+金属及讲义合金相的晶体结构
晶体结构讲义
两种等价C原子
全部Na+之间是等价的,全部Cl-之间也等学习价材料 两个面心立方晶格沿体对角线平移1/144
1-3 晶格的周期性
1.3.3 复式晶格 简单晶格 —— 基元是一个原子 复式晶格 —— 基元是一个以上原子
晶体结构 = 点阵〔数学几何点〕 + 基元〔物理〕
学习材料 15
1-3 晶格的周期性
7
1-3 晶格的周期性
Wigner-Seitz 原胞
以某个格点为中心,作其与邻近格点的中垂面,这些 中垂面所包含最小体积的地域为维格纳-赛兹原胞 对称性原胞,不依赖于基矢的选择,与相应的布拉伐 格子有完全相同的对称性
特点:
1.仅包含一个格点,体积与
惯用原胞相等
2.保存了晶格全部的对称性
3.平常很少用,在能带理论
28/ 2288
1-4 晶向和晶面
1.4.1 晶向
晶体根本特点:各向异性
晶列
在布拉伐格子的格点可以看成分列在一系列相互平行的直线 系上,这些直线系称为晶列。
晶列的特点
〔1〕一族平行晶列把全部格点包含 无遗
〔2〕在一平面中,同族的相邻晶列 之间
距离相等
学习材料
29
1-4 晶向和晶面
1.4.1 晶向
(hcp)…
点阵
基元
晶体
晶体结构 = 点阵〔学数习学材料几何点〕 + 基元〔物理〕
6
1-3 晶格的周期性
1.3.1 晶格周期性的描述:原胞和基矢
原胞 (Primitive cell):晶格的最小周期性单元。又称初基晶胞。 基矢:原胞的边矢量 单胞 (Unit cell):晶体学中,为了反映晶格的对称性,选取较
1.3.4 布拉伐格子(Bravais lattice)
高中化学奥赛 晶体结构 专题讲义
高中化学奥赛 晶体结构 专题讲义8. 晶胞的划分将空间点阵划分为晶格,用晶格切割实际晶体,得到一个个并置堆砌的平行六面体,这些平行六面体不再是抽象的几何体,而是包括了晶体的具体组成物质,称为晶胞。
晶胞是晶体结构中的基本重复单位。
素晶胞 复晶胞。
♦ 晶胞不等同于结构基元,它不一定是最小的重复单位,只有素晶胞才是最小的重复单位。
♦ 晶胞一定是平行六面体,不能为六方柱或其它形状,否则不满足并置堆砌的要求。
9. 晶胞的基本要素 晶胞有两个基本要素:①晶胞参数:晶胞的大小和形状。
晶胞参数和点阵参数一致,由a,b,c,α,β,γ规定,即边长和各边间夹角。
②坐标参数:晶胞内部各个原子的坐标位置。
原点指向原子的向量r =xa +yb +zc ,原子坐标参数(x, y, z )。
【例】CsCl 晶胞。
八个顶点上只贡献一个原子,内部一个原子,因此晶胞中含有两个原子。
中心Cs +的坐标参数为:(1/2, 1/2, 1/2)。
如果坐标参数的差别是加1或减1,则这些参数指的是同一种原子,所以对顶点上的Cl-只需用0,0,0表示,不必写出(0,1,0);(0,0,1)。
2. 晶体的宏观对称性① 宏观对称元素 8个是独立的,分别为:1, 2, 3, 4, 6;m ;i (=1);4 ③ 晶系 晶体32个点群分为七类,7个晶系,每个晶系包含若干个点群。
⑴ 立方晶系 晶胞形状:立方体晶胞参数:a =b =c , α=β=γ=90︒特征对称元素:立方体对角线方向上的4个3。
⑵ 六方晶系 晶胞形状:六方晶胞参数:a =b ≠c , α=β=90︒, γ=120︒特征对称元素:上图红色虚线所示方向上的1个6或1个6 ⑶ 四方晶系晶胞参数:a =b ≠c , α=β=γ=90︒ 晶胞形状:四方特征对称元素:上图红色虚线所示方向上的1个4位序的方向:c (4次轴), a (与4次轴垂直), a+b (与4次轴垂直并与第二位方向成45︒)。
材料的相结构及相图第一、二节2014
3. 尺寸因素化合物
作业与工程作业
本节作业: P229:1,3 工程作业
1、文献调研铜合金、高温合金或不锈钢中的相组成,指出其中的固溶体及 各种化合物相。 2、纯金属原子间以金属键结合,密堆积结构常见有fcc、bcc和hcp。以面心 立方结构的纯铜为例,铜原子的半径为0.128nm,原子重量为63.5g/mol, 计算纯铜的理论密度,并于实际密度比较,分析Zn置换后形成的黄铜其 密度随Zn含量变化规律。 3、GaAs和GaP都具有闪锌矿结构,它们在整个浓度范围相互固溶。若要获 得一个边长为0.5570nm的固溶体需要在GaAs中加入多少GaP?已知GaAs 和GaP的密度分别为5.307和4.130g/cm3.
《材料科学基础》讲义
材料的相结构及相图
P HASE STR UCTUR E AN D P HASE DI AGR AM OF M ATER I ALS
关于《材料科学基础(II)》 2014秋季教学说明
内容分工:席、王 课堂教学:讲课、讨论 作业 考试
席生岐 2014年秋
工程作业:做题、讲评
教学学习参考书目
电子浓度 —各组成元素价电子总数 e 与原子总数a之比
式中, —溶质元素的摩尔分数 —溶剂的原子价 —溶质的原子价 溶质元素在一价溶剂元素中的最大溶解 度对应于
电子浓度( ) 1.38
进一步学习内容:金属及合金的电子理论(金属物理)
陶瓷材料中的固溶方式第二大类Βιβλιοθήκη 程材料陶瓷材料中的固溶方式
例如,Cu-51wt%Au 合金,390℃以上为无序 固溶体, 缓冷到390℃以下时形成有 序固溶体
固溶体中溶质原子的偏聚与有序
固溶体中溶质原子的偏聚与有序
《晶体结构与性质》 讲义
《晶体结构与性质》讲义一、晶体的定义和基本特征在我们生活的世界中,存在着各种各样的物质,而其中一部分物质以一种特殊的、有序的方式排列,形成了晶体。
那什么是晶体呢?晶体是由原子、离子或分子在空间按一定规律周期性地重复排列构成的固体物质。
晶体具有一些独特的基本特征。
首先,晶体具有规则的几何外形。
这是因为其内部的粒子排列具有高度的规律性。
比如我们常见的氯化钠晶体(食盐),呈现出立方体的形状。
其次,晶体具有固定的熔点。
当对晶体加热时,温度升高到一定程度,晶体开始熔化,这个温度就是熔点,且在熔化过程中温度保持不变。
此外,晶体还具有各向异性,这意味着在不同的方向上,晶体的物理性质,如导电性、导热性等可能会有所不同。
二、晶体的结构类型晶体的结构类型多种多样,常见的有离子晶体、原子晶体、分子晶体和金属晶体。
离子晶体是由阴、阳离子通过离子键结合而成的晶体。
典型的离子晶体如氯化钠,钠离子和氯离子交替排列,形成一个紧密的结构。
离子晶体的特点是硬度较大、熔点较高、熔融状态下能导电。
原子晶体中,原子之间通过共价键结合形成空间网状结构。
金刚石就是一种典型的原子晶体,其中每个碳原子都与周围的四个碳原子以共价键相连,形成一个坚固的三维结构。
原子晶体具有硬度高、熔点高的特点。
分子晶体是由分子通过分子间作用力(范德华力或氢键)结合而成的晶体。
干冰(固态二氧化碳)就是分子晶体,二氧化碳分子之间的作用力相对较弱,所以分子晶体通常熔点较低、硬度较小。
金属晶体则是由金属阳离子和自由电子通过金属键结合而成的。
金属具有良好的导电性、导热性和延展性,这都与其特殊的金属晶体结构有关。
三、晶体结构的微观分析要深入理解晶体的性质,我们需要从微观角度来分析晶体的结构。
在离子晶体中,离子的半径和电荷对晶体的性质有着重要影响。
离子半径越小、电荷越高,离子键越强,晶体的熔点和硬度就越高。
对于原子晶体,共价键的键能和键长决定了晶体的稳定性和物理性质。
键能越大、键长越短,原子晶体越稳定,熔点和硬度也越高。
机械制造基础6_合金的晶体结构
机械制造基础6_合金的晶体结构合金是由两种或更多种金属元素组成的材料。
合金通常具有比纯金属更高的强度、硬度和耐腐蚀性能,因此在机械制造领域得到广泛应用。
合金的晶体结构对其性能起着重要的影响。
合金的晶体结构可以分为非晶态、纯晶态和晶体共存态三种类型。
非晶态合金的晶体结构没有规则的排列,形成了无序的结构。
非晶态合金具有优异的强度、硬度和耐腐蚀性能,其应用于电子产品、导线和各种器具中。
纯晶态合金的晶体结构由规则的排列组成,可以分为单相和多相两种。
单相合金的晶体结构中只含有一种晶体相。
单相合金具有良好的可塑性和加工性能,适用于热加工和塑性成形工艺。
金属的基本晶型有面心立方(FCC)、体心立方(BCC)和密堆积晶体(HCP)三种类型。
面心立方结构是最常见的晶体结构之一,其中原子位于正方体的八个顶点和位于正方体中心的一个原子。
铝、黄铜和铜等金属常常具有面心立方结构。
体心立方结构是另一种常见的晶体结构,其中原子位于正方体的八个顶点和立方体中心的一个原子。
铁和钢等金属一般具有体心立方结构。
密堆积晶体结构是由六边形密堆放组成的晶体结构,其中原子位于六边形的顶点和中心位置,但也有一些原子位于六边形的边界上。
大多数贵金属和锌等金属常常具有密堆积晶体结构。
多相合金的晶体结构中含有多个不同的晶体相。
多相合金具有复杂的微观结构,其性能受到不同相的影响。
多相合金常用于特殊的工程应用,如高温合金和超金属。
在机械制造中,对合金的晶体结构的了解能够帮助我们选择和设计合适的合金材料,以满足特定的工程需求。
根据不同应用的要求,我们可以选择不同晶体结构的合金材料,以获得所需的性能和特性。
此外,通过改变合金中不同晶体的比例和组成,可以调控合金的性能。
通过合适的热处理和加工工艺,可以改变晶体结构,从而影响合金的硬度、强度、塑性和耐腐蚀性能。
因此,深入了解合金的晶体结构对于机械制造中的材料选择和工艺控制非常重要。
7第六章晶体讲义的典型结构类型
Cs+ 1/2 1/2 1/2
类似的晶体:CsBr,CsI, NH4Cl等
Cl-离子 Cs+离子
氯化铯晶体结构
闪锌矿型结构
化 学 式:β-ZnS
返回目录
晶体结构 空间格子
立方晶系,a=0.540nm;Z=4,3Li44L36P
立方面心格子,S2-离子呈立方最紧密堆积,位于 立方面心的结点位置,Zn2+离子交错地分布于
石墨与金刚石属同质多像变体。
• 可制作高温坩锅,发热体和电 极,机械工业上可做润滑剂等, 是多用途的材料。
• 同结构晶体:人工合成的六 方氮化硼(HBN)等 。
AX型晶体
NaCI型结构
矿物名称:石盐。
返回目录
化学式为:NaCI
CI- Na+
NaCl晶体的结构
氯化钠晶体结构
如何算出的?
结构描述:
7第六章晶体的典型 结构类型
第六章
矿物晶体典型结构类型
目录
• 第一节 结构的表征 • 第二节 结构类型 • 金刚石、石墨、石盐、氯化铯、
萤石、闪锌矿、刚玉、石英
• 1、结构的表征
返回目录
•
与晶体结构有关的因素有: 晶体化学组成,
晶体中质点的相对大小,极化性能。
•
并非所有化学组成不同的晶体,都有不同
结构表现:C原子组成层状排列, 层内C原子成六方环状排列,每 个碳原子与三个相邻的碳原子 之间的距离为0.142nm,层与层 之间的距离为0.335nm。
石墨晶体结构
键型:层内为共价键,层间为分子键, 还有自由电子存在-金属键。
性质:碳原子有一个电子可以在层内移 动,平行于层的方向具有良好的导电性 。石墨的硬度低,熔点高,导电性好。
北科大《金属学》_讲义(精华版)_对考研的学材料的童鞋非常有用!
一:大纲分析:北京科技大学2009年攻读硕士学位《金属学》复习大纲(适用专业:材料加工工程、材料学、材料科学与工程、材料物理与化学)一、金属与合金的晶体结构1.原子间的键合1)金属键, 2)离子键, 3)共价键2.晶体学基础1)空间点阵, 2)晶系及布喇菲点阵, 3)晶向指数与晶面指数3.金属的晶体结构1)典型的金属晶体结构,2)原子的堆垛方式,3)晶体结构中的间隙,4)晶体缺陷4.合金相结构1)置换固溶体,2)间隙固溶体,3)影响固溶体溶解度的主要因素4)中间相5.晶体缺陷1)点缺陷, 2)晶体缺陷的基本类型和特征, 3)面缺陷二、金属与合金的凝固1.金属凝固的热力学条件2.形核1)均匀形核,2)非均匀形核3.晶体生长1)液-固界面的微观结构,2)金属与合金凝固时的生长形态,3)成分过冷4.凝固宏观组织与缺陷三、金属与合金中的扩散1.扩散机制2.扩散第一定律3.扩散第二定律4.影响扩散的主要因素四、二元相图1.合金的相平衡条件2.相律3.相图的热力学基础4.二元相图的类型与分析五、金属与合金的塑性变形1.单晶体的塑性变形1)滑移,2)临界分切应力,3)孪生,4)纽折2.多晶体的塑性变形1)多晶体塑性变形的特点,2)晶界的影响,3.塑性变形对组织与性能的影响1)屈服现象,2)应力-应变曲线及加工硬化现象,3)形变织构等六、回复和再结晶1.回复和再结晶的基本概念2.冷变形金属在加热过程中的组织与性能变化3.再结晶动力学4.影响再结晶的主要因素5.晶粒正常长大和二次再结晶七、铁碳相图与铁碳合金1.铁碳相图2.铁碳合金3.铁碳合金在缓慢冷却时组织转变八、固态相变1.固态相变的基本特点2.固态相变的分类3.扩散型相变1)合金脱溶,2)共析转变,3)调幅分解4.非扩散型相变参考书:1.金属学(修订版), 宋维锡主编, 冶金工业出版社,1998;2.材料科学基础, 余永宁主编, 高等教育出出版社,2006;3.材料科学基础(第二版), 胡赓祥等主编, 高等教育出出版社,2006;4.任何高等学校材料科学与工程专业《金属学》或《材料科学基础》教学参考书。
晶体结构
全国化学竞赛初赛讲义——晶体结构 根据晶胞的几何特征,晶胞可以有7种,其名称、外形及晶胞参数如下表:名称外形 晶胞参数 立方a=b=c ,α=β=γ=90︒,只有一个晶胞参数a 四方a=b≠c ,α=β=γ=90︒,有2个晶胞参数a 和b 六方a=b≠c ,α=β=90︒,γ=120︒,有2个晶胞参数a 和c 正交a≠b≠c ,α=γ=90︒,有3个晶胞参数a 、b 和c 单斜a≠b≠c ,α=γ= 90︒,β≠90︒,有4个晶胞参数a 、b 、c 和β 三斜a≠b≠c ,α≠β≠γ,有6个晶胞参数a 、b 、c 、α、β和γ 菱方a =b =c ,α=β=γ≠90︒,有2个晶胞参数a 和α这种晶胞最早是由法国晶体学家布拉维提出的,全名是布拉维晶胞。
根据晶胞中所含结构基元〔可以理解为晶体中具有完全相同的化学环境,能体现晶体组成的最小构成微粒(原子、分子、离子或原子团)〕,可以分为素晶胞和复晶胞两大类。
素晶胞是最小的晶胞,其内容物的组成相当于结构基元的组成。
复晶胞则为素晶胞的多倍体。
复晶胞分体心晶胞、面心晶胞和底心晶胞三种,分别是素晶胞的2倍体、4倍体和2倍体,即其内容物相当于2、4、2个结构基元。
体心晶胞的特征是:将晶胞的框架移至体心位置(注意:只移动框架不移动原子),所得到的新的晶胞与原晶胞没有任何差别,这种特征叫体心位移。
归纳为下表即为:晶胞含结构基元 特征 素晶胞1 最小的晶胞 复晶胞 体心晶胞2 可作体心位移 面心晶胞4 可作面心位移 底心晶胞 2 可作底心位移【问题与思考】右图中的金属钠和氯化铯是不是体心晶胞?【分析与归纳】是不是体心晶胞关键就是看能否作体心位移,也是把晶胞的框架移至晶胞体心位置,所得新晶胞(图中虚线)与原晶胞(实线)是否毫无差别,如果无差别则是体心晶胞,否则不是。
由此可知金属钠是体心晶胞,氯化铯不是。
金属钠的结构基元是一个钠原子,一个钠晶胞中有2个钠原子,因此它是一个复晶胞(含2个结构基元);氯化铯的结构基元是1Cs ++1Cl -,一个晶胞中含一个Cs +和一个Cl -,为素晶胞。
新版高中化学讲义(选择性必修第二册):分子晶体
第11讲分子晶体考点导航知识精讲知识点一:一、分子晶体及其结构特点1.概念只含分子的晶体。
2.粒子间的作用分子晶体中相邻的分子间以相互吸引。
【答案】分子间作用力3.常见分子晶体及物质类别物质种类实例所有H2O、NH3、CH4等部分卤素(X2)、O2、N2、白磷(P4)、硫(S8)等部分CO2、P4O10、SO2、SO3等几乎所有的HNO3、H2SO4、H3PO4、H2SiO3等绝大多数苯、乙醇、乙酸、乙酸乙酯等【答案】非金属氢化物非金属单质非金属氧化物酸有机物4.分子晶体的常见堆积方式分子间作用力堆积方式实例范德华力分子采用,如C60、干冰、I2、O2每个分子周围有 个紧邻的分子范德华 力、分子不采用 ,每个分子周围紧邻的分子少于12个如HF 、NH 3、冰【答案】密堆积 12 氢键 密堆积 【即学即练1】1.晶胞是晶体结构中可重复出现的最小的结构单元,C 60晶胞结构如下图所示,下列说法正确的是A .C 60摩尔质量是720B .C 60与苯互为同素异形体 C .C 60晶体中仅存在范德华力D .每个C 60分子周围与它距离最近且等距离的C 60分子有12个 【答案】D【解析】A .C 60的摩尔质量为720g/mol ,A 错误;B .由同种元素形成的不同种单质互为同素异形体,而苯是碳氢形成的化合物,B 错误;C .C 60属于分子晶体,晶体中不仅存在范德华力,还存在碳与碳之间的共价键,C 错误;D .根据晶胞的结构可知,以晶胞中顶点上的C 60分子为研究对象,与它距离最近等距离的C 60分子分布在立方体的面心上,每个C 60分子被8个立方体共用,有12个面与之相连,所以每个C 60分子周围与它距离最近等距离的C 60分子有12个,D 正确; 答案选D 。
2.下列各组物质各自形成晶体,均属于分子晶体的化合物是 A .3NH 、HD 、108C H B .3PCl 、2CO 、24H SO C .2SO 、2SiO 、25P O D .4CCl 、2Na S 、22H O【答案】B【解析】A .该组物质均属于分子晶体,NH 3、C 10H 8属于化合物,HD 属于单质,A 不符合题意; B .该组物质均是属于分子晶体的化合物,B 符合题意;C .SO 2、P 2O 5是属于分子晶体的化合物,SiO 2是属于共价晶体的化合物,C 不符合题意;D.CCl4、H2O2是属于分子晶体的化合物,Na2S是属于离子晶体的化合物,D不符合题意;故选B。
《金属的物理性质和某些化学性质》 讲义
《金属的物理性质和某些化学性质》讲义一、金属的物理性质1、金属光泽金属具有独特的光泽,这使得它们在外观上与其他物质有明显的区别。
这种光泽通常是由于金属表面对光线的反射能力较强所致。
当光线照射到金属表面时,电子能够自由移动,从而使得光线能够被有效地反射,呈现出明亮的外观。
常见的金属如金、银、铜等都具有显著的金属光泽,这也是它们常被用于制作首饰和装饰品的原因之一。
2、导电性和导热性金属是良好的导电和导热材料。
在金属中,存在大量自由移动的电子,这些电子能够在外加电场的作用下定向移动,从而形成电流,表现出良好的导电性。
例如,铜和铝是常用的电线材料,因为它们能够有效地传输电能。
同时,金属中的自由电子也能够迅速传递热量,使得金属具有良好的导热性。
例如,铁锅能够快速将热量传递给食物,使其均匀受热。
3、延展性和可塑性大多数金属具有良好的延展性和可塑性,可以被拉成细丝或压成薄片。
这是因为金属原子之间的结合方式相对较弱,在受到外力作用时,原子层能够相对滑动而不破坏金属的结构。
金是延展性最好的金属之一,能够被拉成极细的金丝。
而铁、铝等金属则可以通过锻造、轧制等工艺制成各种形状的产品。
4、密度和硬度金属的密度和硬度差异较大。
一般来说,重金属如金、铅、汞等密度较大,而轻金属如铝、镁等密度较小。
金属的硬度取决于其晶体结构和原子间的结合力。
例如,铬、钨等金属硬度较高,常用于制造刀具和耐磨零件;而钠、钾等金属则质地较软。
二、金属的某些化学性质1、金属与氧气的反应许多金属在空气中能够与氧气发生反应,生成金属氧化物。
不同的金属与氧气反应的条件和产物有所不同。
例如,铁在潮湿的空气中容易生锈,生成氧化铁;而铝在空气中表面会迅速形成一层致密的氧化铝薄膜,阻止内部的铝继续被氧化。
金属与氧气反应的难易程度可以反映出金属的活泼性,越容易与氧气反应的金属,其活泼性越强。
2、金属与酸的反应活泼金属能够与酸发生置换反应,生成氢气和相应的盐。
例如,锌和稀硫酸反应生成硫酸锌和氢气。
第11讲 金属镁、铝及其化合物(讲义)(解析版)
第11讲金属镁、铝及及其化合物一镁、铝单质的性质1.镁、铝的结构和存在形态2.镁、铝的物理性质镁、铝都是银白色、有金属光泽的固体,密度较小,硬度较低,均具有良好的延展性、导电性和导热性等。
3.铝的化学性质特别强调:1.常温下,能用铝制容器盛放浓硫酸、浓硝酸的原因是二者能使铝发生“钝化”,而不是铝与浓硫酸、浓硝酸不反应。
2.能与铝反应产生氢气的溶液可能呈强酸性也可能呈强碱性。
4.对比掌握镁的化学性质特别强调:1.Mg在CO2中能够燃烧,所以活泼金属镁着火不能用干粉灭火器和泡沫灭火器灭火。
2.镁也可在氮气中燃烧,生成氮化镁(Mg3N2),氮化镁能与水剧烈反应生成Mg(OH)2沉淀并放出氨气。
5.从海水中提取镁(1)工艺流程(2)基本步骤及主要反应特别强调:1.由MgCl2·6H2O得到无水MgCl2,必须在HCl气流中加热,以防MgCl2水解。
2.因镁在高温下能与O2、N2、CO2等气体发生反应,故工业电解MgCl2得到的镁,应在H2氛围中冷却。
3.Mg在空气中燃烧得到的固体物质主要为MgO和少量Mg3N2及C的混合物。
4.Mg(OH)2为难溶于水的白色沉淀,故常用NaOH溶液检验Mg2+的存在。
5.由于Mg(OH)2的溶解度比MgCO3的小,故水垢的主要成分中含有的是Mg(OH)2,而非MgCO3。
6.镁的用途(1)镁合金用于制造火箭、导弹和飞机的部件;(2)镁制造信号弹和焰火;(3)MgO作耐火材料。
课堂检测011.科学家发明的透明坚硬镁铝氧化物新型材料,可以用作显示器和手机屏幕,下列关于镁、铝的说法正确的是()A.镁铝制品在空气中能稳定存在是因为铝不活泼B.浓HNO3、浓H2SO4能用铝制器皿盛装是因为铝与浓HNO3、浓H2SO4不反应C.镁、铝均能与NaOH溶液反应D.铝与Fe2O3发生铝热反应是利用了Al的还原性比Fe强答案:D2.小明家中收藏着一件清末的铝制品佛像,该佛像至今仍保存完好。
《金属晶体》 讲义
《金属晶体》讲义一、金属晶体的定义与特点金属晶体是指由金属原子通过金属键结合而成的晶体。
在金属晶体中,金属原子失去部分或全部外层电子,形成自由电子,这些自由电子在整个晶体中自由运动,与金属阳离子相互作用,将金属原子紧密地结合在一起。
金属晶体具有以下特点:1、良好的导电性和导热性:由于存在自由电子,它们能够在电场的作用下定向移动,从而形成电流,实现良好的导电性;自由电子在热的作用下也能迅速传递热能,使得金属具有良好的导热性。
2、金属光泽:自由电子能够吸收并反射可见光,使金属具有独特的金属光泽。
3、延展性:金属晶体中的原子可以相对滑动而不断裂金属键,从而使金属具有良好的延展性,可以被拉成丝或压成薄片。
4、硬度和熔点有较大差异:不同金属的晶体结构和金属键强度不同,导致其硬度和熔点差异较大。
二、金属晶体的结构类型常见的金属晶体结构有以下三种类型:1、体心立方堆积(bcc)体心立方堆积的晶胞中,每个晶胞包含 8 个位于顶角的原子和 1 个位于体心的原子。
例如,碱金属中的锂、钠、钾等在常温下采用这种堆积方式。
这种结构的空间利用率相对较低。
2、面心立方堆积(fcc)面心立方堆积的晶胞中,每个晶胞包含 8 个位于顶角的原子和 6 个位于面心的原子。
铜、银、金等金属通常采用这种堆积方式。
面心立方堆积的空间利用率较高,具有较好的延展性和塑性。
3、密排六方堆积(hcp)密排六方堆积的晶胞是一个六棱柱,每个晶胞包含 12 个位于顶角的原子和2 个位于体内的原子。
镁、锌、钛等金属采用这种堆积方式。
三、金属键的本质金属键是一种特殊的化学键,其本质是金属原子失去电子形成的正离子与自由电子之间的强烈相互作用。
金属原子的价电子数较少,原子核对价电子的束缚较弱,在一定条件下容易失去电子。
这些失去的电子不再属于某个特定的原子,而是在整个晶体中自由运动,形成“电子气”。
金属正离子沉浸在“电子气”中,它们与自由电子之间的静电吸引力使得金属原子紧密结合在一起,形成金属晶体。
讲义06 晶体常识与常见晶体的空间结构模型-高二化学下学期期末复习
考点06 晶体常识与常见晶体的空间结构知识清单[基本概念]①晶体;②非晶体;③晶胞;[基本规律]利用“均摊法”进行晶胞的计算;典题温故1.人们最初对晶体的认识完全是理性思考的结果。
法国的结晶学家阿羽衣依据晶体具有沿一定晶面碎裂的性质,对晶体的微观结构做了合理而大胆的设想,于1784年提出晶体是由具有多面体形状的晶胞平行而无间隙地堆积而成的。
阿羽衣的思想被法国物理学家布拉维发展为空间点阵学说,即构成晶体的粒子按一定规则排列为空间点阵结构。
俄国的费多罗夫、德国的熊富利斯和英国的巴洛三位科学家分别于1890年、1891年和1894年以晶体结构周期性重复单位为基础,推导出描述晶体空间排列的对称性理论——230种空间群。
这些思考完全是在不能测定晶体内部结构的情况下产生的,科学和技术的发展后来完全证实了上述理性思考的正确性。
[问题1]晶体的“空间点阵结构”中,构成晶体的相邻微粒间是否相切?提示:是。
构成晶体的微粒是“无隙并置”的,故这些相邻微粒间相切。
[问题2]如何理解晶体结构中“周期性重复单位”?提示:“周期性重复单位”是指晶体中最小的结构单元可以无限重复(答案合理即可)。
[问题3]晶体的化学式表达的意义是什么?提示:晶体的化学式表示的是晶体(或晶胞)中各类原子或离子的最简整数比。
2.甲、乙、丙三种晶体的晶胞结构如图所示:甲 乙 丙(1)甲晶体的化学式(X 为阳离子)为__________。
(2)乙晶体中A 、B 、C 三种微粒的个数比是__________。
(3)丙晶体中每个D 微粒周围结合E 微粒的个数是____________________。
[解析] (1)X 位于正方体体心,该晶胞中含有1个X ;Y 位于顶角,该晶胞中Y 的个数=4×18=12,则该晶胞中X 、Y 的个数比是2∶1,又X 为阳离子,所以甲晶体的化学式为X 2Y 。
(2)乙晶胞中A 的个数=8×18=1,B 的个数=6×12=3,C 的个数为1,所以乙晶体中A 、B 、C 三种微粒的个数比为1∶3∶1。
高中化学选修3 第三章晶体结构与性质 讲义及习题.含答案解析
高中化学选修三第三章晶体结构与性质一、晶体常识1、晶体与非晶体比较自范性:晶体的适宜的条件下能自发的呈现封闭的,规则的多面体外形。
对称性:晶面、顶点、晶棱等有规律的重复各向异性:沿晶格的不同方向,原子排列的周期性和疏密程度不尽相同,因此导致的在不同方向的物理化学特性也不尽相同。
2、获得晶体的三条途径①熔融态物质凝固。
②气态物质冷却不经液态直接凝固(凝华)。
③溶质从溶液中析出。
3、晶胞晶胞是描述晶体结构的基本单元。
晶胞在晶体中的排列呈“无隙并置”。
4、晶胞中微粒数的计算方法——均摊法某粒子为n个晶胞所共有,则该粒子有1/n属于这个晶胞。
中学常见的晶胞为立方晶胞。
立方晶胞中微粒数的计算方法如下:①晶胞顶角粒子为8个晶胞共用,每个晶胞占1/8②晶胞棱上粒子为4个晶胞共用,每个晶胞占1/4③晶胞面上粒子为2个晶胞共用,每个晶胞占1/2④晶胞内部粒子为1个晶胞独自占有,即为1注意:在使用“均摊法”计算晶胞中粒子个数时要注意晶胞的形状。
二、构成物质的四种晶体1、四种晶体的比较(1)不同类型晶体的熔、沸点高低一般规律:原子晶体>离子晶体>分子晶体。
金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。
(2)原子晶体由共价键形成的原子晶体中,原子半径小的键长短,键能大,晶体的熔、沸点高。
如熔点:金刚石>碳化硅>硅(3)离子晶体一般地说,阴阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,相应的晶格能大,其晶体的熔、沸点就越高。
晶格能:1mol气态阳离子和1mol气态阴离子结合生成1mol离子晶体释放出的能量。
(4)分子晶体①分子间作用力越大,物质熔、沸点越高;具有氢键的分子晶体熔、沸点反常的高。
②组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高。
③组成和结构不相似的物质(相对分子质量接近),分子的极性越大,熔、沸点越高。
④同分异构体,支链越多,熔、沸点越低。
(5)金属晶体金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点就越高。
晶体结构分析讲义
晶体结构分析讲义晶体结构分析是固体结构分析的重要内容之一,主要通过实验手段来确定晶体的结构以及了解晶体内部原子或离子的排列方式。
晶体结构分析技术广泛应用于材料学、物理学、化学等领域,为人们深入了解物质的性质与行为提供了有力的工具。
晶体是具有高度有序结构的固态物质,其原子、离子或分子有着规则的排列方式,构成了不同的晶体结构。
晶体结构分析的基本目标是确定晶体中原子或离子的种类、数量、位置与配位数等信息。
为了实现这一目标,晶体结构分析通常需要借助于晶体学的一系列理论与实验方法。
晶体结构分析的第一步是晶体的生长与准备。
晶体的生长可以通过溶液法、气相法或熔融法等方法实现。
在晶体生长的过程中,需要控制生长条件以得到单一相纯净的晶体。
晶体生长后,需要进行适当的预处理,如清洗、打磨等,以便后续的晶体结构分析。
晶体结构分析的主要方法包括X射线衍射、中子衍射和电子衍射等。
其中,X射线衍射是晶体结构分析中最常用的方法。
它利用X射线与晶体中的原子或离子发生散射,通过衍射图样的分析来推导晶体的结构信息。
而中子衍射和电子衍射则具有更广泛的应用范围,可以用于分析无机晶体、有机晶体以及非晶体等材料的结构。
晶体结构分析的关键是通过衍射图样的解析来确定晶体的空间群、晶胞参数以及原子或离子的位置。
在实际的晶体结构分析中,常常需要进行晶体图像的收集、数据处理与解析,以便得到准确的结构信息。
目前,晶体结构分析已经发展出许多强大的工具与软件,如单晶X射线衍射仪、多晶X射线衍射仪、傅立叶变换红外光谱仪等,使得晶体结构分析变得更加高效与精确。
晶体结构分析的应用十分广泛。
在材料学领域,晶体结构分析为人们深入了解材料的物理性质与化学性质提供了重要的理论依据。
通过晶体结构分析,可以了解晶体中原子之间的键合方式、晶体的电子结构以及晶体的电子传输行为等信息。
此外,在制药领域,晶体结构分析也可以帮助研究人员了解药物晶体的稳定性、生物活性以及药物与分子之间的相互作用等。
晶体结构分析讲义(上)
晶体结构分析主讲人:吴文源2010.51.Shelxtl 使用流程※解析原始文件有hkl文件(或raw文件),包含衍射数据;p4p文件,包含晶胞参数※为一个晶体的数据建立project,该项目下所有文件具有相同的文件名;一旦在XPREP 中发生hkl文件的矩阵转换,则需要输出新文件名的hkl等文件,因此要建立新的project。
※首先运行XPREP,寻找晶体的空间群※然后运行XS,根据XPREP设定的空间群,寻找结构初解※在Xshell中观察初解是否合理,如不合理,需重回XPREP中设定其他的空间群2.Xshell 使用流程※找出重原子或者确定性大的原子※找出其余非氢原子※精修原子坐标※精修各项异性参数※找到氢原子(理论加氢或差值傅里叶图加氢)※反复精修,直到wR2等指标收敛。
最后的R1<0.06(0.08) wR2<0.16(0.18)※通过HTAB指令寻找氢键,判定氢的位置是否合理,并且将相关氢键信息通过HTAB和EQIV指令写进ins文件中※将原子排序(sort)3.cif 文件生成和检测错误流程※在步骤1、2完成后,在ins文件中加入以下三条命令bond $Hconfacta※此时生成了cif和fcf文件,将cif文件拷贝到planton所在文件夹中检测错误,也可以通过如下在线检测网址:/services/cif/checkcif.html※根据错误提示信息,修改或重新精修,将A、B类错误务必全部消灭,C类错误尽量消灭。
4.Acta E 投稿准备流程投稿前,请务必切实做好如下工作:※按步骤1、2、3解析晶体并生成相应cif和fcf文件。
※准备结构式图(Chemical structural diagram)、分子椭球图(Molecular ellipsoid diagram)和晶胞堆积图(Packing diagram),最好是pdf格式。
※按要求撰写文章的文字部分,填写cif中相应段落,注意格式要求!_publ_section_title 题目_publ_section_abstract 摘要_publ_section_related_literature 相关文献_publ_section_comment 评论_publ_section_exptl_prep 制备方法_publ_section_exptl_refinement 精修说明_publ_section_references 参考文献_publ_section_figure_captions 插图说明_publ_section_table_legends 表格说明_publ_section_acknow ledgements 致谢※将cif中需要填写的其他部分(在cif的标准空白样本中以!标注)全部完成,并再次检查整个cif文件格式和内容。
典型晶体结构
一个球体积:4/3πr3=4/3π×( 2/4 a )3=
3 4/3π× 2 2/64 a =
2 /24 πa 3
立方最密堆积一个单胞中球的数目: 8×1/8+6×1/2= 4个 球体积= 4× 2/24 πa 3 = 2 /6 πa 3 空间利用率= 2 a 3 / a 3 2 / 6 74.05% 6
(3) 体心立方bcc
密排面和密排方向: 密排面为{110},密排方向<111>
体心立方密排面
原子半径:
bcc的晶胞体积为a3,晶胞内含2个原子。 原子体积
空间利用率
=
单胞体积
4 æ 3 ö 2´ pç a÷ 3 è 4 ø a3
3
=
3 = p = 68.02% 8
空间利用率:68.02%
(4) 金刚石型堆积(A4) 在这种堆积方式中,等径圆球的排布与金刚石中 碳原子排布类似,所以称为金刚石型堆积。从金刚 石型堆积中可抽出面心立方晶胞,如下图所示
所以密堆积结构至少具有3m1点群对称性
其最低空间群对称性为P3m1和R3m1
密堆结构共有8个空间群:
P3m1, P3m1, P 6m2, P63 mc, P 63 mc m
R3m1, R3m1, Fm3m
能容纳3次旋转对称的点阵只有: 菱面体点阵 R 3层为周期密堆积结构的 六角点阵 H R点阵等价于cF(立方面 心)点阵
A
C A B
A
表示:方法一:四层:…ABAC ABAC… 五层:…ABCAB ABCAB… 六层: …ABCACB ABCACB ABCACB… …h c c h c c h c c h c c … 方法二 …ABABAC ABABAC ABABAC… …c h h h c h c h h h c h …