高中数学必修二期末测试题
【平煤高中检测必修二】高中数学必修二期末综合测试题

高一数学上学期期末综合测试题(人教版必修二)一、选择题1、下图(1)所示的圆锥的俯视图为 ( )2、直线30l y ++=的倾斜角α为 ( )A 、30 B 、60 C 、120 D 、150 3、棱长为a 正四面体的表面积是 ( )A 、343a B 、3123a C 、243a D 、23a 。
4、如图所示的直观图的平面图形ABCD 是( ) A 、任意梯形 B 、直角梯形C 、任意四边形D 、平行四边形5、已知α//a ,α⊂b ,则直线a 与直线b 的位置关系是( ) A 、平行 B 、相交或异面 C 、异面 D 、平行或异面6、已知两条直线012:1=-+ay x l ,04:2=-y x l ,且21//l l ,则满足条件a 的值为( ) A 、21- B 、21 C 、2- D 、27、在空间四边形ABCD 中,H G F E ,,,分别是DA CD BC AB ,,,的中点。
若a BD AC ==, 且AC 与BD 所成的角为60,则四边形EFGH 的面积为 ( )A 、283aB 、243aC 、223a D 、23a 8、在右图的正方体中,M 、N 分别为棱BC 和棱1CC 的中点,则异面直线AC 和MN 所成的角为( ) A 、30°B 、45°C 、90°D 、60°9、下列叙述中错误的是 ( )A 、若βα ∈P 且l =βα ,则l P ∈B 、三点C B A ,,确定一个平面;C 、若直线A b a = ,则直线a 与b 能够确定一个平面D 、若l A ∈,l B ∈且α∈A ,α∈B ,则α⊂l 10、两条不平行的直线,其平行投影不可能是 ( )A 、两条平行直线B 、一点和一条直线C 、两条相交直线D 、两个点。
11、长方体的一个顶点上的三条棱长分别为3、4、5,且它的8个顶点都在同一个球面上,则这个球的表面积是 ( )A 、π25B 、π50C 、π125D 、都不对。
人教版高中数学必修二期末考试试题

人教版高中数学必修二期末考试试题一、选择题1. 若函数 $f(x)=x^3-3x^2+bx+c$ 的图像过点 $(1,5)$,则$b=$()A.$-1$ B.$-2$ C.$-3$ D.$-4$2. 函数 $y=\frac{x+1}{x-1}$ 的图象关于直线 $y=-x$ 对称。
3. 从集合 $\{1,2,3,4,5,6\}$ 中取两个不同的元素组成一个二元组,则其中不含 $3$ 的二元组的数目为()。
A.$20$ B.$10$ C.$15$ D.$18$4. 已知集合$A=\{x\mid 2x-1\in \mathbb{N}\}$,则$A=$()。
A.$\bigl\{\frac{1}{2},\frac{3}{2},\frac{5}{2},\cdots\bigr\}$ B .$\bigl\{\frac{1}{2},\frac{3}{2},\frac{5}{2},\cdots,b\bigr\}$C.$\bigl\{1,2,3,\cdots\bigr\}$ D.$\bigl\{\cdots,-\frac{1}{2},\frac{1}{2},\frac{3}{2},\frac{5}{2},\cdots\bigr\}$5. 如图所示,大三角形的三个点坐标分别为 $A(-2,0)$,$B(0,2)$,$C(2,-4)$,以 $C$ 为顶点小三角形顶点的坐标为()。
A.$(-\frac{7}{5},-\frac{14}{5})$ B.$(\frac{7}{5},\frac{6}{5})$C.$(\frac{2}{5},-\frac{18}{5})$ D.$(\frac{6}{5},-\frac{4}{5})$二、填空题6. 下列各组数中互为相反数的是()。
$${1\over3},-{1\over3};\qquad {\sqrt{10}},-\sqrt{10};\qquad -3,3\sqrt{2}$$7. 容量为 $500 \rm mL$ 的杯中盛满水,再加进糖水搅拌,这时每 $100 \rm mL$ 的液体中含糖 $10\%$。
高中数学选择性必修二 高二上学期数学期末测试卷(A卷 夯实基础)同步单元AB卷(含答案)

班级 姓名 学号 分数高二上学期数学期末测试卷(A 卷·夯实基础)注意事项:本试卷满分150分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单项选择题(本大题共8小题,每小题5分,共40分)1.过两点()()5,,3,1A y B -的直线的倾斜角是135°,则y 等于( ) A .2 B .2- C .3 D .3-【答案】D 【详解】因为斜率tan1351k ︒==-,所以1153y k +==--,得3y =-. 故选:D.2.40y --=,经直线10x y +-=反射,则反射光线所在直线的方程是( ) A50y ++= B.40x += C.50x += D.0x +=【答案】C 【详解】40y --=,令0x =,解得4y =-, 设()0,4A -,关于直线10x y +-=的对称点为(),B m n , 则4141022n mm n +⎧=⎪⎪⎨-⎪+-=⎪⎩,解得51m n =⎧⎨=⎩,即()5,1B ,40y --=,令x =1y =-,设)1C-,关于直线10x y +-=的对称点为(),D a b ,则11102b =--=,解得21a b =⎧⎪⎨=⎪⎩(2,1D ,BD k ==直线BD:)15y x -=-,即50x =。
故选:C3.已知异面直线,a b 的方向向量分别是()()2,1,3,1,3,2m n --==,则,a b 夹角的大小是( ) A .56πB .34π C .3π D .6π【答案】C 【详解】异面直线,a b 的方向向量分别是()()2,1,3,1,3,2m n --==∴21132371cos ,1424m n m n m n⨯+⨯-+⨯-⋅-====-, 异面直线,a b 所成角为范围为02πθ<≤,,a b ∴夹角的大小是3π故选:C4.设数列{}n a 的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16C .49D .64【答案】A 【详解】878644915a S S =-=-= 故选:A5.已知在等比数列{}n a 中,3544a a a =,等差数列{}n b 的前n 项和为n S ,且74b a =,则13S =( ) A .26 B .52 C .78 D .104【答案】B 【详解】因为在等比数列{}n a 中,3544a a a =,可得2444a a =,40a ≠,解得44a =,又因为数列{}n b 是等差数列,744b a ==,则()13113711313134522S b b b =⨯+==⨯=.故选:B.6.直三棱柱111ABC A B C -中,90BCA ∠=,M 、N 分别是11A B 、11A C 的中点,1BC CA CC ==,则BM 与NA 所成的角的余弦值为( )A .BCD . 【答案】C 【详解】由题意可知1CC ⊥平面ABC ,且90BCA ∠=,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设12BC CA CC ===,则()2,0,0A 、()0,2,0B 、()1,0,2N 、()1,1,2M ,()1,0,2AN =-,()1,1,2BM =-,30cos ,56AN BM AN BM AN BM⋅<>===⨯⋅故BM 与NA 30故选:C.7.设抛物线C :y 2=4x 的焦点为F ,M 为抛物线C 上一点,N (2,2),则MF MN +的最小值为( ) A .3 B .2C .1D .4【答案】A 【详解】因为抛物线C :y 2=4x 的焦点为F (1,0),准线为1x =-, 根据抛物线定义可知MF =1M x +,所以当MN 垂直抛物线准线时,MF MN +最小, 最小值为:13N x +=. 故选:A .8.已知椭圆C :2222x y a b +=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率为34,点P 为椭圆上一点,若∠F 1PF 2=π2,且F 1PF 2内切圆的半径为1,则C 的方程为( ) A .22167x y +=1B .223214x y +=1C .24x +y 2=1D .22447x y +=1【答案】A 【详解】易知F 1PF 2中,内切圆半径r =1212-2PF PF F F +=a -c =1,又离心率为34c a =,解得a =4,c =3,所以椭圆C 的方程为22167x y +=1. 故选:A二、多项选择题(本大题共4小题,每小题5分,共20分.全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知等差数列{}n a 的公差为d ,前n 项和为n S ,316a =,512a =,则( ) A .2d =- B .124a =C .2628a a +=D .n S 取得最大值时,11n =【答案】AC 【详解】解法一:由题可得11216,412a d a d +=⎧⎨+=⎩,解得120,2,a d =⎧⎨=-⎩故选项A 正确,选项B 错误;易知()()2012222n a n n =+-⨯-=-+,则26181028a a +=+=,选项C 正确.因为1020a =>,110a =,1220a =-<,所以当10n =或11时,n S 取得最大值(技巧:由0d <得数列{}n a 递减,进而判断n S 最大时的临界项) 选项D 错误. 故选:AC解法二:对于A :易知53212164d a a =-=-=-,所以2d =-,选项A 正确;对于B :()132162220a a d =-=-⨯-=,选项B 错误; 对于C :263528a a a a +=+=,选项C 正确;对于D :易知()()2012222n a n n =+-⨯-=-+,1020a =>,110a =,1220a =-<(技巧:由0d <得数列递减,进而判断n S 最大时的临界项)所以当10n =或11时,n S 取得最大值,所以选项D 错误. 故选:AC10.已知直线:440l kx y k -+-=与圆22:4440M x y x y +--+=,则下列说法中正确的是( )A .直线l 与圆M 一定相交B .若0k =,则直线l 与圆M 相切C .当1k =时,直线l 被圆M 截得的弦最长D .圆心M 到直线l的距离的最大值为【答案】BCD【详解】22:4440M x y x y +--+=,即()()22224x y -+-=,是以()2,2为圆心,以2为半径的圆,A.因为直线:440l kx y k -+-=,直线l 过()4,4,2244444440+-⨯-⨯+>,则()4,4在圆外,所以直线l 与圆M 不一定相交,故A 错误;B.若0k =,则直线:4l y =,直线l 与圆M 相切,故B 正确;C.当1k =时,直线l 的方程为0x y -=,过圆M 的圆心,即直线l 是直径所在直线,故C 正确;D.由圆的性质可知当直线l 与过点()4,4的直径垂直时,圆心M 到直线l 的距离的最大,此时=故D 正确,故选:BCD.11.已知点P 在双曲线22:1169x y C -=上,1F ,2F 分别为双曲线的左、右焦点,若12PF F △的面积为20,则下列说法正确的是( ) A .点P 到x 轴的距离为4 B .12523PF PF += C .12PF F △为钝角三角形 D .1260F PF ∠=︒【答案】AC 【详解】由双曲线的方程可得4a =,3b =,则5c =,由12PF F △的面积为20,得112102022P P c y y ⨯⨯=⨯⨯=,解得4P y =,即点P 到x 轴的距离为4,故A 选项正确; 将4P y =代入双曲线方程可得203P x =,根据双曲线的对称性可设20,43P ⎛⎫⎪⎝⎭,则2133PF =,由双曲线的定义知1228PF PF a -==,则11337833PF =+=, 则12133750333PF PF +=+=,故B 选项错误; 在12PF F △中,12371321033PF c PF =>=>=, 则24012020553PF k -==>-,21PF F ∠为钝角,则12PF F △为钝角三角形,故C 选项正确;()2222121212121212122100cos 22PF PF PF PF PF PF F F F PF PF PF PF PF -+-+-∠==13376410021891331133713372233-+⨯⨯⨯==-≠⨯⨯⨯, 则1260F PF ∠=︒错误, 故选:AC.12.已知函数()2ln f x x x =,下列说法正确的是( )A .当1x >时,()0f x >;当01x <<时,()0f x <B .函数()f x的减区间为(,增区间为)+∞C .函数()f x 的值域1,2e ⎡⎫-+∞⎪⎢⎣⎭D .()1f x x ≥-恒成立 【答案】ACD 【详解】对于选项A ,当01x <<时,ln 0x <;当1x >时,ln 0x >,故选项A 正确; 对于选项B ,2ln 2ln 1fxx x x x x ,令()0f x '>可得2ln 10x ,有x >知函数()f x 的减区间为⎛⎝,增区间为⎫+∞⎪⎭,故选项B 错误;对于选项C ,由上可知()min 11e 2e f x f ===-,x →+∞时,()f x →+∞,故选项C 正确;对于选项D ,()22111ln 10ln 0f x x x x x x x x ≥-⇔-+≥⇔-+≥,令()211ln g x x x x=-+,有()()()22333121212x x x x x g x x x x x '-++--===+,令()0g x '>可得1x >,故函数()g x 的增区间为()1,+∞,减区间为()0,1,可得()()min 10g x g ==,故选项D 正确. 故选:ACD .三、填空题(本大题共4小题,每小题5分,共20分)13.与直线3250x y -+=的斜率相等,且过点()4,3-的直线方程为_________ 【答案】392y x =+【详解】直线3250x y -+=的斜率为32,故所求直线方程为()3342-=+y x ,即392y x =+.故答案为:392y x =+. 14.数列{}n a 中,11a =,()*12,2nn n a a n N a +=∈+,则5a =___________ 【答案】13【详解】 122nn n a a a +=+,11a =, 则1212223a a a ==+,2322122a a a ==+,3432225a a a ==+,4542123a a a ==+. 故答案为:13.15.若函数()ln f x x x =+在x =1处的切线与直线y =kx 平行,则实数k =___________. 【答案】2 【详解】∵()ln f x x x =+, ∴1()1f x x '=+,1(1)121f '=+=,又函数()ln f x x x =+在x =1处的切线与直线y =kx 平行, ∴2k =. 故答案为:2.16.设5(4P -是双曲线2222:1(0,0)x y C a b a b -=>>上一点,1(2,0)F -是C 的左焦点,Q 是C右支上的动点,则C 的离心率为______,1PQF △面积的取值范围是_______. 【答案】2)+∞ 【详解】双曲线C 的右焦点为2(2,0)F,则13||2PF =,27||2PF ,因点P 在双曲线C 上,则由双曲线定义得2122a PF PF =-=,即1a =,又2c =, 所以双曲线C 的离心率为2ce a==;因直线PF 1的斜率1PF k =ba=1PF 与双曲线C 在第一、三象限的渐近线平行,则这条渐近线与直线1PF 0y -+的距离d ==上的点Q 到直线PF 1距离h d >=,于是得11113222PQF SPF h =⋅⋅>⨯所以1PQF △面积的取值范围是)+∞.故答案为:2;)+∞ 四、解答题(本大题共6小题,共70分)17.已知圆()22:20C x y mx y m R ++-=∈,其圆心在直线0x y +=上.(1)求m 的值;(2)若过点()1,1的直线l 与C 相切,求l 的方程. 【答案】 (1)2m =(2)20x y +-=或0x y -= 【详解】 (1)圆C 的标准方程为:222(1)124m m x y ⎛⎫++-=+⎪⎝⎭, 所以,圆心为,12m ⎛⎫- ⎪⎝⎭由圆心在直线0x y +=上,得2m =. 所以,圆C 的方程为:22(1)(1) 2.x y ++-=(2)由题意可知直线l 的斜率存在,设直线l 的方程为:()11y k x -=-, 即10,kx y k --+=由于直线l 和圆C解得:1k =±所以,直线方程为:20x y +-=或0x y -=.18.如图,在三棱锥P -ABC 中,△ABC 是以AC 为底的等腰直角三角形,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC .(2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求直线PC 与平面PAM 所成角的正弦值. 【答案】 (1)证明见解析. (2【详解】 (1)证明:连接BO,AB BC ==O 是AC 的中点,BO AC ∴⊥,且 2BO =,又 2PA PC PB AC ====,,PO AC PO ∴⊥=222PB PO BO =+,则PO OB ⊥,OB AC O =,OB ⊂平面ABC ,AC ⊂平面ABC ,PO ∴⊥平面ABC ,(2)解:建立以 O 为坐标原点,,,OB OC OP 分别为,,x y z 轴的空间直角坐标系如图所示,则()0,2,0A -,(0,0,P ,()0,2,0C ,()2,0,0B ,设(2,2,0)BM BC λλλ==-()01λ≤≤,则()()(2,2,0)2,2,022,22,0AM BM BA λλλλ=-=----=-+,所以PC 与平面PAM 所成角的正弦值为则平面PAC 的法向量为() 1,0,0m =, 设平面MPA 的法向量(,,),n x y z =则(0,2,PA =--20,n PA y ⋅=--= ()()22220n AM x y λλ⋅=-++=,令1z =,则y =(11x λλ+=-,二面角M PA C --为30︒,∴3cos302m n m n︒⋅==⋅, 即=13λ= 或 3λ=( 舍),设平面MPA的法向量(23,n =,(0,2,PC =-,设PC 与平面PAM 所成的角为θ,则|sin |cos ,|12PC n θ-=<>==+19.已知椭圆与双曲线221169x y -=具有共同的焦点1F 、2F ,点P 在椭圆上,12PF PF ⊥,____________①椭圆过点(),②椭圆的短轴长为10,③(①②③中选择一个) (1)求椭圆的标准方程; (2)求12PF F △的面积. 【答案】(1)条件选择见解析,椭圆方程为2215025x y += (2)1225PF F S=【详解】 (1)解:设椭圆方程()222222210,x y a b c a b a b+=>>=-.因为椭圆与双曲线221169x y -=具有共同的焦点,则225c =.选①:由已知可得a =225b =,椭圆方程为2215025x y +=; 选②:由已知可得5b =,则250a =,椭圆方程为2215025x y +=;选③得c a =,则250a =,椭圆方程为2215025x y +=. (2)解:由椭圆定义知122PF PF a +==, 又12PF PF ⊥,222124100PF PF c ∴+==②,由①可得2212121221002200PF PF PF PF PF PF ++⋅=+⋅=,解得1250PF PF ⋅=, 因此,12121252PF F SPF PF =⋅=. 20.设函数()322f x x x x =--++.(1)求()f x 在2x =-处的切线方程;(2)求()f x 的极大值点与极小值点;(3)求()f x 在区间[]5,0-上的最大值与最小值.【答案】(1)7100x y ++=;(2)极小值点为1x =-,极大值点为13x =; (3)()min 1f x =,()max 97f x =.【详解】(1)由题意得:()2321f x x x '=--+,则()212417f '-=-++=-,又()284224f -=--+=,()f x ∴在2x =-处的切线方程为()472y x -=-+,即7100x y ++=; (2)令()23210f x x x '=--+=,解得:1x =-或13x =, 则()(),,x f x f x '变化情况如下表:()f x ∴的极小值点为1x =-,极大值点为3x =; (3)由(2)知:()f x 在[)5,1--上单调递减,在(]1,0-上单调递增; 又()5125255297f -=--+=,()02f =,()111121f -=--+=, ()()min 11f x f ∴=-=,()()max 597f x f =-=.21.已知椭圆C 的离心率e =()1A ,)2A (1)求椭圆C 的方程;(2)设动直线:l y kx b =+与曲线C 有且只有一个公共点P ,且与直线2x =相交于点Q ,求证:以PQ 为直径的圆过定点()1,0N .【答案】(1)2212x y +=; (2)证明见解析.【详解】(1)椭圆长轴端点在x 轴上,∴可设椭圆方程为()222210x y a b a b+=>>,由题意可得:222a b c c e a a ⎧=+⎪⎪==⎨⎪⎪=⎩,解得:11a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的方程为:2212x y +=; (2) 由2212x y y kx b ⎧+=⎪⎨⎪=+⎩得:()222124220k x kbx b +++-=,曲线C 与直线l 只有一个公共点,()228120k b ∴=+-=,即2221b k =+,设(),P P P x y ,则()22422212P kb kb k x b b k =-=-=-+, 222221p P k b k y kx b b b b b-∴=+=-+==,21,k P b b ⎛⎫∴- ⎪⎝⎭; 由2y kx b x =+⎧⎨=⎩得:22x y k b =⎧⎨=+⎩,即()2,2Q k b +; ()1,0N ,211,k NP bb ⎛⎫∴=-- ⎪⎝⎭,()1,2NQ k b =+, 2210k k b NP NQ b b+∴⋅=--+=,即NP NQ ⊥, ∴以PQ 为直径的圆恒过定点()1,0N .22.已知函数()ln xe f x ax a x x=-+. (1)若a e =,求()f x 的极值点;(2)若()0f x ≥,求a 的取值范围.【答案】(1)极小值点为1,无极大值点(2)(,]e -∞【详解】(1)解:(1)()f x 定义域为(0,)+∞,222(1)(1)(1)()()x x x x xe e e x e e x x e ex f x e x x x x x -----'=-+=-=, 令(),(0,)x g x e ex x =-∈+∞,则()x g x e e '=-,当01x <<时,()0g x '<,当1x >时,()0g x '>,所以函数()g x 在()0,1上递减,在()1,+∞上递增,所以()()10g x g ≥=,即0x e ex -≥,当01x <<时,()0f x '<,当1x >时,()0f x '>,所以函数()f x 在()0,1上递减,在()1,+∞上递增,()f x ∴的极小值点为1,无极大值点;(2)由()0f x ≥得ln (ln )x x e a x x --≥,令ln ,(0,)t x x x =-∈+∞,则t e at ≥,111x t x x-'=-=, 当01x <<时,0t '<,当1x >时,0t '>,所以函数ln ,(0,)t x x x =-∈+∞在()0,1上递减,在()1,+∞上递增,所以当1x =时,min 1t =,[1+t ∴∈∞,),te a t∴≤, 令(),[1,)te m t t t =∈+∞,则2(1)()0t e t m t t -'=≥, 所以函数()t e m t t=在[1,)t ∈+∞上递增,所以min ()(1)m t m e ==, 所以a e ≤,所以a 的取值范围为(,]e -∞.。
高中数学选择性必修二 北京市朝阳区高二上学期期末考试数学试题(含答案)

故答案为:①③④
16.把正奇数列按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,则在第n(n∈N*)组里有________个数;第9组中的所有数之和为________.
【答案】①. ②.2465
【解析】
②函数 在 和 分别单调递减,故②错误;
③因为 ,则当 时, ,故 时的瞬时速度是10 m/s,故③正确;
④ , ,由 解得 ,由 解得 ,
所以当 时, 的图象更“陡峭”,当 时, 的图象更“陡峭”,故④错误.
故选:A.
8.如图,将边长为4的正方形折成一个正四棱柱的侧面,则异面直线AK和LM所成角的大小为()
点 在抛物线上,
所以 ,
则 ,又 ,
所以直线 方程为 ,
联立抛物线方程 得到 ,
解得 或 ,
因为点 在 轴下方,所以 ,
由焦半径公式得: ,
故选:D.
7.下列有四个说法:
①若直线与抛物线相切,则直线与抛物线有且只有一个公共点:
②函数 在定义域上单调递减;
③某质点沿直线运动,位移 (单位:m)与时间t(单位:s)满足关系式 则 时的瞬时速度是10 m/s;
(II)选①:当直线 斜率不存在时, 的方程为 ,恰好与圆相切,满足题意;
当直线 斜率存在时,设 的方程为 ,即 ,
则圆心到直线 的距离为 ,解得 ,
此时直线 的方程为 ,即 ,
综上,直线 的方程为 或 ;
选②,可得 在圆上,即 为切点,
则切点与圆心连线斜率为 ,则切线斜率为 ,
所以直线 的方程为 ,即 .
故选:B.
10.如图,在三棱锥O-ABC中,三条侧棱OA,OB,OC两两垂直,且OA,OB,OC的长分别为a,b,c.M为△ABC内部及其边界上的任意一点,点M到平面OBC,平面OAC,平面OAB的距离分别为a0,b0,c0,则 ()
【易错题】高中必修二数学下期末试卷及答案

【易错题】高中必修二数学下期末试卷及答案一、选择题1.如图,在ABC ∆中,已知5AB =,6AC =,12BD DC =u u u v u u u v ,4AD AC ⋅=u u u v u u u v ,则AB BC ⋅=u u u v u u u vA .-45B .13C .-13D .-372.已知()()()sin cos ,02f x x x πωϕωϕωϕ=+++>,<,()f x 是奇函数,直线2y =与函数()f x 的图象的两个相邻交点的横坐标之差的绝对值为2π,则( ) A .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递减 B .()f x 在0,4π⎛⎫⎪⎝⎭上单调递减 C .()f x 在0,4π⎛⎫⎪⎝⎭上单调递增 D .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递增 3.在ABC V 中,已知,2,60a x b B ===o,如果ABC V 有两组解,则x 的取值范围是( )A .432⎛ ⎝⎭,B .432⎡⎢⎣⎦,C .432⎡⎢⎣⎭,D .43⎛ ⎝⎦4.阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为A .1B .2C .3D .45.已知两个正数a ,b 满足321a b +=,则32a b+的最小值是( ) A .23B .24C .25D .266.设正项等差数列的前n 项和为,若,则的最小值为 A .1B .C .D .7.已知函数21(1)()2(1)ax x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是 A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-8.设函数()sin()cos()f x x x ωϕωϕ=+-+0,||2πωϕ⎛⎫><⎪⎝⎭的最小正周期为π,且f x f x -=()(),则( )A .()f x 在0,2π⎛⎫⎪⎝⎭上单调递增B .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递减C .()f x 在0,2π⎛⎫⎪⎝⎭上单调递减 D .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增9.函数()lg ||f x x x =的图象可能是( )A .B .C .D .10.定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭11.已知()f x 是定义在R 上的奇函数,当0x >时,()32f x x =-,则不等式()0f x >的解集为( )A .33,0,22⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭UB .33,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .33,22⎛⎫- ⎪⎝⎭D .33,0,22⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭12.在ABC ∆中,2cos (,b,22A b ca c c+=分别为角,,A B C 的对边),则ABC ∆的形状是( ) A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形D .正三角形二、填空题13.在直角ABC ∆中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在ABC ∆中随机地选取m 个点,其中有n 个点正好在扇形里面,则用随机模拟的方法得到的圆周率π的近似值为__________.(答案用m ,n 表示) 14.设a >0,b >0,若3是3a 与3b的等比中项,则11a b+的最小值是__. 15.已知函数32()21f x x x ax =+-+在区间上恰有一个极值点,则实数a 的取值范围是____________16.已知2a b ==r r ,()()22a b a b +⋅-=-r r r r ,则a r 与b r的夹角为 .17.函数()2sin sin 3f x x x =+-的最小值为________.18.已知数列{}n a 满足1121,2n n a a a n +==+,则na n的最小值为_______.19.已知l ,m 是平面α外的两条不同直线.给出下列三个论断: ①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.20.已知点G 是ABC ∆的重心,内角A 、B 、C 所对的边长分别为a 、b 、c ,且0578a b c GA GB GC ++=u u ur u u u r u u u r r ,则角B 的大小是__________. 三、解答题21.已知函数()()sin 0,03f x A x A πωω⎛⎫=+>> ⎪⎝⎭的最小正周期为π,且该函数图象上的最低点的纵坐标为3-. (1)求函数()f x 的解析式;(2)求函数()f x 的单调递增区间及对称轴方程.22.已知2()sin cos f x x x x =+ (1)求函数()f x 的对称轴方程;(2)求函数()f x 在[0,]π上的单调递增区间.23.将函数()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭的图象向左平移02πϕϕ⎛⎫<≤⎪⎝⎭个单位长度后得到()f x 的图象.(1)若()f x 为偶函数,求()fϕ的值;(2)若()f x 在7,6ππ⎛⎫ ⎪⎝⎭上是单调函数,求ϕ的取值范围.24.记n S 为公差不为零的等差数列{}n a 的前n 项和,已知2219a a =,618S =.(1)求{}n a 的通项公式; (2)求n S 的最大值及对应n 的大小.25.已知二次函数()f x 满足()(1)2f x f x x -+=-且(0)1f =. (1)求()f x 的解析式;(2)当[1,1]x ∈-时,不等式()2x m f x >+恒成立,求实数m 的取值范围. 26.已知等差数列{}n a 的前n 项和为n S ,且28S =,38522a a a +=+. (1)求n a ; (2)设数列1{}n S 的前n 项和为n T ,求证:34n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】先用AB u u u v 和AC uuu v表示出2A AB BC AB C AB ⋅=⋅-u u u v u u u v u u u v u u u v u u u v ,再根据,12BD DC =u u u v u u u v 用用AB u u u v 和AC uuu v 表示出AD u u u v,再根据4AD AC ⋅=u u u v u u u v 求出A AB C ⋅u u u v u u u v 的值,最后将A AB C ⋅u u u v u u u v 的值代入2A AB BC AB C AB ⋅=⋅-u u u v u u u v u u u v u u u v u u u v ,,从而得出答案. 【详解】()2 A =A AB BC AB C AB AB C AB ⋅=⋅-⋅-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,∵12BD DC =u u u v u u u v ,∴111B C ?C B 222AD A A AD AD A AD A -=-=-+u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v(),整理可得:12 AB 33AD AC +u u u v u u u v u u u v =,221A A 433AD AC AB C C ∴⋅⋅+=u u u v u u u v u u u v u u u v u u u v =∴ A =-12AB C ⋅u u u v u u u v , ∴2 =A =122537AB BC AB C AB ⋅⋅---=-u u u v u u u v u u u v u u u v u u u v .,故选:D . 【点睛】本题考查了平面向量数量积的运算,注意运用平面向量的基本定理,以及向量的数量积的性质,考查了运算能力,属于中档题.2.A解析:A 【解析】 【分析】首先整理函数的解析式为()4f x x πωϕ⎛⎫=++ ⎪⎝⎭,由函数为奇函数可得4πϕ=-,由最小正周期公式可得4ω=,结合三角函数的性质考查函数在给定区间的单调性即可. 【详解】由函数的解析式可得:()4f x x πωϕ⎛⎫=++ ⎪⎝⎭,函数为奇函数,则当0x =时:()4k k Z πϕπ+=∈.令0k =可得4πϕ=-.因为直线y =与函数()f x 的图像的两个相邻交点的横坐标之差的绝对值为2π结合最小正周期公式可得:22ππω=,解得:4ω=.故函数的解析式为:()4f x x =. 当3,88x ππ⎛⎫∈⎪⎝⎭时,34,22x ππ⎛⎫∈ ⎪⎝⎭,函数在所给区间内单调递减; 当0,4x π⎛⎫∈ ⎪⎝⎭时,()40,x π∈,函数在所给区间内不具有单调性; 据此可知,只有选项A 的说法正确. 故选A . 【点睛】本题主要考查辅助角公式的应用,考查了三角函数的周期性、单调性,三角函数解析式的求解等知识,意在考查学生的转化能力和计算求解能力.3.A解析:A 【解析】 【分析】已知,,a b B ,若ABC V 有两组解,则sin a B b a <<,可解得x 的取值范围. 【详解】由已知可得sin a B b a <<,则sin602x x ︒<<,解得2x <<故选A. 【点睛】本题考查已知两边及其中一边的对角,用正弦定理解三角形时解的个数的判断. 若ABC V 中,已知,,a b B 且B 为锐角,若0sin b a B <<,则无解;若sin b a B =或b a ≥,则有一解;若sin a B b a <<,则有两解. 4.B 解析:B 【解析】分析:由题意结合流程图运行程序即可求得输出的数值. 详解:结合流程图运行程序如下: 首先初始化数据:20,2,0N i T ===,20102N i ==,结果为整数,执行11T T =+=,13i i =+=,此时不满足5i ≥;203N i =,结果不为整数,执行14i i =+=,此时不满足5i ≥; 2054N i ==,结果为整数,执行12T T =+=,15i i =+=,此时满足5i ≥; 跳出循环,输出2T =. 本题选择B 选项.点睛:识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.5.C解析:C 【解析】 【分析】根据题意,分析可得()323232a b a b a b ⎛⎫+=++ ⎪⎝⎭,对其变形可得326613a b a b b a ⎛⎫+=++ ⎪⎝⎭,由基本不等式分析可得答案. 【详解】根据题意,正数a ,b 满足321a b +=, 则()323266663213132?25a b a b a b a b a b ba b a ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当15a b ==时等号成立. 即32a b+的最小值是25. 本题选择C 选项. 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.6.D解析:D 【解析】 【分析】先利用等差数列的求和公式得出,再利用等差数列的基本性质得出,再将代数式和相乘,展开后利用基本不等式可求出的最小值.【详解】由等差数列的前项和公式可得,所以,,由等差数列的基本性质可得,, 所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选:D.【点睛】本题考查的等差数列求和公式以及等差数列下标性质的应用,考查利用基本不等式求最值,解题时要充分利用定值条件,并对所求代数式进行配凑,考查计算能力,属于中等题。
【易错题】高中必修二数学下期末试题(含答案)

故选 D. 【点睛】 本题考查三视图求几何体的表面积,由三视图正确复原几何体是解题的关键,考查空间想 象能力.
6.D
解析:D 【解析】
试题分析: AB 2a, AC 2a b , AC AB b ,b AC AB BC .
由题意知 b
2, a b
a b cos120
1
2
1 2
棱 CC1 的中点,则异面直线 AB1 和 BM 所成的角为( )
A.
B.
C.
D.
2
3
11.已知 f x 是定义在 R 上的奇函数,当 x 0 时, f x 3 2x ,则不等式
f x 0 的解集为( )
A.
,
3 2
0,
3 2
B.
,
3 2
3 2
,
C.
3 2
,
3 2
【详解】
因为 b 在 a 上的投影(正射影的数量)为 2 ,
所以| b | cos a, b 2 ,
即
|
b
|
cos
2 a,
b
,而
1
cos
a,
b
0
,
所以| b | 2 ,
因为
a
2b
2
(a
2b)2
2
a
4a b
2
4b
|
a
|2
4
|
a
||
b|
cos
a, b
4
| b|2
=16 4 4 (2) 4 | b |2 48 4 | b |2
16.在四面体 ABCD中, AB=AD 2, BAD 60,BCD 90,二面角 A BD C 的大小为150 ,则四面体 ABCD 外接球的半径为__________.
【压轴题】高中必修二数学下期末试题(含答案)

【压轴题】⾼中必修⼆数学下期末试题(含答案)【压轴题】⾼中必修⼆数学下期末试题(含答案)⼀、选择题1.△ABC 的内⾓A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =,2cos 3A =,则b= A .2B .3C .2D .32.设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S = A .5B .7C .9D .113.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满⾜条件A CB ??的集合C 的个数为()A .1B .2C .3D .44.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B I 中元素的个数为() A .3B .2C .1D .05.某三棱锥的三视图如图所⽰,则该三棱锥的体积为()A .20B .10C .30D .606.设正项等差数列的前n 项和为,若,则的最⼩值为 A .1 B .C .D .7.已知1sin 34πα??-= ,则cos 23πα??+= ()A .58-B .58C .78-D .788.已知函数21(1)()2(1)a x x f x x x x x ?++>?=?-+≤在R 上单调递增,则实数a 的取值范围是 A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-9.函数()lg ||f x x x =的图象可能是()A .B .C .D .10.已知0.6log 0.5a =,ln0.5b =,0.50.6c =,则() A .a c b >> B .a b c >>C .c a b >>D .c b a >>11.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则5a = A .12-B .10-C .10D .1212.如图,在△ABC 中, 13AN NC =u u u v u u u v ,P 是BN 上的⼀点,若29AP m AB AC ??→??→??→=+,则实数m 的值为( )A .B .C .19D .⼆、填空题13.在ABC △中,若223a b bc -= ,sin 23sin C B = ,则A 等于__________. 14.已知函数()3sin(2)cos(2)(||)2 f x x x π=---<的图象关于y 轴对称,则()f x 在区[6π-,5]12π上的最⼤值为__. 15.已知ABC V ,135B o∠=,22,4AB BC ==,求AB AC ?=u u u r u u u r______.16.函数()12x f x =-的定义域是__________. 17.如图,在矩形中,为边的中点,1AB =,2BC =,分别以A 、D 为圆⼼,1为半径作圆弧EB 、EC (在线段AD 上).由两圆弧EB 、EC 及边所围成的平⾯图形绕直线旋转⼀周,则所形成的⼏何体的体积为 .18.若圆x 2+y 2=4和圆x 2+y 2+4x -4y +4=0关于直线l 对称,则直线l 的⽅程为____________.19.若()1,x ∈+∞,则131y x x =+-的最⼩值是_____. 20.在△ABC 中,85a b ==,,⾯积为12,则cos 2C =______.三、解答题21.设ABC ?的内⾓A 、B 、C 所对的边分别为a 、b 、c ,且4cos ,25B b ==. (1)当π6A =时,求a 的值;(2)当ABC ?的⾯积为3时,求a+c 的值. 22.已知x ,y ,()0,z ∈+∞,3x y z ++=.(1)求111x y z++的最⼩值(2)证明:2223x y z ≤++.23.已知数列{}n a 是等⽐数列,24a =,32a +是2a 和4a 的等差中项. (1)求数列{}n a 的通项公式;(2)设22log 1n n b a =-,求数列{}n n a b 的前n 项和n T . 24.已知数列{}n a 满⾜11a =,()121n n na n a +=+,设nn a b n=.(1)求123b b b ,,;(2)判断数列{}n b 是否为等⽐数列,并说明理由;(3)求{}n a 的通项公式.25.以原点为圆⼼,半径为r 的圆O 222:()0O x y r r +=>与直线380x --=相切. (1)直线l 过点(6)-且l 截圆O 所得弦长为43l l 的⽅程;(2)设圆O 与x 轴的正半轴的交点为M ,过点M 作两条斜率分别为12,k k 12,k k 的直线交圆O 于,A B 两点,且123k k ?=-,证明:直线AB 恒过⼀个定点,并求出该定点坐标.26.如图,平⾏四边形ABCD 中,E ,F 分别是BC ,DC 的中点,G 为BF 与DE 的交点,若AB a =u u u v v ,AD b =u u u v v ,试以a v ,b v 为基底表⽰DE u u u v 、BF u u uv 、CG u u u v .【参考答案】***试卷处理标记,请不要删除⼀、选择题 1.D 解析:D 【解析】【分析】【详解】由余弦定理得,解得(舍去),故选D.【考点】余弦定理【名师点睛】本题属于基础题,考查内容单⼀,根据余弦定理整理出关于b 的⼀元⼆次⽅程,再通过解⽅程求b.运算失误是基础题失分的主要原因,请考⽣切记!2.A解析:A【解析】1353333,1a a a a a ++===,5153355()25522S a a a a =+=?==,选A. 3.D解析:D 【解析】【分析】【详解】求解⼀元⼆次⽅程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ??,所以根据⼦集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的⼦集个数,即有224=个,故选D. 【点评】本题考查⼦集的概念,不等式,解⼀元⼆次⽅程.本题在求集合个数时,也可采⽤列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极⾼.4.B解析:B 【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表⽰以()0,0为圆⼼,1为半径的单位圆上所有点组成的集合,集合B 表⽰直线y x =上所有的点组成的集合,⼜圆221x y +=与直线y x =相交于两点,22? ??,22??-- ? ???,则A B I 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较⼤,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满⾜互异性.5.B解析:B 【解析】【分析】根据三视图还原⼏何体,根据棱锥体积公式可求得结果. 【详解】由三视图可得⼏何体直观图如下图所⽰:可知三棱锥⾼:4h =;底⾯⾯积:1155322S == ∴三棱锥体积:1115410332V Sh ==??=本题正确选项:B 【点睛】本题考查棱锥体积的求解,关键是能够通过三视图还原⼏何体,从⽽准确求解出三棱锥的⾼和底⾯⾯积. 6.D解析:D 【解析】【分析】先利⽤等差数列的求和公式得出,再利⽤等差数列的基本性质得出,再将代数式和相乘,展开后利⽤基本不等式可求出的最⼩值.【详解】由等差数列的前项和公式可得,所以,,由等差数列的基本性质可得,,所以,,当且仅当,即当时,等号成⽴,因此,的最⼩值为,故选:D.【点睛】本题考查的等差数列求和公式以及等差数列下标性质的应⽤,考查利⽤基本不等式求最值,解题时要充分利⽤定值条件,并对所求代数式进⾏配凑,考查计算能⼒,属于中等题。
高中数学必修二:各章章末检测(含解析)

章末检测一、选择题1.如图所示的长方体,将其左侧面作为上底面,右侧面作为下底面,水平放置,所得的几何体是( ) A.棱柱B.棱台C.棱柱与棱锥组合体D.无法确定1 题图2 题图2.一个简单几何体的正视图、侧视图如图所示,则其俯视图不.可.能.为:①长方形;②正方形;③圆.其中正确的是( ) A.①②B.②③C.①③D.①②3.如图所示的正方体中,M、N分别是AA1、CC1的中点,作四边形D1MBN则四边形D1MBN 在正方体各个面上的正投影图形中,不可能出现的是( )4.如图所示的是水平放置的三角形直观图,D′是△A′B′C′中B′C′边上的一点,且D′离C′比D′离B′近,又A′D′∥y′轴,那么原△ABC 的AB、AD、AC 三条线段中( )A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AD,最短的是AC4 题图5 题图5.具有如图所示直观图的平面图形ABCD 是( ) A.等腰梯形B.直角梯形C.任意四边形D.平行四边形6.如图是一个几何体的三视图,则在此几何体中,直角三角形的个数是( )A .1B .2C .3D .47. 如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的三视图,则此几何体的体积为()A .6B .9C .12D .188. 平面α截球 O 的球面所得圆的半径为 1,球心 O 到平面α的距离为 2,则此球的体积为() B .4 3πC .4 6πD .6 3π9. 如图所示,则这个几何体的体积等于()A .4B .6C .8D .1210. 将正三棱柱截去三个角(如图 1 所示,A ,B ,C 分别是△GHI 三边的中点)得到几何体如图 2,则该几何体按图 2 所示方向的侧视图为选项图中的()11. 圆锥的表面积是底面积的 3 倍,那么该圆锥的侧面展开图扇形的圆心角为( )A .120°B .150°C .180°D .240°12. 已知三棱锥 S -ABC 的所有顶点都在球 O 的球面上,△ABC 是边长为 1 的正三角形,SC 为球 O 的直径,且 SC =2,则此棱锥的体积为()A. 6πA.26二、填空题B.36 C.23 D.2213.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号).①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱14.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于cm3.15.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是.16.一个水平放置的圆柱形储油桶(如图所示),桶内有油部分所在圆弧占底面圆周长的1,则油桶直立时,油的高度与桶的高度的比值是.4三、解答题17.某个几何体的三视图如图所示(单位:m),(1)求该几何体的表面积(结果保留π);(2)求该几何体的体积(结果保留π).18.如图是一个空间几何体的三视图,其中正视图和侧视图都是边长为2 的正三角形,俯视图如图.(1)在给定的直角坐标系中作出这个几何体的直观图(不写作法);(2)求这个几何体的体积.19.如图所示,在四边形ABCD 中,∠DAB=90°,∠ADC=135°,AB=5,CD=2 2,AD=2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.20.如图所示,有一块扇形铁皮OAB,∠AOB=60°,OA=72 cm,要剪下来一个扇形环ABCD,作圆台形容器的侧面,并且余下的扇形OCD 内剪下一块与其相切的圆形使它恰好作圆台形容器的下底面(大底面).试求:(1)AD 的长;(2)容器的容积.= 答案1.A 2.B 3.D 4.C 5.B 6.D 7.B 8.B 9.A 10.A 11.C 12.A 13.①②③⑤ 14.1 15.24π 16.1- 1 4 2π17.解 由三视图可知:该几何体的下半部分是棱长为 2 m 的正方体,上半部分是半径为 1 m 的半球.(1) 几何体的表面积为 S 1× 24π×12+6×22-π×12=24+π(m 2).(2)几何体的体积为 V =23+1×4×π×13=8+2π(m 3).2 3 318.解 (1)直观图如图.(2) 这个几何体是一个四棱锥. 它的底面边长为 2,高为 3,所以体积 V =1×22× 3=4 3.3 319.解 S 表面=S 圆台底面+S 圆台侧面+S 圆锥侧面=π×52+π×(2+5)×5+π×2×2 2=(4 2+60)π.V =V 圆台-V 圆锥 =1π(r 2+r r +r 2)h -12 ′1 12 2 3πr 1h3 =1π(25+10+4)×4-1π×4×2 3 3 148 π. 320.解 (1)设圆台上、下底面半径分别为 r 、R ,AD =x ,则 OD =72-x ,由题意得2πR =60·π×72 180 72-x =3R即 AD 应取 36 cm.R =12,∴ .x =36 (2)∵2πr =π·OD =π·36,3 3 ∴r =6 cm ,圆台的高 h = x 2-(R -r )2= 362-(12-6)2=6 35. ∴V =1 2+Rr +r 2)=1π·6 35·(122+12×6+62)=504 35π(cm 3).πh (R 3 3=章末检测一、选择题1.下列推理错误的是( ) A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉α D.A∈l,l⊂α⇒A∈α2.长方体ABCD-A1B1C1D1 中,异面直线AB,A1D1 所成的角等于( ) A.30°B.45°C.60°D.90°3.下列命题正确的是( )A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行4.在空间四边形ABCD 的边AB,BC,CD,DA 上分别取E、F、G、H 四点,如果EF,GH 交于一点P,则( )A.P 一定在直线BD 上B.P 一定在直线AC 上C.P 一定在直线AC 或BD 上D.P 既不在直线AC 上,也不在直线BD 上5.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( )A.①和②B.②和③C.③和④D.② 和④ 6.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是( )A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β7.如图(1)所示,在正方形SG1G2G3 中,E,F 分别是G1G2 及G2G3 的中点,D 是EF 的中点,现在沿SE,SF 及EF 把这个正方形折成一个四面体,使G1,G2,G3 三点重合,重合后的点记为G,如图(2)所示,那么,在四面体S-EFG 中必有( )A.SG⊥△EFG 所在平面B.SD⊥△EFG 所在平面C.GF⊥△SEF 所在平面D.GD⊥△SEF 所在平面8.如图所示,在正方体ABCD—A1B1C1D1 中,若E 是A1C1 的中点,则直线CE 垂直于( )A.AC B.BD C.A1D D.A1D18 题图9 题图9.如图所示,将等腰直角△ABC 沿斜边BC 上的高AD 折成一个二面角,此时∠B′AC=60°,那么这个二面角大小是( ) A.90°B.60°C.45°D.30°10.如图,ABCD-A1B1C1D1 为正方体,下面结论错误的是( )A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1D1D.异面直线AD 与CB1 所成的角为60°10 题图11 题图11.如图所示,在长方体ABCD—A1B1C1D1 中,AB=BC=2,AA1=1,则BC1 与平面BB1D1D所成角的正弦值为( )A. 63B.2 65C. 155D. 10512.已知正四棱柱ABCD-A1B1C1D1 中,AB=2,CC1=2 2,E 为CC1 的中点,则直线AC1与平面BED 的距离为( )A.2二、填空题D.113.设平面α∥平面β,A、C∈α,B、D∈β,直线AB 与CD 交于点S,且点S 位于平面α,β之间,AS=8,BS=6,CS=12,则SD=.14.下列四个命题:①若a∥b,a∥α,则b∥α;②若a∥α,b⊂α,则a∥b;③若a∥α,则B. 3C. 2a 平行于α内所有的直线;④若a∥α,a∥b,b⊄α,则b∥α.其中正确命题的序号是.15.如图所示,在直四棱柱ABCD—A1B1C1D1 中,当底面四边形A1B1C1D1 满足条件时,有A1C⊥B1D1(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况).15 题图16 题图16.如图所示,已知矩形ABCD 中,AB=3,BC=a,若PA⊥平面AC,在BC 边上取点E,使PE⊥DE,则满足条件的E 点有两个时,a 的取值范围是.三、解答题17.如图所示,长方体ABCD-A1B1C1D1 中,M、N 分别为AB、A1D1 的中点,判断MN 与平面A1BC1 的位置关系,为什么?18.ABCD 与ABEF 是两个全等正方形,AM=FN,其中M∈AC,N∈BF.求证:MN∥平面BCE.19.如图,在四棱锥P-ABCD 中,底面ABCD 是矩形,PA⊥底面ABCD,E 是PC 的中点.已知AB=2,AD=2 2,PA=2.求:(1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小.20.如图所示,ABCD 是正方形,O 是正方形的中心,PO⊥底面ABCD,底面边长为a,E 是PC 的中点.(1)求证:PA∥面BDE;(2)求证:平面PAC⊥平面BDE;(3)若二面角E-BD-C 为30°,求四棱锥P-ABCD 的体积.21.如图,四棱锥P-ABCD 中,底面ABCD 为菱形,PA⊥底面ABCDAC=2 2,PA=2,E 是PC 上的一点,PE=2EC.(1)证明:PC⊥平面BED;(2)设二面角A-PB-C 为90°,求PD 与平面PBC 所成角的大小.答案1.C 2.D 3.C 4.B 5.D 6.D 7.A 8.B 9.A 10.D 11.D 12.D 13.914.④15.B1D1⊥A1C1(答案不唯一)16.a>617.解直线MN∥平面A1BC1,M 为AB 的中点,证明如下:∵MD/∈平面A1BC1,ND/∈平面A1BC1.∴MN⊄平面A1BC1.如图,取A1C1 的中点O1,连接NO1、BO1.∵NO1 綊1D1C1,MB 綊1D1C1,2 2∴NO1 綊MB.∴四边形NO1BM 为平行四边形.∴MN∥BO1.又∵BO1⊂平面A1BC1,∴MN∥平面A1BC1.18.证明如图所示,连接AN,延长交BE 的延长线于P,连接CP.∵BE∥AF,∴FN=AN,NB NP由AC=BF,AM=FN 得MC=NB.∴FN=AM. NB MC∴AM=AN,MC NP∴MN∥PC,又PC⊂平面BCE.AC ∴MN ∥平面 BCE .19. 解 (1)因为 PA ⊥底面 ABCD ,所以 PA ⊥CD .又 AD ⊥CD ,所以 CD ⊥平面 PAD ,从而 CD ⊥PD . 因 为 PD = 22+(2 2)2=2 3,CD =2,所以三角形 PCD 的面积为1×2×2 3=2 3.2(2)如图,取 PB 中点 F ,连接 EF 、AF ,则 EF ∥BC ,从而∠AEF (或其补角)是异面直线BC 与 AE 所成的角.在△AEF 中,由 EF = 2,AF = 2,AE =2 知△AEF 是等腰直角三角形, 所以∠AEF =45°.因此,异面直线 BC 与 AE 所成的角的大小是 45°. 20.(1)证明 连接 OE ,如图所示.∵O 、E 分别为 AC 、PC 的中点,∴OE ∥P A. ∵OE ⊂面 BDE ,PA ⊄面 BDE , ∴PA ∥面 BDE .(2) 证明 ∵PO ⊥面 ABCD ,∴PO ⊥BD .在正方形 ABCD 中,BD ⊥AC , 又∵PO ∩AC =O , ∴BD ⊥面 PAC . 又∵BD ⊂面 BDE , ∴面 PAC ⊥面 BDE .(3) 解 取 OC 中点 F ,连接 EF .∵E 为 PC 中点,∴EF 为△POC 的中位线,∴EF ∥PO . 又∵PO ⊥面 ABCD ,∴EF ⊥面 ABCD . ∵OF ⊥BD ,∴OE ⊥BD .∴∠EOF 为二面角 E -BD -C 的平面角,∴∠EOF =30°.在 Rt △OEF 中,OF =1OC =1 = 2a ,∴EF =OF ·tan 30°= 6a ,2 4 4 12 ∴OP =2EF = 6a .62 3 ∴V P1 6 6-ABCD= ×a × = . 361821.(1)证明 因为底面 ABCD 为菱形, 所以 BD ⊥AC .又 PA ⊥底面 ABCD ,所以 PC ⊥BD . 如图,设 AC ∩BD =F ,连接 EF .因为 AC =2 2,PA =2,PE =2EC ,故 PC =2 3,EC =2 3,FC = 2,3从而PC= 6,FC AC= 6. EC因为PC =AC,∠FCE =∠PCA ,FC EC所以△FCE ∽△PCA ,∠FEC =∠PAC =90°.由此知 PC ⊥EF . 因为 PC 与平面 BED 内两条相交直线 BD ,EF 都垂直, 所以 PC ⊥平面 BED .(2)解 在平面 PAB 内过点 A 作 AG ⊥PB ,G 为垂足. 因为二面角 A -PB -C 为 90°, 所以平面 PAB ⊥平面 PBC . 又平面 PAB ∩平面 PBC =PB , 故 AG ⊥平面 PBC ,AG ⊥BC .因为 BC 与平面 PAB 内两条相交直线 PA ,AG 都垂直, 故 BC ⊥平面 PAB ,于是 BC ⊥AB , 所以底面 ABCD 为正方形,AD =2, PD = PA 2+AD 2=2 2. 设 D 到平面 PBC 的距离为 d .因为 AD ∥BC ,且 AD ⊄平面 PBC ,BC ⊂平面 PBC ,故 AD ∥平面 PBC ,A 、D 两点到平面 PBC 的距离相等,即 d =AG = 2. 设 PD 与平面 PBC 所成的角为α,则 sin α= d =1.PD 2 所以 PD 与平面 PBC 所成的角为 30°.章末检测一、选择题1.若直线过点(1,2),(4,2+ 3),则此直线的倾斜角是()A .30°B .45°C .60°D .90°2.如果直线 ax +2y +2=0 与直线 3x -y -2=0 平行,则系数 a 为 ( )A .-3B .-6C .-3 2 3.若经过点(3,a )、(-2,0)的直线与经过点(3,-4) 1D.2 3 a 的值为( )且斜率为 的直线垂直,则 2A.5 2B.2 5 C .10 D .-104.过点(1,0)且与直线 x -2y -2=0 平行的直线方程是 ( )A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=05.实数 x ,y 满足方程 x +y -4=0,则 x 2+y 2 的最小值为 A .4 B .6 C .8 ()D .126.点 M (1,2)与直线 l :2x -4y +3=0 的位置关系是 () A .M ∈l B .M ∉l C .重合 D .不确定7.直线 mx +ny -1=0 同时过第一、三、四象限的条件是()A .mn >0B .mn <0C .m >0,n <0D .m <0,n <08. 若点 A (-2,-3),B (-3,-2),直线 l 过点 P (1,1)且与线段 AB 相交,则 l 的斜率 k 的取值范围是() A .k ≤3或 k ≥4B .k ≤-4或 k ≥-34 3 C.3≤k ≤4 3 4 D .-4≤k ≤-34 33 49.已知直线 l 1:ax +4y -2=0 与直线 l 2:2x -5y +b =0 互相垂直,垂足为(1,c ),则 a +b +c 的值为 ()A .-4B .20C .0D .2410.过点 P (0,1)且和 A (3,3),B (5,-1)距离相等的直线的方程是() A .y =1B .2x +y -1=0C .y =1 或 2x +y -1=0D .2x +y -1=0 或 2x +y +1=011. 直线 mx +ny +3=0 在 y 轴上的截距为-3,而且它的倾斜角是直线 3x -y =3 3倾斜角的 2 倍,则 ()A .m =- 3,n =1B .m =- 3,n =-3C .m = 3,n =-3D .m = 3,n =10,7 12. 过点A 3 与B (7,0)的直线 l 1 与过点(2,1),(3,k +1)的直线 l 2 和两坐标轴围成的四边 形内接于一个圆,则实数 k 等于 ()A .-3B .3C .-6D .6二、填空题13.若 O (0,0),A (4,-1)两点到直线 ax +a 2y +6=0 的距离相等,则实数 a =.14. 甲船在某港口的东 50 km ,北 30 km 处,乙船在同一港口的东 14 km ,南 18 km 处,那么甲、乙两船的距离是 .15. 已知直线 l 与直线 y =1,x -y -7=0 分别相交于 P 、Q 两点,线段 PQ 的中点坐标为(1, -1),那么直线 l 的斜率为.16. 已知实数 x ,y 满足 y =-2x +8,当 2≤x ≤3 时,则y的最大值为.x三、解答题17. 已知点 M 是直线 l : 3x -y +3=0 与 x 轴的交点,将直线 l 绕点 M 旋转 30°,求所得到的直线 l ′的方程.18. 求直线 l 1:2x +y -4=0 关于直线 l :3x +4y -1=0 对称的直线 l 2 的方程.19. 在△ABC 中,已知 A (5,-2)、B (7,3),且 AC 边的中点 M 在 y 轴上,BC 边的中点 N 在x 轴上,求:(1) 顶点 C 的坐标; (2) 直线 MN 的方程.20. 如图,已知△ABC 中 A (-8,2),AB 边上的中线 CE 所在直线的方程为x +2y -5=0,AC 边上的中线 BD 所在直线的方程为 2x -5y +8=0, 求直线 BC 的方程.21. 光线沿直线 l 1:x -2y +5=0 射入,遇直线 l :3x -2y +7=0 后反射,求反射光线所在的直线方程.22. 某房地产公司要在荒地 ABCDE (如图)上划出一块长方形地面(不改变方位)建一幢公寓,问如何设计才能使公寓占地面积最大?并求出最大面积(精确到 1 m 2).-5=0 答案1.A 2.B 3.D 4.A 5.C 6.B 7.C 8.C 9.A 10.C 11.D 12.B 13.-2 或 4 或 6 14.60 km15.-23 16.217.解 在 3x -y +3=0 中,令 y =0,得 x =- 3,即 M (- 3,0).∵直线 l 的斜率 k = 3,∴其倾斜角θ=60°.若直线 l 绕点 M 逆时针方向旋转 30°,则直线 l ′的倾斜角为 60°+30° =90°,此时斜率不存在,故其方程为 x =- 3.若直线 l 绕点 M 顺时针方向旋转 30°,则直线 l ′的倾斜角为 60°-30°=30°,此时斜率为 tan 30°= 3,故其方程为 y = 3(x + 3),3 3 即 x - 3y + 3=0.综上所述,所求直线方程为 x + 3=0 或 x - 3y + 3=0.18.解 设直线 l 2 上的动点 P (x ,y ),直线 l 1 上的点 Q (x 0,4-2x 0),且 P 、Q 两点关于直线 l :3x +4y -1=0 对称,则有|3x +4y -1| |3x 0+4(4-2x 0)-1|= , 5 5 y -(4-2x 0)=4.x -x 03 消去 x 0,得 2x +11y +16=0 或 2x +y -4=0(舍). ∴直线 l 2 的方程为 2x +11y +16=0.5+x 0,y 0-219.解 (1)设 C (x 0,y 0),则 AC 中点 M 2 2 ,7+x 0 y 0+3,BC 中点 N 2 2 .∵M 在 y 轴上,∴5+x 0=0,x 0=-5.2 ∵N 在 x 轴上,∴y 0+3=0,y 0=-3,即 C (-5,-3).2 (2)∵M 0,-52 ,N (1,0).∴直线 MN x y 的方程为 + 15=1. - 2 即 5x -2y -5=0.x 0-8y 0+2 ,20. 解 设 B (x 0,y 0),则 AB 中点 E 的坐标为 2 2 ,由条件可得:2x 0-5y 0+8=0x 0-8+2·y 0+2 , 2 2205y 0+8=0 得 , x 0+2y 0-14=0x 2 x 0=6 y 0=4,即 B (6,4),同理可求得 C 点的坐标为(5,0).故所求直线 BC 的方程为y -0=x -5,即 4x -y -20=0.4-0 6-521. 解 设直线 x -2y +5=0 上任意一点 P (x ,y )关于直线 l 的对称点为 P ′(x ,y ),则y 0-y=-2,30 0x +x 0,y +y 0x 0-x又 PP ′的中点 Q 2 2 在l 上, ∴3 x +x 0 y +y 0× -2× 2 2 +7=0,y 0-y =-2,x 0-x3 由 3×x +x 0-(y +y )+7=0.2 可得 P 点的坐标为x 0=-5x +12y -42,y 0=12x +5y +28,13 13代入方程 x -2y +5=0 中,化简得 29x -2y +33=0, ∴所求反射光线所在的直线方程为 29x -2y +33=0.22. 解 在线段 AB 上任取一点 P ,分别向 CD 、DE 作垂线划出一块长方形土地,以 BC ,EA的交点为原点,以 BC ,EA 所在的直线为 x 轴,y 轴,建立直角坐标系,则 AB 的方程为 x + y=1,30 20 x ,20-2x设 P 3 ,则长方形的面积20-2xS =(100-x ) 80- 3 (0≤x ≤30).化简得 S =-2x 2+20+6 000(0≤x ≤30).3 3 当 x =5,y 50= 时,S 最大,其最大值为 6 017 m .3章末检测一、选择题1.方程x2+y2+2ax+2by+a2+b2=0 表示的图形是( )A.以(a,b)为圆心的圆B.以(-a,-b)为圆心的圆C.点(a,b)D.点(-a,-b)2.点P(m,3)与圆(x-2)2+(y-1)2=2 的位置关系为( ) A.点在圆外B.点在圆内C.点在圆上D.与m 的值有关3.空间直角坐标系中,点A(-3,4,0)和B(x,-1,6)的距离为86,则x 的值为( )A.2 B.-8C.2 或-8 D.8 或-24.若直线x-y+1=0 与圆(x-a)2+y2=2 有公共点,则实数a 的取值范围是( )A.[-3,-1] B.[-1,3]C.[-3,1] D.(-∞,-3]∪[1,+∞)5.设A、B 是直线3x+4y+2=0 与圆x2+y2+4y=0 的两个交点,则线段AB 的垂直平分线的方程是( ) A.4x-3y-2=0 B.4x-3y-6=0C.3x+4y+6=0 D.3x+4y+8=06.圆x2+y2-4x=0 过点P(1,3)的切线方程为( ) A.x+3y-2=0 B.x+3y-4=0C.x-3y+4=0 D.x-3y+2=07.对任意的实数k,直线y=kx+1 与圆x2+y2=2 的位置关系一定是( )A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心8.已知圆O:x2+y2=5 和点A(1,2),则过A 且与圆O 相切的直线与两坐标轴围成的三角形的面积为( )A.5 B.10 C.252D.2549.将直线2x-y+λ=0 沿x 轴向左平移1 个单位,所得直线与圆x2+y2+2x-4y=0 相切,则实数λ的值为( )A.-3 或7 B.-2 或8 C.0 或10 D.1 或1110.已知圆C:x2+y2-4x=0,l 是过点P(3,0)的直线,则( ) A.l 与C 相交B.l 与C 相切C.l 与C 相离D.以上三个选项均有可能11.若直线mx+2ny-4=0(m、n∈R,n≠m)始终平分圆x2+y2-4x-2y-4=0 的周长,则mn 的取值范围是( )A.(0,1) B.(0,-1)C.(-∞,1) D.(-∞,-1)12.过点P(-2,4)作圆O:(x-2)2+(y-1)2=25 的切线l,直线m:ax-3y=0 与直线l 平行,则直线l 与m 的距离为( )A.4 B.2 C.85D.125二、填空题13.与直线2x+3y-6=0 关于点(1,-1)对称的直线方程为.14.过点P(-2,0)作直线l 交圆x2+y2=1 于A、B 两点,则|PA|·|PB|=.15.若垂直于直线2x+y=0,且与圆x2+y2=5 相切的切线方程为ax+2y+c=0,则ac 的值为.16.在平面直角坐标系xOy 中,圆C 的方程为x2+y2-8x+15=0,若直线y=kx-2 上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.三、解答题17.自点A(-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在的直线与圆x2+y2-4x-4y+7=0 相切,求光线l 所在直线的方程.18.已知圆x2+y2+x-6y+m=0 与直线x+2y-3=0 相交于P,Q 两点,O 为原点,若OP⊥OQ,求实数m 的值.19.已知圆x2+y2-6mx-2(m-1)y+10m2-2m-24=0(m∈R).(1)求证:不论m 为何值,圆心在同一直线l 上;(2)与l 平行的直线中,哪些与圆相交、相切、相离;(3)求证:任何一条平行于l 且与圆相交的直线被各圆截得的弦长相等.20.如图,已知圆O:x2+y2=1 和定点A(2,1),由圆O 外一点P(a,b向圆O 引切线PQ,切点为Q,且有|PQ|=|PA|.(1)求a、b 间关系;(2)求|PQ|的最小值;(3)以P 为圆心作圆,使它与圆O 有公共点,试在其中求出半径最小的圆的方程.1+k 2答案章末检测1.D 2.A 3.C 4.C 5.B 6.D 7.C 8.D 9.A 10.A 11.C 12.A 13.2x +3y +8=0 14.3 15.±5 16.4 317. 解 如图所示,已知圆 C :x 2+y 2-4x -4y +7=0 关于 x 轴对称的圆为 C 1:(x -2)2+(y +2)2=1,其圆心 C 1 的坐标为(2,-2),半径为 1,由光的反射定律知,入射光线所在直线方程与圆 C 1 相切.设l 的方程为 y -3=k (x +3),即 kx -y +3+3k =0. 则|5k +5|=1,即 12k 2+25k +12=0.∴k 1=-4,k 2=-3.3 4则 l 的方程为 4x +3y +3=0 或 3x +4y -3=0.18. 解 设P ,Q 两点坐标为(x 1,y 1)和(x 2,y 2),由 OP ⊥OQ 可得 x 1x 2+y 1y 2=0, x 2+y 2+x -6y +m =0, 由x +2y -3=0, 可得 5y 2-20y +12+m =0.①所以 y 1y 2=12+m,y 1+y 2=4.5 又 x 1x 2=(3-2y 1)(3-2y 2)=9-6(y 1+y 2)+4y 1y 2=9-24+4(12+m ),5所以 x 1x 2+y 1y 2=9-24+4(12+m )+12+m =0,5 5 解得 m =3.将 m =3 代入方程①,可得Δ=202-4×5×15=100>0,可知 m =3 满足题意,即 3 为所求 m 的值.19.(1)证明 配方得:(x -3m )2+[y -(m -1)]2=25,设圆心为(x ,y ),x =3m 则 , y =m -1消去 m 得 x -3y -3=0,则圆心恒在直线 l :x -3y -3=0 上.10 22+12( (2) 解 设与 l 平行的直线是 l 1:x -3y +b =0,则圆心到直线 l 1 的距离为 d =|3m -3(m -1)+b | |3+b |∵圆的半径为 r =5,∴当 d <r ,即-5 10-3<b <5 10-3 时,直线与圆相交; 当 d =r ,即 b =±5 10-3 时,直线与圆相切;当 d >r ,即 b <-5 10-3 或 b >5 10-3 时,直线与圆相离.(3) 证明 对于任一条平行于 l 且与圆相交的直线 l 1:x -3y +b =0,由于圆心到直线 l 1 的距离 d |3+b |弦长=2 r 2-d 2且 r 和 d 均为常量.∴任何一条平行于 l 且与圆相交的直线被各圆截得的弦长相等. 20.解 (1)连接 OQ 、OP ,则△OQP 为直角三角形,又|PQ |=|PA |,所以|OP |2=|OQ |2+|PQ |2=1+|PA |2,所以 a 2+b 2=1+(a -2)2+(b -1)2,故 2a +b -3=0.(2)由|PQ |2=|OP |2-1=a 2+b 2-1=a 2+9-12a +4a 2-1=5a 2- 12a +8=5(a -1.2)2+0.8,得|PQ |min =2 5.5 (3)以 P 为圆心的圆与圆 O 有公共点,半径最小时为与圆 O 相切的情形,而这些半径的最小值为圆 O 到直线 l 的距离减去圆 O 的半径,圆心 P 为过原点且与 l 垂直的直线 l ′与 l 的交点 P 0,所以 r = 3 -1=3 5-1,5 又 l ′:x -2y =0,联立 l :2x +y -3=0 得 P 0(6,3).5 5 所以所求圆的方程为(x -6)2+(y -3)2= 3 5-1)2.5 5 510 10= .= ,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修二期末测试题
期末测试题
考试时间:90分钟试卷满分:100分一、选择题:本大题共14小题,每小题4分,共56分(在每小题给出的四个选项中,
只有一项是符合要求的(
1(在直角坐标系中,已知A(,1,2),B(3,0),那么线段AB中点的坐标为( )( A((2,2) B((1,1) C((,2,,2) D((,1,,1) 2(右面三视图所表示的几何体是( )(
A(三棱锥
正视图侧视图 B(四棱锥
C(五棱锥
D(六棱锥
俯视图
(第2题)
3(如果直线x,2y,1,0和y,kx互相平行,则实数k的值为( )(
11A(2 B( C(,2 D(, 224(一个球的体积和表面积在数值上相等,则该球半径的数值为( )( A(1 B(2 C(3 D(4 5(下面图形中是正方体展开图的是( )(
A B C D
(第5题)
226(圆x,y,2x,4y,4,0的圆心坐标是( )(
A((,2,4) B((2,,4) C((,1,2) D((1,2) 7(直线y,2x,1关于y轴对称的直线方程为( )(
A(y,,2x,1 B(y,2x,1
C(y,,2x,1 D(y,,x,1
8(已知两条相交直线a,b,a?平面 ,,则b与, 的位置关系是( )(
A(b平面, B(b?平面, ,
C(b?平面, D(b与平面,相交,或b?平面, ?(在空间中,a,b是不重合的直线,,,,是不重合的平面,则下列条件中可推出
a?b的是( )(
A(a,,b,,,?, B(a?,,b, ,,,
C(a?,,b?, D(a?,,b, ,
222210( 圆x,y,1和圆x,y,6y,5,0的位置关系是( )(
A(外切 B(内切 C(外离 D(内含 11(如图,正方体ABCD—A'B'C'D'中,直线
D'A与DB,D ,C
,A ,B 所成的角可以表示为( )(
A(?D'DB B(?AD' C'
D C C(?ADB D(?DBC' A B
(第11题)
2212( 圆(x,1),(y,1),2被轴截得的弦长等于( )( x
3A( 1 B( C( 2 D( 3 2
13(如图,三棱柱ABC—ABC中,侧棱AA?底面ABC,1111111E CB
底面三角形ABC是正三角形,E是BC中点,则下列叙述正111A
确的是( )( C1 B1 A(CC与BE是异面直线 11
A1 B(AC?平面ABBA 11(第13题) C(AE,BC为异面直线,且AE?BC 1111
D(AC?平面ABE111
14(有一种圆柱体形状的笔筒,底面半径为4 cm,高为12 cm(现要为100个这种相同
2规格的笔筒涂色(笔筒内外均要涂色,笔筒厚度忽略不计)( 如果每0.5 kg涂料可以涂1 m,
那么为这批笔筒涂色约需涂料(
A(1.23 kg B(1.76 kg C(2.46 kg D(3.52 kg
二、填空题:本大题共4小题,每小题4分,共16分(把答案填在题中横线上( 15(坐标原点到直线4x,3y,12,0的距离为 (
16(以点A(2,0)为圆心,且经过点B(,1,1)的圆的D1 C1
A方程是 ( 1 B1 17(如图,在长方体ABCD—ABCD中,棱锥A—11111C D —ABCD的体积与长方体的体积之比为_______________( A B
(第17题) 18(在平面几何中,有如下结论:三边相等的三角形
内任意一点到三边的距离之和为定值(拓展到空间,类比平面几何的上述结论,可得:四个面均为等边三角形的四面体内任意一点
_______________________________________( 三、解答题:本大题共3小题,共28分(解答应写出文字说明,证明过程或演算步骤( 19(已知直线l经过点(0,,2),其倾斜角是60?(
(1)求直线l的方程;
(2)求直线l与两坐标轴围成三角形的面积(
20(如图,在三棱锥P—ABC中,PC?底面ABC,
AB?BC,D,E分别是AB,PB的中点( P
(1)求证:DE?平面PAC;
(2)求证:AB?PB;
E
(3)若PC,BC,求二面角P—AB—C的大小( C
A
D B
(第20题)
21(已知半径为5的圆C的圆心在x轴上,圆心的横坐标是整数,且与直线
4x,3y,29,0相切(
(1)求圆C的方程;
(2)设直线ax,y,5,0与圆C相交于A,B两点,求实数a的取值范围;
(3) 在(2)的条件下,是否存在实数a,使得过点P(,2,4)的直线l垂直平分弦AB,若存在,求出实数a的值;若不存在,请说明理由(
期末测试题
参考答案
一、选择题
1(B 2(D 3(D 4(C 5(A 6(D 7(A 8(D 9(C 10(A 11(D 12(C 13(C 14(D
二、填空题
1215(( 5
2216((x,2),y,10(
17(1:3(
18(到四个面的距离之和为定值(
三、解答题
19(解:(1)因为直线l的倾斜角的大小为60?,故其斜率为tan 60?,,又直线l 经过3
点(0,,2),所以其方程为x,y,2,0( 3
2(2)由直线l的方程知它在x轴、y轴上的截距分别是,,2,所以直线l与两坐标轴3
1223围成三角形的面积S,??2,( 233
20((1)证明:因为D,E分别是AB,PB的中点,
P 所以DE?PA(
因为PA平面PAC,且DE平面PAC, ,,
E 所以DE?平面PAC(
C A
D (2)因为PC?平面ABC,且AB平面ABC, ,B
所以AB?PC(又因为AB?BC,且PC?BC,C( (第20题)
所以AB?平面PBC(
又因为PB平面PBC, ,
所以AB?PB(
(3)由(2)知,PB?AB,BC?AB,
所以,?PBC为二面角P—AB—C的平面角(
因为PC,BC,?PCB,90?,
所以?PBC,45?,
所以二面角P—AB—C的大小为45?( 21(解:(1)设圆心为M(m,0)(m?Z)( 4m,29由于圆与直线4x,3y,29,0相切,且半径为5,所以,,5,
5|4m,29|,25( 即
因为m为整数,故m,1(
22故所求的圆的方程是(x,1),y,25( (2)直线ax,y,5,0即y,ax,5(代入圆的方程,消去y整理,得 22(a,1)x,2(5a,1)x,1,0(
22由于直线ax,y,5,0交圆于A,B两点,故?,4(5a,1),4(a,1),0,
52即12a,5a,0,解得a,0,或a,( 12
5所以实数a的取值范围是(,?,0)?(,,?)( 12
1(3)设符合条件的实数a存在,由(2)得a?0,则直线l的斜率为,,l的方程为y,a1(x,2),4,即x,ay,2,4a,0(由于l垂直平分弦AB,故圆心M(1,0)必在l上(所,a
3353以1,0,2,4a,0,解得a,(由于?(,,?),故存在实数a,,使得过点44124
P(,2,4)的直线l垂直平分弦AB(。