初二数学学案 分式
八年级下分式学案
教师寄语:百尺竿头,更进一步学习目标:1、记住分式的乘方法则并会进行分式的乘方运算 2、能熟练地进行分式的乘除法运算【尝试练习】3.在下列各式中:①; ②;③ ; 达标练习:1、计算:① ②2、化简: 作业:1、计算:(1) (2) 2.计算:(1) (2)16.2.2分式的加减(2)教师寄语:百尺竿头,更进一步 学习目标:1、能进行异分母分式的加减运算;2、能解决一些简单的实际问题。
前置练习:化简 的结果是 。
自主学习:尝试完成下列各题:① ② 合作交流:异分母分式相加减法则: ,数学式子表达:归纳总结:异分母分式相加减3b b x x-a aa b b a---241aa -=11a b+=23224x x xx x x ⎛⎫-÷⎪++-⎝⎭222x x x x +⎛⎫- ⎪--⎝⎭例题解析:教师寄语:百尺竿头,更进一步学习目标:1、记住分式的乘方法则并会进行分式的乘方运算2、能熟练地进行分式的乘除法运算【尝试练习】3.在下列各式中:①;②;③;16.2.2 分式的加减法(3)学习目标:熟记分式的加减运算法则,能熟练的进行分式的四则混合运算基础训练:一、选择题1.计算()·xy的结果是().A.x-y B.x+y C.y-x D.-x-y2.计算1-的结果是().A.3.计算1÷(1+),正确结果是().A.二、填空题4.计算:(2-的结果是_______.5.计算:(x2-1)()的结果是________.三、解答题6.计算:(1)(1+7.先化简,再求值:+1.教师寄语:百尺竿头,更进一步学习目标:1、记住分式的乘方法则并会进行分式的乘方运算2、能熟练地进行分式的乘除法运算【尝试练习】3.在下列各式中:①;②;③;能力提高*8.化简.*9.计算:(1)1+*10.求当a=的值.16.2.3整数指数幂学习目标:1、理解正整数指数幂的运算性质在整数指数幂的运算中仍然适用。
初中数学分式教案【优秀4篇】
初中数学分式教案【优秀4篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!初中数学分式教案【优秀4篇】作为一名教师,时常要开展教案准备工作,教案是实施教学的主要依据,有着至关重要的作用。
人教版初二数学分式教学设计(16篇)
人教版初二数学分式教学设计(16篇)篇1:初中数学分式教学设计教材的地位和作用本节课是北师大版八年级下册第五章第一节《分式》第一课时。
分式是初中数学中继整式之后学习的一个代数基础知识,是对小学所学分数的延伸和扩展,是建立在本册第四章的分解因式的基础上学习的,同时,它也是今后继续学习分式的性质、运算以及解分式方程的基础和前提。
学好本节课,不仅能够增强学生的运算能力,提高运算速度,同时,也为今后解决更为复杂的代数问题,诸如“函数”、“方程”等,提供重要的条件,打下坚实的基础数学分式教学设计(结合学生情况教学目标设计)由于学生在七年级已经学习了整式,分式与整式一样也是代数式,因此研究与学习的方法与整式相类似;另一方面,“分式”是“分数”的“代数化”,学生可以通过类比进行分式的学习。
学生对分数和整式的理解、掌握不熟练,给本节分式的学习带来了困难,因为其性质与运算是完全类似的,对这种状况,要以基础知识的回忆和探究新知同步进行,在此基础上有所提高,让不同层次的学生都有收获。
所以我依据《数学课程标准》,以教材特点和学生认知水平为出发点,确定以下4个方面为本节课的教学目标:1.知识与技能目标⑴使学生了解分式产生的背景和分式的概念,了解分式与整式概念的区别与联系.明确分母不得为零是分式概念的组成部分.⑵掌握分式有意义的条件.认识事物间的联系与制约关系.2.过程与方法目标⑴能用分式表示现实情境中的数量关系,体会分式的模型思想,进一步发展符号感,⑵通过类比分数研究分式的教学,引导学生运用类比转化的思想方法研究解决问题.⑶培养学生观察、归纳、类比的思维,让学生学会自主探索,合作交流.3.情感与价值目标⑴.通过体验动手操作、合作交流、探究解决的学习过程,获得成功的经验,体验数学活动充满着探索和创造,体会分式的模型思想,激发学生解决问题的积极性和主动性。
⑵在土地沙化问题中,体会保护人类生存环境的重要性。
培养学生严谨的思维能力.4.现代教学手段多媒体幻灯投影①课堂使用课件教学,直观、教学知识点覆盖全面,教学内容丰富。
初二数学分式方程教案
初二数学分式方程教案初二数学分式方程教案在教学工作者实际的教学活动中,往往需要进行教案编写工作,教案是教学蓝图,可以有效提高教学效率。
写教案需要注意哪些格式呢?下面是小编收集整理的初二数学分式方程教案,仅供参考,欢迎大家阅读。
初二数学分式方程教案1一,内容综述:1、解分式方程的基本思想在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程"转化"为整式方程。
即分式方程整式方程2、解分式方程的基本方法(1)去分母法去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程。
但要注意,可能会产生增根。
所以,必须验根。
产生增根的原因:当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解。
检验根的方法:将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等。
为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根。
必须舍去。
注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公分母为0。
用去分母法解分式方程的一般步骤:(i)去分母,将分式方程转化为整式方程;(ii)解所得的整式方程;(iii)验根做答(2)换元法为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决。
辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法。
换元法是解分式方程的一种常用技巧,利用它可以简化求解过程。
用换元法解分式方程的一般步骤:(i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;(ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的值;(iii)把辅助未知数的值代回原设中,求出原未知数的值;(iv)检验做答。
初中数学《分式》优秀教案(通用12篇)
初中数学《分式》优秀教案〔通用12篇〕篇1:初中数学分式教案初中分式教案初中数学分式教学反思经历了三周多的学习,学生已根本掌握了分式的有关知识(分式的概念、分式的根本性质、约分、通分、分式的运算、分式方程和能化为一元一次方程的分式方程的应用题等),并且获得了学习代数知识的常用方法,感受到代数学习的实际应用价值。
但是,“分式运算”教学中,学生在课堂上感觉不差,做作业或测试时却错处百出,尤其在分式的混合运算更是出错多、空白多、究其根,均属于运算才能问题,因此在教学中应特别关注这一深层根,并根据学生的实际情况寻找相应对策。
下面是我在教学中的几点体会:一、教学中的发现1、本章可以让学生通过观察、类比、猜测、尝试等活动学习分式的运算法那么,开展他们的合情推理才能,所以教学时重点应放在对法那么的探究过程上。
一定要让学生充分活动起来。
在观察、类比、猜测、尝试当一系列思想活动中发现法那么、理解法那么、应用法那么,同时还要关注学生对算理的理解,以培养学生的代数表达才能、运算才能和有理的考虑问题才能。
可是我在知识的传授上并没有注重探究、类比法那么,而重在对分式四那么运算法那么的运用和分式方程的运用上,没有抓住教学的关键环节恰当的选择教学方法。
今后要防止类似事情的发生。
2、问题(1) 分式的运算错的较多。
分式加减法主要是当分子是屡次式时,假如不把分子这个整体用括号括上,容易出现符号和结果的错误。
所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。
其次,分式概念运算应按照先乘方、再乘除,最后进展加减运算的顺序进展计算,有括号先做括号里面的。
(2)分式方程也是错误重灾区。
一是增根定义模糊,对此,我对增根的概念进展深化浅出的阐述,⑴增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;⑵增根能使最简公分母等于0;二是解分式方程的步骤不标准,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的形式中跳出来;(3)列分式方程错误百出。
八年级数学下册 分式学案
用心 爱心 专心 1§16.1.1从分数到分式 自主合作学习独立看书1~4页二、 独立完成下列预习作业: 1、单项式和多项式统称 . 2、32表示 ÷ 的商,)()2(n m b a +÷+可以表示为 .3、长方形的面积为102cm ,长为7cm ,宽应为 cm ;长方形的面积为S ,长为a ,宽应为 .4、把体积为203cm 的水倒入底面积为332cm 的圆柱形容器中,水面高度为 cm ;把体积为V 的水倒入底面积为S 的圆柱形容器中,水面高度为 .5、一般地,如果A 、B 表示两个整式,并且B 中含有 ,那么式子BA 叫做分式.◆◆分式和整式统称有理式◆◆三、合作交流,解决问题:分式的分母表示除数,由于除数不能为0,故分式的分母不能为0,即当B ≠0时,分式BA 才有意义.1、当x 时,分式x 32有意义;2、当x 时,分式1-x x 有意义;3、当b 时,分式b351-有意义; 4、当x 、y 满足 时,分式yx y x -+有意义;四、课堂测控:21、下列各式x1,3x ,aπ,5342+b ,352-a ,22yx x -,11x +,nm n m -+,15x+y ,22a b a b--,121222+-++x x x x ,)(3b a c -,23x -,0中,是分式的有 ; 是整式的有 ; 是有理式的有 . 2、下列分式,当x 取何值时有意义. ⑴a2; ⑵2323xx +- ⑶2132x x ++ ⑷11-+x x⑸yx -1 ⑹122-x ⑺22+x x ⑻13-x3、下列各式中,无论x 取何值,分式都有意义的是( ) A .121x + B .21x x + C .231x x+ D .2221xx +4、当x 时,分式2212x x x -+-的值为零5、当x 时,分式43x +的值为1;当x 时,分式43x +的值为-1.用心 爱心 专心3§16.1.2分式的基本性质--约分 自主合作学习独立看书4~7页二、 独立完成下列预习作业:1、分式的分子与分母同乘(或除以)一个不为0的整式,分式的值 .即CB C A BA ⋅⋅= 或 CB C A BA ÷÷=(C ≠0)2、填空:⑴222-=-x x x x;y x xxy x +=+22633 ⑵b a ab b a 2=+ ;ba ab a 222=- (b ≠0) 3、利用分式的基本性质:将分式xx x22-的分子和分母的公因式x 约去,使分式xx x 22-变为21-x ,这样的分式变形叫做分式的 ;经过约分后的分式21-x ,其分子与分母没有 ,像这样的分式叫做 .三、合作交流,解决问题: 将下列分式化为最简分式: ⑴cab bc a 2321525- ⑵96922++-x x x ⑶yx yxy x 33612622-+-( )( ) ( ) ( )4四、课堂测控:1.分数的基本性质为: .用字母表示为: . 2.把下列分数化为最简分数:(1)812= ;(2)12545= ;(3)2613= .分式的基本性质为: . 3、填空:①3)(3222+----=+x xx x②)(3863323----=abb a③)()(222-----=+-y x y x y x ④)0()(1≠+----=++n cnan ca b4、分式434y x a+,2411x x --,22x xy yx y-++,2222a ab ab b+-中是最简分式的有( )A .1个B .2个C .3个D .4个 5、约分: ⑴acbc 2 ⑵2)(xyy y x + ⑶22)(y x xy x ++⑷222)(y x y x -- ★ ⑸22699x x x ++-; ★ ⑹2232m m m m-+-.用心 爱心 专心5§16.1.2分式的基本性质--通分 自主合作学习独立看书7~8页二、 独立完成下列预习作业:1、利用分式的基本性质:将分式的分子和分母同乘适当的整式,不改变分式的值,使几个分式化为分母相同的分式,这样的分式变形叫做分式的 .2、根据你的预习和理解找出: ①x1与y3的最简公分母是 ; ②ax 与aby 的最简公分母是 ;③abb a +与22ab a -最简公分母是 ;④231yzx 与22xy的最简公分母是 .★★如何确定最简公分母?一般是取各分母的所有因式的最高次幂的积 三、合作交流,解决问题: 1、通分:⑴b a 223与cab b a 2- ⑵26x ab,29y a b c2、通分:⑴52-x x 与53+x x ; ★⑵2121a a a -++,261a -.解:=ba 223=-cab b a 2=-52x x=+53x x解:四、课堂测控: 1、分式223abc 和28bca -的最简公分母是 . 分式11-y 和11+y 的最简公分母是 . 2、化简:._______44422=++-a a a3、分式ax y 434+,1142--x x ,yx yxy x ++-22,2222bab ab a -+中已为最简分式的有( )A 、1个B 、2个C 、3个D 、4个 4、化简分式2bab b +的结果为( )A 、ba +1 B 、ba11+ C 、21ba + D 、bab +15、若分式 的分子、分母中的x 与y 同时扩大2倍,则分式的值( )A 、扩大2倍B 、缩小2倍C 、不变D 、是原来的2倍6、不改变分式的值,使分式 的各项系数化为整数,分子、分母应乘以( ) A 、10 B 、9 C 、45 D 、907、不改变分式 的值,使分子、分母最高次项的系数为整数,正确的是( )A 、3252322-+++x x x x B 、3252322-++-x x x x C 、3252322+--+x x x x D 、3252322+---x x x x8、通分: ⑴bdc 2与243bac ⑵2)(2y x xy +与22yx x -⑶bca y abx 229,6 ⑷16,12122-++-a a a ayx y x 913110151+-)0,0(≠≠+y x yx xy3253232-+-+-x x xx用心 爱心 专心7§16.2.1分式的乘除 自主合作学习一、 独立看书10~14页1、观察下列算式:⑴2910452515321553==⨯⨯=⨯ ⑵252756155231525321553==⨯⨯=⨯=÷请写出分数的乘除法法则:乘法法则: ;除法法则: . 2、分式的乘除法法则:(类似于分数乘除法法则)乘法法则: ;除法法则: .3、分式乘方:nn nba b a =⎪⎭⎫⎝⎛ 即分式乘方,是把分子、分母分别 .三、合作交流,解决问题: 1、计算: ⑴ 3234xy yx ∙; ⑵cdb a cab 4522223-÷2、计算: ⑴ 411244222--∙+-+-a a a a a a ; ⑵mmm7149122-÷-.即:bd ac d b c a d c b a =∙∙=∙即: bc ad c b d a c d b a d c b a =∙∙=∙=÷3、计算:3592533522+∙-÷-x x x x x .4、计算:⑴ 2232⎪⎪⎭⎫ ⎝⎛-cba ⑵ 2333222⎪⎭⎫⎝⎛∙÷⎪⎪⎭⎫ ⎝⎛-a c d a cd b a四、课堂测控: 1、计算: ⑴qmnp mnq p pqn m 3545322222÷∙; ⑵228241681622+-∙+-÷++-a a a a a a a.2、计算: ⑴23x x +-·22694x x x -+-; ⑵23a a -+÷22469a a a -++.3、计算:⑴32432⎪⎪⎭⎫ ⎝⎛-z y x ; ⑵3234223362⎪⎭⎫ ⎝⎛-∙÷⎪⎪⎭⎫ ⎝⎛-b c b a dc ab .用心 爱心 专心9§16.2.2分式的加减 自主合作学习一、 独立看书15~18页1、填空:①15与35的 相同,称为 分数,15+35= ,法则是 ;②12与23的 不同,称为 分数,12+23= ,•运算方法为 ; 2、b a与c a的 相同,称为 分式;m a与n b的 不同,称为 分式.3、分式的加减法法则同分数的加减法法则类似①同分母分式相加减,分母 ,把分子 ;②异分母分式相加减,先 ,变为同分母的分式,再 .4.22m m +-,52m +的最简公分母是 .5、在括号内填入适当的代数式:三、合作交流,解决问题: 1、计算:⑴x x y++y y x+ ⑵32b a-32a a⑶32ab+214a2、计算:⑴2222235yx x yx y x ---+ ⑵21a-+21(1)a -即用式子表示为:cb ac b c a ±=± 即用式子表示为:bd bc ad bd bc bd ad d c b a ±=±=± ⑴222()2xy ax y = (⑵322()()x xy x x y x y -=--⑶qp qp 321321-++ ⑷2129m -+23m-+23m +3、计算:4122b b a b a b a ÷--∙⎪⎭⎫⎝⎛四、课堂测控: 1、计算:⑴xxx 11-+ ⑵13121+-+++b a b a b a2、计算:⑴223121cddc +⑵2)2(223n m n m nm ----⑶ba ba a +--122⑷222x x x+--2144x x x --+3、计算:⑴x y y x x y y x 222222÷-∙⎪⎪⎭⎫ ⎝⎛ ⑵⎪⎭⎫ ⎝⎛+---⎪⎭⎫ ⎝⎛+∙+11111212x x x x x x§16.2.3整数指数幂 自主合作学习一、 独立看书18~22页1、回顾正整数幂的运算性质:⑴同底数幂相乘:=∙n m a a . ⑵幂的乘方:()=nm a .⑶同底数幂相除:=÷n m a a. ⑷积的乘方:()=nab .⑸=⎪⎭⎫⎝⎛nb a . ⑹ 当a 时,10=a.2、根据你的预习和理解填空:3、一般地,当n 是正整数时,4、归纳:1题中的各性质,对于m,n 可以是任意整数,均成立.三、合作交流,解决问题:1、计算:⑴()321b a - ⑵()32222---∙b a b a2、计算:⑴()3132y x y x -- ⑵()()322322b ac ab ---÷)(5353---==÷a a a a ===÷35353a a a a )(1--a )0(1≠=-a aa n n即na-(a ≠0)是na的倒数四、课堂测控: 1、填空:⑴____30=;____32=-. ⑵()____30=-;()___32=--.⑶____310=⎪⎭⎫ ⎝⎛;____312=⎪⎭⎫ ⎝⎛-.⑷____0=b ;____2=-b (b ≠0).2、纳米是非常小的长度单位,1纳米=910-米,把1纳米的物体放到乒乓球上,如同将乒乓球放到地球上,1立方毫米的空间可以放 个1立方纳米的物体,(物体间的间隙忽略不计).3、用科学计数法表示下列各数:①0.000000001= ;②0.0012= ; ③0.000000345= ;④-0.0003= ; ⑤0.0000000108= ;⑥5640000000= ; 4、计算:⑴2223--∙ab b a ⑵()313--ab ⑶()3322232n m n m --∙5、计算: ⑴()()36102.3102⨯⨯⨯- ⑵()()342610102--÷⨯§16.3-1分式方程 自主合作学习一、 独立看书26~28页1、问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v 千米/时,则轮船顺流航行速度为 千米/时,逆流航行速度为 千米/时;顺流航行100千米所用时间为 小时,逆流航行600千米所用时间为 小时.根据两次航行所用时间相等可得到方程:方程①的分母含有未知数v ,像这样分母中含有未知数的方程叫做 . 我们以前学习的方程都是整式方程,分母中不含未知数. ★★2、解分式方程的基本思路是: . 其具体做法是: . 三、合作交流,解决问题: 1、试解分式方程: ⑴vv-=+206020100 ⑵2510512-=-x x解:方程两边同乘)20)(20(v v -+得: 解:方程两边同乘 得:去括号得: 移项并合并得:解得:经检验:是原方程的解. 经检验:不是原方程的解,即原方程无解分式方程为什么必须检验?如何检验?.vv-=+206020100 ①)20(60)20(100v v +=-2、小试牛刀(解分式方程) ⑴xx 332=- ⑵12112-=-x x四、课堂测控:1、下列哪些是分式方程? ⑴1=+y x ; ⑵3252z y x -=+; ⑶21-x ;⑷053=+-x y ; ⑸11=+x x ; ⑹523xx +=-π. 2、解下列分式方程: ⑴3221+=x x⑵14122-=-x x⑶13321++=+x x x x ⑷01522=--+xx xx⑸)2)(1(311+-=--x x x x ⑹2212=-+-xx x§16.3-2分式方程 自主合作学习一、 独立看书29~31页问题:两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快?分析:甲队1个月完成总工程的31,若设乙队单独施工1个月能完成总工程的x1.则甲队半个月完成总工程的 ;乙队半个月完成总工程的 ;两队半个月完成总工程的 ; 解:设乙队单独施工1个月能完成总工程的x1,则有方程:方程两边同乘 得:解得:x = 经检验:x = 符合题设条件. ∴ 队施工速度快.三、合作交流,解决问题:问题:一项工程要在限定期内完成,如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成;如果两组合做3天后,剩下的工程由第二组单独做,正好在规定日期内完成。
八年级数学分式运算教案
八年级数学分式运算教案一、教学目标1. 知识与技能:(1)理解分式的概念,掌握分式的基本性质;(2)学会分式的加减乘除运算方法;(3)能够运用分式解决实际问题。
2. 过程与方法:(1)通过自主学习、合作探讨,培养学生的数学思维能力;(2)利用多媒体教学,直观展示分式运算过程,提高学生的学习兴趣。
3. 情感态度与价值观:(1)培养学生对数学学科的热爱和信心;(2)培养学生勇于探索、严谨求实的科学精神。
二、教学内容1. 分式的概念与基本性质(1)分式的定义;(2)分式的基本性质:分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变。
2. 分式的加减运算(1)同分母分式的加减法;(2)异分母分式的加减法。
3. 分式的乘除运算(1)分式的乘法;(2)分式的除法。
三、教学重点与难点1. 教学重点:(1)分式的概念与基本性质;(2)分式的加减乘除运算方法。
3. 教学难点:(1)异分母分式的加减法运算;(2)分式乘除法运算中的约分技巧。
四、教学过程1. 导入新课:(1)复习相关知识:分数的概念及运算;(2)提问:分数在实际生活中有哪些应用?引入分式的概念。
2. 自主学习:(1)让学生自主探究分式的基本性质;(2)学生展示探究成果,教师点评并讲解。
3. 合作探讨:(1)分组讨论分式的加减运算方法;(2)各组展示讨论成果,教师点评并总结。
4. 课堂练习:(1)设计相关练习题,让学生巩固所学知识;(2)学生独立完成练习,教师批改并讲解错误。
5. 拓展提高:(1)引导学生运用分式解决实际问题;(2)学生举例说明,教师点评并讲解。
五、课后作业1. 完成练习册上的相关题目;教学评价:1. 课后收集学生的练习册,评估掌握程度;2. 在下一节课开始时,进行课堂测试,检验学生的学习效果。
六、教学策略1. 实例教学:通过具体的例题,让学生了解分式运算的应用,提高学生的实践能力。
2. 小组合作:鼓励学生分组讨论,培养学生的团队合作意识和沟通能力。
人教版初中数学八年级上册上册第十五章《分式》第一节《分式》教案
-约分与通分的技巧:学生在约分和通分时,往往不能找到最简公分母,需要教授寻找公分母的技巧和方法。
-分式的混合运算:学生在面对分式的混合运算时,难以掌握运算顺序和法则,需要通过典型例题和练习逐步突破。
-分式在实际问题中的应用:学生可能不知道如何将实际问题转化为分式问题,需要通过案例分析,引导学生建立数学模型。
举例:难点在于分式的混合运算,教师应通过以下步骤帮助学生克服难点:
a.通过对比整式的运算顺序,引导学生理解分式混合运算的顺序。
b.通过具体例题,展示分式混合运算的步骤和技巧。
c.设计不同难度的练习题,让学生逐步适应并掌握分式混合运算。
d.在解题过程中,强调分式约分与通分的应用,使运算过程简化。
四、教学流程
五、教学反思
在本次教学活动中,我教授了人教版初中数学八年级上册第十五章《分式》的第一节《分式》。回顾整个教学过程,我认为有几个地方值得反思和改进。
首先,关于导入新课环节,我通过提出与分式相关的生活中的问题来激发学生的兴趣,这是一个较好的切入点。但在实际操作中,我发现部分学生可能并没有完全理解问题的实质,导致后续学习过程中对分式的理解不够深入。因此,在以后的教学中,我需要更加关注学生的反应,适时调整问题的难度,确保学生们能够更好地进入学习状态。
本节课的核心素养目标主要包括:
1.培养学生的数学抽象能力,通过引入分式的概念,让学生理解数学表达形式的简洁性与严谨性;
2.提高学生的逻辑推理能力,在学习分式的性质与运算法则中,使学生掌握逻辑推理方法,形成严密的数学思维;
3.培养学生的数学建模素养,让学生在实际问题中运用分式知识建立数学模型,提高解决实际问题的能力;
用分式方程解决实际问题---利润问题 学案 -2024-2025学年人教版数学八年级上册
用分式方程解决实际问题---利润问题学习目标1.能让学生根据问题中的数量关系列出分式方程并解决问题。
2.再次感受列分式方程解决问题的一般步骤3.通过用分式方程解决实际问题来提高学生的分析、解决问题的能力。
重难点能让学生根据问题中的数量关系列出分式方程并解决问题。
学习过程典型例题:“母亲节”前夕,某商店根据市场调查,用3 000元购进第一批盒装花,上市后很快售完,接着又用5 000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花的盒数的2倍,且每盒花的进价比第一批的进价少5元.若两次售价相同,售价定为多少,才能保证两次利润不低于1900元?变式一:商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该铅笔,但这次每支的进价4倍,购进数量比第一次少了30支。
是第一次进价的5(1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支铅笔售价至少为多少元?变式二:母亲节”前夕,某花店根据市场调查,用3 000元购进第一批鲜花,上市后很快售完,接着又用5 000元购进第二批这种鲜花.已知第二批所购花的数量是第一批所购花的数量的2倍,且每束花的进价比第一批的进价少5元.(1)两次购进鲜花一共购进多少支?(2)在这两次鲜花总数量正常损耗15%,其余全部售完的情况下,若俩次售价相同,售价至少定为多少,才能保证两次总利润不低于25.5%?变式三:“母亲节”前夕,某花店根据市场调查,用3 000元购进第一批鲜花,上市后很快售完,接着又用3 960元购进第二批这种鲜花.已知第二批所购花的数量是第一批所购花的数量的2倍还少200,且每束花的进价比第一批的进价提高10%.(1)第一批每束鲜花进价多少元?(2)老板以每束17元的价格销售第二批鲜花,售出80%后,为了尽快售完,决定打折促销,要使第二批鲜花销售利润不少于2140元,剩余鲜花每束售价至少打几折?变式四:“母亲节”前夕,某商店根据市场调查,用3 000元购进第一批盒装花,上市后很快售完,接着又用5 000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花的盒数的2倍,且每盒花的进价比第一批的进价少5元.(1)第一批盒装花的进价是多少元?(2)如果用a元购进第一批盒装花,用b元购进第二批盒装花,且第二批所购花的盒数是第一批所购花的盒数的m倍,且每盒花的进价比第一批的进价少n元,则第二批盒装花的进价是多少?变式五:“母亲节”前夕,甲、乙商店根据市场调查,甲商店用3 000元购进一批盒装花,乙店用5 000元购进一批盒装花.已知乙店购买的盒装花的盒数是甲店购买的盒装花的盒数的2倍,且乙店购买的盒装花的进价比甲店购买的盒装花的进价少5元.(1)甲店购买的盒装花的进价是多少元?(2)上市后甲、乙两种商店都以售价为a 元销售,很快销售完,甲商店决定提价,第一次提价p%,第二次提价q%,乙商店第一、二次提价均为 ,其中p 、q 是不相等的正数,问:哪个商店提价多?%2p q课后作业1.商店销售某种商品,一月分销售了若干件,共获得利润30 000元,二月份把这种商品每件的利润降低1,但销售量比一月份增加5 000件,从而获得利润比5一月份多2 000元.调价前每件利润是多少元?2.利用分式方程解决下列问题:某商店销售一批服装,每件售价150元,可获利25%.求这种服装的成本价.3.某商场销售某种商品,此商品的进价是每件x元,第一个月将此商品的进价提高25%作为销售价,共获利6000元.第二个月商场搞促销活动,将此商品的进价提高10%作为销售价,第二个月的销售量比第一个月增加了80件,并且商场第二个月比第一个月多获利400元.问:(1)商场第一个月销售了此商品件(用含x的代数式表示);(2)商场第二个月共销售多少件?。
初中数学分式教案大全6篇
初中数学分式教案大全6篇为大家整理的初中数学分式教案,如果大家喜欢可以分享给身边的朋友。
初中数学分式教案精选篇1【教学目标】一、知识目标经历“实际问题-分式方程方程模型”的过程,经历分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用。
二、能力目标知道分时方程的意义,会解可化为一元一次方程的分式方程。
三、情感目标在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值。
【教学重难点】将实际问题中的等量关系用分式方程表示。
找实际问题中的等量关系。
【教学过程】一、课前预习与导学1.什么叫做分式方程?解分式方程的步骤有哪几步?2.判断下面解方程的过程是否正确,若不正确,请加以改正。
解方程:=3-解:两边同乘以(x-1),得2=3-x=1,①x=3+1-2,②所以x=2.③(不正确。
正确的解:两边同乘以(x-1),得2=3(x-1)-x-1,所以x=3)3.解下列分式方程:(1)=(2)+=2二、新课(一)情境创设:1.甲、乙两人加工同一种服装,乙每天比甲多加工1件,已知乙加工24件服装所用时间与甲加工20件服装所用时间相同。
怎样用方程来描述其中数量之间的相等关系?设甲每天加工服装多少件,可得方程:2.一个两位数的各位数字是4,如果把各位数字与十位数字对调,那么所得的两位数与原两位数的比值是。
怎样用方程来描述其中数量之间的相等关系?设这个两位数的十位数字是x,可得方程:3.某校学生到距离学校15km的山坡上植树,一部分学生骑自行车出发40min后,另一部分学生乘汽车出发,结果全体学生同时到达。
已知汽车的速度是自行车的速度的3倍。
怎样用方程来描述其中数量之间的相等关系?设自行车的速度为xkm/h,可得方程:(二)探索活动:1.上面所得到的方程有什么共同特点?2.这些方程与整式方程有什么区别?结论:分母中含有未知数的方程叫做分式方程。
3.如何解分式方程=?解:这个分式方程的两边同乘各分式的最简公分母x(x+1),可以得到一元一次方程:20(x+1)=24x解这个方程,得x=5为了判断x=5是否是原方程的解,我们把x=5代入原方程:左边==4,右边==4,左边=右边。
初二数学分式的教案
《分式》的教案教学时数:1节 上课日期:2011年10月17日 第七周 第一节 教学目的:1、引导学生熟练掌握分式的概念及分式的性质等知识;2、经历通过观察、归纳、类比、猜想,获得分式的基本性质,发展学生思维能力、分析问题、解决问题能力、实际操作能力、 语言表达能力、自学能力、合情推理能力与代数恒等能力等;3、引导学生学习劳动人民的优良品德;尊重客观、尊重事实的良好品德;刻苦顽强品德等;4、激发学生热爱劳动人民的情感;热爱科学、热爱生活的情感;5、通过学习,能获得学习代数知识的常用方面,能感受代数学习的价值。
教学重点:1、分式的概念2、分式的性质教学难点:1、分式的有意义的条件2、分子、分母是多项式的分式约分教学方法:讲授法、谈话法、讨论法、练习法、读书指导法教具:多媒体课件 ppt教学过程:一、复习旧课(时间5~10分钟)同学们,我们一起来复习一下上一节课学习的内容:提问 1:我们上节课学习的什么知识啊?生(一起回答):学习了完全平方公式。
提问2:那什么叫做完全平方公式?生(一起回答):两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方,这样的式子就叫做完全平方公式.提问3:那有没有同学愿意上来,在黑板上默写完全平方公式的公式? 好,第四组举手的那位同学上来默写一下公式。
生:()()b a b a b a _22+=-()2222b a b ab a +=++ ()2222b a b ab a -=+-二、学习新课(时间20~25分钟)(重点)1.引人新课: 同学们,我们在数学学习中会遇到诸如a a 21+,xa -8,y x 2+之类的式子,你知道这些式子与整式有什么区别吗?你认为xy x x )2(+与yx 2+相等吗? 其中:a a 21+,xa -8,y x 2+,xy x x )2(+,y x 2+ (板) 学生回答:整式可以分为单项式和多项式;整式分母没有字母,这些有字母;整式不包括开方,分母是字母的数......那两个数相等,把第一个数的x 约去就得到第二个数了;……. 同学们,回答的非常好,都能发现这些式子和整式的不同之处。
初中数学分式教案
初中数学分式教案初中数学分式教案5篇作为一名人民教师,时常要开展教案准备工作,教案是教学活动的依据,有着重要的地位。
那么写教案需要注意哪些问题呢?以下是小编整理的初中数学分式教案,仅供参考,希望能够帮助到大家。
初中数学分式教案1一、素质教育目标(一)知识教学点1.使学生了解反比例函数的概念;2.使学生能够根据问题中的条件确定反比例函数的解析式;3.使学生理解反比例函数的性质,会画出它们的图像,以及根据图像指出函数值随自变量的增加或减小而变化的情况;4.会用待定系数法确定反比例函数的解析式.(二)能力训练点1.培养学生的作图、观察、分析、总结的能力;2.向学生渗透数形结合的教学思想方法.(三)德育渗透点1.向学生渗透数学来源于实践又反过来作用于实践的观点;2.使学生体会事物是有规律地变化着的观点.(四)美育渗透点通过反比例函数图像的研究,渗透反映其性质的图像的直观形象美,激发学生的兴趣,也培养学生积极探求知识的能力.二、学法引导教师采用类比法、观察法、练习法学生学习反比例函数要与学习其他函数一样,要善于数形结合,由解析式联想到图像的位置及其性质,由图像和性质联想比例系数k 的符号.三、重点·难点·疑点及解决办法1.教学重点:反比例的概念、图像、性质以及用待定系数法确定反比例函数的解析式.因为要研究反比例函数就必须明确反比例函数的上述问题.2.教学难点:画反比例函数的图像.因为反比例函数的图像有两个分支,而且这两个分支的变化趋势又不同,学生初次接触,一定会感到困难.3.教学疑点:(1)反比例函数为何与 x 轴, y 轴无交点;(2)反比例函数的图像只能说在第一、三象限或第二、四象限,而不能说经过第几象限,增减性也要说明在第几象限(或说在它的每一个象限内).4.解决办法:(1)中隐含条件是或;(2)双曲线的两个分支是断开的,研究函数的增减性时,要将两个分支分别讨论,不能一概而论.四、教学步骤(一)教学过程提问:小学是否学过反比例关系?是如何叙述的?由学生先考虑及讨论一下.答:小学学过:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做反比例的量,它们的关系叫做反比例关系.看下面的实例:(出示幻灯)1.当路程 s 一定时,时间 t 与速度 v 成反比例;2.当矩形面积 S 一定时,长 a 与宽 b 成反比例;它们分别可以写成(s 是常数),(S 是常数)写在黑板上,用以得出反比例函数的概念:(板书)一般地,函数( k 是常数,)叫做反比例函数.即在上面的例子中,当路程 s 是常数时,时间 t 就是速度 v 的反比例函数,能否说:速度 v 是时间 t 的反比例函数呢?通过这个问题,使学生进一步理解反比例函数的概念,只要满足( k 是常数,)就可以.因此可以说速度 v 是时间 t 的反比例函数,因为( s 是常量).对第2个实例也一样.练习一:教材P129中1口答.P130 1根据前面学习特殊函数的经验,研究完函数的概念,跟着要研究的是什么?答:图像和性质.通过这个问题,使学生对课本上给出的知识的发生、发展过程有一个明确的认识,以后学生要研究其他函数,也可以按照这种方式来研究.下面,我们就来看一个例题:(出示幻灯)例1画出反比例函数与的图像.提问:1.画函数图像的关键问题是什么?答:合理、正确地选值列表.2.在选值时,你认为要注意什么问题?答:(1)由于函数图像的特点还不清楚,多选几个点较好;(2)不能选,因为时函数无意义;(3)选整数较好计算和描点.这个问题中最核心的一点是关于的问题,提醒学生注意.3.你能不能自己完成这道题呢?学生在练习本上列表、描点、连线,教师在黑板上板演,到连线时可暂停,让学生先连完线之后,找一名同学上黑板连线,然后就这名同学的连线加以评价、总结:注意:(1)一般地,反比例函数的图像由两条曲线组成,叫做双曲线;(2)这两条曲线不相交;(3)这两条曲线无限延伸,无限靠近 x 轴和 y 轴,但永不会与 x 轴和 y 轴相交.关于注意(3)可问学生:为什么图像与 x 和 y 轴不相交?通过这个问题既可加深学生对反比例函数图像的记忆,又可培养学生思维的灵活性和深刻性.再让学生观察黑板上的图,提问:1.当时,双曲线的两个分支各在哪个象限?在每个象限内, y 随x 的增大怎样变化?2.当时,双曲线的两个分支各在哪个象限?在每个象限内, y 随x 的增大怎样变化?这两个问题由学生讨论总结之后回答,教师板书:对于双曲线(1)当:(1)当时,双曲线的两分支位于一、三象限, y 随 x 的增大而减少;(2)当时,双曲线的两分支位于二、四象限, y 随 x 的增大而增大.3.反比例函数的这一性质与正比例函数的性质有何异同?通过这个问题使学生能把学过的相关知识有机地串联起来,便于记忆和应用.练习二:教材P129中2由学生在练习本上完成,教师巡回指导.P130中2、3填在书上上面,我们讨论了反比例函数的概念、图像和性质,下面我们再来看一个不同类型的例题:(出示幻灯)例2已知 y 与成反比例,并且当时,,求时, y 的值.用提问的方式对此题加以分析:(1) y 与成反比例是什么含义?由学生讨论这一问题,最后归结为根据反比例函数的概念,这句话说明了:.(2)根据这个式子,能否求出当时, y 的值?(3)要想求出 y 的值,必须先知道哪个量呢?(4)怎样才能确定 k 的值?用什么条件?答:用待定系数法,把时代入,求出 k 的值.(5)你能否自己完成这道例题:由一名同学板演,其他同学在练习本上完成.例3已知:,与x 成正比例,与x 成反比例,当时,时,,求 y 与 x 的解析式.分析:一定要先写出 y 与 x 的函数表达式,要用 x 分别把,表示出来得,要注意不能写成 k ,∴解:设,.由题意得∴ .(二)总结、扩展教师提问,学生思考回答:1.什么是反比例函数?2.反比例函数的图像是什么样的?3.反比例函数的性质是什么?4.命题方向及题型设置,反比例函数也是中考命题的主要考点,其图像和性质,以及其函数解析式的确定,常以填空题、选择题出现,在低档题中,近两年各省、市的中考试卷中出现不少将反比例函数与一次函数、几何知识、三角知识等综合编拟的解答题,丰富了压轴题的形式和内容.五、布置作业1.教材P130中4,5,62.选做:P130中B1,2六、板书设计13.8反比例函数及其图像引例:(1)例1:例2:例3:初中数学分式教案2分式(2课时)上课时间年月日星期一、复习要点1、分式的通分和约分2、分式的定义域3、分式的化简和求值二、复习过程1、求代数式的值:①化②代③算例:①已知x+y=5;xy=3,求x3y+2x2y2+xy3②已知a=-1,b=-3,c=1,求 a2b--3abc③已知a= 求÷( - )+④已知x= y= ,求 +2、分式的通分和约分(1)通分最简公分母:小;高(2)约分:注:与和3、分式的定义域①分式(1)何时有意义(2)何时无意义(3)何时值为04、分式的化简和求值①1- ÷ +其他例题见复习用书13页5(6、7、8、)6三、小结 1、分式的通分和约分2、分式的定义域3、分式的化简和求值四、练习:略五、作业:见复习用书分式(2课时)上课时间年月日星期一、复习要点1、分式的通分和约分2、分式的定义域3、分式的化简和求值二、复习过程1、求代数式的值:①化②代③算例:①已知x+y=5;xy=3,求x3y+2x2y2+xy3②已知a=-1,b=-3,c=1,求 a2b--3abc③已知a= 求÷( - )+④已知x= y= ,求 +2、分式的通分和约分(1)通分最简公分母:小;高(2)约分:注:与和3、分式的定义域①分式(1)何时有意义(2)何时无意义(3)何时值为04、分式的化简和求值①1- ÷ +其他例题见复习用书13页5(6、7、8、)6三、小结 1、分式的通分和约分2、分式的定义域3、分式的化简和求值四、练习:略五、作业:见复习用书初中数学分式教案3学习目标1、了解分式的概念,会判断一个代数式是否是分式。
八年级数学上册《8.1 分式》学案
八年级数学上册《8.1 分式》学案8、1 分式学习目标:1、了解分式的概念,会判断一个代数式是否是分式。
2、能用分式表示简单问题中数量之间的关系,能解释简单分式的实际背景或几何意义。
3、能分析出一个简单分式有、无意义的条件。
4、会根据已知条件求分式的值。
学习重点:分式的概念,掌握分式有意义的条件。
学习难点:掌握分式有无意义的条件。
教学过程一、情境引入:1、京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一。
如果货车的速度为akm/h,快速列车的速度是货车的2倍,那么①货车从北京到上海需要多少时间?②快速列车从北京到上海需要多少时间?③已知从北京到上海快速列车比货车少用12小时,你能列出一个方程吗?2、观察刚才你们所列的式子、方程,它们有什么特点?引入课题分式。
二、探索学习:1、两个数相除可以把它们的商表示成分数的形式。
如果用字母分别表示分数的分子和分母,那么可以表示成什么形式呢?2、列出下列式子:(1)一块长方形玻璃板的面积为2㎡,如果宽为am,那么长是 m。
(2)小丽用n元人民币买了m袋瓜子,那么每袋瓜子的价格是元。
(3)正n边形的每个内角为度。
(4)两块面积分别为a公顷、b公顷的棉田,产棉花分别为m㎏、n㎏。
这两块棉田平均每公顷产棉花 ______㎏。
3、思考:(1)这些式子与分数有什么相同和不同之处?(2)你能归纳一下分式的定义吗?分式的概念:一般地,如果A、B表示两个整式,并且B中含有字母,那么代数式叫做分式,其中A是分式的分子,B是分式的分母。
(3)下列各式哪些是分式,哪些是整式?①;②;③;④;⑤;⑥;⑦;⑧;⑨。
4、例题教学:例1、试解释分式所表示的实际意义。
例2、求分式的值:(1)a=﹣1;(2)a=3;(3)a=﹣2例3、当取什么值时,分式(1)没有意义?(2)有意义?(3)值为零。
5、巩固练习:1、课本练习题第 1、2、3题2、下列各式:、、、、、中,分式有()A、1个B、2个C、3个D、4个3、为何值时,分式的值为负数。
八年级下学期数学《分式》教案
教案主题:分式教案时间:三节课教学目标:1.理解分式的定义和基本概念;2.掌握分式的化简运算;3.能够解决与分式相关的实际问题;4.培养学生的逻辑思维和解决问题的能力。
教学准备:1.教材:八年级下学期数学教科书;2.教具:课件、黑板、彩色笔、几何模型(如纸片)。
教学过程:第一节课:Step 1: 导入与复习(10分钟)教师可从圆的面积、矩形的面积等角度引入分式的概念,复习与分式相关的知识点,并让学生列举出上述几何模型的面积计算公式。
Step 2: 引入与定义(15分钟)1.通过幻灯片或黑板,向学生展示分式示意图,并引导学生思考分式的定义。
然后由教师解释并给出分式的定义:分式是表示两个整数之间的比例关系的表达式。
分子表示被除数,分母表示除数。
2.通过多个例题的演示,让学生通过观察与推理,独立总结分式的特点。
Step 3: 分式的化简(30分钟)1.通过多个例题的练习,教师引导学生学习分式的化简方法,并总结出分式化简的基本原则。
2.分组合作,让学生在黑板上一边做题一边讲解解题思路和步骤。
教师及时指导并纠正学生的错误。
Step 4: 归纳总结(5分钟)通过学生的讲解和黑板上的总结,归纳出分式化简的几个基本方法。
第二节课:Step 1: 复习与导入(10分钟)教师可用简单的问题导入本节课的内容,激发学生的兴趣。
例如:“若小华的年龄是小明的2倍,小王的年龄是小华的3倍,那么小明、小华和小王的年龄之比是多少?”Step 2: 解决实际问题(30分钟)1.引导学生列式子,从图形中抽象出分式模型,然后解决与分式相关的实际问题。
2.教师通过多个例题的演示,让学生了解和掌握如何将实际问题转化为分式,并通过分式的运算解决问题。
Step 3: 实战演练(10分钟)教师布置练习题,要求学生独立完成,并在规定时间内交卷。
及时检查并给予反馈。
第三节课:Step 1: 复习(10分钟)师生共同回顾前两节课的主要内容,解答学生在练习中遇到的问题,并强调分式的重要性和实用性。
八年级数学上册《分式》教案、教学设计
为了巩固所学知识,我会安排一定量的课堂练习。这些练习题会从易到难,涵盖分式的定义、性质和运算等多个方面。我会要求学生在规定时间内独立完成,并鼓励他们在解题过程中尝试不同的方法。
在学生完成练习后,我会对部分题目进行讲解,指出解题中的常见错误和需要注意的地方。同时,我会表扬那些解题思路清晰、方法巧妙的学生,激励他们在今后的学习中继续努力。
-关注学生的个体差异,给予每个学生个性化的指导和鼓励,提高学生的自信心。
-定期进行教学反思,根据学生的学习情况调整教学策略,以提高教学效果。
4.教学拓展设想:
-引导学生探索分式与整式之间的关系,理解数学知识之间的内在联系。
-鼓励学生参加数学竞赛、研究性学习等活动,提升学生的数学素养和创新能力。
四、教学内容与过程五、作业布置为了巩固学生对分式知识的掌握,提高学生的实际应用能力,我设计了以下几项作业:
1.基础知识巩固题:完成课本中相关的练习题,重点在于分式的定义、性质和基本运算。通过这些题目,让学生对分式的概念有更深入的理解,熟练掌握分式的运算规则。
2.提高题:布置一些具有一定难度的分式运算题目,包括乘除、加减以及分式方程的求解。这些题目旨在提高学生的运算技巧,培养学生的逻辑思维能力。
(二)过程与方法
1.采用问题驱动的教学方法,引导学生主动探究分式的性质和运算规律,培养学生的自主学习能力。
2.设计丰富的例题和练习题,让学生在解答过程中,巩固所学知识,提高运算技巧。
3.通过小组合作学习,培养学生的团队协作能力和沟通能力,共同探究分式的解题方法。
4.利用数形结合的方法,让学生直观地理解分式的意义,提高学生的直观思维能力。
3.实际应用题:设计一些与生活实际相关的分式问题,让学生运用所学的分式知识解决。例如,计算购物打折后的价格、分配物品等。通过解决这些问题,让学生体会数学在生活中的应用,提高学生的应用意识。
人教版八年级数学上册《分式》导学案:从分数到分式
人教版八年级数学上册《分式》导学案从分数到分式【学习目标】1.理解分式的概念,并会判断一个代数式是否为分式;会求分式的值;2.理解分式有意义.无意义的条件;会确定分式值为零的条件.【知识梳理】1.分式的概念如果把除法算式A ÷B 写成 的形式,其中A. B 都是 ,且B 中含有 ,我们把代数式BA 就叫做分式.其中, 叫做分式的分子, 叫做分式的分母.对于任意一个分式,分母都不能为 .2.分式有意义.无意义和值为0的条件一般地,对分 都有分式有意义⇔ 分式无意义⇔分式的值为0⇔【典型例题】知识点一 分式的概念1.下列各式中,哪些是整式?哪些是分式?14(x −y ) x 22−1.2.下列各式哪些是分式,哪些是整式?① ② ③ ④ ⑤ ⑥ ⑦2x +y3 ⑧ ⑨知识点二 分式的意义3.求分式3)2)(3--+x x x (满足下列条件的x 值. (1)有意义 (2)分式的值为0B A4.要使分式21+x 有意义,则x 的取值应满足 A.2-=x B.2≠x C.2->x D.2-≠x 5.使分式112+-x x 的值为0,这时=x . 知识点三 求分式的值6.已知3=x ,求分式 的值.【巩固训练】1.下列代数式是分式的是( ) A.2x B.1+x x C.y x +2 D.πx 2.若分式的值为零,则x 的值为( ) A.0 B.1 C.-1 D.1±3.下列分式中,一定有意义的是( ) A.432--x x B.x x 312+ C.112+-y y D.11+-x x4.求x 的值:(1)若分式 14-2+x x 的值为0 (2)若分式 11-+x x 的值为0 (3)若分式24-2-x x 的值为0.5.给定下列分式: ﹣ ﹣ …其中x ≠0(1)把任意一个分式除以前一个分式,你发现了什么规律?(2)请你根据发现的规律,试写出给定的这列分式的第5个分式?(3)你能否写出第n 个分式?112+-x x 2-1x x +。
八年级数学下册《分式》教案、教学设计
一、教学目标
(一)知识与技能
1.了解分式的定义,理解分式表示的几何意义。
2.学会分式的化简,掌握分式的基本性质,如约分、通分等。
3.能够进行分式的加减乘除运算,掌握运算规律,提高运算速度和准确性。
4.能够将实际问题转化为分式问题,运用分式解决实际问题。
(二)过程与方法
4.教师将根据作业完成情况进行评价,关注学生的知识掌握、能力提升和情感态度等方面。
2.自主探究,合作交流:
(1)引导学生自主探究分式的定义,通过实际例子让学生体会分式的几何意义。
(2)组织学生进行小组讨论,发现分式的基本性质和运算规律,提高学生的合作能力。
3.精讲精练,突破难点:
(1)针对分式的化简和运算规律,教师进行详细讲解,通过典型例题让学生掌握解题方法。
(2)设计不同难度的练习题,让学生在练习中巩固知识,逐步突破难点。
在教学过程中,教师应关注学生的参与度,调动学生的积极性,鼓励学生主动探究、合作交流。同时,注重分层教学,针对不同学生的需求设计教学内容,使每个学生都能在课堂上得到有效的提升。通过本节课的学习,使学生掌握分式知识,提高数学素养,为后续学习打下坚实基础。
五、作业布置
为了巩固学生对分式的理解和应用,以及检验学生对课堂所学知识的掌握程度,特布置以下作业:
3.在解决实际问题时,难以将问题转化为分式问题,缺乏运用分式解决实际问题的能力。
针对以上情况,教师应关注学生的认知发展水平,适时给予引导和启发,帮助学生搭建起分式知识的框架。在教学过程中,注重培养学生的抽象思维能力和问题解决能力,使学生在掌握分式知识的同时,提高数学素养。
三、教学重难点和教学设想
(一)教学重难点
八年级下第三章分式学案
写在前面怎样学好数学一、学好数学也需要阅读阅读在语文中要抓住精炼的或生动形象的词与句,而在数学中,则应抓住关键的词语。
比如:教材第三页中“分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变”。
这句话中,关键词语是“都、同一个、不为零”。
“都、同一个”讲的是公平公正,不能偏心。
“不为零”是同学们思维的盲区,经常忽视而造成错解。
从这个例子中不难看出阅读时抓住关键词语的重要性。
二、学好数学也需要积累积累,在语文中有利于写作,在数学中有利于解题,积累包括两个方面:一是概念知识,二是错误的题目。
脑中多一些概念就多了一些思考的方法,多了一些解题的突破口,在做较难的题目时,也就容易得心应手。
积累错误的题目,指挑选一些自己平时容易错或者难懂的题目,记在本子上,在复习时,翻看这本本子就能更加清楚地了解自己在哪些方面还有所欠缺,应引起足够重视。
所以,积累对学好数学起着极大的作用。
三、学好数学也需要讲解以故事为例吧,听别人讲了一个故事,自己很容易明白故事梗概和情节,甚至对其中蕴含的道理也明白。
但是如果要你把这个故事讲给别人听,是不是感觉还差点什么呢?一是自己对语言的组织能力,二是自己对语调、表情、手势等的把握,三是故事的连惯性、趣味性等。
所以说,把自己知道的东西讲出来,是更高层次的要求,能锻炼自己的表达能力,能使自己含糊的理解更加清晰,能迫使自己主动去把不太清晰的问题弄个水落石出,能不自觉地提高到老师的水平。
本学期我们的数学学习对同学提出了新的要求:一是要认真完成预习。
老师已经把课本上需要学习和掌握的知识以学案的形式印出来,发到了同学们手中。
仔细阅读你会发现数学也挺轻松的,容易懂、容易学。
做好预习的目的一是为课堂上的讲解作好准备,以免笑场;二是为课堂上的讨论作好思维铺垫;三是为深入学习垫定基础。
二是人人参与课堂讲解,人人当好小老师。
检查预习的主要方法就是看你能不能讲出来,讲得清楚不,老师和同学们对你的认可程度如何。
数学教案-分式_八年级数学教案
数学教课设计-分式_八年级数学教课设计一、教课目的1.使学生理解并掌握分式的看法,认识有理式的看法;2.使学生能够求出分式存心义的条件;3.经过类比分数研究分式的教课,培育学生运用类比转变的思想方法解决问题的能力;4.经过类比方法的教课,培育学生对事物之间是广泛联系又是变化发展的辨证看法的再认识 .二、重点、难点、疑点及解决方法1.教课重点和难点明确分式的分母不为零.2.疑点及解决方法经过类比分数的意义,增强对分式意义的理解.三、教课过程()【新课引入】前面所研究的因式分解问题是把整式分解成若干个因式的积的问题,但如有以下问题:某同学分钟做了60 个仰卧起坐,每分钟做多少个?可表示为,问,这能否是整式?请一位同学给它试命名,并说一说如何想到的?(学生有过分数的经验,可猜想到分式)【新课】1.分式的定义( 1)由学生疏组议论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,获取结论:用、表示两个整式,就能够表示成的形式.假如中含有字母,式子就叫做分式.此中叫做分式的分子,叫做分式的分母.(2)由学生举几个分式的例子.(3)学生小结分式的看法中应注意的问题.①分母中含有字母.②好像分数同样,分式的分母不可以为零.(4)问:何时分式的值为零?[以(2)中学生举出的分式为例进行议论]2.有理式的分类请学生类比有理数的分类为有理式分类:例 1 当取何值时,以下分式存心义?( 1);解:由分母得.∴当时,原分式存心义.( 2);解:由分母得.∴当时,原分式存心义.( 3);解:∵恒成立,∴取一确实数时,原分式都存心义.(4).解:由分母得.∴当且时,原分式存心义.思虑:若把题目要求改为:“当取何值时以下分式无心义?”该如何做?例 2 当取何值时,以下分式的值为零?( 1);解:由分子得.而当时,分母.∴当时,原分式值为零.小结:若使分式的值为零,需知足两个条件:①分子值等于零;②分母值不等于零.(2);解:由分子得.而当时,分母,分式无心义.当时,分母.∴当时,原分式值为零.(3);解:由分子得.而当时,分母.当时,分母.∴当或时,原分式值都为零.(4).解:由分子得.而当时,,分式无心义.∴没有使原分式的值为零的的值,即原分式值不行能为零.(四)总结、扩展1.分式与分数的差别.2.分式何时存心义?3.分式何时价为零?(五)随堂练习1.填空题:(1)当时,分式的值为零(2)当时,分式的值为零(3)当时,分式的值为零2.教材 P55 中 1、 2、 3.八、部署作业教材 P56 中 A 组 3、4; B 组( 1)、(2)、( 3).九、板书设计课题例 11.定义例 22.有理式分类《研究多边形的内角和与外角和》的教课设计一、教课目的:1、让学生经历研究多边形外角和公式的过程,培育学生主动研究的习惯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式
课型
定向反思课
设计人
杨波
流程
学法指导
学习目标
1熟练掌握分式四则运算。
2使学生通过反思、反馈、的方法进一步提高运算能力。
3培养学生自主探索与合作交流的精神
错例(5)
解:原式= ÷ = · = ;
错例(6) — ÷
解:原式= - · = -
三 合作交流
通过同学们收集的自己在分式运算作业中出现的一些不同情况的典型错解,下面我们请同学找出问题出在哪里?并请学生指出出错的原因,同学们再考虑怎样克服。
学生独立完成。
四 拓展提升
计算(1) ;(2) ;
(3)( )2(4)( )3÷( )2;
五 盘点收获
通过本节课的学习,你们有哪些收获?
六 课后反思
学生自主思考,要求独立完成改正。
要求学生先独立思考,再进行小组合作。看哪组最先得到答案。
学生自主发言,谈收获。
重点
熟练而准确地掌握分式四则运算。
难点
能够找出分式运算所在。
流程
学法指导
一知识回顾:
1分式乘法法则及公式
2分式除法法则及公式
二展示错题:
这节我们上分式运算反思课,下面我们请同学找出问题在哪并改正:
错例(1) 错例(2) --解:原式= 来自:原式= += =
错例(3) — 错例(4) -
解:原式= — =
= = = =1
学生独立思考并口述
问题出自学生,让学生自己剖析,自己改正,