支护结构计算 (1)

合集下载

基坑支护相关计算

基坑支护相关计算
M12DM aM12
板桩最下跨度剪力Q=LL =1X77.83X1,5=58.37kNM2aM2
(2)第三道支撑处弯矩及剪力
12.5+3.0一一
M=()2x53.33=33.60kN•m
c122
1
Q=—x2.75x53.33=73.33kNc2
(3)第二道支撑处弯矩及剪力
1 2.5+2.5
M =—()2x32.91=17.14kN • m
1.815x2—4.842x=0
解x=2.67m
入土深度取1.2x=3.2m
则桩长L=H+1.2x=8.5+2.4=10.9m采用标准的12米工字钢。
<3>板桩内力及断面选择
(1)板桩最下跨度L=2x=2X2,67=1.78m
DM33
板桩最下跨度弯矩M=— L。=—X1.52X77.83=14.59kN•m
b122
1
Q=-x2.5x32.91=41.13kNb2
(4)第一道支撑处弯矩及剪力
—(2.5+0,5)2x12.5=2.43kN • m
122
1
Q=—x1.5x12.5=9.37kNa2
根据上述的四项计算,按照第三道支撑选板桩断面:
33.6x104=210cm3
1600
选用2根50#工字钢(横放)攻=142x2=284cm3〉210cm3
①二24。
1、井壁计算:
井壁使用40B钢板桩,设三道工字钢环梁做内支撑(每道支撑采用双层40B工字钢),井底采用钢筋混凝土底板(第四道支撑)。三道支撑的位 置从下至上依次为0.5、2.5、2.5米位置处,底板距离第三道支撑为三米, 满足DN2600的要求。

支护结构侧压力计算

支护结构侧压力计算

第一小节支护结构侧压力计算【1】一般规定1、支护结构侧压力计算应包括下列内容(1)土压力;(2)水压力;(3)基坑坑边地面超载、建筑物等引起的附加侧向压力。

2、支护结构侧压力计算应考虑下列因素:(1)土的物理力学性质指标;(2)支护结构相对土体的变位方向和大小;(3)地面坡度、地面超载和邻近建(构)筑物的荷载;(4)地下水位、渗流条件及其变化;(5)支护结构的刚度、围护墙形状和插入深度;(6)挡墙和土体间的摩擦特性、基坑内外工程桩的影响;(7)基坑工程的施工方法和施工顺序。

3、计算支护结构侧压力时,土、水压力计算方法和土的物理力学指标取值应符合下列规定:(1)对地下水位以上的粘性土,土的强度指标应选用三轴试验固结不排水抗剪强度指标或直剪试验固结快剪指标;对地下水位以上的粉土、砂土、碎石土,应采用有效应力抗剪强度指标,如无条件取得有效应力强度指标时,也可选用三轴试验固结不排水抗剪强度指标或直剪试验固结快剪强度指标;土的重度取天然重度。

(2)对地下水位以下的粉土、砂土、碎石土等渗透性能较强的土层,应采用有效应力抗剪强度指标和土的有效重度按水土分算原则计算侧压力;如无条件取得有效应力强度指标时,可选用三轴试验固结不排水抗剪强度指标或直剪试验固结快剪强度指标。

(3)对地下水位以下的淤泥、淤泥质土和粘性土,宜按水土合算原则计算侧压力。

此时,对正常固结和超固结土,土的抗剪强度指标可结合工程经验选用三轴试验固结不排水抗剪强度指标或直剪试验固结快剪指标;对欠固结土,宜采用有效自重压力下预固结的三轴不固结不排水抗剪强度指标。

土的重度取饱和重度。

(4)当预估支护结构位移达到相应土体的极限状态位移时,可采用主动、被动土压力;当支护结构未达到极限状态位移,有可靠经验时,可按支护结构与土的相互作用确定土压力值;当支护结构的水平变形有严格限制时,宜采用静止土压力。

【2】水压力1、按水土分算原则计算水压力时,应根据地下水渗流状况,采用不同的水压力分布模式。

基坑支护设计计算书

基坑支护设计计算书

基坑支护设计计算书设计方法原理及分析软件介绍基坑开挖深度为6m,采用板桩作围护结构,桩长为12m,桩顶标高为-1m。

采用《同济启明星2006版》进行结构计算。

5.1 明开挖,6m坑深支护结构计算(1)工程概况基坑开挖深度为6m,采用板桩作围护结构,桩长为12m,桩顶标高为-1m。

q=0(1b 素填土)1.3hw=1(4 粘土)D=7H=6(6b 淤泥质粘土)(6c 粉质粘土)板桩共设1道支撑,见下表。

2中心标高(m) 刚度(MN/m) 预加轴力(kN/m)-1.3 30基坑附近有附加荷载如下表和下图所示。

h 1x 1s 45(2)地质条件场地地质条件和计算参数见表1。

地下水位标高为-1m。

渗透压缩层厚重度43) k(kN/m) c(kPa) m(kN/m土层 ,(:) 系数模量 max3(m) (kN/m) (m/d) (MPa)1.3 19 9.28 14.88 1500 1b 素填土2.7 18.4 12 17 3500 4 粘土7.5 17.8 5 10 1000 6b 淤泥质粘土3.5 18.9 15.5 13 3000 6c 粉质粘土2 19.7 18.5 14.5 5000 7 粉质粘土8 粉质粘土 13 20.4 19 18 7000(3)工况支撑刚度预加轴力工况编号工况类型深度(m) 支撑编号 2(MN/m) (kN/m)1 1.5 开挖2 1.3 30 1 加撑3 6 开挖4 2.5 1000 换撑5 1 拆撑工况简图如下:1.31.52.56工况 1工况 2工况 3工况 4工况 5(4)计算Y整体稳定验算O(1b 素填土)X(4 粘土)76(6b 淤泥质粘土)(6c 粉质粘土)(7 粉质粘土)(8 粉质粘土)安全系数 K=1.56 ,圆心 O( 1.19 , 1.45 ) 墙底抗隆起验算(1b 素填土)1(4 粘土)76(6b 淤泥质粘土)(6c 粉质粘土)(7 粉质粘土)(8 粉质粘土)Prandtl: K=2.83Terzaghi: K=3.23(1b 素填土)1.3m1(4 粘土)76(6b 淤泥质粘土)(6c 粉质粘土)(7 粉质粘土)(8 粉质粘土)坑底抗隆起验算 K=1.81抗倾覆验算(水土合算)(1b 素填土)1.3O1(4 粘土)76(6b 淤泥质粘土) 9924.610.8 914.3(6c 粉质粘土)(7 粉质粘土)Kc=1.22抗管涌验算: 159#按砂土,安全系数K=2.25按粘土,安全系数K=3.054包络图 (水土合算, 矩形荷载)500-502001000-100-200100500-50-100000 110.2kN/m222444666888101010121212141414深度(m)深度(m)深度(m)水平位移(mm)弯矩(kN*m)剪力(kN) Max: 42.8-8.3 ~ 183.2-46.6 ~ 66.2(5)工字钢强度验算: 159#基本信息计算目标:截面验算截面受力状态:绕X轴单向受弯材料名称:Q2352 材料抗拉强度(N/mm):215.02 材料抗剪强度(N/mm):125.0弯矩Mx(kN-m):229.000 截面信息截面类型:工字钢(GB706-88):xh=I40b(型号)截面抵抗矩33 Wx(cm): 1140.000 Wx(cm): 1140.000 1233 Wy(cm): 96.200 Wy(cm): 96.200 12截面塑性发展系数γx: 1.05 γx: 1.05 12γy: 1.20 γy: 1.20 12截面半面积矩33 S(cm): 678.600 S(cm): 92.704 xy13S(cm):84.891 y2 截面剪切面积22 A(cm): 94.110 A(cm): 94.110 xy截面惯性矩44 I(cm): 22800.000 I(cm): 692.000 xy截面附加参数参数名参数值x: I40b(型号) h分析结果2 最大正应力σ:191.312(N/mm)2 |σ= 191.3|?f = 215.0(N/mm) |f / σ|=1.124满足水平支撑系统验算:水平支撑系统位移图(单位:mm)水平支撑系统弯矩图(单位:kN.M)水平支撑系统剪力图(单位:kN)水平支撑系统轴力图(单位:kN) (6)钢腰梁强度验算:基本信息计算目标:截面验算截面受力状态:绕X轴单向受弯材料名称:Q2352 材料抗拉强度(N/mm):215.02 材料抗剪强度(N/mm):125.0弯矩Mx(kN-m):115.700 截面信息截面类型:工字钢组合Π形截面(GB706-88):xh=I40b(型号) 截面抵抗矩33 W(cm): 2280.000 W(cm): 2280.000 x1x233 W(cm): 2389.732 W(cm): 2389.732 y1y2截面塑性发展系数γ: 1.05 γ: 1.05 x1x2γ: 1.00 γ: 1.00 y1y2截面半面积矩33 S(cm): 1357.200 S(cm): 1646.925 xy截面剪切面积22 A(cm): 188.220 A(cm): 188.220 xy截面惯性矩44 I(cm): 45600.001 I(cm): 59026.381 xy截面附加参数参数名参数值x: I40b(型号) hw: 350(mm)分析结果2最大正应力σ:48.329(N/mm)2 |σ= 48.3|?f = 215.0(N/mm) |f / σ|=4.449满足(7)钢对撑强度及稳定性验算:基本输入数据构件材料特性材料名称:Q235构件截面的最大厚度:8.00(mm)2 设计强度:215.00(N/mm)2 屈服强度:235.00(N/mm)截面特性截面名称:无缝钢管:d=133(mm)无缝钢管外直径[2t?d]:133 (mm)无缝钢管壁厚[0,t?d/2]:8 (mm)缀件类型:构件高度:4.000(m)容许强度安全系数:1.00容许稳定性安全系数:1.00荷载信息轴向恒载设计值: 447.800(kN)连接信息连接方式:普通连接截面是否被削弱:否端部约束信息X-Z平面内顶部约束类型:简支X-Z平面内底部约束类型:简支X-Z平面内计算长度系数:1.00Y-Z平面内顶部约束类型:简支Y-Z平面内底部约束类型:简支Y-Z平面内计算长度系数:1.00 中间结果截面几何特性2 面积:31.42(cm)4 惯性矩I:616.11(cm) x3 抵抗矩W:92.65(cm) x回转半径i:4.43(cm) x4 惯性矩I:616.11(cm) y3 抵抗矩W:92.65(cm) y回转半径i:4.43(cm) y塑性发展系数γ1:1.15x塑性发展系数γ1:1.15y塑性发展系数γ2:1.15x塑性发展系数γ2:1.15y材料特性2 抗拉强度:215.00(N/mm)2 抗压强度:215.00(N/mm)2 抗弯强度:215.00(N/mm)2 抗剪强度:125.00(N/mm)2 屈服强度:235.00(N/mm)3 密度:785.00(kg/m)稳定信息绕X轴弯曲:长细比:λ=90.32 x轴心受压构件截面分类(按受压特性): a类轴心受压整体稳定系数: φ=0.711 x最小稳定性安全系数: 1.07最大稳定性安全系数: 1.07最小稳定性安全系数对应的截面到构件顶端的距离:0.000(m)最大稳定性安全系数对应的截面到构件顶端的距离:0.000(m)绕X轴最不利位置稳定应力按《钢结构规范》公式(5.1.2-1) N4478002,,200.3857N/mmA0.711,3142 x绕Y轴弯曲:长细比:λ=90.32 y轴心受压构件截面分类(按受压特性): a类轴心受压整体稳定系数: φ=0.711 y最小稳定性安全系数: 1.07最大稳定性安全系数: 1.07最小稳定性安全系数对应的截面到构件顶端的距离:0.000(m)最大稳定性安全系数对应的截面到构件顶端的距离:0.000(m)绕X轴最不利位置稳定应力按《钢结构规范》公式(5.1.2-1) N4478002,,200.3857N/mmA0.711,3142 y强度信息最大强度安全系数: 1.51最小强度安全系数: 1.51最大强度安全系数对应的截面到构件顶端的距离: 0.000(m)最小强度安全系数对应的截面到构件顶端的距离: 0.000(m)计算荷载: 447.80kN受力状态:轴压最不利位置强度应力按《钢结构规范》公式(5.1.1-1)分析结果构件安全状态: 稳定满足要求,强度满足要求。

第三章基坑支护结构设计计算

第三章基坑支护结构设计计算

第三章基坑支护结构设计计算3.1土压力计算为计算简便,土压力计算采用简化的兰肯主动土压力计算公式,即采用加权平均之后的内摩擦角、粘聚力值进行计算。

3.1.1加权平均值计算各层土的物理指标如下表所示:基坑开挖的深度为16.3m ,即到粉土夹粉砂层为止。

(1)土层加权平均重度为:)/(68.1797.052.111.95.115.105.21997.09.1752.11711.98.175.15.1815.14.1905.230m KN hh iii =+++++⨯+⨯+⨯+⨯+⨯+⨯==∑∑γγ土层物理参数表土层序号及名称 土层厚度L (m ) 天然含水量W(%)液限指数IL 塑性指数Ip 天然重度粘聚力C(kpa) 内摩擦角φ(°) ①1填土 2.05 0.75 11.8 19.4 16.5 19.6 ①2黏土 1.15 36 0.68 19.5 18.5 20.5 13.1 ②1黏土 1.5 39.9 0.98 18.7 17.8 15.3 11 ②2淤泥质黏土 9.11 52.3 1.55 19.4 17 11.5 8.4 ②3淤泥质粉质黏土1.52 41.6 0.45 14.6 17.913.5 10.2 ③1粉土夹粉砂 3.28 28.9 1.16 9.3 19 11.6 20 ③2粉质黏土夹粉砂10.04 31.8 1.16 11.4 18.812.2 15.2 ④1淤泥质粉质黏土 5.3 38.2 1.28 13.4 18.213.2 12.1 ④2黏土 7.18 36.8 0.99 17.6 18.2 17.2 12.7 ⑥2粉质黏土 6.25 34.2 0.84 14.4 18.6 20.7 14.5 ⑥4粉土 2.04 25.4 0.98 9.6 19.4 12.3 26.6 ⑦1粉质黏土 2.93 27 0.56 13.6 19.6 31.218.3注:表中仅列出本车站有分布布的底层。

多支点支护结构计算

多支点支护结构计算

9.4 多支点支护结构计算
2. 分段等值梁法
9.4 多支点支护结构计算
9.4 多支点支护结构计算
谢谢观赏
9.4 多支点支护结构计算
9.4 多支点支护结构计算
2. 分段等值梁法
2.1 问题简化
每挖一段,就将这段桩的上部支点和插入段弯矩零点的桩身作 为简支梁进行计算。然后把计算出来的支点反力假定不变,将 其作为外力计算下一段梁中的支点反力。由于这一计算方法考 虑了施工时的实际情况,计算结果与实际结果比较相符。
2.1 问题简化 2.2 入土深度
9.4 多支点支护结构计算
1.二分之一分割法
1.1 问题简化
这种方法是将各道支撑之间的距 离等分,假定每道支撑承担相邻 两个半跨的侧压力。
(1)作用在挡土结构上的土压力 分布;
(2)将每道支撑之间的距离等分。假定R1承担由ABDC产生的侧 压力,R2承担由CEFD产生的土压力,R3承担由EFHG产生的土压 力,从而求出各道支撑所受的水平力R1、R2、R3。
假定r承担由abdc产生的侧压力r承担由efhg产生的土压力从而求出各道支撑所受的水平力r94多支点支护结构计算94多支点支护结构计算每挖一段就将这段桩的上部支点和插入段弯矩零点的桩身作为简支梁进行计算
多支点支护结构计算
多支点支护结构计算
1.二分之一分割法Βιβλιοθήκη 1.1 问题简化 1.2 入土深度
2.分段等值梁法

基坑支护的结构的计算

基坑支护的结构的计算

基坑支护的结构的计算基坑支护是指在建筑工地或者其他开挖工程中,为了防止土方塌方和保证施工安全而采取的一系列措施。

基坑支护结构的计算是基坑工程设计中重要的一部分,本文将对基坑支护结构的计算进行详细介绍。

一、基坑支护结构的分类基坑支护结构通常可以分为两类:一是按照支护方式的不同分为主动支护和被动支护;二是按照结构形式的不同分为钢支撑结构和混凝土支护结构。

主动支护是指通过设置支撑结构对基坑进行支护,常见的主动支护结构有钢支撑和桩墙支护。

被动支护是指利用土体自身力学性质对基坑进行支撑,常见的被动支护结构有土钉墙和锚杆墙。

钢支撑结构是以钢材为主要材料的支护结构,常见的有钢板桩和钢管桩。

混凝土支护结构则是以混凝土为主要材料的支护结构,常见的有混凝土梁和混凝土墙。

二、基坑支护结构的计算方法基坑支护结构的计算方法主要包括以下几个方面:1.基坑支护结构受力分析:支护结构需要承受土压力、地下水压力和附加荷载等多种作用力,计算时需要对支护结构的受力情况进行全面的分析。

2.支撑杆件的稳定性计算:钢支撑结构中的支撑杆件需要满足一定的稳定性要求,包括弯曲强度、屈曲稳定性和抗扭稳定性等方面的计算。

3.连墙件的选择与计算:在钢支撑结构中,如果需要两个或多个支撑壁之间进行连接,则需要使用连墙件。

连墙件的选择和计算需要考虑其承受的弯曲强度和抗剪强度等。

4.土壁和桩身的稳定性计算:在钢板桩和钢管桩的设计中,需要对土壁和桩身的稳定性进行计算,包括土壁的滑移和失稳以及桩身的稳定性等。

5.锚杆的计算:在锚杆墙的设计中,需要对锚杆的承载力和稳定性进行计算。

三、基坑支护结构计算的基本步骤基坑支护结构的计算一般包括以下几个基本步骤:1.确定基坑的尺寸和形状,确定基坑周围的土质和地下水情况。

2.根据基坑的具体情况,选择适当的支护方案和支撑结构类型。

3.进行基坑支护结构的初步设计,包括确定支护结构的布置形式、支距和锚固长度等参数。

4.对支撑结构进行受力分析,计算支护结构受到的土压力、地下水压力和附加荷载等。

基坑支护结构的计算

基坑支护结构的计算

第二部分基坑支护结构的计算支护结构的设计和施工,影响因素众多,不少高层建筑的支护结构费用已超过工程桩基的费用。

为此,对待支护结构的设计和施工均应采取极慎重的态度,在保证施工安全的前提下,尽量做到经济合理和便于施工。

一、支护结构承受的荷载支护结构承受的荷载一般包括–土压力–水压力–墙后地面荷载引起的附加荷载。

1 土压力⑴主动土压力:若挡墙在墙后土压力作用下向前位移时随位移增大,墙后土压力渐减小。

当位移达某一数值时,土体内出现滑裂面,墙后土达极限平衡状态,此时土压力称为主动土压力,以Ea表示。

⑵静止土压力:若挡墙在土压力作用下墙本身不发生变形和任何位移(移动或滑动),墙后填土处于弹性平衡状态,则此时作用在挡墙上的土压力成为静止土压力。

以E0表示。

(3)被动土压力:若挡墙在外力作用下墙向墙背向移动,随位移增大,墙所受土的反作用力渐增大,当位移达一定数值时,土体内出现滑裂面,墙后土处被动极限平衡状态,此时土压力称为被动土压力,以Ep表示。

主动土压力计算•主动土压力强度•无粘性土粘性土土压力分布对于粘性土按计算公式计算时,主动土压力在土层顶部(H=0处)为负值,即表明出现拉力区,这在实际上是不可能发生的。

只计算临界高度以下的主动土压力。

土压力分布可计算此种情况下的临界高度Zc,进而计算临界高度以下的主动土压力。

被动土压力计算被动土压力强度•无粘性土粘性土计算土压力时应注意•不同深度处土的内聚力C不是一个常数,它与土的上覆荷重有关,一般随深度的加大而增大,对于暴露时间长的基坑,土的内聚力可由于土体含水量的变化和氧化等因素的影响而减小甚至消失。

•、C 值是计算侧向土压力的主要参数,但在工程桩打设前后的、C值是不同的。

在粘性土中打设工程桩时,产生挤土现象,孔隙水压力急剧升高,对、C值产生影响。

另外,降低地下水位也会使、C值产生变化。

水压力作用于支护结构上的水压力一般按静水压力考虑。

有稳态渗流时按三角形分布计算。

支护设计计算

支护设计计算

附录:支护设计计算按悬吊理论计算支护参数:1、锚杆长度计算L = KH+L1+L2式中:L——锚杆长度,m H——冒落拱高度,mK----安全系数,取2L1——锚杆锚入稳定岩层深度,取0.5mL2——锚杆在巷道中的外露长度,取0.1m其中: H=B/2f=3.6/(2×4)=0.45m式中:B——巷道宽度 f——岩石坚固性系数,取4 L = 2H+L1+L2=2×0.45+0.5+0.1=1.5m施工中取L=2m2、锚杆间距、排距a、ba=b=KHrQ式中:a、b——锚杆间、排距mQ——锚杆设计锚固力,80kN/根;H——冒落拱高度,取0.45m ;K——安全系数,取2;r——被悬吊石灰岩的重力密度,24kN/m3a=b=√502×0.45×24=1.52m施工中取a=b=0.9m3、锚杆直径的选择:d=P=abhr=0.9×0.9×2×24=38.9kN/m2式中:a---锚杆排距h---锚杆承载岩体高度,取锚杆长度2mb---锚杆间距r---承载岩体容重24kN/m3K---安全系数取2Δ--锚杆材料抗拉强度,取38kN/m2d= =√4×3890×2/3.14×3800=16.1mm施工中取Φ=20mm通过锚杆直径的验算,排距确定为0.9m,间距为0.8m,能满足支护要求。

4、锚索支护参数计算:⑴确定锚索的长度:L=La+Lb+Lc+Ld式中 L----锚索总长度,mLa---锚索深入到较稳定岩层的锚固长度,mLb---需要悬吊的不稳定岩层厚度,取1.5mLc---上托盘及锚具的厚度,取0.1mLd---需要外露的张拉长度,取0.3m锚索锚固长度La按下式确定:La≥K×(d1fa/4fc)式中:K---安全系数,取2d1---锚索钢绞线直径,取15.24mmfa---钢绞线抗拉强度,N/m㎡(1920MPa,含1883.52N/mm2)fc—锚索与锚固剂的粘合强度,取10N/mm2则La≥(2×15.24×1883.52)/4×10=1435.242㎜≈1.44mL=1.44+1.5+0.1+0.3=3.34m 施工取锚索长度为6.3m。

基坑支护常见形式与计算

基坑支护常见形式与计算

第二章 基坑支护结构计算
2.2 水土压力—分算
pak ( ak ua )k up )K p,i 2ci K p,i up
其中
u p whwp
式中:ua、up 分别为支护结构外侧、内侧计算点的水压力(KPa)
ak ac k, j
土钉墙
土钉墙结构
复合土钉墙
第一章 基坑支护常见形式 二 土钉墙结构
复合土钉墙是由土钉墙和止水帷幕、微型桩、预应力锚杆等组合形成的基 坑支护技术。适用于各种施工环境和多种地质条件的基坑支护。
土钉墙+止水帷幕+预应力锚杆组合
土钉墙+微型桩+预应力锚杆组合
土钉墙+止水帷幕+微型桩+预应力锚杆组合
第一章 基坑支护常见形式 三 支挡式结构
q0 均布附加荷载标准值(KPa)
第二章 基坑支护结构计算
2.3 地面荷载—条形基础(荷载)
d a / tan za d (3a b) / tan
k
p0b b 2a
za d a / tan或za d (3a b) / tan
k 0
p0 基础底面附加压力标准值(KPa) d、b 基础埋置深度、基础宽度(m)
井点降水 放坡开挖
地下水埋深较浅、基坑开挖较深可 能产生流砂、管涌、突涌等不良现 象时,可采用井点降水放坡开挖
第一章 基坑支护常见形式
2、 放坡开挖—坡度选择
查表法 适用条件:对开挖深度不大,基坑周围无较大荷载时。
坑壁土类型 软质岩石 碎石类土 粘性土
粉土
状态
微风化 中等风化
强风化 密实 中密 稍密 坚硬 硬塑 可塑 Sr< 0.5
Eak1
1 2

支护结构内力计算方法

支护结构内力计算方法

支护结构内力计算方法
支护结构内力计算方法是指通过分析支护结构的受力情况,确定支护结构内部的受力分布和大小的方法。

支护结构内力计算方法主要包括以下两种方法:
1.静力分析法:静力分析法是指通过平衡支护结构上下两侧的受力,来求解支护结构内力的方法。

在静力分析法中,通常采用杆件模型来模拟支护结构,然后根据杆件的受力平衡条件,利用静力学原理来求解支护结构的内力。

2.有限元法:有限元法是一种数值计算方法,通过将支护结构分割成许多小单元,并将每个小单元看作一个简单的结构,然后利用连续性原理和平衡条件,利用数学计算方法求解支护结构内力的方法。

在实际工程中,为了确保支护结构的稳定性和安全性,需要对支护结构进行内力计算,以确定结构的受力情况,并根据计算结果来进行支护结构的设计和优化。

- 1 -。

基坑桩锚支护计算书

基坑桩锚支护计算书

桩锚基坑支护结构设计计算书1、支护结构计算(一)AB段支护结构计算地面标高为-0.6米,地下水位位于-3.3米,基坑开挖至-13.35米,基坑实际开挖深度为12.75米,地表附加荷载取为q=20.0KPa。

采用人工挖孔桩加三道锚索进行支护,基坑侧壁安全等级为一级,基坑重要性系数为1.1。

----------------------------------------------------------------------[ 支护方案 ]----------------------------------------------------------------------排桩支护---------------------------------------------------------------------- [ 基本信息 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 放坡信息 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 超载信息 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 土层信息 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 土层参数 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 支锚信息 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 土压力模型及系数调整 ]----------------------------------------------------------------------弹性法土压力模型: 经典法土压力模型:---------------------------------------------------------------------- [ 设计结果 ]---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 结构计算 ]---------------------------------------------------------------------- 各工况:内力位移包络图:地表沉降图:---------------------------------------------------------------------- [ 截面计算 ]---------------------------------------------------------------------- [ 截面参数 ][ 内力取值 ]---------------------------------------------------------------------- [ 锚杆计算 ]---------------------------------------------------------------------- [ 锚杆参数 ][ 锚杆内力 ][ 锚杆自由段长度计算简图 ]----------------------------------------------------------------------[ 整体稳定验算 ]----------------------------------------------------------------------计算方法:瑞典条分法应力状态:总应力法条分法中的土条宽度: 1.00m滑裂面数据整体稳定安全系数 K s = 2.268圆弧半径(m) R = 22.096圆心坐标X(m) X = -1.074圆心坐标Y(m) Y = 11.749----------------------------------------------------------------------[ 抗倾覆稳定性验算 ]----------------------------------------------------------------------抗倾覆安全系数:M p——被动土压力及支点力对桩底的弯矩, 对于内支撑支点力由内支撑抗压力决定;对于锚杆或锚索,支点力为锚杆或锚索的锚固力和抗拉力的较小值。

支护结构计算

支护结构计算

支护结构计算一、排桩与地下连续墙计算对于较深的基坑,排桩、地下连续墙围护墙应用最多,其承受的荷载比较复杂,一般应考虑下述荷载: 土压力、水压力、地面超载、影响范围内的地面上建筑物和构筑物荷载、施工荷载、邻近基础工程施工的影响(如打桩、基坑土方开挖、降水等)。

作为主体结构一部分时,应考虑上部结构传来的荷载及地震作用,需要时,应结合工程经验考虑温度变化影响和混凝土收缩、徐变引起的作用以及时空效应。

排桩和地下连续墙支护结构的破坏,包括强度破坏、变形过大和稳定性破坏。

其强度破坏或变形过大包括(图3-16):图3-16 排桩和地下连续墙支护结构的破坏形式(1)拉锚破坏或支撑压曲: 过多地增加了地面荷载引起的附加荷载,或土压力过大、计算有误,引起拉杆断裂,或锚固部分失效、腰梁破坏,或内部支撑断面过小受压失稳,为此,需计算拉锚承受的拉力或支撑荷载,正确选择其截面或锚固体。

(2)支护墙底部走动: 支护墙底部嵌固深度不够,或挖土超深、水冲刷等,都可能产生这种破坏,为此,需正确计算支护结构的入土深度。

(3)支护墙的平面变形过大或弯曲破坏: 支护墙的截面过小、对土压力估算不准确、墙后增加大量地面荷载或挖土超深等,都可能引起这种破坏。

平面变形过大会引起墙后地面过大的沉降,也会给周围附近的建(构)筑物、道路、管线等造成损害。

排桩和地下连续墙支护结构的稳定性破坏包括:(1)墙后土体整体滑动失稳: 如拉锚的长度不够、软黏土发生圆弧滑动,会引起支护结构的整体失稳。

(2)坑底隆起: 在软黏土地区,如挖土深度大、嵌固深度不够,可能由于挖土处卸载过多,在墙后土重及地面荷载作用下引起坑底隆起。

对挖土深度大的深坑需进行这方面的验算,必要时,需对坑底土进行加固处理或增大挡墙的入土深度。

(3)管涌: 在砂性土地区,当地下水位较高、坑深很大和挡墙嵌固深度不够时,挖土后在水头差产生的动水压力作用下,地下水会绕过支护墙连同砂土一同涌入基坑。

二、水泥土墙计算水泥土墙设计应包括: 方案选择,结构布置,结构计算,水泥掺量与外加剂配合比确定,构造处理,土方开挖,施工监测。

悬臂式支护结构计算.

悬臂式支护结构计算.
1.1 悬臂支护结构变形特征
悬臂式支护结构插入坑底的深度不同,其 变形情况有所不同。
第一种情况:若插入深度较深,支护结构 向坑内倾斜较小时,下端B处没有位移。
第二种情况:若支护结构插入深度较浅, 当达到最小插入深度Dmin,它的上端向 坑内倾斜较大,下端B向坑外位移,若 插入深度小于Dmin,支护结构丧失稳定, 顶部向坑内倾斜。
2.1 最小插入深度
9.2 悬臂式支护结构计算
2.悬臂支护结构相关参数计算
2.1 最小插入深度
9.2 悬臂式支护结构计算2.臂支护结构相关参数计算9.2 悬臂式支护结构计算
2.最小插入深度的确定方法
9.2 悬臂式支护结构计算
1.支护结构上侧向压力分布
1.2 悬臂支护结构土压力特征
第一种情况,支护结构所受的 土压力。 主动土压力和被动土压力相互 抵消后土压力分布。
第二种情况,由于支护结构绕 一点C转动,B点向外移动,最 终它所受的土压力分布。
9.2 悬臂式支护结构计算
2.悬臂支护结构相关参数计算
基坑工程
悬臂式支护结构计算
单位:石家庄铁道大学 主讲人:李强副教授
悬臂式支护结构计算
1.支护结构上侧向压力分布
1.1 悬臂支护结构变形特征 1.2 悬臂支护结构土压力特征
2.悬臂支护结构相关参数计算
2.1 最小插入深度 2.2 最大弯矩位置
3.小结
9.2 悬臂式支护结构计算
1.支护结构上侧向压力分布

隧道支护结构计算-计算模型及方法

隧道支护结构计算-计算模型及方法
7
5.1.1 隧道结构计算的发展历史
2. 1900—1960年代
其后,不同学者和工程师们在设计隧道衬砌时采 用不同的假定来计及围岩对衬砌变形所产生的抗力, 其中温克尔(winker)局部变形理论得到了广泛应用。
与此同时,将村砌和围岩视作连续介质模型进行 分析的方法也得到了发展,其中的代表学者是H.卡 斯特勒(1960)。
5.1.2 隧道工程的力学特点
1.荷载的模糊性 隧道工程是在自然状态下的岩土地质中开挖的,隧
道周边围岩的地质环境对隧道支护结构的计算起着决定 性的作用。地面结构的荷载比较明确,而且荷载的量级 不大;而隧道结构的荷载取决于当地的地应力,但是地 应力难以进行准确测试,这就使得隧道工程的计算精度 受到影响。
8
5.1.1 隧道结构计算的发展历史
2. 1900—1960年代
1950年代以来,喷射混凝土和锚杆被广泛用作初期支护。 人们逐渐认识到,这种支护能在保证围岩稳定的同时允许 其有一定程度的变形,使围岩内部应力得到调整从而发挥 其自持作用,因此可以将内层衬砌的厚度减小很多。
3. 20世纪60年代以来
1960年代中期,随着数字电子计算机的更新和岩土本构 定律研究的进展,隧道工程分析方法进入了以有限元法为 代表的数值分析时期。这方面的代表性学者是:0.C.辛克 维奇等(1968)
12
5.1.2 隧道工程的力学特点
3.围岩—支护结构承载体系 ◆围岩不仅是荷载,同时又是承载体 ◆地层压力由围岩和支护结构共同承受 ◆充分发挥围岩自身承载力的重要性 4.设计参数受施工方法和施作时机的影响很大
隧道工程支护结构安全与否,既要考虑到支护结 构能否承载,又要考虑围岩是否失稳。
5.隧道与地面结构受力的不同点 存在围岩抗力的作用

SMW工法桩支护结构施工方案及计算书

SMW工法桩支护结构施工方案及计算书

SMW工法桩支护结构施工方案及计算书一、施工方案选择围护结构的设计,不仅关系到基坑开挖及周边保护建(构)筑物的安全,而且直接影响着土方开挖及结构施工等施工成本。

基坑支护结构是个系统工程,不仅要保证受力合理,而且要施工方便、工期节省。

从安全、围护造价的角度考虑,主要是开挖深度和周边环境保护要求,这两个因素决定着围护结构的形式。

挡土结构方案确定时应遵循以下原则:1.安全可靠、2.施工可行、3.技术先进、4.经济合理。

一个成功的围护结构设计方案,不仅要保证安全、经济,还要考虑施工的方便性。

深基坑开挖最重要的就是保证安全,我们的原则是:首先保证安全,存在重大安全隐患的方案,不管造价如何经济,实际上是没有任何现实意义,而且可能带来巨大的经济损失;然后尽量节省造价,过于安全但太浪费的方案也不符合市场需求;最后考虑施工的方便性,施工的方便性可以在施工中节省工期、降低施工造价。

根据以往的工程经验,经综合考虑工期、造价及施工的方便性,在场地条件允许的情况下,考虑采用SMW工法+二~三道混凝土支撑及钢管支撑的围护形式。

SMW工法现在应用较广,其优点如下:1、受力性能较好,土体位移较小;2、同时具有承力和防渗两种功能,搅拌桩采用全断面搭接,止水可靠;3、SMW 工法施工周期一般比其它板式支护可缩短 30%左右;4、水泥土搅拌桩占用场地小,施工简单,施工过程对周边建筑物及地下管线影响小;对环境污染小,无废弃泥浆;5、其内插型钢在采用一定的措施(型钢外表刷涂减阻剂,拔除时跟踪注浆),可顺利拔除。

支撑体系:其优点是刚度较大,布置形式较灵活,能较好的控制变形,且可预留较大挖土空间,方便施工,缩短工期。

拟采用Ф850三轴搅拌桩内插H型钢700×300×13×24@800(密插法),Ф850三轴搅拌桩间咬合250mm。

本基坑拟采用三道支撑。

由于基坑开挖较深,因此从安全、经济、工期的角度考虑,拟采用“角撑+对撑”的混凝土支撑体系。

基坑支护结构的设计原理与计算方法

基坑支护结构的设计原理与计算方法

308 基础工程原理与方法第二十六章基坑支护结构的设计原理与计算方法第一节支护结构的破坏形式深基坑支护结构可分为非重力式支护结构(即柔性支护结构)和重力式支护结构(即刚性支护结构)。

非重力式支护结构包括钢板桩、钢筋混凝土板桩和钻孔灌注桩、地下连续墙等;重力式支护结构包括深层搅拌水泥土挡墙和旋喷帷幕墙等。

一、非重力式支护结构的破坏非塑力式支护结构的破坏包括强度破坏和稳定性破坏。

(一)强度破坏强度破坏包括图26所示内容。

(1)支护结构倾覆破坏。

破坏的原因是存在过大的地面荷载,或土压力过大引起拉杆断裂,或锚固部分失效,腰梁破坏等。

(2)支护结构底部向外移动。

当支护结构入土深度不够,或挖土超深、水的冲刷等都可能产生这种破坏。

(3)支护结构受弯破坏。

当选用的支护结构截面不恰当或对土压力估计不足时,容易出现这种破坏。

(二)稳定性破坏支护结构稳定性破坏包括图26-2所示内容。

(1)墙后土体整体滑动失稳。

破坏原因包括:①开挖深度很大,地基土又十分软弱;②地面大就堆载;③锚杆长度不足。

(∙M*≡β 坏第二十六章基坑支护结构的设计原理与计算方法309"r /Z τ√∕γ∕zτ√zr√ZrzzT(C)流砂或管涌图26・2非星力或支护结构的秘定性玻坏(2)坑底隆起。

当地基土软弱、挖土深度过大或地面存在超载时容易出现这种破坏。

(3)管涌或流砂。

当坑底土层为无黏性的细颗粒土,如粉土或粉细砂,且坑内外存在较大水位差时,易出现这种破坏。

二、重力式支护结构的破坏形式觅力式支护结构的破坏也包括强度破坏和稳定性破坏两个方面.强度破坏只有水泥土抗剪强度不足所产生的剪切破坏,为此需验算最大剪应力处的墙身应力。

稳定性破坏包括以下内容。

(1)倾覆破坏。

若水泥土挡墙截面、质量不够大,支护结构在土压力作用下产生整体倾覆失稳。

(2)滑移破坏。

当水泥土挡墙与土之间的抗滑力不足以抵抗墙后的推力时,会产生整体滑动破坏。

其他破坏形式,如土体整体滑动失稳、坑底隆起和管涌或流砂与非直力式支护结构相似。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 用相当梁计算深板桩
用土压力为零点位 置代替正负力矩转折点 c点。 先算出y的长度→决 定c点→求得顶撑的反 力Ra及c点的反力P0→ 求出板桩的入土深度t0
3 相当梁计算单支点支护结构 (1)计算土压力,画出计算 简图
(2)计算土压力为零点c的位 置,求出x
(3) 由∑Mc=0求支点水平反力 T(kN/m) T=∑Eai×bai/bT (4) 求桩墙嵌固深度h0
2 抗倾覆稳定性验算
w b Ephp k0 Eaha
w—挡墙自重(KN/m)
Ep—被动侧压力的合力
Ea—主动侧压力的合力
b、hp、ha—W、Ep、E a 对墙趾A的力臂
3 抗水平滑移稳定性验算
Ep W ks Ea
Ks—水泥土挡墙抗水平滑动稳定安全系数
—挡墙底面与地基土之间的摩擦系数,可由试验确定,如 缺少试验数据,可按表1选取。
现代施工技术
支护结构计算
悬臂式支护结构的计算
1 确定计算简图 各层土压力合力用Eai、Epi表 示,P为桩墙底部阻力,C点为 土压力为零点。 2 求嵌固深度h0
先求土压力为零点C的位置即x ,以C点以下嵌固长度t为未知 变量,对E点的力矩平衡∑ME=0 ,试算求出t:
∑Eaibai=∑Epjbpj 桩墙计算嵌固深度h0=x+t
土压力3 支护桩墙设计长度: 零点
L=支护桩墙悬臂长度h+桩墙设 计嵌固深度hd
单锚深板桩的计算
1 相当梁法(或等梁法)的原 理 图(a)中的ab为一荷载 梁,一端固定,一端简支, 弯距图的正负转折点在C点 处。 将梁在C点截断,设自 由支点在C处,ac一端上的 力矩将保持不变,ac即为ab 的相当梁
由AC段静力平衡求得C点的 支承反力为∑Eai-T,对CE段 ,由∑ME=0,求出t:
t=∑Epjbpj/(∑Eai-T)
水泥土重力式支护结构设计
18MPa
(2)挡墙宽度为开挖深度 的0.6~0.8倍 (3)嵌固深度为开挖深度 的0.8~1.0倍
(4)为简化,可将墙底以 上的各层土的物理力学性 质指标加权平均计算
4 墙身应力验算
W 1 qu 2b 2 K
Eal W 1 tg c 2b K
K—水泥土强度的安全系数
、—所验算截面处的正应力和剪应力(kPa) w1—所验算截面上部的挡墙重量(KN/m) Eal—所验算截面上部的主动土压力合力(KN/m)
5 抗圆弧滑动稳定性验算
抗圆弧滑动稳定验算即整体稳定验算,由于水泥土挡墙具有一 定的宽度,因此需将其看作是提高了强度的一部分土体,进行土体整 体稳定验算,可按悬臂式挡墙支护结构整体稳定验算方法(条分法) 进行。
相关文档
最新文档