高中数学选修1-1知识点归纳
高中数学选修1-1知识点总结
数学选修1-1知识点总结导数及其应用一.导数概念的引入 1. 导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()lim x f x x f x x∆→+∆-∆, 我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即0()f x '=000()()lim x f x x f x x∆→+∆-∆ 例1. 在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t(单位:s)存在函数关系2() 4.9 6.510h t t t =-++运动员在t=2s 时的瞬时速度是多少?解:根据定义0(2)(2)(2)lim 13.1x h x h v h x∆→+∆-'===-∆ 即该运动员在t=2s 是13.1m/s,符号说明方向向下2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即0000()()lim ()n x n f x f x k f x x x ∆→-'==- 3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆ 二.导数的计算基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=;2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()x f x a =,则()ln xf x a a '=6 若()x f x e =,则()x f x e '=7 若()log x a f x =,则1()ln f x x a'=8 若()ln f x x =,则1()f x x '= 导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f x g x f x g x g x g x ''•-•'= 考点:导数的求导及运算★1、已知()22sin f x x x π=+-,则()'0f =★2、若()sin x f x e x =,则()'f x = ★3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( ) 319.316.313.310.D C B A ★★4.过抛物线y=x 2上的点M )41,21(的切线的倾斜角是()A.30°B.45°C.60°D.90° ★★5.如果曲线2932y x =+与32y x =-在0x x =处的切线互相垂直,则0x =三.导数在研究函数中的应用 1.函数单调性: ⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数.求单调性的步骤:① 确定函数)(x f y =的定义域(不可或缺,否则易致错);② 解不等式'()0'()0f x f x ><或;③ 确定并指出函数的单调区间(区间形式,不要写范围形式),区间之间用“,”★隔开,不能用“”连结。
高中数学选修内容复习讲义(选修1-1)
第1讲命题及其关系、充分条件与必要条件1.了解“p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的意义.1.命题的概念在数学中用语言、符号或式子表达的,可以的陈述句叫做命题.其中的语句叫真命题,的语句叫假命题.2.四种命题及其关系(1)四种命题(2)四种命题间的关系(3)四种命题的真假关系①两个命题互为逆否命题,它们有的真假性;②两个命题互为逆命题或互为否命题,它们的真假性[思考探究]一个命题的“否命题”与“否定”是同一个命题吗?提示:不是.命题的否命题既否定命题的条件又否定命题的结论,而命题的否定仅是否定命题的结论.3.充分条件与必要条件(1)如果p⇒q,则p是q的,q是p的;(2)如果p⇒q,q⇒p,则p是q的.1.命题真假的判定对于命题真假的判定,关键是分清命题的条件与结论,只有将条件与结论分清,再结合所涉及的知识才能正确地判断命题的真假.2.四种命题的关系的应用掌握原命题和逆否命题,否命题和逆命题的等价性,当一个命题直接判断它的真假不易进行时,可以转而判断其逆否命题的真假.[特别警示]当一个命题有大前提而写出其他三种命题时,必须保留大前提,大前提不动.※ 分别写出下列命题的逆命题、否命题、逆否命题、命题的否定,并判断它们的真假: (1)若q ≤1,则方程x 2+2x +q =0有实根;(2)若x 、y 都是奇数,则x +y 是偶数;(3)若xy =0,则x =0或y =0;(4)若x 2+y 2=0,则x 、y 全为0.1.利用定义判断(1)若p ⇒q ,则p 是q 的充分条件; (2)若q ⇒p ,则p 是q 的必要条件;(3)若p ⇒q 且q ⇒p ,则p 是q 的充要条件;(4)若p ⇒q 且q p ,则p 是q 的充分不必要条件; (5)若p q 且q ⇒p ,则p 是q 的必要不充分条件;(6)若p q 且q p ,则p 是q 的既不充分也不必要条件. 2.利用集合判断记条件p 、q 对应的集合分别为A 、B ,则: 若A ⊆B ,则p 是q 的充分条件; 若A B ,则p 是q 的充分不必要条件; 若A ⊇B ,则p 是q 的必要条件; 若A B ,则p 是q 的必要不充分条件; 若A =B ,则p 是q 的充要条件;若A ⊈ B ,且A ⊉ B ,则p 是q 的既不充分也不必要条件.[特别警示] 从集合的角度理解,小范围可以推出大范围,大范围不能推出小范围. ※ 指出下列各组命题中,p 是q 的什么条件?(1) p :a +b =2,q :直线x +y =0与圆(x -a )2+(y -b )2=2相切; (2) p :|x |=x ,q :x 2+x ≥0;(3) 设l ,m 均为直线,α为平面,其中l ⊄α,m ⊂α,p :l ∥α,q :l ∥m ; (4) 设α∈)2,2(ππ-,β∈)2,2(ππ-,p :α<β,q :tan α<tan β.1.条件已知证明结论成立是充分性.结论已知推出条件成立是必要性;2.证明分为两个环节,一是充分性;二是必要性.证明时,不要认为它是推理过程的“双向书写”,而应该进行由条件到结论,由结论到条件的两次证明;3.证明时易出现必要性与充分性混淆的情形,这就要分清哪是条件,哪是结论.※求证:关于x的方程x2 +mx +1=0有两个负实根的充要条件是m≥2.若关于x的方程x2 +mx +1=0有两个正实根,求m的取值范围?第2讲简单的逻辑联结词、全称量词与存在量词1.简单的逻辑联结词:了解逻辑联结词“或”、“且”、“非”的含义.2.全称量词与存在量词(1)理解全称量词与存在量词的意义(2)能正确地对含有一个量词的命题进行否定.1.命题p∧p2.全称量词3.1.判断含有逻辑联结词的命题真假的关键是对逻辑联结词“或”、“且”、“非”含义的理解. 数学中的逻辑联结词“或”与日常生活中的“或”意义不同,日常生活中的“或”带有不能同时具备之意.数学中的逻辑联结词“且”与日常生活中的“且”意义基本一致,表示而且的意思. 数学中的逻辑联结词“非”与日常生活中的“非”意义基本一致,表示否定的意思.2.解决该类问题基本步骤为:(1)弄清构成它的命题p 、q 的真假; (2)弄清它的结构形式;(3)根据真值表判断构成新命题的真假.※ 已知命题p :∃x ∈R ,使tan x =1,命题q :x 2-3x +2<0的解集是{x |1<x <2},下列结论: ①命题“p ∧q ”是真命题; ②命题“p ∧q ”是假命题; ③命题“p ∨q ”是真命题; ④命题“p ∨q ”是假命题. 其中正确的是 ( )A. ②③B. ①②④C. ①③④D. ①②③④1.要判断一个全称命题是真命题,必须对限定的集合M 中的每一个元素x ,验证p (x )成立.2.要判断一个全称命题是假命题,只要能举出集合M 中的一个x =x 0,使p (x 0)不成立即可.3.要判断一个特称命题是真命题,只要在限定的集合M 中,至少能找到一个x =x 0,使p (x 0)成立即可,否则这一特称命题就是假命题.※ 判断下列命题是否是全称命题或特称命题,若是,用符号表示,并判断其真假. (1)有一个实数α,sin 2α+cos 2α≠1;(2)任何一条直线都存在斜率;(3)所有的实数a ,b ,方程ax +b =0有唯一解; (4)存在实数x ,使得2112=+-x x 。
高中数学选修1-1(人教A版)第三章导数及其应用3.3知识点总结含同步练习及答案
描述:例题:高中数学选修1-1(人教A版)知识点总结含同步练习题及答案第三章 导数及其应用 3.3 导数在研究函数中的应用一、学习任务1. 了解函数的单调性与导数的关系;能利用导数研究函数的单调性;会求不超过三次的多项式函数的单调区间.2. 了解函数的极大(小)值、最大(小)与导数的关系;会求函数的极大(小)值,以及在指定区间上函数的最大(小)值.二、知识清单导数与函数的图象 利用导数研究函数的单调性 利用导数求函数的极值利用导数求函数的最值三、知识讲解1.导数与函数的图象(1)导数 表示函数 在点 处的切线斜率.当切线斜率为正值时,切线的倾斜角小于 ,函数曲线呈上升状态;当切线的斜率为负值时,切线的倾斜角大于 且小于 ,函数曲线呈下降状态.(2)如果在区间 内恒有 ,那么函数 在区间 内是常函数.()f ′x 0y =f (x )(,f ()x 0x 090∘90∘180∘(a ,b )(x )=0f′y =f (x )(a ,b ) 是函数 的导函数, 的图象如图所示,则 的图象最有可能是下列选项中的( )解:C导函数的图象在 轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在 轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由 时导函数图象在 轴的上方,表示在此区间上,原函数图象呈上升趋势,可排除 B、D 选项;由 时导函数图象在 轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除 A 选项.(x )f ′f (x )y =(x )f ′f (x )x x x ∈(−∞,0)x x ∈(0,1)xy=f(x)已知函数 的图象如图所示,则导函数f(x)(a,b)则函数 在开区间答案:解析:3. 已知函数 , 的导函数的图象如下图,那么 , 的图象可能是.A.B .C .D .D 和 都是单调递增的,但 增长的越来越慢, 增长的越来越快,并且在 处, 的切线的斜率应该相等.y =f (x )y =g (x )y =f (x )y =g (x )()f (x )g (x )f (x )g (x )x 0f (x ),g (x)高考不提分,赔付1万元,关注快乐学了解详情。
高中数学选修1-1(人教B版)第三章导数及其应用3.3知识点总结含同步练习题及答案
三、知识讲解
1.利用导数研究函数的单调性 描述: 一般地,函数的单调性与其导数的正负有如下关系: 在某个区间 (a, b) 内,如果 f ′ (x) > 0 ,那么函数 y = f (x) 在这个区间内单调递增;如果 f ′ (x) < 0 ,那么函数 y = f (x) 在这个区间内单调递减. 注:在 (a, b) 内可导的函数 f (x) 在 (a, b) 上递增(或递减)的充要条件是 f ′ (x) ⩾ 0 (或 f ′ (x) ⩽ 0 ),x ∈ (a, b) 恒成立,且 f ′ (x) 在 (a, b) 的任意子区间内都不恒等于 0 . 例题: 求下列函数的单调区间: (1)f (x) = x 3 − 3x 2 − 9x + 5 ;(2)f (x) = x 函数的极值定义 已知函数 y = f (x) ,设 x 0 是定义域 (a, b) 内任一点,如果对 x0 附近的所有点 x,都有 f (x) < f (x0 ) 成立,则称函数 f (x) 在点 x0 处取得极大值,记作
y 极大 = f (x0 ).
并把 x 0 称为函数 f (x) 的一个极大值点. 如果在 x 0 附近都有 f (x) > f (x0 ) 成立,则称函数 f (x) 在点 x0 处取得极小值,记作
1 3 x − x2 + 2x + 1 . 3 解:(1)函数的定义域为 R.
(3)f (x) =
f ′ (x) = 3x2 − 6x − 9 = 3(x − 3)(x + 1),
令 f ′ (x) > 0 ,解得
x < −1或x > 3,
令 f ′ (x) < 0 ,解得
−1 < x < 3.
高中数学选修1-1(人教B版)第一章常用逻辑用语1.3知识点总结含同步练习题及答案
q ”,那么
1 时,mx 2 − x + 1 = 0 无实数根; 4
1 ,则 mx 2 − x + 1 = 0 无实数根,真命题; 4
写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假. (1)若 m ⋅ n < 0 ,则方程 mx 2 − x + n = 0 有实数根; (2)若 m ⩽ 0 或 n ⩽ 0,则 m + n ⩽ 0 . 解:(1)逆命题:若方程 mx 2 − x + n = 0 有实数根,则 m ⋅ n < 0 ,假命题 ; 否命题:若 m ⋅ n ⩾ 0 ,则方程 mx2 − x + n = 0 没有实数根,假命题 ; 逆否命题:若方程 mx 2 − x + n = 0 没有实数根,则 m ⋅ n ⩾ 0 ,真命题. (2)逆命题:若 m + n ⩽ 0 ,则 m ⩽ 0 或 n ⩽ 0 ,真命题; 否命题:若 m > 0 且 n > 0,则 m + n > 0 ,真命题 ; 逆否命题:若 m + n > 0 ,则 m > 0 且 n > 0 ,假命题 .
因为 p 是 q 的充分不必要条件,所以 A ⫋ B.故
{ 1 + m ⩾ 10, 或{ 1 + m > 10, 1 − m < −2, 1 − m ⩽ −2,
解得 m ⩾ 9 ,故实数 m 的取值范围是 [9, +∞).
2.若则命题的四种形式 描述: 若则命题 命题的常见形式为“若 p 则 q ”,其中 p 叫做命题的条件, q 叫做命题的结论. 逆命题 对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称 为互逆命题.其中一个命题称为原命题(original proposition),另一个称为原命题的逆命 题(inverse proposition).也就是说,如果原命题为“若 p ,则 q ”,那么它的逆命题 为“若 q ,则 p ”. 否命题 对于两个命题,如果一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,那么 这两个命题称为互否命题.其中一个命题称为原命题,另一个称为原命题的否命题(negative proposition).也就是说,如果原命题为“若 p ,则 q ”,那么它的否命题为“若 ¬p ,则 ¬q ”. 逆否命题 对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么 这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命
人教版高中数学选修1-1课件:1.1.3 四种命题间的相互关系
常用逻辑用语
1.1 命题及其关系 1.1.2 四种命题 1.1.3 四种命题间的相互关系
三维目标
1.知识与技能 (1)了解原命题、逆命题、否命题、逆否命题这四种命题的概念. (2)掌握四种命题的形式和四种命题间的相互关系,会用等价命题判断四种命题的真假. 2.过程与方法 多让学生举例,培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能 力;培养学生的抽象概括能力和思维能力. 3.情感、态度与价值观 通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及分析 问题和解决问题的能力.
备课素材
对于含有大前提的命题,在改写时大前提不动.如“已知a,b为正数,若a>b,则 |a|>|b|”中,“已知a,b为正数”在四种命题中是相同的大前提,写其他命题时都 把它作为大前提. 在写一个命题的否命题时要将命题中的关键词语改写成否定词语,特别地,“且” 的否定是“或”,“都是”的否定是“不都是”等.
备课素材
[例]写出下列命题的逆命题、否 命题和逆否命题. (1)若 a+ 5是有理数,则 a 是无 理数; (2)若 ab=0,则 a,b 中至少有 一个为零; (3)垂直于同一平面的两条直线 平行.
解: (1)逆命题:若 a 是无理数,则 a+ 5是 有理数; 否命题:若 a+ 5不是有理数,则 a 不是无 理数; 逆否命题:若 a 不是无理数,则 a+ 5不是 有理数.
新课导入
[导入一] 情景引入 在商品大战中,广告成了电视节目中一道美丽的风景线.几乎所有的广告商都熟 谙这样的命题变换艺术,如宣传某种食品,其广告词为:“拥有的人们都幸福, 幸福的人们都拥有”,初听起来,这似乎只是普通的赞美说词,然而它的实际效 果相当大.哪个家庭不希望幸福呢,掏钱买一盒就得了.你能写出其广告词的一 个等价命题吗?
人教版高中数学【选修1-1】[知识点整理及重点题型梳理]_全称量词与存在量词_基础
人教版高中数学选修1-1知识点梳理重点题型(常考知识点)巩固练习全称量词与存在量词【学习目标】1.理解全称量词、存在量词和全称命题、特称命题的概念;2.能准确地使用全称量词和存在量词符号“∀” “∃ ”来表述相关的教学内容;3.掌握判断全称命题和特称命题的真假的基本原则和方法;4. 能正确地对含有一个量词的命题进行否定.【要点梳理】要点一、全称量词与全称命题全称量词全称量词:在指定范围内,表示整体或者全部的含义的量词称为全称量词.常见全称量词:“所有的”、“任意一个”、“每一个”、“一切”、“任给”等.通常用符号“∀”表示,读作“对任意”.全称命题全称命题:含有全称量词的命题,叫做全称命题.一般形式:“对M 中任意一个x ,有()p x 成立”,记作:x M ∀∈,()p x (其中M 为给定的集合,()p x 是关于x 的语句).要点诠释:有些全称命题在文字叙述上可能会省略了全称量词,例如:(1)“末位是0的整数,可以被5整除”;(2)“线段的垂直平分线上的点到这条线段两个端点的距离相等”;(3)“负数的平方是正数”;都是全称命题.要点二、存在量词与特称命题存在量词定义:表示个别或一部分的含义的量词称为存在量词.常见存在量词:“有一个”,“存在一个”,“至少有一个”,“有的”,“有些”等.通常用符号“∃ ”表示,读作“存在 ”.特称命题特称命题:含有存在量词的命题,叫做特称命题.一般形式:“存在M 中一个元素0x ,有0()p x 成立”,记作:0x M ∃∈,0()p x (其中M 为给定的集合,()p x 是关于x 的语句).要点诠释:(1)一个特称命题中也可以包含多个变量,例如:存在,R R αβ∈∈使sin()sin sin αβαβ+=+.(2)有些特称命题也可能省略了存在量词.(3)同一个全称命题或特称命题,可以有不同的表述要点三、 含有量词的命题的否定对含有一个量词的全称命题的否定全称命题p :x M ∀∈,()p xp 的否定p ⌝:0x M ∃∈,0()p x ⌝;从一般形式来看,全称命题“对M 中任意一个x ,有p (x )成立”,它的否定并不是简单地对结论部分p(x)进行否定,还需对全称量词进行否定,使之成为存在量词,也即“任意,()x M p x ∈”的否定为“0x M ∃∈,0()p x ⌝”.对含有一个量词的特称命题的否定特称命题p :0x M ∃∈,0()p xp 的否定p ⌝:x M ∀∈,()p x ⌝;从一般形式来看,特称命题“0x M ∃∈,0()p x ”,它的否定并不是简单地对结论部分0()p x 进行否定,还需对存在量词进行否定,使之成为全称量词,也即“0x M ∃∈,0()p x ”的否定为“x M ∀∈,()p x ⌝”.要点诠释:(1)全称命题的否定是特称命题,特称命题的否定是全称命题;(2)命题的否定与命题的否命题是不同的.(3)正面词:等于 、 大于 、小于、 是、 都是、 至少一个 、至多一个、 小于等于否定词:不等于、不大于、不小于、不是、不都是、 一个也没有、 至少两个 、 大于等于.要点四、全称命题和特称命题的真假判断①要判定全称命题“x M ∀∈,()p x ”是真命题,必须对集合M 中的每一个元素x ,证明()p x 成立;要判定全称命题“x M ∀∈,()p x ”是假命题,只需在集合M 中找到一个元素x 0,使得0()p x 不成立,即举一反例即可.②要判定特称命题“0x M ∃∈,0()p x ”是真命题,只需在集合M 中找到一个元素x 0,使得0()p x 成立即可;要判定特称命题“0x M ∃∈,0()p x ”是假命题,必须证明在集合M中,使 ()p x 成立得元素不存在.【典型例题】类型一:量词与全称命题、特称命题【全称量词与存在量词395491例1】例1. 判断下列命题是全称命题还是特称命题.(1)∀x ∈R ,x 2+1≥1;(2)所有素数都是奇数;(3)存在两个相交平面垂直于同一条直线;(4)有些整数只有两个正因数.【解析】(1)有全称量词“任意”,是全称命题;(2)有全称量词“所有”,是全称命题;(3)有存在量词“存在”,是特称命题;(4)有存在量词“有些”;是特称命题。
(word版)高中数学选修11知识点归纳,文档
高中数学选修1-1知识点总结第一章简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句 .真命题:判断为真的语句.假命题:判断为假的语句.2、“假设p,那么q〞形式的命题中的p称为命题的条件,q称为命题的结论.3、原命题:“假设p,那么q〞逆命题:“假设q,那么p〞否命题:“假设 p,那么 q〞逆否命题:“假设q,那么 p〞4、四种命题的真假性之间的关系:〔1〕两个命题互为逆否命题,它们有相同的真假性;〔2〕两个命题为互逆命题或互否命题,它们的真假性没有关系.5、假设p q,那么p是q的充分条件,q是p的必要条件.假设p q,那么利用集合间的包含关系:例如:假设A B,那么A是B的充分条件或6、逻辑联结词:⑴且(and):命题形式p q;⑵或〔or〕:命题形式p是q的充要条件〔充分必要条件〕.B是A的必要条件;假设A=B,那么A是B的充要条件;pq;⑶非〔not〕:命题形式p.p q pq pq p真真真真假真假假真假假真假真真假假假假真7、⑴全称量词——“所有的〞、“任意一个〞等,用“〞表示;全称命题p:xM,p(x);全称命题p的否认p:xM,p(x)。
⑵存在量词——“存在一个〞、“至少有一个〞等,用“〞表示;特称命题p:x M,p(x);特称命题p的否认p:x M,p(x);-1-第二章圆锥曲线1、平面内与两个定点F1,F2的距离之和等于常数〔大于F1F2〕的点的轨迹称为椭圆.即:|MF||MF|2a,(2a|FF|)。
1212这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.2、椭圆的几何性质:焦点的位置焦点在x轴上焦点在y轴上图形标准方程x2y21a b0y2x21a b0 a2b2a2b2范围a xa且byb bxb且aya1a,0、2a,010,a、20,a 顶点10,b、20,b1b,0、2b,0轴长短轴的长2b长轴的长2a焦点F1c,0、F2c,0F10,c、F20,c焦距F1F22cc2a2b2对称性关于x轴、y轴、原点对称-2-离心率c b 2e a1 a 20e13、平面内与两个定点F 1,F 2的距离之差的绝对值等于常数〔小于F 1F 2〕的点的轨迹称为双曲线.即:||MF | |MF ||2a,(2a|FF |)。
高中数学高考核心考点提醒选修1-1 第一章 常用逻辑用语
高中数学高考核心考点提醒选修1-1 第一章常用逻辑用语集合与常用逻辑用语集合概念一组对象的全体. ,x A x A∈∉。
元素特点:互异性、无序性、确定性。
关系子集x A x B A B∈⇒∈⇔⊆A∅⊆;,A B B C A C⊆⊆⇒⊆n个元素集合子集数2n 真子集00,,x A x B x B x A A B∈⇒∈∃∈∉⇔⊂相等,A B B A A B⊆⊆⇔=运算交集{}|,x xB x BA A∈∈=且()()()U U UC A B C A C B=()()()U U UC A B C A C B=()U UC C A A=并集{}|,x xB x BA A∈∈=或补集{}|Ux x UC A x A∈=∉且常用逻辑用语命题概念能够判断真假的语句。
四种命题原命题:若p,则q原命题与逆命题,否命题与逆否命题互逆;原命题与否命题、逆命题与逆否命题互否;原命题与逆否命题、否命题与逆命题互为逆否。
互为逆否的命题等价。
逆命题:若q,则p否命题:若p⌝,则q⌝逆否命题:若q⌝,则p⌝充要条件充分条件p q⇒,p是q的充分条件若命题p对应集合A,命题q对应集合B,则p q⇒等价于A B⊆,p q⇔等价于A B=。
必要条件p q⇒,q是p的必要条件充要条件p q⇔,,p q互为充要条件逻辑连接词或命题p q∨,,p q有一为真即为真,,p q均为假时才为假。
类比集合的并且命题p q∧,,p q均为真时才为真,,p q有一为假即为假。
类比集合的交非命题p⌝和p为一真一假两个互为对立的命题。
类比集合的补量词全称量词∀,含全称量词的命题叫全称命题,其否定为特称命题。
存在量词∃,含存在量词的命题叫特称命题,其否定为全称命题。
一、命题及其关系1.四种命题的相互关系:(既否条件又否结论)(先逆再否)(互换条件与结论)2.四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性,即原命题与逆否命题等价,逆命题与否命题等价。
高中数学选修1-1知识点归纳
高中数学选修1-1知识点归纳高中数学选修1-1知识点总结第一章简单逻辑用语1.命题是指用语言、符号或式子表达的,可以判断真假的陈述句。
其中真命题是判断为真的语句,假命题是判断为假的语句。
2.“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论。
3.原命题:“若p,则q”逆命题:“若q,则p”否命题:“若非p,则非q”逆否命题:“若非q,则非p”。
4.四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系。
5.若p推出q,则p是q的充分条件,q是p的必要条件。
若p等价于q,则p是q的充要条件。
6.逻辑联结词包括且(and)、或(or)和非(not),分别对应命题形式p∧q、p∨q和¬p。
7.全称量词用“∀”表示“所有的”、“任意一个”等,存在量词用“∃”表示“存在一个”、“至少有一个”等。
第二章圆锥曲线1.平面内与两个定点F1、F2的距离之和等于常数(大于F1F2)的点的轨迹称为椭圆。
即:|MF1|+|MF2|=2a,其中2a>F1F2.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距。
2.椭圆的标准方程为x^2/a^2+y^2/b^2=1(a>b>0),或y^2/a^2+x^2/b^2=1(a>b>0)。
椭圆的范围为−a≤x≤a且−b≤y≤b,或−b≤x≤b且−a≤y≤a。
椭圆有四个顶点,分别为A1(-a,0)、A2(a,0)、B1(0,-b)和B2(0,b)。
椭圆的轴长分别为2a和2b,焦点分别为F1(-c,0)、F2(c,0)和F1(0,-c)、F2(0,c),其中c^2=a^2-b^2,焦距为2c。
椭圆具有关于x轴和y轴的对称性。
以上是本文的改写和修正,主要是对格式、标点和错别字等进行了修正,并对一些表述进行了调整,使得文章更加清晰明了。
frac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}$$2、函数f在点x处的导数:f'\left(x\right)=\lim_{\Delta x\to 0}\frac{f\left(x+\Deltax\right)-f\left(x\right)}{\Delta x}$$3、函数f在点x处可导的充分必要条件是:lim_{\Delta x\to 0}\frac{f\left(x+\Delta x\right)-f\left(x\right)-f'\left(x\right)\Delta x}{\Delta x}=0$$4、导数的几何意义是函数曲线在该点处的切线斜率。
高中新课程数学(新课标人教A版)选修1-1《第三章 导数及其应用》归纳整合
网 络 构 建
专 题 归 纳
解 读 高 考
2.曲线的切线方程 利用导数求曲线过点 P 的切线方程时应注意: (1)判断 P 点是否在曲线上; (2)如果曲线 y=f(x)在 P(x0, f(x0))处的切线平行于 y 轴(此时导数 不存在),可得方程为 x=x0;P 点坐标适合切线方程,P 点处的 切线斜率为 f′(x0). 3. 利用基本初等函数的求导公式和四则运算法则求导数, 熟记 基本求导公式,熟练运用法则是关键,有时先化简再求导,会 给解题带来方便.因此观察式子的特点,对式子进行适当的变 形是优化解题过程的关键.
网 络 构 建
专 题 归 纳
解 读 高 考
(2)由 f(x)=x3-3x2+2 得,f′(x)=3x2-6x. 由 f′(x)=0 得,x=0 或 x=2. ①当 0<t≤2 时, 在区间(0, t)上 f′(x)<0, f(x)在[0, t]上是减函数, 所以 f(x)max=f(0)=2, f(x)min=f(t)=t3-3t2+2. ②当 2<t<3 时,当 x 变化时,f′(x)、f(x)的变化情况如下表:
(x1,x2) -
x2 0 极小值
(x2,+∞) +
网 络 构 建
专 题 归 纳
解 读 高 考
此时
a- f(x)在0,
a2-8 上单调递增, 2
a- 在 a+ 在
a2-8 a+ a2-8 , 上单调递减, 2 2
a2-8 ,+∞ 上单调递增. 2
网 络 构 建 专 题 归 纳 解 读 高 考
4.判断函数的单调性 (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义 域,解决问题的过程只能在函数的定义域内进行,通过讨论导 数的符号,来判断函数的单调区间; (2)注意在某一区间内 f′(x)>0(或 f′(x)<0)是函数 f(x)在该区间上 为增(或减)函数的充分条件.
高中数学选修1-1(人教A版)第三章导数及其应用3.1知识点总结含同步练习及答案
当点 Pn 趋近于点 P (x 0 , f (x 0 )) 时,割线 P Pn 趋近于确定的位置,这个确定位置的直线 P T 称为点 P 处的切线(tangent line). 割线 P Pn 的斜率是
kn =
f (x n ) − f (x 0 ) . xn − x0
当点 Pn 无限趋近于点 P 时, kn 无限趋近于切线 P T 的斜率. 函数 f (x) 在 x0 处的导数 f ′ (x0 ) 的几何意义,就是曲线 y = f (x) 在点 (x0 , f (x 0 ) 处的导数就是切线 P T 的斜率 k ,即
y ′ ,即 f ′ (x) = y ′ = lim
Δx→0
f (x + Δx) − f (x) . Δx
例题: 求函数 y = 2 2 + 5 在区间 [2, 2 + Δx] 上的平均变化率,并计算当 Δx = 1 时,平均变化率的值. x 解:因为
2
Δy = 2 × (2 + Δx)2 + 5 − (2 × 2 2 + 5) = 8Δx + 2(Δx)2 ,
高中数学选修1-1(人教A版)知识点总结含同步练习题及答案
第三章 导数及其应用 3.1 变化率与导数
一、学习任务 1. 2.
了解平均变化率的概念和瞬时变化率的意义. 了解导数概念的实际背景,体会导数的思想及其内涵.
二、知识清单
数列极限与函数极限 变化率与导数
三、知识讲解
1.数列极限与函数极限 描述: 数列极限 设 {xn } 为实数数列,a 为常数.若对任意给定的正数 ε ,总存在正整数 N ,使得当 n > N 时,有 |x n − a| < ε ,则称 数列 {x n }收敛于 a ,常数 a 称为数列 {x n } 的极限.并记作
高中数学选修1-1知识点及课本例题
第一章常用逻辑用语1.1 命题及其关系1、命题(1)一般地,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。
其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。
(2)“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论。
2、四种命题(1)对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题。
其中一个命题叫做原命题(“若p,则q”),另一个叫做原命题的逆命题(“若q,则p”)。
(2)对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题。
如果把其中一个命题叫做原命题,那么另一个叫做原命题的否命题(“若p⌝,则q⌝”)。
(3)对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题。
如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题(“若q⌝,则p⌝”)。
3、四种命题间的相互关系例1下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)指数函数是增函数吗?(4)若空间中两条直线不相交,则这两条直线平行;(5)2)2-;(2=(6)15x。
>例2指出下列命题中的条件p和结论q:(1)若整数a能被2整除,则a是偶数;(2)若四边形是菱形,则它的对角线互相垂直且平分。
例3将下列命题改写成“若p,则q”的形式,并判断真假:(1)垂直于同一条直线的两条直线平行;(2)负数的立方是负数;(3)对顶角相等。
例4证明:若022=x,则0=+yx。
-y1.2 充分条件与必要条件1、充分条件与必要条件一般地,“若p,则q”为真命题,是指由p通过推理得出q。
这是,我们就说,由p可推出q,记作qp⇒,并且说p是q的充分条件,q是p的必要条件。
2、充要条件一般地,如果既有qq⇒,就记作qp⇔。
高中数学选修1-1知识点
选修1-1、1-2数学知识点第一部分 简单逻辑用语1、命题:用语言、符号或式子表达的,能够判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没相关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.p qp q ∧ p q ∨ p ⌝ 真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假假假假真7、⑴全称量词——“所有的”、“任意一个”等,用“”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。
⑵存有量词——“存有一个”、“至少有一个”等,用“∃”表示;特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;第二部分 圆锥曲线1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。
这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b+=>> 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率()22101c b e e a a==-<<3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。
高中数学选修1-第一章-1.1空间向量及其运算-重点知识点
第一章空间向量与立体几何1.1空间向量及其运算知识点一:空间向量的概念及几类特殊向量1.空间向量:在空间中,具有大小和方向的量叫做空间向量,空间向量的大小叫做空间向量的长度或模。
2.单位向量:模为1的向量。
3.零向量:长度为0的向量。
4.相等向量:长度相等且方向相同的向量。
5.相反向量:长度相等且方向相反的向量6.共线(平行)向量:如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线(平行)向量。
7.方向向量:在直线l上取非零向量a,把与向量a平行的非零向量称为直线l的方向向量。
8.共面向量:平行于同一个平面的向量,叫做共面向量。
知识点二:空间向量的线性运算1.加法:三角形法则:a+b=OA→+AB→=OB→;平行四边形法则:a+b=OA→+OC→=OB→2.减法:a-b=OA→-OC→=CA→ 3.数乘运算当λ>0时,λa=λOA→=PQ→(与a同向)当λ<0时,λa=λOA→=MN→(与a反向)当λ=0时,λa=04.运算律(λ,μ∈R)交换律:a+b=b+a结合律:(a+b)+c=a+(b+c),λ(μa)=(λμ)a分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb知识点三:空间向量共线、共面的有关定理1.共线向量定理对任意两个空间向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb2.共面向量定理向量p 与不共线的两个空间向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y),使p =x a +y b知识点四:空间向量的数量积1.数量积:a ·b =|a ||b |cos<a ,b >,其中<a ,b >为两个非零向量a ,b 的夹角。
2.运算律:(λa )·b =λ(a ·b );λ∈R ;a ·b =b ·a (交换律);(a +b )·c =a ·c +b ·c (分配律)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学选修1-1知识点总结
第一章简单逻辑用语
1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.
真命题:判断为真的语句.假命题:判断为假的语句.
2、“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论.
3、原命题:“若p,则q”逆命题:“若q,则p”
否命题:“若p⌝,则q⌝”逆否命题:“若q⌝,则p⌝”
4、四种命题的真假性之间的关系:
(1)两个命题互为逆否命题,它们有相同的真假性;
(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.
⇒,则p是q的充分条件,q是p的必要条件.
5、若p q
⇔,则p是q的充要条件(充分必要条件).
若p q
A⊆,则A是B的充分条件或B是A 利用集合间的包含关系:例如:若B
的必要条件;若A=B,则A是B的充要条件;
6、逻辑联结词:⑴且(and) :命题形式p q
∨;
∧;⑵或(or):命题形式p q ⑶非(not):命题形式p⌝.
7、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;
全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。
⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示; 特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;
第二章 圆锥曲线
1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.
即:|)|2(,2||||2121F F a a MF MF >=+。
这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置
焦点在x 轴上
焦点在y 轴上
图形
标准方程 ()22
2210x y a b a b
+=>> ()22
2210y x a b a b
+=>> 范围
a x a -≤≤且
b y b -≤≤ b x b -≤≤且a y a -≤≤
顶点
()1,0a A -、()2,0a A ()10,b B -、()20,b B
()10,a A -、()20,a A ()1,0b B -、()2,0b B
轴长 短轴的长2b = 长轴的长2a =
焦点 ()1,0F c -、()2,0F c
()10,F c -、()20,F c
焦距 ()222122F F c c a b ==-
对称性
关于x 轴、y 轴、原点对称
离心率
()2
2101c b e e a a
==-<<
3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。
这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.
4、双曲线的几何性质: 焦点的位置
焦点在x 轴上
焦点在y 轴上
图形
标准方程 ()22
22
10,0x y a b a b -=>> ()22
22
10,0y x a b a b -=>> 范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈
顶点 ()1,0a A -、()2,0a A
()10,a A -、()20,a A
轴长 虚轴的长2b = 实轴的长2a =
焦点 ()1,0F c -、()2,0F c
()10,F c -、()20,F c
焦距 ()222122F F c c a b ==+
对称性 关于x 轴、y 轴对称,关于原点中心对称
离心率 ()2
211c b e e a a
==+>
渐近线方程
b y x a
=±
a
y x b
=±
5、实轴和虚轴等长的双曲线称为等轴双曲线.
6、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.
7、抛物线的几何性质: 标准方程 22y px =
()0p > 22y px =-
()0p > 22x py =
()0p > 22x py =-
()0p >
图形
顶点
()0,0
对称轴
x 轴
y 轴
焦点 ,02p F ⎛⎫ ⎪⎝⎭
,02p F ⎛⎫
- ⎪⎝⎭
0,2p F ⎛
⎫ ⎪⎝
⎭
0,2p F ⎛
⎫- ⎪⎝
⎭
准线方程 2
p
x =-
2
p x =
2
p y =-
2
p y =
离心率
1e =
范围 0x ≥ 0x ≤
0y ≥ 0y ≤
8、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 9、焦半径公式:
若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02p F x P =+; 若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02
p F y P =+;
第三章 导数及其应用
1、函数()f x 从1x 到2x 的平均变化率:
()()
2121
f x f x x x --
2、导数定义:()f x 在点0x 处的导数记作
x
x f x x f x f y x x x ∆-∆+='='
→∆=)()(lim
)(000
00
;.
3、函数()y f x =在点0x 处的导数的几何意义是曲线()
y f x =在点
()()
00,x f x P 处的切线的斜率. 4、常见函数的导数公式:
①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos '-=; ⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧x
x 1
)(ln '= 5、导数运算法则:
()1 ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦;
()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦;
()3()()()()()()
()()()2
0f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦.
6、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增;
若()0f x '<,则函数()y f x =在这个区间内单调递减.
7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:
()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.。