(强烈推荐) 小学奥数 逻辑推理

合集下载

小学奥数逻辑推理题及答案

小学奥数逻辑推理题及答案

几道逻辑推理题(含答案)1.世界级的马拉松选手每天跑步不超出 6 公里。

所以,假如一名选手每天跑步超出6公里,它就不是一名世界级马拉松选手。

以下哪项与上文推理方法相同?( A )跳远运动员每天清晨跑步。

假如清晨有人跑步,则他不是跳远运动员。

( B )假如每天只睡4小时,对身体不利。

研究表示,最有价值的睡眠都发生在入眠后第5小时。

(C )家长和儿童做游戏时,儿童更快乐。

所以,家长应当多做游戏。

(D )假如某汽车清晨能起动,则夜晚也可能起动。

我们的车清晨往常能启动,相同,它夜晚往常也能启动。

(E )油漆三小时以内都不干。

假如某涂料在三小时内干了,则不是油漆。

2.19 世纪有一位英国改革家说,每一个勤奋的农民,都起码拥有两端牛。

那些没有牛的,往常是贪吃贪喝的人。

所以它的改革方式即是国家给每一个没有牛的农民两端牛,这样整个国家就没有贪吃贪喝的人了。

这位改革家明显犯了一个逻辑错误。

以下选项哪个与该错误相近似?(A )天下雨,地上湿。

此刻天不下雨,所以地也不湿。

(B )这是一本好书,由于它的作者曾获诺贝尔奖。

(C )你是一个犯过罪的人,有什么资格说我不懂哲学?(D )由于他躺在床上,所以他病了。

(E )你谎话,所以我不相信你的话;由于我不相信你的话,所以你谎话。

3.有一天,某一珠宝店被盗走了一块名贵的钻石。

经侦破,查明作案人必定在甲、乙、丙、丁之中。

于是,对这四个重要嫌疑犯进行审问。

审问所获取的口供以下:甲:我不是作案的。

乙:丁是犯人。

丙:乙是偷窃这块钻石的犯人。

丁:作案的不是我。

经查实:这四个人的口供中只有一个是假的。

那么,以下哪项才是正确的破案结果?(A )甲作案。

(B )乙作案。

(C )丙作案。

(D )丁作案。

(E )甲、乙、丙、丁共同作案。

4.古代一位国王和他的张、王、李、赵、钱五位将军一起出外狩猎,各人的箭上都刻有自己的姓氏。

狩猎中,一只鹿中箭倒下,但不知是何人所射。

张说:"或许是我射中的,或许是李将军射中的。

小学数学逻辑推理题精选3篇

小学数学逻辑推理题精选3篇

小学数学逻辑推理题精选【篇一】1、王明的心理学老师告诉他,如果他找到了一只黑猫,它的主人肯定是一个魔法师。

然后,王明真的找到了一只黑猫。

所以,他应该相信这个黑猫的主人是一个魔法师。

这道题应该使用逆向推理的方法。

如果前提是真的,那么结论就有可能是真的。

但是,如果前提不是真的,那么结论就不一定是真的。

在这个问题中,王明找到了一只黑猫,这可能意味着它的主人是魔法师,也可能意味着它的主人不是魔法师。

因此,这种推理方法并不能保证结论的准确性。

2、某天,若菜在学校自习室里。

她在对一道数学问题进行沉思,突然发现有一个男生一直盯着她看。

于是,若菜就认为那个男生一定喜欢她。

这道题也需要使用逆向推理的方法。

如果前提是真的,那么结论就有可能是真的。

但是,如果前提不是真的,那么结论就不一定是真的。

在这个问题中,若菜看到了男生看着她,这可能意味着那个男生确实喜欢她,也可能意味着那个男生只是单纯地看着她而已。

因此,这种推理方法并不能保证结论的准确性。

3、小红有四本书要放进书包里,这些书包括一本科学书、一本历史书和两本小说。

小红的书包只有三个隔间。

但是,小红想要把所有的书都放进去。

她应该怎么做?这个问题需要使用逻辑推理的方法。

首先,我们可以分析一下已知信息。

小红有四本书要放进书包,但是书包只有三个隔间,所以至少有一本书必须和另外一本书合并在一个隔间里。

根据这个结论,我们可以得出以下方案:- 将一本小说和历史书放在一个隔间里,将另外一本小说和科学书放在另一个隔间里。

- 将一本小说和科学书放在一个隔间里,将另外一本小说和历史书放在另一个隔间里。

在这个问题中,我们可以使用逻辑推理的方法来得出正确的答案。

这种方法可以帮助我们通过已知信息来推断出未知的事实。

【篇二】1、李明的妈妈买了一箱水果。

在箱子里有5个柠檬,4个西瓜和3个橙子。

如果李明从箱子里随机拿出一个水果,那么它会是柠檬的概率是多少?这个问题需要使用概率推理的方法。

首先,我们可以计算出总共有多少种可能的结果。

小学奥数逻辑推理题解析精选含答案

小学奥数逻辑推理题解析精选含答案

【导语】数学作为⼀门基础学科,其⽬的是为了培养学⽣的理性思维,养成严谨的思考的习惯,对⼀个⼈的以后⼯作起到⾄关重要的作⽤,特别是在信息时代,可以说,数学与任何科学领域都是紧密结合起来的。

以下是整理的相关资料,希望对您有所帮助。

【篇⼀】【题⽬】⽼师从写有1~13的13张卡⽚中抽出9张,分别贴在9位同学的额头上.⼤家能看到其他8⼈的数但看不到⾃⼰的数.(9位同学都诚实⽽且聪明,且卡⽚6、9不能颠倒)⽼师问:现在知道⾃⼰的数的约数个数的同学请举⼿.有两⼈举⼿.⼿放下之后,有三个⼈有如下的对话:甲:我知道我是多少了.⼄:虽然我不知道我的数是多少,但我已经知道⾃⼰的奇偶性了.丙:我的数⽐⼄的⼩2,⽐甲的⼤1.那么,没有被抽出的四张牌上数的和是?【答案】⾸先,列举1~13所有数约数个数。

每个⼈只能看到另外8个⼈头上的数,⽽要看到8个数就确定⾃⼰的数的约数个数,只能是吧约数个数为1、3、4、6的都看到了。

所以没抽出的四张牌必定约数个数为2个,都是质数。

也就是举⼿的两名同学头上的数。

甲说:“我知道我是多少了”。

所以甲头上的数不是质数。

⼄说:“虽然我不知道我的数是多少,但我已经知道⾃⼰的奇偶性了。

”也就是说⼄现在还不确定⾃⼰的数是多少,那么只可能是约数个数2个的,也就是说他头上的数是质数,他⼜知道奇偶性,所以他看到了其他⼈头上有2,⽽⼄的数就是⼀个奇数的质数。

丙说:“我的数⽐⼄的⼩2,⽐甲的⼤1.”⼄是奇数,丙也是奇数,并且他知道⾃⼰的数所以肯定他不是质数,那么丙只能是1或9,⽽丙还要⽐甲⼤1,所以丙只能是9,甲是8,⼄是11。

那么,质数当中出现了2和11,没抽出的四张牌⾃然是3、5、7、13和为28。

【篇⼆】1(⾸师附中考题)A、B、C、D、E、F六⼈赛棋,采⽤单循环制。

现在知道:A、B、C、D、E五⼈已经分别赛过5.4、3、2、l盘。

问:这时F 已赛过盘。

2 (三帆中学考题)甲、⼄、丙三⼈⽐赛象棋,每两⼈赛⼀盘.胜⼀盘得2分.平⼀盘得1分,输⼀盘得0分.⽐赛的全部三盘下完后,只出现⼀盘平局.并且甲得3分,⼄得2分,丙得1分.那么,甲⼄,甲丙,⼄丙(填胜、平、负)。

最新版 四年级奥数 逻辑推理

最新版  四年级奥数  逻辑推理

逻辑推理例1:卢刚、丁飞和陈瑜一位是工程师,一位是医生,一位是飞行员。

现在只知道:卢刚和医生不同岁;医生比丁飞年龄小,陈瑜比飞行员年龄大。

问:谁是工程师、谁是医生、谁是飞行员?练习1:(1)有三个小朋友们在谈论谁做的好事多。

冬冬说:“兰兰做的比静静多。

”兰兰说:“冬冬做的比静静多。

”静静说:“兰兰做的比冬冬少。

”这三位小朋友中,谁做的好事最多?谁做的好事最少?(2)小李、小徐和小张是同学,大学毕业后分别当了教师、数学家和工程师。

小张年龄比工程师大;小李和数学家不同岁;数学家比小徐年龄小。

谁是教师、谁是数学家、谁是工程师?例2:有一个正方体,每个面分别写上汉字:数学奥林匹克。

三个人从不同角度观察的结果如下图所示。

这个正方体的每个汉字的对面各是什么字?(1)奥匹林(2)数奥学(3)林数克练习2:(1)下面三块正方体的六个面都是按相同的规律涂有红、黄、蓝、白、绿、黑六种颜色。

请判断黄色的对面是什么颜色?白色的对面是什么颜色?红色的对面是什么颜色?(2)一个正方体,六个面分别写上A 、B 、C 、D 、E 、F ,你能根据这个正方体不同的摆法,求出相对的两个面的字母是什么吗?例3:甲、乙、丙三个孩子踢球打碎了玻璃,甲说:“是丙打碎的。

”乙说:“我没有打碎破璃。

”丙说:“是乙打碎的。

”他们当中有一个人说了谎话,到底是谁打碎了玻璃?练习3:(1)已知甲、乙、丙三人中,只有一人会开汽车。

甲说:“我会开汽车。

”乙说:“我不会开。

”丙说:“甲不会开汽车。

”如果三人中只有一人讲的是真话,那么谁会开汽车?(A )黄黑白(B )红白绿(C )红蓝黄D A FA CBCD E(2)某学校为表扬好人好事核实一件事,老师找了A、B、C三个学生。

A说:“是B做的。

”B说:“不是我做的。

”C说:“不是我做的。

”这三个学生中只有一人说了实话,这件好事是谁做的?例4:A、B、C、D与小强五个同学一起参加象棋比赛,每两人都赛一盘,比赛一段时间后统计:A赛了4盘,B赛了3盘,C赛了2盘,D赛了一盘。

小学奥数之逻辑推理专题训练(附详解)

小学奥数之逻辑推理专题训练(附详解)

三年级奥数之逻辑推理专题训练:1、在三只盒子里,一只装有两个黑球,一只装有两个白球,还有一只装有黑球和白球各一个.现在三只盒子上的标签全贴错了.你能否仅从一只盒子里拿出一个球来,就确定这三只盒子里各装的是什么球?从标签为(黑+白)箱子里抽出一个球来,如果是黑球(白球),那么这个箱子里应该是两个黑球(白球),贴了(2黑)标签的箱子里应该是2白球(白+黑),贴了(2白)的箱子里应该是黑+白(2黑)2.甲、乙、丙、丁4位同学的运动衫上印有不同的号码.赵说:“甲是2号,乙是3号.”钱说:“丙是4号,乙是2号.”孙说:“丁是2号,丙是3号.”李说:“丁是l号,乙是3号.”又知道赵、钱、孙、李每人都只说对了一半.那么丙的号码是几号?应该是4号,假设甲是2号,则丁是1号,丙是3号,乙是2号,与甲重复,假设不成立。

假设乙是3号,则丙是4号,丁是2号,甲是1号。

符合要求。

3.某校数学竞赛,A,B,C,D,E,F,G,H这8位同学获得前8名.老师让他们猜一下谁是第一名.A说:“或者F是第一名,或者H是第一名.”B说:“我是第一名.”C说:“G 是第一名.”D说:“B不是第一名.”E说:“A说得不对.”F说:“我不是第一名,H也不是第一名.”G说:“C不是第一名.”H说:“我同意A的意见.”老师指出:8个人中有3人猜对了.那么第一名是谁?B和D两个人中一个对一个错,假设A对则H对E和F错,并且C、G错。

那么C是第一名,这样就和A说的矛盾,所以假设不成立。

所以A错且H错,则E 对F对,C、G也错,同样推出C是第一名。

4.某参观团根据下列条件从A,B,C,D,E这5个地方中选定参观地点:①若去A地,则也必须去B地;②B,C两地中至多去一地;③D,E两地中至少去一地;④C,D两地都去或者都不去;⑤若去E地,一定要去A,D两地.那么参观团所去的地点是哪些?假设C、D两地都去,则没去B地,再假设去了E地,则一定去了A地,也必须去B地,矛盾,所以没去E地,同样也没有去A地;假设C、D两地都不去,则去了E地,去了E地,一定要去A、D地,矛盾。

四年级奥数逻辑推理学生版

四年级奥数逻辑推理学生版

知识要点逻辑推理根据解题思路的不同,逻辑推理分为两种类型:真假判断型和条件分析型。

真假判断型逻辑推理主要有以下两种推理方法: 1.假设推理法(真假为二选一):根据已知条件先作一个假设,然后利用已知条件一步一步往下推,直到推出结论为止。

如果从这个假设出发推出自相矛盾的结论,这就说明所作的假设不成立,而假设的反面就一定是成立的。

主要适用于结论只有两种、非真即假的推理题目。

2.枚举排除法(有多种真假情况):通常直接采用正确的推理,逐一分析,讨论所有可能出现的情况,舍弃不合理的情形,最后得到符合题意的解答。

适用于真假情况不只两种的推理题目。

条件分析型逻辑推理可借助于画图、列表来简化推理过程: 1.图表分析法:将题中关系用图表表示出来,再借助其他分析方法结合图表进行分析推理以得出结论。

其他逻辑推理真假判断型条件分析型枚举排除法假设法图表分析法真假判断型1.甲、乙两人中的一人来自真话村,一个人来自谎话村,谎话村里的人从来不说真话,真话村里的人从来不说谎话。

甲说:“我们两人中至少有一个人在说谎。

”那么甲、乙分别来自什么村呢?2.一个骗子和一个老实人一路同行,骗子总是讲假话,老实人总是讲真话。

请提一个尽量简单的问题,使两人的回答相同。

这个问题可以是什么呢?3.甲、乙、丙三人中只有1人懂法语。

甲说:“我懂。

”乙说:“我不懂。

”丙说:“甲不懂。

”如果三个人的话恰有一句是真话,那么懂法语的是_______,讲真话的是_______。

4.甲、乙、丙三人分别说了下面三句话,请你从他们所说的话判定谁说假话?甲说:“乙在说谎。

”乙说:“丙在说谎。

”丙说:“甲和乙都在说谎。

”5.四个小朋友宝宝、星星、强强和乐乐在院子里踢足球,一阵响声,惊动了正在读书的陆老师,陆老师跑出来查看,发现一块窗户玻璃被打破了。

陆老师问:“是谁打破了玻璃?”宝宝说:“是星星无意打破的。

”星星说:“是乐乐打破的。

”乐乐说:“星星说谎。

”强强说:“反正不是我打破的。

小学奥数知识点总结:逻辑推理

小学奥数知识点总结:逻辑推理

小学奥数知识点总结:逻辑推理
逻辑推理
基本方法简介:
①条件分析—假设法:假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的。

例如,假设a是偶数成立,在判断过程中出现了矛盾,那么a一定是奇数。

②条件分析—列表法:当题设条件比较多,需要多次假设才能完成时,就需要进行列表来辅助分析。

列表法就是把题设的条件全部表示在一个长方形表格中,表格的行、列分别表示不同的对象与情况,观察表格内的题设情况,运用逻辑规律进行判断。

③条件分析——图表法:当两个对象之间只有两种关系时,就可用连线表示两个对象之间的关系,有连线则表示“是,有”等肯定的状态,没有连线则表示否定的状态。

例如A和B两人之间有认识或不认识两种状态,有连线表示认识,没有表示不认识。

④逻辑计算:在推理的过程中除了要进行条件分析的推理之外,还要进行相应的计算,根据计算的结果为推理提供一个新的判断筛选条件。

⑤简单归纳与推理:根据题目提供的特征和数据,分析其中存在的规律和方法,并从特殊情况推广到一般情况,并递推出相关的关系式,从而得到问题的解决。

小学奥数知识点总结:逻辑推理.到电脑,方便收藏和打印:。

五年级奥数之《逻辑推理(2)计算逻辑》+配套练习题 覆盖面广,条理性好,针对性强,提升效果快

五年级奥数之《逻辑推理(2)计算逻辑》+配套练习题 覆盖面广,条理性好,针对性强,提升效果快

五年级奥数
逻辑推理(2)计算逻辑
在逻辑推理过程中,需要进行数字(或数)的计算来完成的逻辑问题,如数字问题,体育比赛的得分、场数、名次问题,在考试中的得分等等问题,我们称这类问题为计算逻辑.
例1:
在一座办公大楼里,有30名办事员.某天上班有一名办事员没有和其他办事员见面.请问这一天在大楼里办公的人最多能遇到几位同事?
例2:
A年B月16日在德意志的波恩附近,一间破旧的阁楼上诞生了以后影响百年的音乐奇才—贝多芬.他以非凡的英雄气概,与残酷的命运抗争,以无与伦比的意志和才华写出了无数欢乐的、悲壮的、田园诗一般温馨的不朽乐章.在一个雷雨交加的夜晚,他圆睁双目注视着闪电,孤独地离开了人世.一个陌生人替他合上了眼睛,时年C年3月D日,贝多芬享年E岁. 请将下列给出的一组数正确的填入A、B、C、D、E中.
(1)26 (2)57 (3)1827 (4)12 (5)1770
随堂练习1
1、某次集会共到了68人,每人头上都戴了一顶帽子,颜色分红、蓝两种,任意两个到会的人中至少有一个人戴红帽子.问戴红帽子的人数比戴蓝帽子的人数多了多少个人?
2、伟大的物理学家爱因斯坦A年B月14日生于德国乌尔姆(UIM),父母都是犹太人,他是相对论的创立者,诺贝尔物理奖获得者.C年4月D日逝世于美国,享年E岁.
请将下列给出的一组数正确的填入A、B、C、D、E中.
(1)1955 (2)3 (3)1879 (4)76 (5)18。

(完整word版)(强烈推荐)小学奥数逻辑推理

(完整word版)(强烈推荐)小学奥数逻辑推理

逻辑推理(一)数字游戏月日课次◇专题知识简述◇由于数学学科的特点,通过数学的学习来培养少年儿童的逻辑推理能力是一种极好的途径.为了使同学们在思考问题时更严密更合理,会有很有据地想问题,而不是凭空猜想,这里我们专门讨论一些有关逻辑推理的问题。

解答这类问题,首先要从所给的条件中理清各部分之间的关系,然后进行分析推理,排除一些不可能的情况,逐步归纳,找到正确的答案。

◇例题解析◇例1 公路上按一路纵队排列着五辆大客车.每辆车的后面都贴上了该车的目的地的标志.每个司机都知道这五辆车有两辆开往A市,有三辆开往B市;并且他们都只能看见在自己前面的车的标志.调度员听说这几位司机都很聪明,没有直接告诉他们的车是开往何处的,而让他们根据已知的情况进行判断.他先让第三个司机猜猜自己的车是开往哪里的.这个司机看看前两辆车的标志,想了想说“不知道”.第二辆车的司机看了看第一辆车的标志,又根据第三个司机的“不知道”,想了想,也说不知道.第一个司机也很聪明,他根据第二、三个司机的“不知道”,作出了正确的判断,说出了自己的目的地。

请同学们想一想,第一个司机的车是开往哪儿去的;他又是怎样分析出来的?解:根据第三辆车司机的“不知道”,且已知条件只有两辆车开往A市,说明第一、二辆车不可能都开往A市.(否则,如果第一、二辆车都开往A市的,那么第三辆车的司机立即可以断定他的车一定开往B市)。

再根据第二辆车司机的“不知道”,则第一辆车一定不是开往A市的.(否则,如果第一辆车开往A市,则第二辆车即可推断他一定开往B市)。

运用以上分析推理,第一辆车的司机可以判断,他一定开往B市。

例2 李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛.事先规定.兄妹二人不许搭伴。

第一盘,李明和小华对张虎和小红;第二盘,张虎和小林对李明和王宁的妹妹。

请你判断,小华、小红和小林各是谁的妹妹。

解:因为张虎和小红、小林都搭伴比赛,根据已知条件,兄妹二人不许搭伴,所以张虎的妹妹不是小红和小林,那么只能是小华,剩下就只有两种可能了。

小学奥数之逻辑推理题(详细解析)

小学奥数之逻辑推理题(详细解析)

小学奥数之逻辑推理题(详细解析)1、有500人聚会,其中至少有一人说假话,这500人里任意两个人总有一个(即总有人)说真话。

说真话的有多少人?说假话的有多少人?分析:任意2个人都有人说真话,说明说假话的必须≤1人,又因为题目说了,至少有一人说假话即说假话的人≥1人,所以满足≤1和人≥1,可见说假话的只能是1人,所以说真话的有500-1=499人。

2、某次考试考完后,A、B、C、D四个同学猜测他们的考试成绩。

A说:“我肯定考得最好”。

-------(1)|B说:“我不会是最差的”。

-------(2)C说:“我没有A考得好,但也不是最差的”。

--------(3)D说:“可能我考得最差。

”-------(4)成绩一公布,只有一人说错了。

请你按照考试分数由高到低排出他们的顺序。

分析:假设法。

假设A是最差的,那么第(1)和(2)都是错的话。

矛盾了。

假设B是最差的,那么第(2)和(4)都是错的话。

矛盾了。

假设C是最差的,那么第(3)和(4)都是错的话。

矛盾了。

、所以证明了D是最差的。

那么第(4)句话是对的。

第(2)句话也是对的,第(1)句话和第(3)句话必须一个对一个错,如果第(1)是对的,那么第(3)一定对,那么四个都是对的话,矛盾了。

所以:第(1)句话是错的,第(3)必须对的。

根据D是最差的,A不是最好的,C是对的,C比A差,所以只有B才是最好的。

所以A 是第二好,C是第三好,D是最差的。

由高到低排列为:B、A、从、D。

3、王涛、李明、江兵三人在一起谈话。

他们当中一位是校长,一位是老师,一位是学生家长。

现在只知道:(1)江兵比家长年龄大。

(2)王涛和老师不同岁。

(3)老师比李明年龄小。

你能确定谁是校长、谁是老师、谁是家长吗?:分析:第(2)和第(3)中,老师不是李明也不是王涛,所以老师是江兵。

因为江兵是老师,所以第(3)句话中证明了:江兵比李明小,结合第(1)句话中“江兵比家长大”,说明“李明”不是家长,是校长。

小升初数学奥数必考(逻辑推理题)

小升初数学奥数必考(逻辑推理题)

小升初数学奥数必考(逻辑推理题)
1.有三个盒子,分别标有“苹果”、“橙子”、“苹果和橙子”,但实际上每个盒
子的标签都错了。

你只能打开一个盒子看里面的东西,然后重新贴上正确的标签,怎么做?
2.有三个开关,分别控制三盏灯,你只能进入房间一次,如何确定哪个开关
控制哪盏灯?
3.有10个球,其中9个重量相同,1个较重,用天平称三次,找出那个较重
的球。

4.有100个囚犯和100个盒子,每个盒子里有一张纸条,上面写着一个囚犯
的名字。

每个囚犯可以打开最多50个盒子,如果所有囚犯都能找到自己的名字,他们就能全部获释。

设计一种策略,使他们获胜的概率尽可能大。

5.有100个瓶子,其中一瓶有毒,毒药在24小时内会致死。

你有10只小白
鼠,如何在24小时内找出那瓶有毒的瓶子?
6.甲乙两人同时从A地出发前往B地,甲的速度是每小时5公里,乙的速度
是每小时4公里,甲比乙早到1小时,求AB两地的距离。

7.一辆汽车以每小时60公里的速度行驶,行驶了3小时后,速度提高到每
小时80公里,再行驶2小时,求总行驶距离。

8.一个水池有两个进水管,单独开第一个管需要4小时注满水池,单独开第
二个管需要6小时注满水池,两个管同时开需要多少时间注满水池?9.一家商店打折销售商品,原价100元的商品打8折后再打9折,最终售价
是多少?
10.一个长方体的长、宽、高分别为3、4、5,求其体积和表面积。

小学生奥数逻辑推理练习题5篇

小学生奥数逻辑推理练习题5篇

【导语】逻辑思维是指将思维内容联结、组织在⼀起的⽅式或形式。

思维是以概念、范畴为⼯具去反映认识对象的。

以下是⽆忧考整理的《⼩学⽣奥数逻辑推理练习题5篇》相关资料,希望帮助到您。

1.⼩学⽣奥数逻辑推理练习题 1.有五个⼈各说了⼀句话。

第⼀个⼈说:“我们中间每个⼈都说谎”。

第⼆个⼈说:“我们中间只有⼀个⼈说谎”。

第三个⼈说:“我们中间有两个⼈说谎”。

第四个⼈说:“我们中间有三个⼈说谎”。

第五个⼈说:“我们中间有四个⼈说谎”。

请问,他们谁说谎话,谁说真话? 2.某地质学院的三名学⽣对⼀种矿⽯进⾏分析。

甲判断:不是铁,不是铜。

⼄判断:不是铁,不是锡。

丙判断:不是锡,⽽是铁。

经化验证明,有⼀个⼈判断完全正确,有⼀个⼈只说对了⼀半,⽽另⼀个则完全说错了。

你知道三⼈中谁是对的,谁是错的,谁是只对了⼀半的吗? 2.⼩学⽣奥数逻辑推理练习题 1.五个旅游者在海滨交谈。

甲:“我从A城来,⼄A城来,丙从B城来”。

⼄:“我从C城来,戊从C城来,丙从B城来”。

丙:“我不从B城来,甲不从D城来,丁从E城来”。

丁:“我⽗亲从A城来,我母亲从D城来,我从F城来”。

戊:“甲从A城来,⼄从A城来,我从F城来”。

如果他们每⼈都说了两句真话,⼀句假话,你能判断每⼀个⼈各来⾃哪个城市吗? 2.在⼀次有3⼈参加的讲话中,⼩张指责⼩王和⼩李:“你们都在说谎。

”⼩李却说:“⼩张正在说谎。

”⼩王则说:“⼩李正在说谎。

”试判断他们谁讲的是真话,谁讲的是假话? 前⼋名,⽼师让他们猜⼀下谁是第⼀名。

A:“或者F是第⼀名,或者H是第⼀名。

” B:“我是第⼀名。

” C:“G是第⼀名。

” D:“B不是第⼀名。

” E:“A说的不对。

” F:“我不是第⼀名,H也不是第⼀名”。

G:“C不是第⼀名。

” H:“我同意A的意见。

” ⽼师指出,⼋⼈中有三⼈猜对了,那么谁是第⼀名?3.⼩学⽣奥数逻辑推理练习题 1.A、B、C、D、E、F六年⾜球队进⾏⽐赛,每队都已赛过三场。

(完整版)小学奥数逻辑推理题及答案

(完整版)小学奥数逻辑推理题及答案

几道逻辑推理题(含答案)1.世界级的马拉松选手每天跑步不超过6公里。

因此,如果一名选手每天跑步超过6公里,它就不是一名世界级马拉松选手.以下哪项与上文推理方法相同?(A)跳远运动员每天早晨跑步。

如果早晨有人跑步,则他不是跳远运动员。

(B)如果每日只睡4小时,对身体不利.研究表明,最有价值的睡眠都发生在入睡后第5小时.(C)家长和小孩做游戏时,小孩更高兴。

因此,家长应该多做游戏.(D)如果某汽车早晨能起动,则晚上也可能起动.我们的车早晨通常能启动,同样,它晚上通常也能启动。

(E)油漆三小时之内都不干。

如果某涂料在三小时内干了,则不是油漆。

2.19世纪有一位英国改革家说,每一个勤劳的农夫,都至少拥有两头牛。

那些没有牛的,通常是好吃懒做的人。

因此它的改革方式便是国家给每一个没有牛的农夫两头牛,这样整个国家就没有好吃懒做的人了。

这位改革家明显犯了一个逻辑错误。

下列选项哪个与该错误相类似?(A)天下雨,地上湿。

现在天不下雨,所以地也不湿。

(B)这是一本好书,因为它的作者曾获诺贝尔奖。

(C)你是一个犯过罪的人,有什么资格说我不懂哲学?(D)因为他躺在床上,所以他病了。

(E)你说谎,所以我不相信你的话;因为我不相信你的话,所以你说谎。

3.有一天,某一珠宝店被盗走了一块贵重的钻石.经侦破,查明作案人肯定在甲、乙、丙、丁之中。

于是,对这四个重大嫌疑犯进行审讯。

审讯所得到的口供如下:甲:我不是作案的。

乙:丁是罪犯。

丙:乙是盗窃这块钻石的罪犯.丁:作案的不是我。

经查实:这四个人的口供中只有一个是假的。

那么,以下哪项才是正确的破案结果?(A)甲作案.(B)乙作案。

(C)丙作案。

(D)丁作案。

(E)甲、乙、丙、丁共同作案.4.古代一位国王和他的张、王、李、赵、钱五位将军一同出外打猎,各人的箭上都刻有自己的姓氏。

打猎中,一只鹿中箭倒下,但不知是何人所射.张说:"或者是我射中的,或者是李将军射中的。

"王说:”不是钱将军射中的。

小学奥数逻辑推理

小学奥数逻辑推理

1、在甲,乙,丙三人中有一位教师,一位工人,一位战士。

已知丙比战士年龄大, 甲和工人不同岁,工人比乙年龄小。

请你判断他们分别是什么职业。

2、在国际饭店的宴会桌旁,甲,乙, 丙, 丁四位朋友进行有趣的交谈,用了中, 英,法,日四种语言,知道的情况如下:(1)甲,乙,丙各会两种语言,丁只会一种语言;(2)有一种语言四人中有三人都会;(3)甲会日语,丁不会日语,乙不会英语;(4)甲与丙,丙与丁不能直接交谈,乙与丙可以直接交谈;(5)没有人即会日语,又会法语。

请判断他们四个人分别会什么语言。

3、从 A,B,C,D,E,F 六位同学中挑选一些人去参加某项竞赛活动。

根据竞赛规则,参赛人员须满足下列要求:(1)A,B 两人中至少去一个人;(2)A,D 两人不能同时去;(3)A,E,F 三人中要选两人去;(4)B,C 两人都去或者都不去;(5)C,D 两人中去一个人;(6)若D不去,则E也不去。

请问:选中参赛的人是哪几个人?4、在三只盒子里,一只装有两个黑球,一只装有两个白球,还有一只装有黑球和白球各一个.现在三只盒子上的标签全贴错了。

你能否仅从一只盒子里拿出一个球来,就确定这三只盒子里各装的是什么球?5、有四个嫌疑犯:甲,乙,丙,丁,他们的话如下:甲说:我不是罪犯乙说:丁是罪犯丙说:乙是罪犯丁说:我不是罪犯以上四人只有一个人说假话,请问:谁是罪犯?6、有5个不透明的袋子,分别装着5种不同颜色的小球,小球的颜色分别为红,黄,绿,蓝,白5种,A,B,C,D,E五个人猜它们的颜色,他们的话如下:A说:第二包是蓝的,第三包是白的B说:第二包是绿的,第四包是红的C说:第一包是红的,第五包是黄的D说:第三包是绿的,第四包是黄的E说:第二包是白的,第五包是蓝的以上五人,每人的话一半是真话,一半是假话,请问:每个袋子里的小球颜色分别是什么?7、甲、乙、丙、丁4位同学的运动衫上印有不同的号码。

A说:“甲是2号,乙是3号.”B说:“丙是4号,乙是2号.”C说:“丁是2号,丙是3号.”D说:“丁是l号,乙是3号.”已知每人都只说对了一半.那么甲乙丙丁的号码分别是几号?8、某参观团根据下列条件从A,B,C,D,E这5个地方中选定参观地点:①若去A地,则也必须去B地;②B,C两地中至多去一地;③D,E两地中至少去一地;④C,D两地都去或者都不去;⑤若去E地,一定要去A,D两地.那么参观团所去的地点是哪些?9、小红,小芳,小丽,小兰四个人从左到右站成一排,她们分别穿着不同颜色的衣服,裤子,帽子,鞋子,颜色分别为红,黄,蓝,白,同一个人的四种衣着的颜色也不一样。

小学奥数-逻辑推理(经典)

小学奥数-逻辑推理(经典)

逻辑推理★挑战锦囊★解答逻辑问题常用的方法有:直推法:先从一个条件出发,逐步往下推理,直到推出结论为止;假设法:先从一个假设,然后利用条件进行推理。

若得出矛盾结论,说明作为假设的前提不成立,而与假设相反的判断便是正确的。

★基础挑战一甲、乙、丙、丁坐在同一排的1至4号座位上,小红看着他们说:“甲的两边的人不是乙,丙两边的人不是丁,甲的座位号比丙大。

”那么,坐在1号位置上的是谁?分析:根据“甲的两边的人不是乙,丙两边的人不是丁” ,可以推断出甲与丙是坐在位于中间的2号、3 号座位上,再根据:“甲的座位号比丙大”,即可解答。

挑战自己,我能行练习1 甲、乙、丙、丁、戊五个人坐在同一排5个相邻的座位上看电影,已知甲坐在离乙、丙距离相等的座位上,丁坐在离甲、丙距离相等的座位上,戊的左右两侧的邻座上分别坐着她的两个姐姐,则____________________________________________ 和____________ 是戊的姐姐。

(第八届1试)★基础挑战二有A B C、D E五位选手参加比赛,四位同学作如下预测:①:E将得第三,A将得第四;②:A将得第三,B将得第一;③:B将得第四,E将得第二;④:D将得第一,C将得第三。

结果这几位同学所作的两句预测都只有一句是正确的。

分析:可用假设法解题,先假设第一位同学的第一句是对的,贝U第二句为错,接着往后推,发现矛盾,假设不成立;假设第一位同学的第一句是错的,第二句为对,往下推,得出结论。

练习2:甲、乙、丙、丁、戊五人猜测全班个人学科总成绩的前五名甲:“第一名是D,第五名是E。

”乙:“第二名是A第四名是G丙:“第三名是D,第四名是A丁:“第一名是C,第三名是B。

”戊:“第二名是C,第四名是B。

”若每个人都是只猜对一个人的名次,且每个名次只有一个人猜对,则第一、二、三、四、五名分别是_________________________ 。

(第九届1试)★目标挑战三某年的10月里有5个星期六,4个星期日。

小学奥数之逻辑推理题(详细解析)

小学奥数之逻辑推理题(详细解析)

小学奥数之逻辑推理题(详细解析)1、有500人聚会,其中至少有一人说假话,这500人里任意两个人总有一个(即总有人)说真话。

说真话的有多少人?说假话的有多少人?分析:任意2个人都有人说真话,说明说假话的必须≤1人,又因为题目说了,至少有一人说假话即说假话的人≥1人,所以满足≤1和人≥1,可见说假话的只能是1人,所以说真话的有500-1=499人。

2、某次考试考完后,A、B、C、D四个同学猜测他们的考试成绩。

A说:“我肯定考得最好”。

-------(1)B说:“我不会是最差的”。

-------(2)C说:“我没有A考得好,但也不是最差的”。

--------(3)D说:“可能我考得最差。

”-------(4)成绩一公布,只有一人说错了。

请你按照考试分数由高到低排出他们的顺序。

分析:假设法。

假设A是最差的,那么第(1)和(2)都是错的话。

矛盾了。

假设B是最差的,那么第(2)和(4)都是错的话。

矛盾了。

假设C是最差的,那么第(3)和(4)都是错的话。

矛盾了。

所以证明了D是最差的。

那么第(4)句话是对的。

第(2)句话也是对的,第(1)句话和第(3)句话必须一个对一个错,如果第(1)是对的,那么第(3)一定对,那么四个都是对的话,矛盾了。

所以:第(1)句话是错的,第(3)必须对的。

根据D是最差的,A不是最好的,C是对的,C比A差,所以只有B才是最好的。

所以A 是第二好,C是第三好,D是最差的。

由高到低排列为:B、A、从、D。

3、王涛、李明、江兵三人在一起谈话。

他们当中一位是校长,一位是老师,一位是学生家长。

现在只知道:(1)江兵比家长年龄大。

(2)王涛和老师不同岁。

(3)老师比李明年龄小。

你能确定谁是校长、谁是老师、谁是家长吗?分析:第(2)和第(3)中,老师不是李明也不是王涛,所以老师是江兵。

因为江兵是老师,所以第(3)句话中证明了:江兵比李明小,结合第(1)句话中“江兵比家长大”,说明“李明”不是家长,是校长。

小学奥数逻辑推理题及答案

小学奥数逻辑推理题及答案

几道逻辑推理题(含答案)1世界级的马拉松选手每天跑步不超过6公里。

因此,如果一名选手每天跑步超过6公里,它就不是一名世界级马拉松选手。

以下哪项与上文推理方法相同(A)跳远运动员每天早晨跑步。

如果早晨有人跑步,则他不是跳远运动员。

(B)如果每日只睡4小时,对身体不利。

研究表明,最有价值的睡眠都发生在入睡后第5小时。

(C)家长和小孩做游戏时,小孩更高兴。

因此,家长应该多做游戏。

(D)如果某汽车早晨能起动,则晚上也可能起动。

我们的车早晨通常能启动,同样,它晚上通常也能启动。

(E)油漆三小时之内都不干。

如果某涂料在三小时内干了,则不是油漆。

2.19世纪有一位英国改革家说,每一个勤劳的农夫,都至少拥有两头牛。

那些没有牛的,通常是好吃懒做的人。

因此它的改革方式便是国家给每一个没有牛的农夫两头牛,这样整个国家就没有好吃懒做的人了。

这位改革家明显犯了一个逻辑错误。

下列选项哪个与该错误相类似(A)天下雨,地上湿。

现在天不下雨,所以地也不湿。

(B)这是一本好书,因为它的作者曾获诺贝尔奖。

(C)你是一个犯过罪的人,有什么资格说我不懂哲学(D)因为他躺在床上,所以他病了。

(E)你说谎,所以我不相信你的话:因为我不相信你的话,所以你说谎。

3-有一天,某一珠宝店被盗走了一块贵重的钻石。

经侦破,查明作案人肯定在甲、乙、丙、丁之中。

于是,对这四个重大嫌疑犯进行审讯。

审讯所得到的口供如下:甲:我不是作案的。

乙:丁是罪犯。

丙:乙是盗窃这块钻石的罪犯。

T:作案的不是我。

经查实:这四个人的□供中只有一个是假的。

那么,以下哪项才是正确的破案结果(A)甲作案。

(B)乙作案。

(C)丙作案。

(D)丁作案。

(巳甲、乙、丙、丁共同作案。

4.古代一位国王和他的张、王、李、赵、钱五位将军一同出外打猎,各人的箭上都刻有自己的姓氏。

打猎中,一只鹿中箭倒下,但不知是何人所射。

张说:”或者是我射中的,或者是李将军射中的。

”王说:”不是钱将军射中的。

”李说:”如果不是赵将军射中的,那么一定是王将军射中的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

逻辑推理(一)数字游戏月日课次◇专题知识简述◇由于数学学科的特点,通过数学的学习来培养少年儿童的逻辑推理能力是一种极好的途径.为了使同学们在思考问题时更严密更合理,会有很有据地想问题,而不是凭空猜想,这里我们专门讨论一些有关逻辑推理的问题。

解答这类问题,首先要从所给的条件中理清各部分之间的关系,然后进行分析推理,排除一些不可能的情况,逐步归纳,找到正确的答案。

◇例题解析◇例1 公路上按一路纵队排列着五辆大客车.每辆车的后面都贴上了该车的目的地的标志.每个司机都知道这五辆车有两辆开往A市,有三辆开往B市;并且他们都只能看见在自己前面的车的标志.调度员听说这几位司机都很聪明,没有直接告诉他们的车是开往何处的,而让他们根据已知的情况进行判断.他先让第三个司机猜猜自己的车是开往哪里的.这个司机看看前两辆车的标志,想了想说“不知道”.第二辆车的司机看了看第一辆车的标志,又根据第三个司机的“不知道”,想了想,也说不知道.第一个司机也很聪明,他根据第二、三个司机的“不知道”,作出了正确的判断,说出了自己的目的地。

请同学们想一想,第一个司机的车是开往哪儿去的;他又是怎样分析出来的?解:根据第三辆车司机的“不知道”,且已知条件只有两辆车开往A市,说明第一、二辆车不可能都开往A市.(否则,如果第一、二辆车都开往A市的,那么第三辆车的司机立即可以断定他的车一定开往B市)。

再根据第二辆车司机的“不知道”,则第一辆车一定不是开往A市的.(否则,如果第一辆车开往A市,则第二辆车即可推断他一定开往B市)。

运用以上分析推理,第一辆车的司机可以判断,他一定开往B市。

例2 李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛.事先规定.兄妹二人不许搭伴。

第一盘,李明和小华对张虎和小红;第二盘,张虎和小林对李明和王宁的妹妹。

请你判断,小华、小红和小林各是谁的妹妹。

解:因为张虎和小红、小林都搭伴比赛,根据已知条件,兄妹二人不许搭伴,所以张虎的妹妹不是小红和小林,那么只能是小华,剩下就只有两种可能了。

第一种可能是:李明的妹妹是小红,王宁的妹妹是小林;第二种可能是:李明的妹妹是小林,王宁的妹妹是小红。

对于第一种可能,第二盘比赛是张虎和小林对李明和王宁的妹妹.王宁的妹妹是小林,这样就是张虎、李明和小林三人打混合双打,不符合实际,所以第一种可能是不成立的,只有第二种可能是合理的。

所以判断结果是:张虎的妹妹是小华;李明的妹妹是小林;王宁的妹妹是小红。

例3 “迎春杯”数学竞赛后,甲、乙、丙、丁四名同学猜测他们之中谁能获奖.甲说:“如果我能获奖,那么乙也能获奖.”乙说:“如果我能获奖,那么丙也能获奖.”丙说:“如果丁没获奖,那么我也不能获奖.”实际上,他们之中只有一个人没有获奖.并且甲、乙、丙说的话都是正确的.那么没能获奖的同学是___。

解:首先根据丙说的话可以推知,丁必能获奖.否则,假设丁没获奖,那么丙也没获奖,这与“他们之中只有一个人没有获奖”矛盾。

其次考虑甲是否获奖,假设甲能获奖,那么根据甲说的话可以推知,乙也能获奖;再根据乙说的话又可以推知丙也能获奖,这样就得出4个人全都能获奖,不可能.因此,只有甲没有获奖。

例4数学竞赛后,小明、小华、小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌.王老师猜测:“小明得金牌;小华不得金牌;小强不得铜牌.”结果王老师只猜对了一个.那么小明得___牌,小华得___牌,小强得___牌。

分析逻辑问题通常直接采用正确的推理,逐一分析,讨论所有可能出现的情况,舍弃不合理的情形,最后得到问题的解答.这里以小明所得奖牌进行分析。

解:①若“小明得金牌”时,小华一定“不得金牌”,这与“王老师只猜对了一个”相矛盾,不合题意。

②若小明得银牌时,再以小华得奖情况分别讨论.如果小华得金牌,小强得铜牌,那么王老师没有猜对一个,不合题意;如果小华得铜牌,小强得金牌,那么王老师猜对了两个,也不合题意.③若小明得铜牌时,仍以小华得奖情况分别讨论.如果小华得金牌,小强得银牌,那么王老师只猜对小强得奖牌的名次,符合题意;如果小华得银牌,小强得金牌,那么王老师猜对了两个,不合题意。

综上所述,小明、小华、小强分别获铜牌、金牌、银牌符合题意。

例5 有三只盒子,甲盒装了两个1克的砝码;乙盒装了两个2克的砝码;丙盒装了一个1克、一个2克的砝码.每只盒子外面所贴的标明砝码重量的标签都是错的.聪明的小明只从一只盒子里取出一个砝码,放到天平上称了一下,就把所有标签都改正过来了.你知道这是为什么吗?分析解决本题的关键是确定打开哪只盒子:若打开标有“两个1克砝码”的盒子,则该盒的真实内容是“两个2克砝码”或“一个1克砝码,一个2克砝码”,当取出的是2克砝码时,就无法对其内容作出准确的判断.同样,打开标有“两个2克砝码”的盒子时,也会出现类似的情况.所以,应打开标有“一个1克砝码,一个2克砝码”的盒子.而它的真实内容应该是“两个1克砝码”或“两个2克砝码”。

①若取出的是1克砝码,则该盒一定装有两个1克砝码,从而标有“两个2克砝码”的盒子里,不可能是两个2克或两个1克的砝码,而只能是一个1克,一个2克的砝码了;标有“两个1克砝码”的盒子自然装有两个2克砝码。

②若取出的是2克砝码,同理可知,此盒装有两个2克砝码;标有“两个1克砝码”的盒子里实际上是一个1克和一个2克的砝码;标有“两个2克砝码”的盒子里实际上是两个1克砝码.按以上的推理结果,小明就将全部标签改正过来了。

例6 四人打桥牌,某人手中有13张牌,四种花色样样有;四种花色的张数互不相同.红桃和方块共5张;红桃与黑桃共6张;有两张将牌(主牌).试问这副牌以什么花色的牌为主?解:①假设红桃为主.那么红桃有2张;方块有3张;黑桃有4张,因为共13张牌,所以草花有4张,这样,黑桃为草花张数相同.与已知条件“四种花色的张数互不相同”矛盾,即红桃不是主牌。

②假设方块为主牌.那么方块有2张;红桃有3张;则黑桃也有3张,亦与已知矛盾。

③假设草花为主牌.那么草花有2张.并且推得红桃+方块+黑桃共有11张牌.而已知“红桃和方块共5张,红桃与黑桃共6张”,即得红桃+方块+红桃+黑桃共11张牌.由此得到红桃的张数应为零.与已知条件“四种花色样样有”相矛盾.说明草花不是主牌。

由以上推理得知,黑桃必为主牌.即黑桃有2张;红桃有4张;方块有1张.那么草花有6张。

例7 S、B、J、R四人分别获数学、英语、语文和逻辑学四个学科的奖学金,但他们都不知道自己获得的是哪一门获学金.他们相互猜测:S:“R得逻辑学奖”;B:“J得英语奖”;J:“S得不到数学奖”;R:“B得语文奖”。

最后发现,数学和逻辑学的获奖者所作的猜测是正确的,其他两人都猜错了.那么他们各得哪门学科的奖学金?分析假设S猜对,即R得逻辑学奖.由已知条件“逻辑学获奖者所作的猜测是正确的”,则R猜对,那么B得语文奖,并且J、B均猜错.而由B猜错,可知J得数学奖,S只好得英语奖,这又说明J猜“S得不到数学奖”是正确的.与前面的推理(J猜错)矛盾.所以S的猜测是错误的。

解:S猜错,即R得不到逻辑学奖,S不得数学奖且不得逻辑学奖.由此可知,J的猜测是正确的.则J得数学或逻辑学奖.于是推得,B猜错,故R猜对,即B得语文奖,S得英语奖,所以R得数学奖,J得逻辑学奖。

例8 A、B、C三人进行小口径步枪射击比赛,每个人射击6次,并且都得了71分.三人共18次的得分情况,从小到大排列为:1,1,1,2,2,3,3,5,5,10,10,10,20,20,20,25,25,50。

已知A首先射击两次,共得22分;C第一次射击只得3分,请根据条件判断,是谁击中了靶心(击中靶心得50分)?解:我们先来推断A6次射击的情况.已知前两次得22分,6次共得71分,从71-22=49可知,击中靶心的决不会是A.另一方面,在上面18个数中,两数之和等于22的只可能是20和2.再来推算一下四个数之和等于49的可能性.首先,在这四个数中,如果没有25,是绝不可能组成49的.其次,由于49-25=24,则如果没有20,任何三个数也不能组成24.而24-20=4,剩下的两个数显然只能是1和3了.所以A射击6次的得分(不考虑得分顺序)应该是20,2,25,20,3,1。

(可在前面18个数中,划去上述6个数)。

再来推断击中靶心的人6次得分的情况.从71-50=21可知,要在前面12个未被划去的数中,取5个数,使其和是21.可以断定,这5个数中,必须包括一个10,一个5,一个3,一个2,一个1.即6次得分情况为50,10,5,3,2,1。

在前面12个未被划去的数中,划去上面这6个数。

剩下的6个数25,20,10,10,5,1就是第三个人的得分情况了。

从这6个数中没有3,而C第一次得了3分,可知这6个数是B射击的得分数.因此C 是击中靶心的人。

例9 在一个俱乐部里,有老实人和骗子两类成员,老实人永远说真话,骗子永远说假话.一次我们和俱乐部的四个成员谈天,我们便问他们:“你们是什么人,是老实人?还是骗子?”这四个人的回答如下:第一个人说:“我们四个人全都是骗子.”第二个人说:“我们当中只有一个人是骗子.”第三个人说:“我们四个人中有两个人是骗子.”第四个人说:“我是老实人.”请判断一下,第四个人是老实人吗?解:①四个人当中一定有老实人.因为如果四个人都是骗子,则谁也不会说“我们四个人全都是骗子”.所以第一个人为骗子。

②第二个人为骗子.因为如果他是老实人,说实话,由于我们已经判断了第一个人是骗子,则第二、三、四个人都是老实人.但第三个人的回答与他矛盾,两人不可能是同类的,故第二个人说的是假话,他是骗子。

下面再看第三个人的回答:如果第三个人是编子,则由①可知,第四个人一定是老实人;若第三个人是老实人,那么由他的话知他和第四个人是老实人.因而无论第三个人是骗子还是老实人,都可以推出第四个人是老实人。

所以,第四个人是老实人。

例10 某医院内科病房,A、B、C、D、E、F、G七名护士每周轮流安排一个夜班.已经知道:A的夜班比C的夜班晚一天,D的夜班比E的夜班的前一天晚三天,B的夜班比G的夜班早三天;F的夜班在B和C的夜班的正中间,而且是在星期四.问每个护士分别在星期几值夜班?解:除F以外,可将已知条件归纳如下:CA,E__D,B____G.这里的横线表示空位。

可见CA不能排在B____G中间,否则F就无法排在BC的正中间了.又F必排在三个空位之一,因此还有两个空位必定是E__D和B__G交叉填空.于是可排出:EBDFG或BFEGD两种情况,而CA只能加在任何一端,那么就有CAEBDFG,EBDFGCA,CABFEGD 和BFEGD-CA四种排位.其中只有排位EBDFGCA才能满足已知条件“F在BC的正中间”.所以七名护士值班排序是:E星期一值班,B星期二值班,D星期三值班,F星期四值班,G星期五值班,C星期六值班,A星期日值班.◇练习巩固◇1.有一个珠宝店发生了一起盗窃案,被盗走了许多珍贵的珠宝.经过几个月的侦破,查明作案的人肯定是A、B、C、D中的一个,把这四个人当作重大嫌疑犯进行审讯,这四个人有这样的口供:A:“珠宝店被盗那天,我在别的城市,所以我是不可能作案的.”B:“D是罪犯.”C:“B是盗窃犯,他曾在黑市上卖珠宝.”D:“B与我有仇,陷害我.”因为口供不一致,无法判断谁是罪犯,经过进一步调查知道,这四个人只有一个说的是真话.你知道罪犯是谁吗?2.甲、乙、丙、丁四位同学的运动衫上印有不同的号码。

相关文档
最新文档