概率论第一章 随机事件及其概率

合集下载

概率论知识点

概率论知识点

第一章 随机事件及其概率§1.1 随机事件及其运算随机现象:概率论的基本概念之一。

是人们通常说的偶然现象。

其特点是,在相同的条件下重复观察时,可能出现这样的结果,也可能出现那样的结果,预先不能断言将出现哪种结果.例如,投掷一枚五分硬币,可能“国徽”向上,也可能“伍分”向上;从含有5件次品的一批产品中任意取出3件,取到次品的件数可能是0,1,2或3.随机试验:概率论的基本概念之一.指在科学研究或工程技术中,对随机现象在相同条件下的观察。

对随机现象的一次观察(包括试验、实验、测量和观测等),事先不能精确地断定其结果,而且在相同条件下可以重复进行,这种试验就称为随机试验。

样本空间: 概率论术语。

我们将随机试验E 的一切可能结果组成的集合称为E 的样本空间,记为Ω。

样本空间的元素,即E 的每一个结果,称为样本点。

随机事件:实际中,在进行随机试验时,人们常常关心满足某种条件的那些样本点所组成的集合.称试验E 的样本空间Ω的子集为E 的随机事件,简称事件.在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别,由一个样本点组成的单点集,称为基本事件.样本空间Ω包含所有的样本点,它是Ω自身的子集,在每次试验中它总是发生的,称为必然事件.空集Ø不包含任何样本点,它也作为样本空间的子集,它在每次试验中都不发生,称为不可能事件.互斥事件(互不相容事件): 若事件A 与事件B 不可能同时发生,亦即ΦB A = ,则称事件A 与事件B 是互斥(或互不相容)事件。

互逆事件: 事件A 与事件B 满足条件ΦB A = ,Ω=B A ,则称A 与B 是互逆事件,也称A 与B 是对立事件,记作A B =(或B A =)。

互不相容完备事件组:若事件组n A A A ,,21满足条件ΦA A j i = ,(n 1,2j i, =),Ω== n 1i i A,则称事件组n A A A ,,21为互不相容完备事件组(或称n A A A ,,21为样本空间Ω的一个划分)。

概率论与数理统计第1章随机事件及其概率

概率论与数理统计第1章随机事件及其概率
骰子朝上的点数为 i ,第二颗骰子朝上的点数为 j . (3) (i) S1 {( 正品,次品 ),( 正品,正品 ),( 次品,正品 )} ;
(ii) S2 {( 正品,次品 ),( 正品,正品 )} .
若用“1 ”表示“正品”,“ 0 ”表示“次品”,这里的两个样本空
间又可表示为
(i) S1 {(1,0),(1,1),(0,1)} ;(ii) S2 {(1,0),(1,1)}. (4) (i) S1 {t t 0};(ii) S2 { 合格品, 不合格品} . 若用“1 ”表示“合格品”,“ 0 ”表示“不合格品”, S2 又可表示为 S2 {1,0} . (5) S5 {(x, y) x2 y2 100}.
字母 E T A O I N S R H
使用频率 0.126 8 0.097 8 0.078 8 0.077 6 0.070 7 0.070 6 0.063 4 0.059 4 0.057 3
字母 L D U C F M W Y G
使用频率 0.039 4 0.038 9 0.028 0 0.026 8 0.025 6 0.024 4 0.021 4 0.020 2 0.018 7
第1章 随机事件及其概率
§1.1 随机事件
1.1.1 随机现象
在自然界以及生产实践和科学实验中普遍存在着两类现象.一类是 在一定条件下,重复进行试验,某一结果必然发生或必然不发生,即是可 以事前预言的,称为确定性现象.
除去确定性现象,人们发现还存在另一类现象,它是事前不可预言 的,即在相同条件下重复进行试验,每次的结果不一定相同,这一类现象 我们称之为偶然性现象或随机现象.
在一定条件下,随机现象有多种可能的结果发生,事前不能预知 将出现哪种结果,但通过大量的重复观察,出现的结果会呈现出某种 规律,称为随机现象的统计规律性.

随机事件及其运算

随机事件及其运算

Ω 1={正面,反面}
E2:投掷一枚硬币两次,观察其出现正面还是反面的试验.
Ω 2={(正,正),(正,反),(反,正),(反,反)}
E3:测量一根粉笔长度的试验. Ω 3={x|0≤x≤a}, E4:观察一只羊在羊圈中的位臵的试验. Ω 4={(x,y)|0≤x≤a , 0≤y≤b}
第 一章 随机事件及其概率
基本事件: 只包含一个试验结果的事件,用ω 来表示.
随机事件与基本事件之间的关系:
例,掷一枚骰子试验 出现的点数ωi= “出现i点” (i=1,…,6) A=“出现奇数点” 都是基本事件
是随机事件,但不是基本事件
由ω1, ω3, ω5组合成的,记A={ω1,ω3,ω5},当且仅当这三 个基本事件之一发生时事件A才发生.
A1 A2 A1 A3 A2 A3
考虑逆事件:A1 A2 A1 A3 A2 A3
第 一章 随机事件及其概率 例2 一名射手连续向某个目标射击三次,事件Ai表示该射手 第i次射击时击中目标.试用文字叙述下列事件 : (1)A1 A2 A3 ;(2) A2 (4)A1 A2 A3 ;(3) A1 A2 A3 ;
(8)三次中至少两次击中.
第 一章 随机事件及其概率

一、概念 1.随机试验;

2.随机事件;
两个特殊事件:必然事件,不可能事件. 3.样本空间. 二、事件之间的关系及运算 注意互不相容事件与互逆事件、二者的关系
第 一章 随机事件及其概率
课后作业: 习题一 2 ;3.
P19
8.完备事件组
若事件 A1,…,An为两两互不相容事件, 且A1∪…∪An= Ω,则称A1,…,An 构成一个完备事件组(或称事件的划分). 当n为2时,完备事件组为互逆事件. 例 设Ω={1,2,3,4,5,6},A={1,3,5},B={2,4},C={6},则 (1)A,B,C构成完备事件组. (2)AB=Φ,即A,B互不相容,但不是互逆. 因为A∪B={1,2,3,4,5}, 但A∪B≠Ω.

概率论第一章

概率论第一章
例如:在检查某些圆柱形产品时, 例如:在检查某些圆柱形产品时,如果规定只有它的长度及直径 都合格时才算产品合格,那么“产品合格” 直径合格” 都合格时才算产品合格,那么“产品合格”与“直径合格”、 长度合格”等事件有着密切联系。 “长度合格”等事件有着密切联系。
下面我们讨论事件之间的关系与运算
1、包含关系
⑶ 两个特殊事件
必然事件U ★ 必然事件U ★ 不可能事φ 不可能事φ
3、随机试验
如果一个试验可能的结果不止一个, 如果一个试验可能的结果不止一个,且事先不能肯定 会出现哪一个结果,这样的试验称为随机试验。 会出现哪一个结果,这样的试验称为随机试验。
例如, 掷硬币试验 例如, 寿命试验 测试在同一工艺条件下生产 掷骰子试验 掷一枚硬币,观察出正还是反. 掷一枚硬币,观察出正还是反 出的灯泡的寿命. 出的灯泡的寿命 掷一颗骰子, 掷一颗骰子,观察出现的点数
第一章 随机事件及其概率
随机事件及样本空间 频率与概率 条件概率及贝努利概型
§1 随机事件及样本空间
一、随机事件及其有关概念
1、随机事件的定义
试验中可能出现或可能不出现的情况叫“随机事件” 试验中可能出现或可能不出现的情况叫“随机事件”, 简称“事件” 记作A 简称“事件”。记作A、B、C等任何事件均可表示为样本空 间的某个子集。称事件A发生当且仅当试验的结果是子集A 间的某个子集。称事件A发生当且仅当试验的结果是子集A中 的元素。 的元素。
例如,一个袋子中装有10个大小、形状完全相同的球。 例如,一个袋子中装有10个大小、形状完全相同的球。 10个大小 将球编号为1 10。把球搅匀,蒙上眼睛,从中任取一球。 将球编号为1-10。把球搅匀,蒙上眼睛,从中任取一球。
因为抽取时这些球是完全平等的, 因为抽取时这些球是完全平等的, 我们没有理由认为10个球中的某一个会 我们没有理由认为10个球中的某一个会 10 比另一个更容易取得。也就是说,10个 比另一个更容易取得。也就是说,10个 球中的任一个被取出的机会是相等的, 球中的任一个被取出的机会是相等的, 均为1/10 1/10。 均为1/10。

第1章 概率论的基本概念

第1章 概率论的基本概念

确定概率的常用方法有: (1)频率方法(统计方法) (2)古典方法 (3)几何方法 (4)公理化方法 (5)主观方法
古典概率
(1) 古典概率的假想世界是不存在的 .对于那些极其罕见的, 定义 1.2.5 如果试验满足下面两个特征,则称其 但并非不可能发生的事情,古典概率不予考虑.如硬币落地后 为古典概型(或有限等可能概型): 恰好站立,一次课堂讨论时突然着火等. (1 )有限性:样本点的个数有限; (2) 古典概率还假定周围世界对事件的干扰是均等的 .而在 (2)等可能性:每个样本点发生的可能性相同 . 实际生活中无次序的、靠不住的因素是经常存在的 .
(3) 如果AiAj= (1 i < j k),则
fn(A1∪A2∪ … ∪Ak ) = fn(A1 ) +fn(A2 ) + … +fn(Ak 着事件在一次试验中发生的可能性就 大,反之亦然. 人们长期的实践表明:随着试验重复次数n的增加, 频率fn(A)会稳定在某一常数a附近,我们称这个常数为频 率的稳定值.这个稳定值就是我们所说的(统计)概率.
互不相容与对立区别 随机事件间的关系与运算
(1)事件A与事件B对立 AB= , A∪B= . (2)事件 A与事件B互不相容 AB= . 关系 运算 包含 相等 互不相容 并 交 差 补
如果属于A的样本点一定 由在 中而不在事件 A 中的样本点 , B没有相同的样本点, 如果事件 A 由事件 如果 A A 与事件 B ,且 A B 中所共有的样本 B,那么 A=B. A中而不在事件B中的样 中所有的样本点 由在事件 属于B,则称 A 包含于 B , BB.B 组成的新事件,也叫 A的对立 B A A A 则称互不相容 . 记作 A ∩ B= . 点组成的新事件 即B包含 A=B A B, A B A. . 组成的新事件 .记作 A记作 ∪ B.BA 本点组成的新事件 .记作 A-B. 或 A. 记作 B. .

大学概率论公式总结

大学概率论公式总结
第1章 随机事件及其概率
加法公式
P(A+B)=P(A)+P(B)-P(AB)
当P(AB)=0时,P(A+B)=P(A)+P(B)
减法公式
P(A-B)=P(A)-P(AB)
当B A时,P(A-B)=P(A)-P(B)
当A=Ω时,P( )=1- P(B)
乘法公式
乘法公式:
更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有
记住积分公式
,
x<0。
正态分布
设随机变量 的密度函数为
其中 、 为常数,则称随机变量 服从参数为 、 的正态分布或高斯(Gauss)分布,记为 。
具有如下性质:
1° 的图形是关于 对称的;
2°当 时, 为最大值;
若 ,则 的分布函数为
是不可求积函数,其函数值,已编制成表可供查用。
Φ(-x)=1-Φ(x)且Φ(0)= 。如果 ~ ,则
随机变量的函数
若X1,X2,…Xm,Xm+1,…Xn相互独立,h,g为连续函数,则:
h(X1,X2,…Xm)和g(Xm+1,…Xn)相互独立。
特例:若X与Y独立,则:h(X)和g(Y)独立。
例如:若X与Y独立,则:3X+1和5Y-2独立。
函数分布
Z=X+Y
根据定义计算:
态分布的和仍为正态分布( )。
全概公式

贝叶斯公式
,i=1,2,…n。
此公式即为贝叶斯公式。
,( , ,…, ),通常叫先验概率。 ,( , ,…, ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。
第二章 随机变量及其分布

概率论-第一章-随机事件与概率

概率论-第一章-随机事件与概率

第一章随机事件及其概率自然界和社会上发生的现象可以分为两大类:一类是,事先可以预言其必然会发生某种结果,即在保持条件不变的情况下重复实验或观察,它的结果总是确定的。

这类现象称为确定性现象,另一类是,事先不能预言其会出现哪种结果,即在保持条件不变的情况下重复实验或观察,或出现这种结果或出现那种结果。

这类现象称为随机现象.随机现象虽然对某次实验或观察来说,无法预言其会出现哪种结果,但在相同条件下重复进行大量的实验或观察,其结果却又呈现出某种规律性。

随机现象所呈现出的这种规律性,称为随机现象的统计规律性。

概率论与数理统计就是研究随机现象统计规律性的一门数学学科。

§1随机事件一、随机试验与样本空间我们把对随机现象进行的一次实验或观察统称为一次随机试验,简称试验,通常用大写字母E表示。

举例如下:E\:抛一枚硬币,观察正面〃、反面卩出现的情况;£:将一枚硬币抛掷两次,观察正面〃、反面7出现的情况;£:将一枚硬币抛掷两次,观察正面〃出现的次数;£.:投掷一颗骰子,观察它出现的点数;£:记录某超市一天内进入的顾客人数;&:在一批灯泡里,任取一只,测试它的寿命。

随机试验具有以下三个特点:(1)每次试验的结果具有多种可能性,并且能事先明确知道试验的所有可能结果;(2)每次试验前,不能确定哪种结果会出现;%(3)试验可以在相同的条件下重复进行。

随机试验£的所有可能结果的集合称为£的样本空间,记作0。

样本空间的元素,即£的每个结果,称为样本点,一般用e表示,可记C = {e}。

上面试验对应的样本空间:n, ={w,T};D.2={HH、HT、TH、TT};o, ={0,1,2};也={123,4,5,6};={0,1234 …};o6 = {/|/>o}o注意,试验的目的决定试验所对应的样本空间。

二、随机事件试验£样本空间。

概率论基础讲义全

概率论基础讲义全

概率论基础知识第一章随机事件及其概率随机事件§几个概念1、随机实验:满足下列三个条件的试验称为随机试验|;(1)试验可在相同条件下重复进行;(2)试验的可能结果不止一个,且所有可能结果是已知的;(3)每次试验哪个结果出现是未知的;随机试验以后简称为试验,并常记为E。

例如:曰:掷一骰子,观察出现的总数;E2:上抛硬币两次,观察正反面出现的情况;E3:观察某电话交换台在某段时间内接到的呼唤次数2、随机事件:在试验中可能出现也可能不出现的事情称为随机事件:常记为A,B, C例如,在E i中,A表示掷出2点”,B表示掷出偶数点”均为随机事件3、必然事件与不可能事件:每次试验必发生的事情称为必然事件,记为Q。

每次试验都不可能发生的事情称为不可能事件,记为①。

例如,在E i中,掷出不大于6点”的事件便是必然事件,而掷出大于6点”的事件便是不可能事件,以后,随机事件,必然事件和不可能事件统称为事件4、基本事件:试验中直接观察到的最简单的结果称为基本事件。

例如,在曰中,掷出1点”,掷出2点”,……,掷'出6点”均为此试验的基本事件由基本事件构成的事件称为复,例如,在E i中掷出偶数点”便是复合事件5、样本空间:从集合观点看,称构成基本事件的元素为样本点,常记为e.例如,在E i中,用数字1, 2,......,6表示掷出的点数,而由它们分别构成的单点集{1}, {2}, (6)便是E i中的基本事件。

在E2中,用H表示正面,T表示反面,此试验的样本点有(H , H),( H , T),( T, H ),( T, T),其基本事件便是{ ( H, H) }, { ( H , T) }, { (T, H ) }, { (T, T) }显然,任何事件均为某些样本点构成的集合。

例如,在E i中掷出偶数点”的事件便可表为{2, 4, 6}。

试验中所有样本点构成的集合称为样本空间。

记为Qo例如,在E i 中,Q={1 , 2, 3, 4, 5, 6}在E2 中,Q={ ( H , H),( H , T),( T, H),( T, T) }在E s 中,Q={0 , 1, 2,……}例1, 一条新建铁路共10个车站,从它们所有车票中任取一张,观察取得车票的票种此试验样本空间所有样本点的个数为N Q=P 210=90.(排列:和顺序有关,如北京至天津、天津至北京)若观察的是取得车票的票价,则该试验样本空间中所有样本点的个数为10)=452(组合)例2 .随机地将15名新生平均分配到三个班级中去,观察15名新生分配的情况。

概率论第一章总结

概率论第一章总结

第一章随机事件及其概率一、内容提要 (一).随机事件的概率1.随机试验:(i )在相同的条件下可以重复进行;(ii )试验有多种可能结果(iii )所有可能结果可以明确,但试验前不能事先预知哪个结果出现。

记为E2.随机事件:与随机试验结果有关的命题, 简称事件.记为A,B,C……不可能事件和必然事件也视为为随机事件分别记为 φ和Ω.3.基本事件:按照试验的目的和要求所确定的随机试验E 的一个直接可能结果ω称为基本事件或样本点.4.样本空间(基本事件集):试验E 的所有样本点ω构成的集合称为E 的样本空间或基本事件集,记为Ω.即 Ω.={ω}(二).随机事件的关系和运算1.事件的包含: 若事件A 发生必然导致B 发生.则称A 包含于B 记作 A ⊂B.2.事件的相等:对两个事件A,B.若A ⊂B.且B ⊂A.则称A 与B 相等.记作A=B3.事件的并:“事件A 与B 中至少有一个发生”的事件称为A 与B 的并(或和),记作A B 。

“n 个事件中至少有一个发生”的事件称为这个事件的并(或和).记作12....n A A A 简记为1n i i A =4.事件的差: “事件A 发生而B 不发生”的事件称为A 与B 的差记作A-B5.事件的交(积): “事件A 与B 都发生” 的事件称为A 与B 的交(积).记作A Bn 个事件12,...n AA A 都发生”的事件称为这个事件的交(或积).记作12...n A A A .6. 事件的互斥(互不相容):事件A 与事件B 不能同时发生,则称互斥.即AB φ=7. 事件的互逆(对立): 事件A 与事件B 必有一个发生,但不能同时发生,则称A 与B 互逆,记作A B =或B A = 即满足A B =Ω AB φ=8.完备事件组:若事件12,,,n A A A 必有一个发生,且12,,,n A A A 两两互不相容,即 12,n A A A =Ω ,且(, 1.2...,,)i j A A i j n i j φ==≠(三).概率的概念1.概率的古典定义:设E 为古典概型,其样本空间Ω包含n 样本点,事件A 含k 样本点,则称k/n 为 事件A 的概率,记作()/P A k n =2.概率的统计定义设在相同条件下重复进行同一试验,n 次试验中事件A 发生的次数为μ,如果随着试验次数的增大,事件A 发生的频率/n μ 仅在某个常数(01)p p << 附近有 微小变化,则称数p 是事件A 的概率, 即()P A p =.3.概率的公理化定义设A 为随机事件, ()P A 为定义在所有随机事件组成的集合上的实函数且满足下列三条公理:公理1 对任一事件A,有0()1P A ≤≤公理2 ()1P Ω= ()0P φ=公理3.对于两两互斥的可数个随机事件12,,,n A A A ..., 有1212(......)()()...()...n n P A A A P A P A P A =++++ 则()P A 称为事件A 的概率.(四).概率的性质1. ()1P Ω= ()0P φ=2. 对任意两个事件A ,B.有()()()()P A B P A P B P AB =+-若AB φ=,则()()()P A B P A P B =+3.对任意事件A,有()1(P A P A =-)4.对任意个事件12,,...,n A A A .有12(...)n P A A A 11()()n i i j i i j n P A P A A =≤<≤=-∑∑+1()i j k i j k n P A A A ≤<<≤∑-...+12(1)(...)n n P A A A -(-1)若i j A A φ= (,1,2...,)i j n i j =≠ 则121(...)()n n i i P A A A P A ==∑5.若B A ⊂,则()()()P A B P A P B -=-,且()()P A P B ≥(五).条件概率、 乘法公式1.条件概率 设A ,B 为随机试验E 的两个事件。

(完整版)概率论与数理统计知识点总结

(完整版)概率论与数理统计知识点总结

p k q nk
其中 q 1 p,0 p 1, k 0,1,2,, n ,
则称随机变量 X 服从参数为 n , p 的二项分布。记为
X ~ B(n, p) .
当 n 1时, P(X k) pk q1k , k 0.1,这就是(0—1)分布,
所以(0-1)分布是二项分布的特例。
泊 松 设随机变量 X 的分布律为
1
(完整版)概率论与数理统计知识点总结
A—B,也可表示为 A—AB 或者 AB ,它表示 A 发生而 B 不发生的事
件.
A、B 同时发生:A B,或者 AB。A B=Ø ,则表示 A 与 B 不可能 同时发生,称事件 A 与事件 B 互不相容或者互斥。基本事件是
互不相容的.
—A 称为事件 A 的逆事件,或称 A 的对立事件,记为 A .它表 示 A 不发生的事件。互斥未必对立。
P(A)= (1) (2 ) (m ) = P(1) P(2 ) P(m )
m n
A所包含的基本事件数 基本事件总数
(6)几 若随机试验的结果为无限不可数并且每个结果出现的可能性均
1
(完整版)概率论与数理统计知识点总结
何概型 匀,同时样本空间中的每一个基本事件可以使用一个有界区域 来描述,则称此随机试验为几何概型。对任一事件 A,
3° F() lim F(x) 0, F() lim F(x) 1;
x
x
4° F(x 0) F(x) ,即 F(x) 是右连续的;
5° P(X x) F(x) F(x 0) .
对于离散型随机变量, F(x) pk ; xk x x
对于连续型随机变量, F(x) f (x)dx .
概型 用 p 表示每次试验 A 发生的概率,则 A 发生的概率为1 p q ,用

概率论

概率论

1第一章 随机事件及其概率第一节 随机事件一. 必然现象与随机现象在自然界里,在生产实践和科学实验中,人们观察到的现象大体可归结为两种类型。

一类是可事前预言的,即在准确地重复某些条件下,它的结果总是肯定的,或是根据它过去的状态,在相同条件下完全可以预言将来的发展。

我们把这一类型现象称之为确定性现象或必然现象。

如在一个大气压下,水在100度时会沸腾等。

一类是事前不可预言的,即在相同条件下重复进行试验,每次结果未必相同;或是知道它过去状况,在相同条件下,未来的发展事前却不能完全肯定。

这一类型的现象我们称之为偶然性现象或随机现象。

如掷一个质地均匀的硬币,结果可能是正面向上,或是背面向上。

二. 样本空间尽管一个随机试验将要出现的结果是不确定的, 但其所有可能结果是明确的, 我们把随机试验的每一种可能的结果称为一个样本点, 记为ω;它们的全体称为样本空间, 记为Ω.事件 是指某一可观察特征的随机试验的结果。

基本事件是相对观察目的而言不可再分解的、最基本的事件,其它事件均可由它们复合而成,一般地,我们称由基本事件复合而成的事件为复合事件.如掷一枚骰子,向上的一面会出现1点,2点,3点,4点,5点,6点。

则样本点有6个。

若记,16i i i ω=≤≤,i ω即为样本点。

样本空间为123456{,,,,,}ωωωωωωΩ=。

记{}i i A ω=,i A 为一个基本事件,把“出现偶数点”这样一个事件记为B ,则246{,,}B ωωω=。

B 为一个复合事件。

三. 事件的运算规律事件间的关系及运算与集合的关系及运算是一致的,为了方便,给出下列对照表:表1.1没有相同的元素与互不相容和事件事件的差集与不发生发生而事件事件的交集与同时发生与事件事件的和集与至少有一个发生与事件事件的相等与相等与事件事件的子集是发生发生导致事件的余集的对立事件子集事件元素基本事件空集不可能事件全集必然事件样本空间集合论概率论记号B A B A AB B A B A B A B A B A AB B A B A B A B A B A B A B A B A B A A A A A ∅=-=⊂∅Ω ω,第二节 随机事件的概率一. 概率的定义定义1 设E 是随机试验, Ω是它的样本空间,对于E 的每一个事件A 赋于一个实数, 记为)(A P , 若)(A P 满足下列三个条件:1. 非负性:对每一个事件A ,有 0)(≥A P ;2. 完备性:()1P Ω=;3. 可列可加性:设 ,,21A A 是两两互不相容的事件,则有.)()(11∑∞=∞==i ii i AP A P2则称)(A P 为事件A 的概率.二. 概率的性质性质1:()0P ∅=。

概率论与数理统计教程第四版课后答案

概率论与数理统计教程第四版课后答案

如果在独立试验序列中事件 A 的概率为 p (0< p <1),则在 n
次试验中事件 A 恰好发生 m 次的概率
Pn
m
C
m n
pm
q
!
其中 p q 1 。
6
第一章 随机事件及其概率
一、几种概率
1、统计概率 2、古典概率 3、几何概率
P( A) M N
1.18. 设P (A) = 0.5, P (B)=0.7 ,则 (1)在怎样的条件下P (AB)最大? (2)在怎样的条件下P (AB)最小?
解 PA B P( A) P(B) P( AB) P( AB) P( A) P(B) PA B
当A B时,P (AB)最大 P( AB) P( A) 0.5 当A B 时,P (AB)最小
8. 3个球随机的投入4个盒子中,求下列事件的概率: (1)A是任意3个盒子中各有1个球; (2)B是任意1个盒子中有3个球; (3)C是任意1个盒子中有2个球,其它任意1个盒子中有1个球。

(1)P( A)
C
3 4
3!
43
3
0.375
8
(2)P ( B )
C
1 4
1 0.0625
43 16
(3)P(C )
P( A1 A2 ) P( A1 A2 )
(1)A是任取的3件产品中恰有2件等级相同的产品; (2)B是任取的3件产品至少有2件等级相同的产品。

(1)
P( A)
C 92 C 111
C
2 7
C113
C 42 C116
C
3 20
51 76
0.671
(2)
P(B)

概率论 第一章

概率论 第一章

第一章随机事件及其概率习题一1 举出几个必然事件、不可能事件和随机事件的例子.解(1)设v10为10次射击命中次数,则{5<v10≤8=——随机事件,{v10≤10}——必然事件,{v10>10}——不可能事件;(2)掷一枚骰子试验中,{出现偶数点}——随机事件,{出现i点}(i=1,2,…,6)——随机事件,{出现点数小于7}——必然事件,{点数不小于7}——不可能事件;(3)盒中有2个白球,3个红球,从盒中随机取出3球,则{取出的3个球中含有红球}——必然事件,{取出的3个球中不含红球}——不可能事件.2 互不相容事件与对立事件的区别何在?说出下列各对事件的关系:(1)|x-a|<δ与x-a≥δ;(2)x>20与x≤20;(3)x>20与x<18;(4)x>20与x≤22;(5)20个产品全是合格产品与20个产品中只有一个废品;(6)20个产品全是合格产品与20个产品中至少有一个废品.解对立事件一定是互不相容事件,但互不相容事件不一定是对立事件.对立事件和互不相容事件的共同特点是事件间没有公共的样本点,但两个对立事件的并(和)等于样本空间,即若A与__A是两个对立事件,则A__A=Φ,A+__A=Ω;而两个互不相容事件的并(和)被样本空间所包含,即若A与B是两个互不相容事件,则AB=Φ,且A+B⊂Ω.(1)由于{x||x-a|<δ=∩{x|x-a≥δ}=Φ,且{x||x-a|<δ=∪{x|x-a≥δ}⊂R,所以事件|x-a|<δ与x-a≥δ是互不相容事件;(2)由于{x|x>20}∩{x|x≤20}=Φ,且{x|x>20}∪{x|x≤20}=R,所以事件x>20与x≤20是对立事件;(3)由于{x|x>20}∩{x|x<18}=Φ,且{x|x>20}∪{x|x<18}=R,所以事件x>20与x<18是互不相容事件;(4){x|x>20}∩{x|x≤22}≠Φ,所以事件x>20与x≤22是相容事件;(5)设事件A={20个产品全是合格品},事件B={20个产品中只有一个废品},显然AB=Φ,A+B⊂Ω={20个产品},所以A与B是互不相容事件;(6)设事件A={20个产品全是合格品},事件B={20个产品中至少有一个废品},显然AB=Φ,A+B=Ω={20个产品},所以A与B是对立事件.3 写出下列随机试验的样本空间.(1)10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数;(2)生产产品直到得到10件正品,记录生产产品的总件数;(3)测量一汽车通过给定点的速度.解(1)将3只次品都取出,至少要抽取3次,而最多抽取10次即可,故所求样本空间Ω={3,4,…,9,10};(2)最理想的情形是开始生产的10件产品都是正品,故所求样本空间Ω={10,11,12,…};(3)若不考虑汽车的运动方向,则所求样本空间Ω={v|v>0}.若考虑汽车的运动方向,θ表示该运动方向与正东方向之间的夹角,则所求样本空间 Ω={(vcosθ,vsinθ)|v>0,0≤θ<2π=.4 事件A表示在三件被检验的仪器中至少有一件为废品,事件B表示所有的仪器为合格品,问事件(1)A∪B;(2)A∩B各表示什么意义?解(1)A∪B=Ω; (2)A∩B= .5 设A,B,C为三个随机事件,试将下列事件用A,B,C来表示:(1)仅仅A发生;(2)三个事件都发生;(3)至少有两个事件发生;(4)恰有一个事件发生;(5)没有一个事件发生;(6)不多于两个事件发生.解(1)A__B__ C;(2)ABC;(3)AB∪AC∪BC;(4)A__B__C∪__AB__C∪__A__BC;(5)__A__B__C;(6) AB__ C.7 袋内装有5个白球,3个黑球,从中任取两个球,求取出的两个球都是白球的概率. 解随机试验是从8个球中任取2个,样本空间所包含的样本点总数为n=C28.设事件A={取出两个球均为白球},此时,事件A包含的样本点数为k=C25,故P(A)= k / n = C25 / C28≈0.357.8 一批产品共200个,其中有6个废品,求:(1)这批产品的废品率;(2)任取3个恰有一个是废品的概率;(3)任取3个全是废品的概率.解随机试验是从200个产品中任取3个,样本空间所包含的样本点总数为n=C3200. 设事件A i={取出的3个产品中含有i个废品},i=1,3,事件B={这批产品的废品率}.若取出的3个产品中含有i个废品,则i个废品必须从6个废品中获得,3-i个合格品必须从194 个合格品中获得,从而事件A i所包含的样本点数为k i=C i6C3-i194 ,i=1,3.故P(B)= 6 / 200 =0.03,P(A1)=k1 / n=C16C2194/C3200≈0.086,P(A3)=k3 /n=C36/C3200≈0.000 02.9 两封信随机地向四个邮筒投寄,求第二个邮筒恰好投入一封信的概率.解将两封信随机地投入四个邮筒,共有4×4=16种投法,即n=16.设 A={第二个邮筒恰好投入一封信},此时,需将两封信中的一封放入第二个邮筒,共有2种放法,剩下的一封放入其他三个邮筒中的一个,共有3种放法,从而事件A包含的样本点数为k=2×3=6,故P(A)=k/n=6/16=3/ 8.10 在房间里有10个人,分别佩带着从1号到10号的纪念章,任意选3人记录其纪念章的号码.(1)求最小号码为5的概率;(2)求最大号码为5的概率.解设事件A={最小号码为5},事件B={最大号码为5},则P(A)=C25/C310=1/12,P(B)=C24 /C310=1/20.11 把10本书任意地放在书架上,求其中指定的三本书放在一起的概率.解设事件A={指定的三本书放在一起},将指定的三本书作为一个整体,10本书成为8本,故P(A)=k/n=A33A88/A1010≈0.067.12 甲、乙二人约定1点到2点之间在某处会面,约定先到者等候10分钟即离去.设想两个人各自随意地在1点到2点之间选一个时刻到达该处,问“甲乙二人能会面”这事件的概率是多少?解记事件A={两人能会面},以x,y分别表示两人到达时刻,则两人能会面的充要条件为|x-y|≤10, 即A={(x,y):|x-y|≤10}.这是一个几何概率问题,样本空间为Ω={(x,y):0≤x,y≤60},P(A)=L(A)/L(Ω)=602-502/602=11/36.13 在一间房里有四个人,问至少有两人的生日是在同一个月的概率是多少?解四个人在12个月中任一月出生的可能性是相等的,故基本事件的总数为124.设事件A={四个人生日均不在同一个月},则P(__A)=1-P(A)=1-A412/124=738/1728=41/96.14 设有10件样品,编以号码0~9,随机地抽取1件样品,以B表示“取到号码为偶数的样品”;A1表示“取到号码为1的样品”,A2表示“取到号码为2的样品”,A3表示“取到号码大于7的样品”,分别求A1,A2,A3的概率和A1,A2,A3对B的条件概率,并将条件概率与无条件概率做一比较.解由题设可知:P(A1)=1/10,P(A2)=1/10,P(A3)=2/10=1/5,P(A1|B)=0,P(A2|B)= 1/5,P(A3|B)= 1/5 .15 某人忘了电话号码的最后一个数字,因而随意拨号,不超过三次而接通所需要电话的概率是多少?如果已知最后一个数是奇数,那么此概率是多少?解(1)设A={三次中至少有一次接通}, __A={三次每次都不通},A i={第i次接通}(i=1,2,3).易知,__A=__A1__A2__A3,故P(__A1)=9/10, P(__A2__A1)=8/9,P(__A3|__A1__A2)=7/8,从而,P(__A)= P(__A1) P(__A2__A1)P(__A3|__A1__A2)= 9/10×8/9×7/8=7/10.故P(A)=1- P(__A)=1-7/10=3/10.(2)若已知最后一个数字是奇数,从0到9有十个数,其中五个是奇数,则P(__A1)=4/5, P(__A2__A1)=3/4,P(__A3|__A1__A2)=2/3,从而,P(__A)= P(__A1) P(__A2__A1)P(__A3|__A1__A2)= 4/5×3/4×2/3=2/5.故P(A)=1- P(__A)=1-2/5=3/5.16 考察甲、乙两地出现春旱的情况,以A,B分别表示甲、乙两地出现春旱这一事件.根据以往气象记录知P(A)=0.2,P(B)=0.15,P(AB)=0.08,求 P(A|B),P(B|A)及P(A∪B).解由题设可知:P(A|B)=P(AB)/P(B)=0.08/0.15=8/15,P(B|A)=P(AB)/P(A=0.08/0.2=2/5,P(A∪B)=P(A)+P(B)-P(AB)=0.2+0.15-0.08=0.27.17 掷三个均匀骰子,已知第一粒骰子掷出幺点(事件B),问“掷出点数之和不小于10”这个事件A的条件概率是多少?解设事件B={第一粒骰子掷出幺点},事件A={掷出点数之和不小于10},由题设可知,若第一粒掷出幺点,第二粒可能掷出3、4、5、6点;若第二粒掷出3点,第三粒必掷出6点;第二粒掷出4点,第三粒可能为5、6点;第二粒掷出5点,第三粒可能掷出4、5、6点;第二粒掷出6点,第三粒可能掷出3、4、5、6点,则P(A|B)=P(AB)/P(B)=10/36=5/18.18 甲、乙二人射击,甲击中的概率为0 8,乙击中的概率为0 7,二人同时射击,并假定中靶与否是独立的,求:(1)中靶的概率;(2)甲中、乙不中的概率;(3)甲不中、乙中的概率.解设A、B分别表示甲中靶、乙中靶两事件,则事件A与B独立,又P(A)=0.8,P(B)=0.7,于是,所求概率为(1)P(A∪B)=P(A)+P(B)-P(AB)=P(A)+P(B)-P(A)P(B)=0.8+0.7-0.7×0.8=0.94;(2)P(A__B)=P(A)P(__B)=0.8×(1-0.7)=0.24;(3)P(__AB)=P(__A)P(B)=(1-0.8)×0.7=0.14.19 从厂外打电话给这个工厂某一车间要由工厂的总机转进,若总机打通的概率为0.6,车间的分机占线的概率为0.3,假定二者是独立的,求从厂外向该车间打电话能打通的概率.解设A,B分别表示从厂外打电话总机打通、分机打通两事件,则事件A,B独立,又P(A)=0.6,P(B)=1-0.3=0.7,所求概率为P(AB)=P(A)P(B)=0.6×0.7=0.42.20 设事件A,B的概率均不为0,证明事件A与B独立及互不相容不会同时成立.证若P(A)>0,P(B)>0,则有(1)因A,B两事件相互独立,且P(A)>0,P(B)>0,有P(AB)=P(A)P(B)> 0,故AB≠Φ,即A、B不互不相容;(2)因AB=Φ,故P(AB)=P(Φ)=0,而P(A)>0,P(B)>0,故P(A)P(B)>0, 于是P(AB)≠P(A)P(B),即A与B不相互独立.21 有四个大小质地一样的球,分别在其上写有数字1,2,3和“1,2,3”,令A i={随机抽出一球,球上有数字i}(i=1,2,3).试证明A1,A2,A3两两独立而不相互独立.证由题设可知P(A1)=1/2,P(A2)=1/2,P(A3)=1/2,且P(A1A2)=1/4= 1/2×1/2,P(A1A3)=1/4= 1/2×1/2,P(A2A3)=1/4= 1/2×1/2 .以上等式说明A1,A2,A3两两独立.但P(A1A2A3)=1/4≠1/2×1/2×1/2=P(A1)P(A2)P(A3).可见事件A1A2A3不相互独立.22 加工某一零件共需四道工序,设第一、二、三、四道工序的次品率分别是2%,3%,5%,3%,假定各道工序是互不影响的,求加工出来的零件的次品率.解设Ai={第i道工序出次品},i=1,2,3,4.又设A={零件为次品},则有A=A1∪A2∪A3∪A4.由题知,A1,A2,A3,A4相互独立,__A1 ,__A2 ,__A3 ,__A4也相互独立,于是P(A)=P(A1∪A2∪A3∪A4)=1-P(________________________4321AAAA⋃⋃⋃)=1-P(__A1__A2__A3__A4)=1-P(__A1)P(__A2)P(__A3)P(__A4)=1-0.98×0.97×0.95×0.97≈0.124.23 掷三枚均匀骰子,记B={至少有一枚骰子掷出1},A={三枚骰子掷出的点数中至少有两枚一样},问A,B是否独立?解考虑P(A|__B),若__B发生,则三枚骰子都不出现幺点,那么,它们都只有5种可能性(2,3,4,5,6),比不知__B发生时可能取的点数1,2,3,4,5,6少了一个.从5个数字取3个(可重复取),其中有两个一样的可能性,应比6个数字中取3个时,有两个一样的可能性要大些,即P(A)<P(A|__B).由此推出P(A)>P(A|B),故A,B不独立.24 一批玉米种子,其出芽率为0 9,现每穴种5粒,问“恰有3粒出芽”与“不大于4粒出芽”的概率是多少?解设A={恰有3粒出芽了},B={不大于4粒出芽}.把穴中每一粒种子是否发芽看作一次试验,而各粒种子发芽与否是互不影响的,所以5次试验是相互独立的,故P(A)=b3(5,0.9)=C35×0.93×(1-0.9)2=C35×0.93×0.12≈0.073,P(B)=1-b5(5,0.9)=1-C55×0.95×(1-0.9)0=1-0.95≈0.41.25 某一由9人组成的顾问小组,若每个顾问贡献正确意见的百分比是70 % ,现在该机构对某事件可行与否个别征求各位顾问意见,并按多数人意见作出决策,求作出正确决策的概率.解显然本问题是:如果9人中超过4人作出正确决策,则可对该事件可行与否作出正确决策,从而设事件A={作出正确决策},由题设知,n=9,p=0.7,q=0.3,于是bk(n,p)=bk(9,0.7)=Ck9×0.7k×0.39-k(k=5,6,7,8,9),所以5次试验是相互独立的,故P(A)=∑=95kCk9×0.7k×0.39-k≈0.901.26 电灯泡使用寿命在1 000小时以上的概率为0 2,求3个灯泡在使用1 000小时后,最多只有一个坏了的概率.解利用二项概型,有P n(k≤1)=b0(3,0.8)+b1(3,0.8)=C03×0.80×0.23+C13×0.81×0.22=0.104.27 用三台机床加工同一种零件,零件由各机床加工的概率分别为0.5,0.3,0.2,各机床加工的零件为合格品的概率分别等于0.94,0.9,0.95,求全部产品中的合格率.解设事件A、B、C分别表示三台机床加工的产品,事件E表示合格品.依题意,P(A)=0.5,P(B)=0.3,P(C)=0.2,P(E|A)=0.94,P(E|B)=0.9,P(E|C)=0.95,由全概率公式P(E)=P(A)P(E|A)+P(B)P(E|B)+P(C)P(E|C) =0.5×0.94+0.3×0.9+0.2×0.95=0.93.28 12个乒乓球中有9个新的,3个旧的,第一次比赛时,同时取出了3个,用完后放回去.第二次比赛时,又同时取出3个,求第二次取出3个球都是新球的概率.解以A i(i=0,1,2,3)表示事件“第一次比赛从盒中任取的3个球中有i个新球”.可知A0,A1,A2,A3是样本空间Ω的一个划分.以B表示事件“第二次取出的球都是新球”.则P(A0)=C33/C312=1/220,P(A1)=C19C23/C312=27/200,P(A2)=C29C13/C312=27/55,P(A3)=C39/C312=21/55,P(B|A0)=C39/C312=21/55,P(B|A1)=C38/C312=14/55,P(B|A2)=C37/C312=35/220,P(B|A3)=C36/C312=1/11.由全概率公式,得P(B)=∑=3iP(Ai)P(B|Ai)=1/220×21/55+27/220×14/55+27/55×35/220+21/55×1/11=1746/12100≈0.14629 发报台分别以概率0.6和0.4发出信号“·”和“-”.由于通信系统受到干扰,当发出信号“·”时,收报台以概率0 8及0 2收到信号“·”和“-”;当发出信号“-”时,收报台以概率0 9及0 1收到信号“-”和“·”.求:(1)收报台收到信号“·”的概率;(2)当收报台收到信号“·”时,发报台确系发出信号“·”的概率.解设事件B={收到信号“·”},A0={发出信号“·”},A1={发出信号“-”}.显然A0,A1构成一个完备事件组,且P(A0)=0.6,P(A1)=0.4,P(B|A0)=0.8,P(B|A1)=0.1.(1)应用全概率公式,有P(B)=∑=1iP(Ai)P(B|Ai)=0.6×0.8+0.4×0.1=0.52.(2)应用贝叶斯公式有P(A0|B)=P(A0)P(B|A0)/∑=1iP(Ai)P(B|Ai)=0.6×0.8/0.52≈0.923.30 设某种病菌在人口中的带菌率为0.83.当检查时,带菌者未必检出阳性反应,而不带菌者也可能呈阳性反应,假定P(阳性|带菌)=0.99,P(阴性|带菌)=0.01,P(阳性|不带菌)=0.05P(阴性|不带菌)=0.95.设某人检出阳性,问他“带菌”的概率是多少?解设A={某人检出阳性},B1={带菌},B2={不带菌}.由题设知P(B1)=0.83,P(B2)=1-0.83=0.17,P(A|B1)=0.99, P(A|B2)=0.05,故所求的概率为P(B1|A)=P(AB1)/P(A)=P(B1)P(A|B1)/∑=2jP(B j)P(A|B j)=(0.83×0.99)/(0.83×0.99+0.17×0.05)=0.8217/(0.0085+0.8217)≈0.9898.31 设有五个袋子,其中两个袋子(品种A1)每袋有两个白球和三个黑球,另外两个袋子(品种A2)每袋有一个白球和四个黑球,还有一个袋子(品种A3)中有四个白球和一个黑球,(1)从五个袋中任挑一袋,并从这袋中任取一球,此球为白球的概率;(2)从不同品种的三袋中任挑一袋,并由其中任取一球,结果是白球(事件B),问这球由三个品种的袋子中取出的概率各是多少?解(1)设事件B表示“取到白球”,A i表示“从五个袋中取到A i品种袋子”(i=1,2,3),故P(A1)=2/5, P(A2)=2/5,P(A3)=1/5,P(B|A1)=2/5,P(B|A2)=1/5,P(B|A3)=4/5,利用全概率公式,所求概率为P(B)=∑=31iP(A i)P(B|A i)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=2/5×2/5+2/5×1/5+1/5×4/5=10/25=2/5 .(2)设事件B={取到白球},A i={从不同品种三袋中取到品种A i袋子} (i=1,2,3),根据题设,欲求下述三个条件概率P(B|A1),P(B|A1),P(B|A1). 于是P(A1)=1/3 ,P(A2)=1/3,P(A3)=1/3,P(B|A1)=2/5 ,P(B|A2)=1/5,P(B|A3)=4/5. 利用全概率公式,取到白球概率为P(B)=∑=31iP(A i)P(B|A i)=1/3×2/5+1/3×1/5+1/3×4/5=7/15.再由贝叶斯公式,有P(A1|B)=P(A1)P(B|A1)/∑=31iP(Ai)P(B|Ai)=(1/3×2/5)/7/15=2/7.P(A2|B)=P(A2)P(B|A2)/∑=31iP(Ai)P(B|Ai)=(1/3×1/5)/7/15=1/7.P(A3|B)=P(A3)P(B|A3)/∑=31iP(Ai)P(B|Ai)=(1/3×4/5)/7/15=4/7.。

东华大学《概率论与数理统计》课件 第一章 随机事件与概率

东华大学《概率论与数理统计》课件 第一章 随机事件与概率
(2) P(S)=1;
(3) 设A1,A何2,…时,P是(A一|列B两)两<互P不(A相)容? 的事件,即AiAj=
,(ij), i , j=1, 2, …, 有 P( A1 A2 … )= P(A1) +P(A2)+….
则称P(A)为事件A的概率。
例 一盒中混有100只新 ,旧乒乓球,各有红、白两 色,分 类如下表。从盒中随机取出一球,若取得的 是一只红球,试求该红球是新球的概率。
1.定义 若对随机试验E所对应的样本空间中的 每一事件A,均赋予一实数P(A),集合函数P(A)满足 条件:
(1) 非负性: P(A) ≥0;
(2) 规范性: P(S)=1;
(3) 可列可加性:设A1,A2,…, 是一列两两互不 相容的事件,即AiAj=,(ij), i , j=1, 2, …, 有
概率论与数理统计
第一章 随机事件与概率
教材:
《概率论与数理统计》
魏宗舒编
高等教育出版社
本章主要内容:
1. 概率的概念与性质 2. 事件的关系与运算性质 3. 古典概型概率的计算 4. 加法公式、条件概率、乘法公式 5. 事件的独立性、伯努利概型
重点:古典概型、概率的计算 难点:事件的关系和运算
条件概率、伯努利概型
(2) 单调不减性:若事件AB,则 P(A)≥P(B)
(3) 事件差: A、B是两个事件,

P(A-B)=P(A)-P(AB)
(4) 加法公式:对任意两事件A、B,有 P(AB)=P(A)+P(B)-P(AB)
该公式可推广到任意n个事件A1,A2,…,An的情形 ;
(5) 互补性:P(A)=1- P(A); (6) 可分性:对任意两事件A、B,有

概率论基础知识

概率论基础知识
6、互不相容:若事件 A 与事件 B 不能同时发生,即 AB=φ,则称 A 与 B 是互不相容的。 例如,观察某定义通路口在某时刻的红绿灯:若 A={红灯亮},B={绿灯亮},
则 A 与 B 便是互不相容的。
7、对立:称事件 A 不发生的事件为 A 的对立事件,记为 显然
,A∩ =φ
例如,从有 3 个次品,7 个正品的 10 个产品中任取 3 个,若令 A={取得的 3 个产品中至少有一个次品},则 ={取得的 3 个产品均为正品}。
第 4 页 共 73 页
而 P(B)=3P(A)=
概率论基础知识
定义 1:在古典概型中,设其样本空间Ω所含的样本点总数,即试验的基本事件总数为 NΩ而事件 A 所 含的样本数,即有利于事件 A 发生的基本事件数为 NA,则事件 A 的概率便定义为:
例 1,将一枚质地均匀的硬币一抛三次,求恰有一次正面向上的概率。 解:用 H 表示正面,T 表示反面,则该试验的样本空间
若 A B,则 A∪ B=B, A∩ B=A A-B=A-AB= A
等等。
第 3 页 共 73 页
概率论基础知识
例 3,从一批产品中每次取一件进行检验,令 Ai={第 i 次取得合格品},i=1,2,3,试用事件的运算符号表示 下列事件。A={三次都取得合格品}B={三次中至少有一次取得合格品}C={三次中恰有两次取得合 格品}D={三次中最多有一次取得合格品}
2048 4040 12000 24000 30000
概率论基础知识
1061 2148 6019 12012 14994
0.5180 0.5069 0.5016 0.5005 0.4998
定义 2:在相同条件下,将试验重复 n 次,如果随着重复试验次数 n 的增大,事件 A 的频率 fn(A)越来越 稳定地在某一常数 p 附近摆动,则称常数 p 为事件 A 的概率,即 P(A)=p 不难证明频率有以下基本性质:

《概率论与数理统计》第一章知识点

《概率论与数理统计》第一章知识点

第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。

2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。

二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。

(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。

2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。

1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。

2.基本事件:试验的每一可能的结果称为基本事件。

一个样本点w 组成的单点集{w}就是随机试验的基本事件。

3.必然事件:每次实验中必然发生的事件称为必然事件。

用Ω表示。

样本空间是必然事件。

4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。

1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。

2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。

3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。

4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。

5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。

概率论与数理统计第一章——随机事件及概率

概率论与数理统计第一章——随机事件及概率
P65 = 6 5 4 3 2 = 720 (个)
ex2: 从0,1,2,3,4,5, 这六个数字中任取四 个,问能组成多少个四位偶数?
解:组成的四位数是偶数,要求末位为0,2或
4,可先选末位数,共P31 种,前三位数的选取方法有
P53 种,而0不能作首位,所以所组成的偶数个数为
P1 P3 − P1 P1 P2 = 156 (个)
◼ 为方便起见,记Φ为不可能事件,Φ不 包含任何样本点。
(三) 事件的关系及运算 ❖事件的关系(包含、相等)
1A B:事件A发生一定导致B发生
2A=B
A B
B A
B A
例:
✓ 记A={明天天晴},B={明天无雨} B A ✓ 记A={至少有10人候车},B={至少有5人候车}
B A
✓ 抛两颗均匀的骰子,两颗骰子出现的点数分别 记为x,y.记A={x+y为奇数},B={两次的骰子点
A
B
n Ai:A1, A2,An至少有一发生
i=1
n Ai:A1, A 2 ,An同时发生
i =1
✓当AB= Φ时,称事件A与B是互不相
容的,或互斥的。
A
B
A A= A B =
A的逆事件记为A, A A =
, 若 A B =
,
称A, B互逆(互为对立事件)
AA
A
B
事件A对事件B的差事件:
◼可以在相同条件下重复进行(重复性); ◼事先知道所有可能出现的结果(明确性); ◼每次试验前并不知道哪个试验结果会发生 (随机性)。
例: ❖抛一枚硬币,观察试验结果; ❖对某路公交车某停靠站登记下车人数; ❖对某批同型号灯泡,抽取其中一只测 验其使用寿命(按小时计)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B A B, A B A B
A ,B ,C 都不发生— A B C
A B C
A ,B ,C 不都发生— ABC A B C
概率统计B
宁波工程学院
例:某人连续购买体育彩票,令事件 A、B、C 分别 表示其第一、二、三次所买的彩票中奖,试用 A,B, C 及其运算表示下列事件:
A
差化积
A B AB A ( AB)
概率统计B
宁波工程学院
随机事件的运算规律
交换律: A B B A, 结合律: 分配律:
A B B A
A B C A B C A B C A B C
A B C A B A C A B C A B A C De Morgan定律:
A1 “ : 至少有一人命中目标” : A2 “ : 恰有一人命中目标” : A3 “ : 恰有两人命中目标 ” : A4 “ : 最多有一人命中目标 ” : A5 “ : 三人均命中目标” : A6 “ : 三人均未命中目标” :
A
B
C
ABC ABC BC
ABC ABC AC
ABC ABC
AB
ABC
B
A S
性质2 (减法公式)
特别地
P( B A) P( B) P( AB)
A B P( B A) P( B) P( A) P( B) P( A)
A
B S
概率统计B
宁波工程学院
性质 3 P( A) 1 ;
性质 4 P( A ) 1 P( A) ;
性质 5 (加法公式)
在大量重复试验中,随机事件的频率具有稳定性.
概率统计B
宁波工程学院
概率的公理化定义
定义 设 E 是随机试验,S 是它的样本空间,对于 E 的每一个事件 A 赋予一个实数,记为 P( A) ,
称为事件 A 的概率,要求 P()满足下列条件:
1
0
(非负性)
(规范性)
0 P( A) ;
P( S ) 1 ;
和专业联系:国贸专业属于经济学学科范畴 1.核心必修课,考研必修课 2.作为后续课程的基础(如统计学、证券投资、计量经济学等) 3.贸易工作中有大量的数据需要分析,指导决策
概率统计B
写在前面
宁波工程学院
生活中最重要的问题,其中占大多数实际上只是 概率的问题。 ——拉普拉斯 “ 概率论是生活真正的领路人, 如果没有对概率 的某种估计, 那么我们就寸步难行, 无所作为. ——英国的逻辑学家和经济学家杰文斯 在终极的分析中,一切知识都是历史。 在抽象的意义下,一切科学都是数学。 在理性的世界里,所有的判断都是统计学。 ——C.R劳
概率统计B
Байду номын сангаас
宁波工程学院
课程:概率论与数理统计
主讲教师: 李春华
e-mail:1530405308@
电话:563216 办公室:西2(110)
教材:《概率论与数理统计》(第三版) 韩明等编 同济大学出版社
参考书:《概率论与数理统计》教材及习题解答(第四版) 盛骤等编 高等教育出版社
概率统计B 宁波工程学院 概率论与数理统计是研究和揭示随机现象统计规 律性的一门学科。 在一定条件下必然发生的现象 向空中抛一物体必然落向地面; 水加热到100℃必然沸腾; 异性电荷相吸引; 放射性元素发生蜕变; 在试验或观察前无法预知出现什么结果 抛一枚硬币,结果可能正面(或反面)朝上; 向同一目标射击,各次弹着点都不相同; 某地区的日平均气温; 掷一颗骰子,可能出现的点数;
E2 :将一枚硬币抛掷三次,观察正、反面出现的情况。 E3:将一枚硬币抛掷三次,观察出现正面的次数。 E4:抛一颗骰子,观察出现的点数。 E5:观察一个网站一天内受到的点击次数。
E6:在一批灯泡中任意抽取一只,测试它的寿命。
E7:记录某地一昼夜的最低温度和最高温度。
概率统计B
宁波工程学院
S1 : { H , T }
对应于集合
我们称一个随机事件发生当且仅当它所包 含的一个样本点在试验中出现.
概率统计B
宁波工程学院
例如:S2 中事件 A={HHH,HHT,HTH,HTT}
表示 “第一次出现的是正面”
S6 中事件 B1={t|t1000} 表示 “灯泡是次品” 事件 B2={t|t 1000}
表示 “灯泡是合格品”
A B C
概率统计B
宁波工程学院
第二讲
一、古 典 概 型 二、条件概率及乘法公式 三、事件的独立性
概率统计B
宁波工程学院
一. 等可能概型(古典概型)
生活中有这样一类试验,它们的共同特点是:
样本空间的元素只有有限个;
每个基本事件发生的可能性相同。 设 S ={e1, e2, …en }, 由古典概型的等可能性, 若事件 A 包含 k 个基本事件,即 A ={e1, e2, …ek }, 则有:
概率统计B
宁波工程学院
研究方法:
观察、试验、调查;收集、整理、处理数 据并进行统计推断。
调查是概率统计研究方法的基石。
3 .某食品厂用自动装罐机生产净重为 345 克的午餐肉罐头, 由于随机性每个罐头的净重都有差别,现在从生产线上随 机抽取 10 个,称其净重数据如下: 344 , 346 , 345 , 342 , 340 , 338 , 344 , 343 , 344 , 343 ,通过样本推断生产是否 正常?
S2 : { HHH, HHT, HTH, HTT, THH, THT, TTH, TTT }
S3 : { 0, 1, 2, 3 }
S4 : { 1, 2, 3, 4, 5, 6 } S5 : {0,1,2,3……} S6 : { t | t 0 } S7 : { ( x , y ) | T 0 x y T1 }
概率统计B
宁波工程学院
学科简介
概率统计是研究什么的?
随机现象:不确定性与统计规律性
一.确定性数学--- 初等数学、微积分、线性代数等 二.随机数学---以概率统计为代表 1.赌博 人口统计 出生率 性别等 2.非确定性现象: 抛硬币 掷骰子 发大水等 3.研究和揭示随机现象的统计规律性---概率论 4.研究怎样有效地收集整理和分析带有随机性的数据, 对所考察的问题作出推断或预测,为决策和行动提供
定义: 在相同的条件下,进行了n 次试验, 在这 n 次 nA 试验中,事件 A 发生的次数 nA (频数),比值 称 n 为事件A 发生的频率,记成 fn(A) 。 性质: 1.
0 f n ( A) 1 ; 2.
f n() 1;
3. 若事件A1, A2 互不相容,则 f n( A1 A2 ) f n( A1) f n ( A2 )
概率统计B
宁波工程学院
课程教学组织及考核
1、课堂主讲----构建知识框架 2、课程自主学习(自修)----理解巩固 3、课程研讨项目----“学以致用”
注:①期中、期末考试 ②课程项目研讨 ③作业 出勤--抽查
概率统计B
宁波工程学院
第一讲
第一章 随机事件与概率
一、随机事件 二、频率及概率
概率统计B
20
3
0
,则 (可列可加性) 若A1 , A2 , 是两两互不相容事件
P( A1 A2 ) P( A1) P( A2)
概率统计B
宁波工程学院
概率的性质与推广
性质1(有限可加性) 若A1 , A2 ,, An 是两两互不相容事件 则
P ( A1 A2 An ) P ( A1) P ( A2) P ( An )
概率统计B
宁波工程学院
17世纪—博弈、机会游戏引发概率启蒙研究 18世纪—注意到天文观测、误差理论、产品检查等问题与机会游 戏相似之处,导致用频率(统计)研究概率 19世纪—引入数学分析方法推动概率深入研究 20世纪—用集合论(测度论)创建概率公理化,开创统计学 21世纪—统计方法成为随机建模的基本工具 应用遍及所有科技领域、工农业生产和国民经济的各个部门
事件 B3={t|t1500}
表示“灯泡是一级品”
概率统计B
宁波工程学院
事件间的关系与运算(对应于集合)
10 包含关系
20 和事件 30 积事件 40 差事件
A B
A B A B A B A B
A
B
S
50 互不相容
60 对立事件
A B 用事件发生观点解释 A B S
概率统计B
宁波工程学院
记号
S φ AB AB=φ AB AB AB
概率论
样本空间, 必然事件 不可能事件 样本点(基本事件) A发生必然导致B发生 A与B不能同时发生 A与B至少有一发生 A与B同时发生 A发生且B不发生 A不发生、对立事件发生
集合论
空间(全集) 空集 元素 A是B的子集 A与B无相同元素 A与B的并集 A与B的交集 A与B的差集 A的余集
比如: 明天降水 概率为 30% ,
某强队对弱队 赢球 的概率为 80%
概率是随机事件发生可能性大小的度量
1、了解发生意外人身事故的可能性大小,确定保险金额 2、了解顾客人数的各种可能性大小,合理配臵服务人员 3、了解每年最大洪水超警戒线可能性大小,合理确定堤 坝高度.
概率统计B
宁波工程学院
一: 频率的定义和性质
频率的稳定性:当试验次数充分大时,事件的频率常在某 个确定的数字附近摆动
概率统计B
宁波工程学院
频率的稳定性
历史上不少著名学者做过抛掷硬币试验,数据如下: 试验者 德· 莫根 蒲 丰 K· 皮尔逊 K· 皮尔逊 实践证明: n 2048 4040 12000 24000 nA 1061 2048 6019 12012 fn(A) 0.5181 0.5069 0.5016 0.5005
相关文档
最新文档