】P【解析】【分析】根据f +盯+),2=(工2+2个,+,2)_孙=。

人教版八年级数学下册第十六章《二次根式》 单元同步检测试题(含答案)

人教版八年级数学下册第十六章《二次根式》 单元同步检测试题(含答案)

第十六章《二次根式》单元检测题一、单选题(将唯一正确答案的代号填在题后括号内,每题3分,共30分)1.二次根式13a -中,字母a 的取值范围是( ) A .13a > B .13a ≥ C .13a < D .13a ≤ 2.下列各式中,不正确的是( )A .233(3)(3)->-B .C .2221a a +>+D .2(5)5-=3.实数a ,b 在数轴上的位置如图所示,则化简﹣+b 的结果是( )A .1B .b+1C .2aD .1﹣2a4.已知2252a b ab +=,且a >b >0,则a b a b +-的值为( ) A .3 B .3± C .2 D .2±5.下列计算正确的是()A .8-3= 5B .32+2=4 2C .18÷3=6D .6×(-3)=3 2 6.下列运算正确的是( )A .=9B .=C .÷=D .3×=277.下列二次根式中,是最简二次根式的是( ).A .2xyB 2abC 12D 422x x y +8.已知n 20是整数,则满足条件的最小正整数n 为( )A.2B.4C.5D.89.若12112+-+-x x 在实数范围内有意义,则x 满足的条件是( )A.x ≧21B.x≤21 C,x=21 D.x≠21 10化简253+,甲、乙两同学的解法如下:( ) 甲:25)25)(25()25(3253-=-+-=+ 乙:2525)25)(25(253-=+-+=+ 对于他们的解法,判断正确的是( )A.甲解法正确,乙解法错误B.甲解法错误,乙解法正确C.甲、乙两人的解法都正确D.甲、乙两人的解法都错误二、填空题(将正确答案填在题中横线上,每题3分,共24分)11. 比校大小:215-________21(填“>"<"或“=”) 12计算:(1)(4+7)(4-7)=________(2) 12+8×6=________13.若最简根式b a a +3与b a 2+可以合并,则ab=________14设2=a,3=b ,用含ab 的式子表示54.0.结果是________.15已知x=2+3,y=2-3,则(x+y 1)(y+x 1)=________16.已知20202020m a a =---,则m a =_____________.17.若21122y x x =-+-+,则y x 的值为_________.18.当a=__________时,最简二次根式1323a -和24a +可以合并.三、解答题(本题共有8小题,共66分)19.计算:3×÷2.20.计算题:(1)()×; (2)(+1)(﹣1)﹣()2.21.化简:;22.先化简,再求值:(a ﹣)(a +)﹣a (a ﹣3),其中a =+.23.已知:a ﹣b=2+3b ﹣c=23.求:(1)a ﹣c 的值(2)2222a b c ab ac bcab bc ac b ++---+--的值.24.阅读材料:规定初中考试不能使用计算器后,小明是这样解决问题的:已知a 23+,求2281a a -+的值.他是这样分析与解的:∵a 23+2323(23)(23)-=+- ∴23a -=-, ∴2(2)3,a -= 2443a a -+=∴241a a -=-, ∴2281a a -+=2(24)1a a -+=2(1)11⨯-+=-.请你根据小明的分析过程,解决如下问题:(1)若a 21-直接写出2481a a -+的值是 .(2)使用以上方法化简:315375121119++++++25.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式. 比如:22242332313231131-=-+=-⨯⨯+=-()().善于动脑的小明继续探究: 当a b m n 、、、为正整数时,若222a b m n +=+(),则有222(2)+22a b m n mn +=+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若233a b m n +=+(),请用含有m n 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:1343-=( - 23);(3)若2655a m n +=+(),且a m n 、、为正整数,求a 的值.示的等式.参考答案1.D.2.B.3.A4.A.5.B6.C7.A.8.C.9.C10.C11.>12.(1)9 (2)3613.114.0.3ab15.416.117.1 418.319.解:原式=(3×÷2),=,=.20.解:(1)===;(2) = = =.21.解:原式=[3(a +1)﹣2a ﹣a ]÷ =3÷ =.22.解:原式=a 2﹣2﹣a 2+3a=3a ﹣2,当a =+时,原式=3(+)﹣2=3.23.(1)4;(2)1524.(1)5;(2)5.25.(1)223a m n =+,2b mn =;(2)21343=(123)--;(3)14a =或46.。

人教版二次根式单元达标自检题检测试卷

人教版二次根式单元达标自检题检测试卷

一、选择题1.下列各式中,运算正确的是( )A 2=-B 4=C =D .2=2.下列计算正确的是( )A .()222a b a b -=- B .()322x x 8x ÷=+C .1a a a a÷⋅= D 4=-3.,a ==b a 、b 可以表示为 ( ) A .10a b+ B .10-b aC .10ab D .b a4.若2a <3=( )A .5a -B .5a -C .1a -D .1a -- 5.下列各式中,运算正确的是( )A =﹣2B +C 4D .=26.下列运算正确的是( )A =B =C .3=D 2= 7.已知226a b ab +=,且a>b>0,则a ba b+-的值为( )A B C .2D .±28.若a ,b =,则a b 的值为( )A .12B .14C .321+D9.x 的取值范围是( )A .x ≥1B .x >1C .x ≤1D .x <110.a =-成立,那么a 的取值范围是( ) A .0a ≤B .0a ≥C .0a <D .0a >11.230x -=成立的x 的值为( )A .-2B .3C .-2或3D .以上都不对12.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b cp ++=,那么三角形的面积为()()()S p p a p b p c =---如图,在ABC ∆中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若5a =,6b =,7c =,则ABC ∆的面积为( )A .66B .63C .18D .192二、填空题13.定义:对非负实数x “四舍五入”到个位的值记为()f x z , 即:当n 为非负整数时,如果1122n x n -<+≤,则()f x n =z .如:(0)(0.48)0f f ==z z ,(0.64)(1.49)1f f ==z z ,(4)(3.68)4f f ==z z ,试解决下列问题:①(3)f =z __________;②2(33)f +=z __________; ③222222(11)(22)(22)(33)(33)(44)f f f f f f ++++⋅++⋅++⋅+z z z z z z22(20172017)(20182018)f f +=+⋅+z z __________.14.设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第二个正方形AEGH ,如此下去…….⑴记正方形ABCD 的边长为11a =,按上述方法所作的正方形的边长依次为234,,,,n a a a a ,请求出234,,a a a 的值;⑵根据以上规律写出n a 的表达式.15.观察下列等式: 第1个等式:a 12112=+,=,第2个等式:a,第3个等式:a3=,第4个等式:a42…按上述规律,回答以下问题:(1)请写出第n个等式:a n=__________.(2)a1+a2+a3+…+a n=_________16.,则x+y=_______.17.已知a,b是正整数,若有序数对(a,b)使得的值也是整数,则称(a,b)是的一个“理想数对”,如(1,4)使得=3,所以(1,4)是的一个“理想数对”.请写出其他所有的“理想数对”: __________.有意义的x的取值范围是______.18.使式子2x+19.n的最小值为___y=,则2xy的值为__________.20.3三、解答题-+21.21【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法.【详解】2-++⨯=1)2(3=121. 【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.小明在解决问题:已知a2a 2-8a +1的值,他是这样分析与解答的:因为a=2,所以a -2所以(a -2)2=3,即a 2-4a +4=3. 所以a 2-4a =-1.所以2a 2-8a +1=2(a 2-4a)+1=2×(-1)+1=-1. 请你根据小明的分析过程,解决如下问题: (1)计算:= - . (2)… (3)若a,求4a 2-8a +1的值.【答案】 ,1;(2) 9;(3) 5 【分析】(11==;(2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求解; (3)首先化简a ,然后把所求的式子化成()2413a --代入求解即可. 【详解】(1)计算:1=; (2)原式)1...11019=++++==-=;(3)1a ===,则原式()()224213413a a a =-+-=--,当1a =时,原式2435=⨯-=.【点睛】本题考查了二次根式的化简求值,正确读懂例题,对根式进行化简是关键.23.先阅读材料,再回答问题:因为)111=1=;因为1=,所以=1== (1= ,= ; (2⋅⋅⋅+的值.【答案】(12)9 【分析】(1)仿照例子,由1+=的值;由1+=1的值;(2)根据(1)中的规律可将每个二次根式分母有理化,可转化为实数的加减法运算,再寻求规律可得答案. 【详解】解:(1)因为1-=;因为1=1(2⋅⋅⋅+1=+⋅⋅⋅1=1019=-=.【点睛】本题考查了分母有理化,分子分母都乘以分母这两个数的差进行分母有理化是解题关键.24.(112=3==;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=5==;(2n=;(3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④5=25,(2)如果n 为正整数,用含n (3)证明:∵n 是正整数,n .n.故答案为5=25 n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.25.计算:(1﹣(2)(3)244x -﹣12x -.【答案】(1)2(3)-12x + 【解析】分析:(1)根据二次根式的运算,先把各二次根式化为最简二次根式,再合并同类二次根式即可;(2)根据乘法的分配律以及二次根式的性质进行计算即可;(3)根据异分母的分式的加减,先因式分解,再通分,然后按同分母的分式进行加减计算,再约分即可.详解:(1(2)(3)24142x x --- =41(2)(2)2x x x -+--=42(2)(2)(2)(2)x x x x x +-+-+-=2(2)(2)x x x -+- =12x -+ 点睛:此题主要考查了二次根式的运算和分式的加减运算,熟练应用运算法则和运算律以及二次根式的性质进行计算是解题关键.26.已知1,2y =. 【答案】1 【解析】 【分析】根据已知和二次根式的性质求出x、y的值,把原式根据二次根式的性质进行化简,把x、y的值代入化简后的式子计算即可.【详解】1-8x≥0,x≤1 88x-1≥0,x≥18,∴x=18,y=12,∴原式=259532-=-==1 44222.【点睛】本题考查的是二次根式的化简求值,把已知条件求出x、y,把要求的代数式进行正确变形是解题的关键,注意因式分解在化简中的应用.27.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如3、3+1这样的式子,其实我们还可以将其进一步化简:535==33333⨯⨯;22(31)2(31)=313+1(3+1)(31)(3)1⨯-⨯-==---.以上这种化简过程叫做分母有理化.3+1还可以用以下方法化简:22(3)1(3+1)(31)=313+13+13+13+1--===-.(1)请用其中一种方法化简1511-;(2)化简:++++3+15+37+599+97.【答案】(1) 15+11;(2) 311-1.【分析】(1)运用了第二种方法求解,即将4转化为1511-;(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案.【详解】(1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键.28.计算:(1)+(2(33+-【答案】(1)2) -10 【分析】(1)原式二次根式的乘除法法则进行计算即可得到答案;(1)原式第一项运用二次根式的性质进行化简,第二项运用平方差公式进行化简即可. 【详解】解:(1)+===(2(33+-=5+9-24=14-24 =-10. 【点睛】此题主要考查了二次根式的化简,熟练掌握二次根式的性质是解答此题的关键.29.(1)计算:(2)先化简,再求值:(()8a a a a +--,其中14a =.【答案】(1)2)82-a ,【分析】(1)分别根据二次根式的除法法则、二次根式的性质、二次根式的乘法法则计算和化简各项,再合并同类二次根式即可;(2)分别根据平方差公式和单项式乘以多项式的法则计算各项,再把a 的值代入化简后的式子计算即可. 【详解】(1)==;(2)(()8a a a a +--2228a a a =--+82a =-,当14a =时,原式1824⎫=⨯-=⎪⎭.【点睛】本题考查了整式的乘法和二次根式的混合运算,属于常考题型,熟练掌握基本知识是解题的关键.30.先阅读下面的解题过程,然后再解答.a ,b ,使a b m +=,ab n =,即22m +==0)a b ==±>.这里7m =,12n =, 由于437+=,4312⨯=,所以22+==,2===.. 【答案】见解析 【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法. 【详解】根据题意,可知13m =,42n =, 由于7613+=,7642⨯=,所以2213+=,====【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】=(a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可. 【详解】A 2=,故原题计算错误;B =,故原题计算正确;C =D 、2不能合并,故原题计算错误; 故选B . 【点睛】此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、性质及加减法运算法则.2.B解析:B 【分析】根据完全平方公式,整式的除法,分式的乘除法,二次根式的性质和化简运算法则逐一计算作出判断. 【详解】解: A .()222a b a 2ab b -=-+,选项错误; B .()3322x x 8x x 8x ÷=÷=,选项正确; C .111a a 1a a a÷⋅=⋅=,选项错误;D 44=-=,选项错误.故选:B .3.C解析:C 【分析】化简即可. 【详解】=1010ab. 故选C . 【点睛】的形式. 4.D解析:D 【分析】||a =,然后再根据a 的范围去掉绝对值后即可求解. 【详解】|2|=-a ,且2a <,∴|2|2=-=-+a a ,原式|2|3231=--=-+-=--a a a , 故选:D . 【点睛】||a =这个公式是解决本题的关键.5.C解析:C 【分析】根据二次根式的性质对A 进行判断;根据二次根式的加减法法则对B 、D 进行判断;根据二次根式的乘法法则对C 进行判断. 【详解】A 、原式=2,故该选项错误;B =,故该选项错误;C 4,故该选项正确;D 故选:C . 【点睛】此题主要考查了二次根式的运算及性质,熟练掌握二次根式乘法、性质及加减法运算法则是解题关键.6.D解析:D 【分析】利用二次根式的加减法对A 、C 进行判断;利用二次根式的性质对B 进行判断;利用二次根式的除法法则对D 进行判断. 【详解】解:A A 选项错误;B =B 选项错误;C 、=C 选项错误;D 2=,所以D 选项正确. 故选:D . 【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7.A解析:A 【解析】【分析】已知a 2+b 2=6ab ,变形可得(a+b )2=8ab ,(a-b )2=4ab ,可以得出(a+b )和(a-b )的值,即可得出答案. 【详解】∵a 2+b 2=6ab , ∴(a+b )2=8ab ,(a-b )2=4ab , ∵a >b >0,∴∴a b a b +-= 故选A.【点睛】本题考查了分式的化简求值问题,观察式子可以得出应该运用完全平方式来求解,要注意a 、b 的大小关系以及本身的正负关系.8.B解析:B【解析】 【分析】 将a可化简为关于b 的式子,从而得到a 和b 的关系,继而能得出a b 的值. 【详解】 a=b 44=.∴14a b =. 故选:B . 【点睛】本题考查二次根式的乘除法,有一定难度,关键是在分母有理化时要观察b 的形式.9.A解析:A 【分析】根据二次根式有意义的条件:被开方数x -1≥0,解不等式即可. 【详解】 解:根据题意,得 x -1≥0, 解得x ≥1. 故选A . 【点睛】本题考查的知识点为:二次根式的被开方数是非负数.10.A解析:A 【分析】由根号可知等号左边的式子为正,所以右边的式子也为正,所以可得答案. 【详解】得-a≥0,所以a≤0,所以答案选择A 项. 【点睛】本题考查了求解数的取值范围,等号两边的值相等是解答本题的关键.11.B解析:B 【分析】根据二次根式有意义的条件以及二次根式的乘法进行分析即可得答案.【详解】 x 30-=,0=0=, ∴x=-2或x=3,又∵2030x x +≥⎧⎨-≥⎩, ∴x=3, 故选B. 【点睛】本题考查了二次根式的乘法以及二次根式有意义的条件,熟练掌握相关知识是解题的关键.12.A解析:A 【分析】利用阅读材料,先计算出p 的值,然后根据海伦公式计算ABC ∆的面积; 【详解】7a =,5b =,6c =.∴56792p ++==,∴ABC ∆的面积S ==故选A . 【点睛】考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.二、填空题13.3 【解析】 1、;2、根据题意,先推导出等于什么, (1)∵, ∴,(2)再比较与的大小关系, ①当n=0时,; ②当为正整数时,∵, ∴, ∴,综合(1)、(2)可得:,解析:320172018【解析】1、(1.732)2z z f f ==;2、根据题意,先推导出f 等于什么, (1)∵2221142n n n n n ⎛⎫+<++=+ ⎪⎝⎭,12n <+, (2)12n -的大小关系,①当n=012n >-; ②当n 为正整数时,∵2212n n n ⎛⎫+-- ⎪⎝⎭1204n =->,∴2212n n n ⎛⎫+>- ⎪⎝⎭,12n >-,综合(1)、(2)可得:1122n n -<+,∴f n =z ,∴3f =z .3、∵f n =z , ∴(2017zf +111112233420172018=++++⨯⨯-⨯111111112233420172018=-+-+-++- 112018=- 20172018=. 故答案为(1)2;(2)3;(3)20172018. 点睛:(1)解第②小题的关键是应用“完全平方公式”和“作差的方法”分别证明到当n 为非负整数时,1122n n -<+,从而得到f n =z ;(2)解题③的要点是:当n 为正整数时,111(1)1n n n n =-++.14.(1)a2=,a3=2,a4=2;(2)an =(n 为正整数). 【解析】(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°. ∴在Rt △ABC 中,AC ===.同理:AE =2,EH =2,解析:(1)a 2,a 3=2,a 4=;(2)a n n 为正整数). 【解析】(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,ACAE =2,EH =,…,即a 2a 3=2,a 4= (2)an n 为正整数).15.【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案. 【详解】解:∵第1个等式:a1=, 第2个等式:a2=, 第3个等式:=1-【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案. 【详解】解:∵第1个等式:a 11=,第2个等式:a 2=,第3个等式:a 3,第4个等式:a 42=, ……∴第n==(2)123(21)(32)(23)(1)n a a a a n n +++=-+-+-+++-=121n +++=1-;1-. 【点睛】本题考查了二次根式的加减混合运算,以及数字规律问题,解题的关键是掌握题目中的规律,从而进行解题16.8+2 【解析】根据配方法,由完全平方公式可知x+y==()2-2,然后把+=+,=-整体代入可得原式=(+)2-2(-)=5+3+2-2+2=8+2. 故答案为:8+2.解析:【解析】根据配方法,由完全平方公式可知x+y=2222+=+-)2整体代入可得原式=2-2)故答案为:17.(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9) 【解析】试题解析:当a=1,=1,要使为整数,=1或时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,解析:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9) 【解析】试题解析:当a =1,要使或12时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,当a =412,要使+或12时,分别为3和2,得出(4,1)和(4,4)是的“理想数对”,当a =913,要使16时,=1,得出(9,36)是的“理想数对”,当a =1614,要使14时,=1,得出(16,16)是的“理想数对”,当a =3616,要使13时,=1,得出(36,9)是的“理想数对”, 即其他所有的“理想数对”:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9).故答案为:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9).18.且 【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得. 【详解】 由题意得:, 解得且, 故答案为:且. 【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分解析:3x ≤且2x ≠- 【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得. 【详解】由题意得:2030x x +≠⎧⎨-≥⎩,解得3x ≤且2x ≠-, 故答案为:3x ≤且2x ≠-. 【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键.19.5 【分析】因为是整数,且,则5n 是完全平方数,满足条件的最小正整数n 为5. 【详解】 ∵,且是整数,∴是整数,即5n 是完全平方数; ∴n 的最小正整数值为5. 故答案为5. 【点睛】 主要考查了解析:5 【分析】,则5n 是完全平方数,满足条件的最小正整数n 为5. 【详解】∴是整数,即5n 是完全平方数; ∴n 的最小正整数值为5. 故答案为5. 【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.20.【解析】试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=,y=-3,代入可得=-2××3=-15. 解析:15-【解析】试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=52,y=-3,代入可得2xy =-2×52×3=-15. 三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版二次根式单元检测一、选择题1.下列计算正确的是( ) A .()222a b a b -=- B .()322x x 8x ÷=+ C .1a a a a÷⋅= D .()244-=-2.下列根式中,最简二次根式是( ) A .13B .0.3C .3D .83.下列各式中,运算正确的是( ) A .2(2)-=﹣2B .2+8=10C .2×8=4D .22﹣2=24.下列运算正确的是 ( ) A .3223÷= B .235+= C .233363⨯= D .18126-=5.计算()21273632÷+⨯--的结果正确的是( ) A .3B .3C .6D .33-6.已知m 、n 是正整数,若2m +5n是整数,则满足条件的有序数对(m ,n )为( ) A .(2,5) B .(8,20)C .(2,5),(8,20)D .以上都不是7.当4x =时,22232343124312x x x x x x -+--+++的值为( )A .1B .3C .2D .3 8.若实数a ,b 满足+=3,﹣=3k ,则k 的取值范围是( ) A .﹣3≤k ≤2B .﹣3≤k ≤3C .﹣1≤k ≤1D .k ≥﹣19.12的下列说法中错误的是( ) A 1212的算术平方根 B .3124<< C 12不能化简D 12是无理数10.2a a =-成立,那么a 的取值范围是( ) A .0a ≤ B .0a ≥C .0a <D .0a >11.已知:23-,23+,则a 与b 的关系是( ) A .相等B .互为相反数C .互为倒数D .平方相等12.有意义,则实数m 的取值范围是( )A .m >﹣2B .m >﹣2且m ≠1C .m ≥﹣2D .m ≥﹣2且m ≠1二、填空题13.将(0)a a -<化简的结果是___________________.14.已知112a b +=,求535a ab b a ab b++=-+_____.15.甲容器中装有浓度为a ,乙容器中装有浓度为b ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.16..17.已知,n=1的值________.18.若a 、b 为实数,且b +4,则a+b =_____.19.函数y 中,自变量x 的取值范围是____________. 20.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b cp ++=,那么三角形的面积S =ABC 中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若4a =,5b =,7c =,则ABC 面积是_______. 三、解答题21.我国南宋时期有个著名的数学家秦九韶提出了一个利用三角形的三边求三角形的面积的公式,若三角形三边为a b c 、、,则此三角形的面积为:1S = 同样古希腊有个几何学家海伦也提出了一个三角形面积公式:2S =2a b cp ++=(1)在ABC 中,若4AB =,5BC =,6AC =,用其中一个公式求ABC 的面积.(2)请证明:12S S【答案】(1)4;(2) 证明见解析【分析】(1)将4AB =,5BC =,6AC =代入1S = (2)对1S 和2S 分别平方,再进行整理化简得出2212S S =,即可得出12S S .【详解】解:(1)将4AB =,5BC =,6AC =代入1S =得:4S == (2)222222211[()]24a b a S c b +-=-=222222)1(22(4)a b c a b c ab ab +-+--+ =2222()2(21)4c a c a b b +⋅---⋅ =()(1()()16)c a b c a b a b c a b c +-++-++- 22()()()S p p a p b p c =---∵2a b cp ++=, ∴22()(2)(222)S a a b c a b c a b c a b c b c +++++++-+=-- =2222a b c b c a a c b a b c +++-+-+-⋅⋅⋅ =1()()()()16a b c b c a a c b a b c +++-+-+- ∴2212S S =∵10S >,20S >, ∴12S S .【点睛】本题考查了二次根式的运算,解题的关键是理解题中给出的公式,灵活运用二次根式的运算性质进行运算.22.先观察下列等式,再回答问题:=1+1=2;12=2 12;=3+13=313;… (1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.【答案】(1=144+=144;(2=211n n n n++=,证明见解析. 【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,=414+=414;(2=n 211n n n++=”,再利用222112n n n n++=+()()开方即可证出结论成立.【详解】(1=1+1=2=212+=212;=313+=313;里面的数字分别为1、2、3,= 144+= 144.(2=1+1=2,=212+=212=313+=313=414+=414= 211n n n n++=.证明:等式左边==n 211n n n++==右边.=n 211n n n++=成立. 【点睛】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律=n 211n n n++=”.解决该题型题目时,根据数值的变化找出变化规律是关键.23.(112=3==;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=55=6=;(2n=;(3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④=25,(2)如果n 为正整数,用含n (3)证明:∵n 是正整数,n .n.故答案为5=25 n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.24.已知1,2y =. 【答案】1 【解析】 【分析】根据已知和二次根式的性质求出x 、y 的值,把原式根据二次根式的性质进行化简,把x 、y 的值代入化简后的式子计算即可. 【详解】 1-8x≥0,x≤188x-1≥0,x≥18,∴x=18,y=12,∴原式532-==1222. 【点睛】本题考查的是二次根式的化简求值,把已知条件求出x 、y ,把要求的代数式进行正确变形是解题的关键,注意因式分解在化简中的应用.25.观察下列等式:1==;==== 回答下列问题:(1(2)计算:【答案】(1(2)9 【分析】(1)根据已知的3=-n=22代入即可求解;(2)先利用上题的规律将每一个分数化为两个二次根式的差的形式,再计算即可.【详解】解:(1=(2+99+=1100++-=1=10-1=9.26.计算:(1)0 1 2⎛⎫ ⎪⎝⎭(2)(4【答案】(1)-5;(2)9【分析】(1)第一项利用算术平方根的定义计算,后一项利用零指数幂法则计算,即可得到结果;(2)利用平方差公式计算即可.【详解】(1)0 1 2⎛⎫ ⎪⎝⎭41=--,5=-;(2)(4167=-9=.【点睛】本题考查了二次根式的混合运算以及零指数幂,熟练掌握平方差公式是解题的关键.27.计算:(1(2|a﹣1|,其中1<a【答案】(1)1;(2)1【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a 的取值范围进行化简. 【详解】解:(1-1=2-1=1(2)∵1<a ,a ﹣1=2﹣a +a ﹣1=1. 【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.28.(1)计算:21)-(2)已知a ,b 是正数,4a b +=,8ab =【答案】(1)5-2 【分析】(1)根据完全平方公式、平方差公式可以解答本题;(2)先将所求式子化简,然后将a+b=4,ab=8代入化简后的式子即可解答本题. 【详解】解:(1)原式21)=-(31)(23)=---5=-;(2)原式=== a ,b 为正数, ∴原式=把4a b +=,8ab =代入,则原式== 【点睛】本题考查二次根式的化简求值,完全平方公式、平方差公式,解答本题的关键是明确二次根式化简求值的方法.29.(1|5-+;(2)已知实数a 、b 、c 满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4 【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可; (2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可. 【详解】解:(15-+5)=+5=+5=(2)由题意可知:5050b b -≥⎧⎨-≥⎩, 解得5b =由此可化简原式得,30a +=30a ∴+=,20c -=3a ∴=-,2c =22((534b a ∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.30.计算:(1 ;(2)))213【答案】(1)2)1-. 【分析】(1)根据二次根式的混合运算法则可以算得答案. (2)结合整式的乘法公式和二次根式的运算法则计算. 【详解】(1)原式==(2)原式=212---=1-. 【点睛】本题考查二次根式的运算,熟练掌握二次根式的意义、性质和运算法则是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据完全平方公式,整式的除法,分式的乘除法,二次根式的性质和化简运算法则逐一计算作出判断. 【详解】解: A .()222a b a 2ab b -=-+,选项错误; B .()3322x x 8x x 8x ÷=÷=,选项正确; C .111a a 1a a a÷⋅=⋅=,选项错误;D 44=-=,选项错误.故选:B .2.C解析:C 【分析】根据最简二次根式的定义,可得答案. 【详解】A 、被开方数含分母,故选项A 不符合题意;B 、被开方数是小数,故选项B 不符合题意;C 、被开方数不含开的尽的因数,被开方数不含分母,故C 符合题意;D 、被开方数含开得尽的因数,故D 错误不符合题意; 故选:C . 【点睛】本题考查了最简二次根式,被开方数不含开的尽的因数或因式,被开方数不含分母.3.C解析:C【分析】根据二次根式的性质对A进行判断;根据二次根式的加减法法则对B、D进行判断;根据二次根式的乘法法则对C进行判断.【详解】A、原式=2,故该选项错误;B=,故该选项错误;C4,故该选项正确;D故选:C.【点睛】此题主要考查了二次根式的运算及性质,熟练掌握二次根式乘法、性质及加减法运算法则是解题关键.4.A解析:A【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】A、3=,故选项A正确;B B错误;C、18=,故选项C错误;D=D错误;故选:A.【点睛】本题考查了二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.5.A解析:A【分析】分别根据二次根式的除法和乘法法则以及二次根式的平方计算每一项,再合并即可.【详解】=+=解:原式333故选:A.【点睛】本题主要考查了二次根式的混合运算,属于基础题型,熟练掌握二次根式的乘除法则是解题的关键.6.C解析:C【分析】根据二次根式的性质分析即可得出答案.【详解】解:∵m 、n 是正整数, ∴m=2,n=5或m=8,n=20,当m=2,n=5时,原式=2是整数;当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m ,n )为(2,5)或(8,20),故选:C .【点睛】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.7.A解析:A【分析】根据分式的运算法则以及二次根式的性质即可求出答案.【详解】解:原式2223232323x x x x112323x x 将4x =代入得, 原式11423423 221113133113 133131131=.故选:A.【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.8.C解析:C【解析】依据二次根式有意义的条件即可求得k的范围.解:若实数a,b满足+=3,又有≥0,≥0,故有0≤≤3 ①,0≤≤3,则﹣3≤-≤0 ②+②可得﹣3≤﹣≤3,又有﹣=3k,即﹣3≤3k≤3,化简可得﹣1≤k≤1.故选C.点睛:本题主要考查了二次根式的意义和性质.解题的关键在于二次根式具有双非负性,即≥0(a≥0),利用其非负性即可得到0≤≤3,0≤≤3,并对0≤≤3变形得到﹣3≤-≤0,进而即可转化为关于k的不等式组,求出k的取值范围.9.C解析:C【分析】根据算术平方根的定义,无理数的定义及估值,二次根式的化简依次判断.【详解】A1212的算术平方根,故该项正确;B、3124<<,故该项正确;C1223=D1223=12是无理数,故该项正确;故选:C.【点睛】此题考查算术平方根的定义,无理数的定义及估值,二次根式的化简,熟练掌握各知识点并运用解题是关键.10.A解析:A【分析】由根号可知等号左边的式子为正,所以右边的式子也为正,所以可得答案.【详解】得-a≥0,所以a≤0,所以答案选择A项.【点睛】本题考查了求解数的取值范围,等号两边的值相等是解答本题的关键.11.C解析:C【解析】因为1a b ⨯==,故选C. 12.D解析:D【分析】根据二次根式有意义的条件即可求出答案.【详解】由题意可知:2010m m +≥⎧⎨-≠⎩, ∴m ≥﹣2且m ≠1,故选D .【点睛】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式的条件.二、填空题13..【分析】根据二次根式的性质化简即可.【详解】∵a <0.∴a -3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a <0.∴a -3<0,∴(a -=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.14.13【解析】【分析】由得a+b=2ab ,然后再变形,最后代入求解即可.【详解】解:∵∴a+b=2ab∴故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找解析:13【解析】【分析】由112a b+=得a+b=2ab,然后再变形535a ab ba ab b++-+,最后代入求解即可.【详解】解:∵112 a b+=∴a+b=2ab∴()5353510ab3===132aba b aba ab b aba ab b a b ab ab+++++-++--故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找到等式和代数式的联系. 15.【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg溶液中纯果汁的含量,最后利用混合后果汁的浓度相等列出关系式,求出m即可.【详解】解:根据题意,甲容器中纯果汁含量为akg,乙容器【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg溶液中纯果汁的含量,最后利=,求出m即可.【详解】,甲容器倒出mkg果汁中含有纯果汁makg,乙容器倒出mkg果汁中含有纯果汁mbkg,,=,整理得,-6b=5ma-5mb,∴(a-b)=5m(a-b),∴m故答案为:5【点睛】本题考查二次根式的应用,能够正确理解题意,化简二次根式是解题的关键.16.【解析】【详解】根据二次根式的性质和二次根式的化简,可知==.故答案为.【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.解析:2【解析】【详解】.22.故答案为2【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.17.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得====.故答案是:.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得.18.5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a =1,或a =﹣解析:5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.19.x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由y=,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方解析:x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由y=2x -,得4-x≥0且x-2≠0. 解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方数是非负数、分母不能为零得出4-x≥0且x-2≠0是解题关键.20.【分析】根据a ,b ,c 的值求得p =,然后将其代入三角形的面积S =求值即可.【详解】解:由a =4,b =5,c =7,得p ===8.所以三角形的面积S ===4.故答案为:4.【点睛】本题主解析:【分析】根据a ,b ,c 的值求得p =2a b c ++,然后将其代入三角形的面积S =【详解】解:由a =4,b =5,c =7,得p =2a b c ++=4572++=8.所以三角形的面积S .故答案为:.【点睛】本题主要考查了二次根式的应用和数学常识,解题的关键是读懂题意,利用材料中提供的公式解答,难度不大. 三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

相关文档
最新文档