方程两边都加上或都减去同一个数或同一个整式

合集下载

五年级数学下册简易方程知识点

五年级数学下册简易方程知识点

五年级数学下册简易方程知识点五年级数学下册简易方程知识点在日常的学习中,是不是经常追着老师要知识点?知识点就是学习的重点。

为了帮助大家掌握重要知识点,以下是店铺为大家收集的五年级数学下册简易方程知识点,欢迎阅读,希望大家能够喜欢。

五年级数学下册简易方程知识点11、在含有字母的式子里,字母中间的乘号可以记作,也可以省略不写。

加号、减号除号以及数与数之间的乘号不能省略。

2、aa 可以写作 aa 或 a2,a2读作 a 的平方。

2a 表示 a+a3、我们学过的一些典型的数量关系:(用s路程、v速度、t时间)行程问题:路程=速度时间s=vt速度=路程时间v=st时间=路程速度t=sv(用c总价、a单价、x数量)价格问题:总价=单价数量c=ax单价=总价数量a=cx数量=总价单价x=ca(用c工作总量、 a工作效率、 t工作时间)工程问题:工作总量=工作效率工作时间c=at工作效律=工作总量工作时间a=ct工作时间=工作总量工作效率t=ca4、方程:含有未知数的等式称为方程。

使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

5、解方程原理:天平平衡。

等式左右两边同时加、减、乘、除相同的数(0 除外),等式依然成立。

、6、各个数量关系式:加法:和=加数+加数一个加数=和-另一个加数减法:差=被减数-减数被减数=差+减数减数=被减数-差乘法:积=因数因数一个因数=积另一个因数除法:商=被除数除数被除数=商除数除数=被除数商7、所有的方程都是等式,但等式不一定都是方程。

8、方程的检验过程:方程左边=9、方程的解是一个数;解方程式一个计算过程。

=方程右边所以,X=是方程的解。

五年级数学下册简易方程知识点21、表示相等关系的式子叫做等式。

2、含有未知数的等式是方程。

3、方程一定是等式;等式不一定是方程。

等式>方程4、等式两边同时加上或减去同一个数,所得结果仍然是等式。

这是等式的性质。

整式的性质1方程的两边同时加上或减去同一个数或同一

整式的性质1方程的两边同时加上或减去同一个数或同一
第一关 以下两个式子是一元一次方程,求m
练习: 1、 2 3 x2m1 0 2、 3 x1m 1
智力闯关,谁是英雄
第一关 xk1 21 0 是一元一次方程,则k=__2_____ 第二关: x|k| 21 0是一元一次方程,则k=__1_或__-_1
第三关 : (k 1)x|k| 21 0 是一元一次方程,则k=_-1_:
第二关 解以下方程:
1、 2 x 3 5 x
x 1
2、 2 x 1 3
x 1
3、 2( x 1) 3 3 x x 1
4、 2 x 1 1 2 x 1 x 19
5、433x Nhomakorabea1 x2
x 3 2
2
6、 已知x 1是方程2kx 1 3的解, 则k
例2、甲、乙两车自西向东行驶,甲车的速度是每小时48 千米,乙车的速度是每小时72千米,甲车开出25分钟后 乙车开出,问几小时后乙车追上甲车?
分析: 设x小时后乙车追上甲车
A
甲先走25分 钟的路程
甲走
X 小时所走的路程
48x
25 60
×48 B
乙走 X
小时所走的路程
72x
C
相等关系:
甲走的路程=乙走的路程
含有一个未知数,同时未知数的 次数是1,含有未知数的式子是整式 的方程叫一元一次方程。
练习:判断以下各等式哪些是一元一次方程:


(1)3-2=1 (2)3x+y=2y+x



(3)2x-4=0
(4)s=0.5ab (5)x-4=x2
例: 2xm2 1 0是一元一次方程 , 求m

七年级数学上册第三单元《一元一次方程》-选择题专项测试(含答案)

七年级数学上册第三单元《一元一次方程》-选择题专项测试(含答案)

一、选择题1.某种商品每件的标价是330元,按标价的8折销售时,仍可获利10%,则这种商品每件的进价为( )A .300元B .250元C .240元D .200元C解析:C【分析】设这种商品每件的进价为x 元,根据题意列出关于x 的方程,求出方程的解即可得到结果.【详解】设这种商品每件的进价为x 元,根据题意得:330×80%−x=10%x ,解得:x=240,则这种商品每件的进价为240元.故选C.【点睛】此题考查一元一次方程的应用,找准题目中的等量关系是解题的关键.2.方程−2x +2018=2020的解是( )A .x =−2018B .x =1C .x =−1D .x =2018C 解析:C【解析】【分析】方程移项合并,把x 系数化为1,即可求出解.【详解】方程−2x +2018=2020,移项合并得:-2x =2,解得:x =-1,故选:C .【点睛】此题考查了解一元一次方程,解方程移项注意要变号.3.佳佳的压岁钱由爸爸存入某村镇银行,当年年利率为1.5%,一年后取出时得到本息和为4060元,则佳佳的压岁钱是( )A .2060元B .3500元C .4000元D .4100元C 解析:C【分析】设佳佳的压岁钱是x 元,根据利息本金之和为4120元,列方程求解即可.【详解】设佳佳的压岁钱是x 元.根据题意,得(1 1.5%)4060x +=,解得4000x =.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.4.某项工作甲单独做4天完成,乙单独做6天完成,若甲先做1天,然后甲、乙合作完成此项工作,若甲一共做了x天,则所列方程为()A.1146x x++=B.1146x x++=C.1146x x-+=D.111446x x+++= C解析:C【分析】首先要理解题意找出题中存在的等量关系:甲完成的工作量+乙完成的工作量=总的工作量,根据题意我们可以设总的工作量为单位“1“,根据效率×时间=工作量的等式,分别用式子表示甲乙的工作量即可列出方程.【详解】设甲一共做了x天,则乙一共做了(x−1)天.可设工程总量为1,则甲的工作效率为14,乙的工作效率为16.那么根据题意可得出方程11 46x x-+=,故选C.【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于理解题意列出方程.5.解方程32282323x x x----=的步骤如下,错误的是()①2(3x﹣2)﹣3(x﹣2)=2(8﹣2x);②6x﹣4﹣3x﹣6=16﹣4x;③3x+4x=16+10;④x=267.A.①B.②C.③D.④B 解析:B【分析】根据解一元一次方程的基本步骤依次计算可得.【详解】①去分母,得:2(3x﹣2)﹣3(x﹣2)=2(8﹣2x);②6x﹣4﹣3x+6=16﹣4x,③6x﹣3x+4x=16+4﹣6,④x=2,错误的步骤是第②步,【点睛】本题主要考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.6.关于y 的方程331y k +=与350y +=的解相同,则k 的值为( )A .-2B .34C .2D .43- C 解析:C【分析】分别解出两方程的解,两解相等,就得到关于k 的方程,从而可以求出k 的值.【详解】 解第一个方程得:133k y -=, 解第二个方程得:53y =-, ∴133k -=53-, 解得:k=2.故选C .【点睛】 本题解决的关键是能够求解关于y 的方程,要正确理解方程解的含义.7.如图,长方形ABCD 中,AB 3cm =,BC 2cm =,点P 从A 出发,以1cm/s 的速度沿A B C →→运动,最终到达点C ,在点P 运动了3秒后点Q 开始以2cm /s 的速度从D 运动到A ,在运动过程中,设点P 的运动时间为t ,则当APQ △的面积为22cm 时,t 的值为( )A .2或103B .2或113C .1或103D .1或133A 解析:A【分析】首先分P 运动了3秒以内和3秒以后两种情况,分别结合速度和距离的关系列出等式,从而完成求解.【详解】四边形ABCD 是矩形AD BC 2cm ∴==,当点P 在AB 边时AB 3cm =∴此时点Q 还在点D 处,AP t = ∴APQ 12t 22S =⨯⨯=△ ∴t 2=;3秒后,点P 在BC 上∴()AQ 22t 3=-- ∴()APQ 1322t 322S ⎡⎤=⨯⨯--=⎣⎦△ ∴10t 3= ∴当APQ △的面积为22cm 时,t 的值为2或103. 故选A .【点睛】本题考察了矩形、一元一次方程、三角形面积计算等知识;求解的关键是熟练掌握矩形、一元一次方程的性质,并运用到实际问题的求解过程中,即可得到答案.8.若“△”是新规定的某种运算符号,设x △y=xy+x+y ,则2△m=﹣16中,m 的值为( )A .8B .﹣8C .6D .﹣6D解析:D【详解】因为xΔy =xy +x +y ,且2Δm =-16,所以2m+2+m=-16,解得m=- 6,故选D.考点:1.新定义题2.一元一次方程.9.若代数式4x +的值是2,则x 等于( )A .2B .2-C .6D .6- B 解析:B【分析】由已知可得4x +=2,解方程可得.【详解】由已知可得4x +=2,解得x=-2.故选B.【点睛】本题考核知识点:列方程,解方程. 解题关键点:根据题意列出一元一次方程. 10.下列变形不正确的是()A.由2x-3=5得:2x=8 B.由-23x=2得:x=-3C.由2x=5得:x=25D.由x+5 =3x-2得:7=2x C解析:C【分析】根据等式的性质逐一进行判断即可得答案.【详解】A.由2x-3=5的两边同时加上3得:2x=8,故该选项正确,B.由-23x=2的两边同时乘以32-得:x=-3,故该选项正确,C.由2x=5的两边同时除以2得:x=52,故该选项错误,D.由x+5=3x-2的两边同时加上(2-x)得:7=2x,故该选项正确,故选:C.【点睛】本题考查了等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.11.解方程-3x=2时,应在方程两边()A.同乘以-3 B.同除以-3 C.同乘以3 D.同除以3B解析:B【分析】利用等式的性质判断即可.【详解】解:利用等式的性质解方程-3x=2时,应在方程的两边同除以-3,故选:B.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.12.把方程10.58160.60.9x x-++=的分母化为整数,结果应为()A.1581669x x-++=B.10105801669x x-++=C.101058016069x x-+-=D.15816069x x-++= B解析:B 【分析】利用分数的基本性质,化简已知方程得到结果,即可做出判断.【详解】 把方程10.58160.60.9x x -++=的分母化为整数,结果应为: 10105801669x x -++=. 故选:B .【点睛】此题考查了解一元一次方程,其全部步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.13.一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( )A .120元B .125元C .135元D .140元B解析:B【分析】设每件的成本价为x 元,列方程求解即可.【详解】设每件的成本价为x 元, 0.8(140%)15x x ⨯+=+,解得x=125,故选:B.【点睛】此题考查一元一次方程的实际应用—销售问题,正确理解题意是列方程解决问题的关键. 14.下列判断错误的是 ( )A .若a =b ,则a −3=b −3B .若a =b ,则7a −1=7b −1C .若a =b ,则a c 2+1=bc 2+1 D .若ac 2=bc 2,则a =b D 解析:D【解析】【分析】根据等式的基本性质分别对每一项进行分析,即可得出答案.【详解】A. 若a=b ,则a−3=b−3,正确;B. 若a=b ,则7a−1=7b−1,正确;C. 若a=b ,则a c 2+1=bc 2+1,正确; D. 当c=0时,若ac 2=bc 2,a 就不一定等于b ,故本选项错误;故选D.【点睛】此题考查等式的性质,解题关键在于掌握其性质定义.15.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是()A.5袋B.6袋C.7袋D.8袋A解析:A【解析】【分析】要求驴子原来所托货物的袋数,要先设出未知数,通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,才恰好驮的一样多)=驴子原来所托货物的袋数加上1,据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得到方程:2(x-1)-1-1=x+1,解得:x=5, 答:驴子原来所托货物的袋数是5, 故选A.【点睛】本题主要考查列方程解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.16.如图,每个圆纸片的面积都是30,圆纸片A与B,B与C,C与A的重叠面积分别为6,8,5,三个圆纸片覆盖的总面积为73,则图中阴影部分面积为()A.54 B.56 C.58 D.69C解析:C【分析】根据图形可知:三个圆纸片覆盖的总面积+A与B的重叠面积+B与C的重叠面积+C与A 的重叠面积−A、B、C共同重叠面积=每个圆纸片的面积×3,由此等量关系列方程求出A、B、C共同重叠面积,从而求出图中阴影部分面积.【详解】解:设三个圆纸片重叠部分的面积为x,则73+6+8+5−x=30×3,得x=2.所以三个圆纸片重叠部分的面积为2.图中阴影部分的面积为:73−(6+8+5−2×2)=58.故选:C.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出式子,再求解.17.下列解方程中去分母正确的是()A.由x3−1=1−x2,得2x−1=3−3xB.由x−22−3x−24=−1,得2(x−2)−3x−2=−4C.由y+12=y3−3y−16−y,得3y+3=2y−3y+1−6yD.由4y5−1=y+43,得12y−1=5y+20C解析:C【解析】【分析】根据等式的性质,各个选项中的方程两边同时乘分母的最小公倍数,然后再解答.【详解】A. x3−1=1−x2(x 3−1)×6=1−x2×62x−6=3−3x;故错误;B. x−22−3x−24=−1(x−22−3x−24)×4=−1×42(x−2)−(3x−2)=−42(x−2)−3x+2=−4;故错误;C. y+12=y3−3y−16−y3(y+1)=2y−(3y−1)−6y3y+3=2y−3y+1−6y;故正确;D. 4y5−1=y+43(4x 5−1)×15=y+43×1512x−15=5y+20;故错误;由以上可得只有C选项正确.故选:C.【点睛】此题考查方程的解和解方程,解题关键在于掌握运算法则.18.下列解方程的过程中,移项正确的是( )A .由5x −7y −2=0,得−2=7y +5xB .由6x −3=x +4,得6x −3=4+xC .由8−x =x −5,得−x −x =−5+8D .由x +9=3x −1,得x −3x =−1−9D解析:D【解析】【分析】把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。

小升初小学数学(简易方程)知识点汇总(六)等

小升初小学数学(简易方程)知识点汇总(六)等

小升初小学数学(简易方程)知识点汇总219.什么叫做代数式和代数式的值?用运算符号加、减、乘、除、乘方、开方把数字和表示数的字母连接起来所得的式子,叫做代数式。

特殊的,单独的一个数字或字母也可以叫做代用数代替代数式里的变数字母.计算所得的结果,叫做这个代数式的值。

的值是 289。

220.什么叫做等式?等式有哪些性质?表示两个数或两个代数式相等关系的式子叫做等式。

两个数或两个代数式之间用等号“=”连接起来。

例如:27+23=50,a+b=b+a,4x+6=86。

等式的性质有以下几条:(1)等式两边可以调换位置。

也就是说,如果 a=b,那么 b=a。

(2)等式两边都加上(或减去)同一个数,所得的等式仍然成立。

即如果 a=b,那么a±m=b±m。

(3)等式两边都乘以(或除以)同一个数(除数不能为零),所得的等式仍然成立。

即如果 a=b,那么 am=bm,a÷n=b÷n(n≠0)。

221.什么叫做方程和方程的解?含有未知数的等式,叫做方程。

例如:3x+4=10,7x=2.8,ax2+bx +c=0(其中 a、b、c 为已知数,x 是未知数)等都是方程。

方程是提出一个问题:当未知数取什么数时,等式成立。

使方程左右两边相等的未知数的值,叫做方程的解。

例如:x=2 是方程3x+4=10 的解。

x=1.7 是方程 4x=6.8 的解。

222.什么叫做单项式和多项式?不含加、减运算的整式,叫做单项式。

特殊的,单独一个数或一个字母多项式。

例如:4x+7,3x2+5,6x2+7x+2 等都是多项式。

223.什么叫做同类项及合并同类项?在多项式中,所含字母相同,并且相同字母的指数也分别相同的项,叫做同类项。

例如:5x2+3x+4x2+6 中,5x2 与 4x2 是同类项。

把多项式中的同类项合并成一项,叫做合并同类项。

例如:5x2+3x+4x2+6=9x2+3x+6 是合并同类项。

一元一次不等式知识点及典型例题

一元一次不等式知识点及典型例题

例 2 用>”或<”填空,并说明理由
如果 a<b 则 1)a-2( )b-2
2)-
a 2
-
b 2
例 3 把下列不等式变成 x>a x<a 的形式。
3)-3a-5( )-3b-5
X+4>7
5x<1+4x
-
4 5
x>-1
2x+5<4x-2
例 4 已知实数 a/b/c/在数轴上的对应点如图,则下列式子正确的是( )
答案:C 把不等式组
的解集表示在数轴上,正确的为图 3 中的( )
不等式组
的解集在数轴上可表示为( )
A 答案:D
B
C
D
实数 在数轴上对应的点如图所示,则 , , 的大小关系正确的是( )
A.
B.
C.
D.
答案:B

表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么
这三种物体按质量从大到小的顺序排列应为( )
解:解不等式(1),得 原不等式组的解是
. 解不等式(2),得


(1)方程
的解为
(2)解不等式
≥9;
(3)若
≤a 对任意的 x 都成立,求 a 的取值范围
解:(1)1 或 . (2) 和 的距离为 7,
因此,满足不等式的解对应的点 3 与 的两侧.
当 在 3 的右边时,如图(2), 易知

解不等式组
宿州市第二初级中学 陆连荣
6、不等式与不等式组
一元一次不等式
不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个

人教版七年级上册数学 第三章 一元一次方程 单元训练题 (4)(有解析)

人教版七年级上册数学 第三章 一元一次方程 单元训练题 (4)(有解析)

第三章 一元一次方程 单元训练题 (4)一、单选题1.某车间有27名工人,每个工人每天生产64个螺母或者22个螺栓,每个螺栓配套两个螺母,若分配x 个工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下列所列方程中正确的是( )A .22x =64(27﹣x )B .2×22x =64(27﹣x )C .64x =22(27﹣x )D .2×64x =22(27﹣x ) 2.若关于x 的方程(m-3)x |m|-2 -m+3=0是一元一次方程,则m 的值为( )A .m=3B .m=-3C .m=3或-3D .m=2或-2 3.对于实数a ,b ,c ,d ,定义一种运算a b ad bc c d =-,那么当24103x =-时,x =( ).A .1B .2C .1-D .2-4.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分按八折付款。

设一次购书数量为x 本(x >10),则付款金额为( )A .6.4x 元B .(6.4x +80)元C .(144−6.4x )元D .(6.4x +16)元 5.3的倒数是( )A .3B .3-C .13D .13- 6.若方程(m -1)x + 2 = 0表示关于x 的一元一次方程,则m 的取值范围是( ) A .m 0 B .m 1 C .m=-1D .m=0 7.某商品标价120元,打八折售出后仍盈利10元,则该商品进价是( ) A .86元 B .106元C .110元D .140元 8.两地相距600千米,甲乙两车分别从两地同时出发相向而行,甲车比乙车每小时多走10千米,4小时后两车相遇,则乙车的速度是( )A .70千米/小时B .75千米/小时C .80千米/小时D .85千米/小时9.2018年宁波市中考新增英语口语听力自动化考试,考试需要耳麦,已知甲耳麦比乙耳麦贵20元,某校购买了甲耳麦40个、乙耳麦60个,共花费了6000元,假设甲耳麦每个x 元,由题意得( )A .40x +60(x –20)=6000B .40x +60(x +20)=6000C .60x +40(x –20)=6000D .60x +40(x +20)=600010.如果2x =是方程112x a +=-的解,那么a 的值是( ) A .-2 B .2 C .0 D .-111.下列等式是由3x 4x 1=-根据等式性质变形得到的,其中正确的个数有( ) ①431x x -=;②3x 4x 1-=;③32212x x =-;④134-=+x x A .0个 B .1个 C .2个 D .3个12.某商人一次卖出两件商品。

一元一次方程知识点归纳

一元一次方程知识点归纳

一元一次方程方程的有关概念夯实基础一.等式用等号(“=”)来表示相等关系的式子叫做等式。

温馨提示①等式可以是数字算式,可以是公式、方程,也可以是运算律、运算法则等,所以等式可以表示不同的意义。

②不能将等式与代数式混淆,等式含有等号,是表示两个式子的“相等关系”,而代数式不含等号,它只能作为等式的一边。

如x x 2735-=+才是等式。

二.等式的性质性质1:等式两边同时加(或减)同一个数(或式子),结果仍相等。

即如果b a =,那么c b c a ±=±。

性质2:等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。

即如果b a =,那么bc ac =;如果b a =()0≠c ,那么cb c a =。

温馨提示①等式类似天平,当天平两端放有相同质量的物体时,天平处于平衡状态。

若在天平的两端各加(或减)相同质量的物体,则天平仍处于平衡状态。

所以运用等式性质1时,当等式两边都加上(或减去)同一个数或同一个整式时,才能保证所得的结果仍是等式,应特别注意“都”和“同一个”。

如31=+x ,左边加2,右边也加2,则有2321+=++x 。

②运用等式的性质2时,等式两边不能同除以0,因为0不能作除数或分母。

③等式性质的延伸:a.对称性:等式左、右两边互换,所得结果仍是等式,即如果b a =,那么a b =。

b.传递性:如果c b b a ==,,那么c a =(也叫等量代换)。

例1:用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式哪一条性质,以及怎样变形得到的。

(1)如果51134=-x ,那么+=534x ; (2)如果c by ax -=+,那么+-=c ax ;(3)如果4334=-t ,那么=t 。

三.方程含有未知数的等式叫做方程。

温馨提示 方程有两层含义:①方程必须是一个等式,即是用等号连接而成的式子。

②方程中必有一个待确定的数,即未知的字母,这个字母就是未知数。

整式的性质1方程的两边同时加上或减去同一个数或同一

整式的性质1方程的两边同时加上或减去同一个数或同一

解的分子,分母位置 不要颠倒
2x 3( x 2) 1
3
4
解:
去分母,得
8x 9(x 2) 12 不要忘了1×12
去括号,得 8x 9x 18 12 不要忘了2 × 9
移项,得
8x 9x 1218 不要忘了移项变号
合并,得 x 30
系数化为1,得 x 30
答:乙的时速为15千米/时.
的路程 20x
的路程 20(x+1)
相等关系:甲走总路程+乙走路程=230
解:设甲的速度为x千米/时,那么乙的速度为(x+1) 千米/时,依照题意,得
2x+20x+20(x+1)=230
2x+20x+20x+20=230 42x=210 x=5
∴乙的速度为 x+1=5+1=6 答:甲、乙的速度分别是5千米/时、6千米/时.
(2)寻找等量关系 可借助图表分析题中的
量和未知量之间关系,列出等式两边的代数式 ,注意它们的量要一致,使它们都表示一个相 等或相同的量。
(3)列方列程方程应满足三个条件:各类是同类量,
单位一致,两边是等量。
(4)解方方程程的变形应依照等式性质和运算法那么

检查方程的解是否符合应用题的实际 意义,进行取舍,并注意单位。
整式的性质1方程的两边同 时加上或减去同一个数或
同一
整式的性质1: 方程的两边同时加上或减去同一个数
或同一个整式,方程的解不变。
整式的性质2: 方程的两边同时乘以或除以同一个不为0的数,
方程的解不变。
移项: 将方程中的某些项改变符号后,从方程的一边

初中数学知识点必备:不等式

初中数学知识点必备:不等式

初中数学知识点必备:不等式学校数学学问点:不等式1用小于号或大于号表示大小关系的式子,叫做不等式(inequality)。

使不等式成立的未知数的值叫做不等式的解。

能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集(solution set)。

含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。

不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变。

不等式两边乘(或除以)同一个正数,不等号的`方向不变。

不等式两边乘(或除以)同一个负数,不等号的方向转变。

三角形中任意两边之差小于第三边。

三角形中任意两边之和大于第三边。

不等式(组)1、不等式:用不等号(“”、“≤”、“”、“≥”、“≠”)表示不等关系的式子。

2、不等式的基本性质:(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。

(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向转变。

3、不等式的解:能使不等式成立的未知数的值,叫做不等式的解。

4、不等式的解集:一个含有未知数的不等式的全部解,组成这个不等式的解集。

提示大家:解不等式指的是求不等式解集的过程叫做解不等式。

学校数学学问点:不等式21.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.留意:一般说二元一次方程有很多个解.2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.留意:一般说二元一次方程组只有解(即公共解).4.二元一次方程组的解法:(1)代入消元法;(2)加减消元法;(3)留意:推断如何解简洁是关键。

5.一次方程组的应用:(1)对于一个应用题设出的未知数越多,列方程组可能简单一些,但解方程组可能比较麻烦,反之则难列易解(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系。

初一上学期数学知识点归纳(汇总7篇)

初一上学期数学知识点归纳(汇总7篇)

初一上学期数学知识点归纳(汇总7篇)初一上学期数学知识点归纳第1篇一元一次方程利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,填入有关的代数式是获得方程的基础.等式与等量:用"="号连接而成的式子叫等式.注意:"等量就能代入"!等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.方程:含未知数的等式,叫方程.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:"方程的解就能代入"!移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a ≠0).一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).列一元一次方程解应用题:(1)读题分析法:…………多用于"和,差,倍,分问题"初一上学期数学知识点归纳第2篇基本平面图形1、直线的性质(1)直线公理:经过两个点有且只有一条直线。

(两点确定一条直线。

)(2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

2、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。

(两点之间线段最短。

)(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

(3)线段的大小关系和它们的长度的大小关系是一致的。

3、线段的中点:点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。

初一上册数学一元一次方程知识点归纳

初一上册数学一元一次方程知识点归纳

初一上册数学一元一次方程知识点归纳初一上册数学一元一次方程知识点归纳1、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

2、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

3、条件:一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0、4、等式的性质:等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。

5、合并同类项(1)依据:乘法分配律(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项(3)合并时次数不变,只是系数相加减。

6、移项(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。

(2)依据:等式的性质(3)把方程一边某项移到另一边时,一定要变号。

7、一元一次方程解法的一般步骤:使方程左右两边相等的未知数的值叫做方程的解。

一般解法:(1)去分母:在方程两边都乘以各分母的最小公倍数;(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)(4)合并同类项:把方程化成ax=b(a≠0)的形式;(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a、8、同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。

9、方程的同解原理:(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

10、列一元一次方程解应用题:(1)读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套—————”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程、(2)画图分析法:…………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础、1、单项式:在代数式中,若只含有乘法(包括乘方)运算。

等式的基本性质(详细解析考点分析名师点评)

等式的基本性质(详细解析考点分析名师点评)

等式的基本性质答案与评分标准一、选择题(共20小题)1、下列结论中不能由a+b=0得到的是()A、a2=﹣abB、|a|=|b|C、a=0,b=0D、a2=b2考点:等式的性质。

分析:根据等式的性质、绝对值的性质对各选项进行逐一判断即可.解答:解:A、当a=0,b=0;B、因为a=﹣b,即a与b互为相反数,根据互为相反数的两个数的绝对值相等,得到|a|=|b|;D、因为a=﹣b,即a与b互为相反数,根据互为相反数的两个数的平方相等,得到a2=b2;只有C不能由a+b=0得到;故选C.点评:本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.2、已知2x=3y(x≠0),则下列比例式成立的是()A、B、C、D、3、若2y﹣7x=0,则x:y等于()A、7:2B、4:7C、2:7D、7:4考点:等式的性质。

专题:计算题。

分析:本题需利用等式的性质对等式进行变形,从而解决问题.解答:解:根据等式性质1,等式两边同加上7x得:2y=7x,∵7y≠0,根据等式性质2,两边同除以7y得,=.故选C.点评:本题考查的是等式的性质:等式性质1:等式的两边加(或减)同一个数(或式子)结果仍相等;等式性质2:等式的两边同乘(或除以)同一个数(除数不为0)结果仍相等;4、若有公式M=,用含有D、L、M的代数式表示d时,正确的是()A、d=D﹣2LMB、d=2LM﹣DC、d=LM﹣2DD、d=考点:等式的性质。

分析:根据等式的性质,将等式进行变形后可得出答案.解答:解:根据等式的性质2,等式两边同时乘以﹣2L,得﹣2LM=d﹣D,根据等式性质1,等式两边同时加D得:d=D﹣2LM,故选A.点评:本题考查的是等式的性质:等式性质1,等式的两边加(或减)同一个数(或式子)结果仍相等;等式性质2,等式的两边同乘(或除以)同一个数(除数不为0)结果仍相等.5、已知:,那么下列式子中一定成立的是()A、2x=3yB、3x=2yC、x=6yD、xy=66、如果,那么用y的代数式表示x,为()A、B、C、D、考点:等式的性质。

七年级上一元一次方程题型及知识点总结

七年级上一元一次方程题型及知识点总结

一元一次方程题型及知识点总结一、知识点1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a≠0).8.一元一次方程解法的一般步骤:化简方程----------分数基本性质去 分母----------同乘(不漏乘)最简公分母去 括号----------注意符号变化移 项----------变号合并同类项--------合并后注意符号系数化为1---------未知数细数是几就除以几二、典型例题:例1:解下列方程:(1)211011412x x x ++-=- (2)6171315213+-=+--y y y(3)4 1.550.8 1.20.50.20.1x x x ----= (4) 21(x 一3)=2一21(x 一3)(5)2x -6115+x =l+342-x (6) 3.05.01x --32x=02.03.0x +l【课堂练习1】解方程:(1); (2)。

巩固练习:一、选择题 1、下列方程中是一元一次方程的是( )A 、x-y=2005B 、3x-2004C 、x 2+x=1D 、21-x =32-x2、方程1-67342--=-x x 去分母得( ) A .1-2(2x-4)=-(x-7) B .6-2(2x-4)=-x-7C .6-2(2x-4)=-(x-7)D .以上答案均不对3、代数式13x x --的值等于1时,x 的值是( ). (A )3 (B )1 (C )-3 (D )-14、方程5174732+-=--x x 去分母得( )。

一元一次不等式知识点及典型例题

一元一次不等式知识点及典型例题

一元一次不等式 考点一、不等式的概念 1、不等式:用不等号表示不等关系的式子,叫做不等式。

例 判断如下各式是否是一元一次不等式? word-x≥5 2x-y<02x 34x 5x22 x532、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数二 不等式的解 :的值,都叫做这个不等式的解。

三 不等式的解集:3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简 例 判断如下说法是否正确,为什么?称这个不等式的解集。

X=2 是不等式 x+3<2 的解。

X=2 是不等式 3x<7 的解。

不等式 3x<7 的4、求不等式的解集的过程,叫做解不等式。

解是 x<2。

X=3 是不等式 3x≥9 的解5、用数轴表示不等式的方法四 一元一次不等式:考点二、不等式根本性质例 判断如下各式是否是一元一次不等式1、不等式两边都加上〔或减去〕同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以〔或除以〕同一个正数,不等号的方向不变。

-x<5 2x-y<02x 3x22 x 5 ≥3x3、不等式两边都乘以〔或除以〕同一个负数,不等号的方向改变。

例 五.不等式的根本性质问题4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运 例 1 指出如下各题中不等式的变形依据算改变。

②如果不等式乘以 0,那么不等号改为等号所以在题目中,要求出乘以的 数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的1〕由 3a>2 得 a> 2 32) 由 3+7>0 得 a>-7数就不等为 0,否如此不等式不成立; 考点三、一元一次不等式3〕由-5a<1 得 a>- 1 54)由 4a>3a+1 得 a>11、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是 1, 例 2 用>〞或<〞填空,并说明理由且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

不等式的基本性质-【帮课堂】2022-2023学年七年级数学下册同步精品讲义(苏科版)

不等式的基本性质-【帮课堂】2022-2023学年七年级数学下册同步精品讲义(苏科版)

不等式的基本性质知识点一、不等式的基本性质1不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;即如果a >b ,那么a +c >b +c 或a -c >b -c ;如果a <b ,那么a +c <b +c 或a -c <b -c .1. 如果a >b ,那么2a -_______2b -(填“=”、“>”或“<”).知识点二、不等式的性质2不等式两边都乘(或除以)同一个正数,不等号的方向不变;不等式的两边都乘(或除以)同一个负数,不等号的方向改变,即如果a >b 且c >0,那么ac >bc 或a b c c >,如果a >b且c <0,那么ac <bc 或a b c c <.2. 已知x <y ,则23x --_____23y --(填“>”、“<”或“=”)一.选择题(共10小题)3. 若x y >,则下列式子中错误的是( )A. 22x y > B. 22x y ->- C. 22x y ->- D. 33x y +>+4. 若不等式21x -<,两边同时除以2-,结果正确的是( )A. 12x >- B. 12x < C. 2x >- D. 2x <5. 下列各式中正确的是( )A. 若a b >,则22a b -<- B. 若a b >,则22a b >C. 若a b >,且0c ≠,则22ac bc > D. 若a b c c>,则a b >6. 已知a b <,若c 是任意有理数,则下列不等式中总成立的是( )A. a c b c +<+B. a c b c ->-C. ac bc >D. 22ac bc >7. 已知a b <,则下列各式成立的是( )A. 22ac bc <B. 1313a b -<-C. 23a b -<-D. 33a b +<+8. 已知实数a b c ≤≤,则( )A. 2a c b +≤B. 3a b c +≤C. 2a b c+≥ D. b a c≤+的9. 如图所示,A ,B ,C ,D 四人在公园玩跷跷板,根据图中的情况,这四人体重从小到大排列的顺序为( )A. D B A C <<<B. B D C A <<<C. B A D C <<<D. B C D A <<<10. 已知非负实数a ,b ,c 满足123234a b c ---==,设S a b c =++,则S 的最大值为( )A. 112 B. 152 C. 274 D.31411. 已知三个实数a ,b ,c 满足0ab >,a b c +<,0a b c ++=,则下列结论一定成立的是( )A. 0a <,0b <,0c > B. 0a >,0b >,0c <C. 0a >,0b <,0c > D. 0a >,0b <,0c <12. 若2a b +=-,且2a b ≥,则( ).A. b a 有最小值12 B. b a 有最大值1C. a b 有最大值2 D. a b 有最小值89-二.填空题(共10小题)13. 若x y >,且(3)(3)a x a y +<+,求a 的取值范围______.14. 若a<0,则a -_____0.(用<,=,>填空)15. 选择适当的不等号填空:若a b <,则2a -______2b -.16. 已知m n >,则 3.51m -+______ 3.51n -+.(填>、=或<)17. 若a b <,则21a -+__________21b -+.(用“>”,“<”,或“=”填空)18. 如果x >y ,且(a-1)x <(a-1)y ,那么a 的取值范围是______.19. 已知x ,y 满足132x y +=,若13x -≤<,则y 的范围是__________.20. 用不等号填空,并说明根据的是不等式的哪一条基本性质:(1)若x +2>5,则x ________3,根据不等式的基本性质________;(2)若-34x <-1,则x ________43,根据不等式的基本性质________.21. 已知 2ab =.①若31b -≤≤-,则a 的取值范围是________;②若0b >,且225a b +=,则a b +=____.22. 某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x 作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x 的取值范围是_____.三.解答题(共8小题)23. 已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩.(1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求a 的取值范围.24. 根据不等式的性质:若0x y ->,则x y >;若0x y -<,则x y <.利用上述方法证明:若0n <,则121n n n n -->-.25. 已知:x ,y 满足3x-4y=5.(1)用含x 的代数式表示y ,结果为______;(2)若y 满足-1<y≤2,求x 的取值范围;(3)若x ,y 满足x+2y=a ,且x >2y ,求a 的取值范围.26. 已知实数x 、y 满足231x y +=.(1)用含有x 的代数式表示y ;(2)若实数y 满足y >1,求x 的取值范围;(3)若实数x 、y 满足1x >-,13y ≥-且23x y k -=,求k 的取值范围.27. 知识阅读:我们知道,当a >2时,代数式a -2>0;当a <2时,代数式a -2<0;当a =2时,代数式a -2=0.(1)基本应用:当a >2时,用“>,<,=”填空:a +5________0;(a +7)(a -2)________0;(2)理解应用:当a >1时,求代数式2a +2a -15的值的大小;(3)灵活应用:当a >2时,比较代数式a +2与2a +5a -19的大小关系.28. 用等号或不等号填空:(1)比较4m 与24m +的大小当3m =时,4m24m +当2m =时,4m24m +当3m =-时,4m 24m +(2)无论取什么值,4m 与24m +总有这样的大小关系吗?试说明理由.(3)比较22x +与2246x x ++的大小关系,并说明理由.(4)比较23x +与37--x 的大小关系.29. 阅读下列材料:问题:已知2x y -=,且1x >,0y <,试确定x y +的取值范围解:2x y -= ,2x y ∴=+,又1x > ,21y ∴+>,1y ∴>-,又0y < ,10y ∴-<<①,12202y ∴-+<+<+,即12x <<②,①+②得:1102x y -+<+<+,x y ∴+的取值范围是02x y <+<.请按照上述方法,完成下列问题:(1)已知5x y -=,且2x >-,0y <,①试确定y 的取值范围;②试确定x y +的取值范围;(2)已知1x y a -=+,且x b <-,2y b >,若根据上述做法得到35x y -的取值范围是103526x y -<-<,请直接写出a 、b 的值.30. 题目:已知关于x 、y 的方程组2324x y a x y a +=-+⎧⎨+=⎩①②,求:(1)若3x +3y =18,求a 值;(2)若-5x -y =16,求a 值.问题解决:(1)王磊解决的思路:观察方程组中x 、y 的系数发现,将①+②可得3x +3y =3a +3,又因为3x +3y =18,则a 值为________;(2)王磊解决的思路:观察方程组中x 、y 的系数发现,若将方程组中的①与②直接进行加减,已经不能解决问题,经过思考,王磊将①×m ,②×n ,得2324mx my ma m nx ny na +=-+⎧⎨+=⎩③④,再将③+④得:(m +2n )x +(2m +n )y =(-m +4n )a +3m ,又因为-5x -y =16,……,请根据王磊的思路,求出m 、n 及a 的值;问题拓展:(3)已知关于x 、y 的不等式组2324x y a x y a +-+⎧⎨+⎩><,若x +5y =2,求a 的取值范围.不等式的基本性质知识点一、不等式的基本性质1不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;即如果a >b ,那么a +c >b +c 或a -c >b -c ;如果a <b ,那么a +c <b +c 或a -c <b -c .【1题答案】【答案】<【解析】【分析】根据不等式的性质进行变形即可.【详解】解:∵a >b ,∴-a <-b ,∴2-a <2-b ,故答案为:<.【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.知识点二、不等式的性质2不等式的两边都乘(或除以)同一个正数,不等号的方向不变;不等式的两边都乘(或除以)同一个负数,不等号的方向改变,即如果a >b 且c >0,那么ac >bc 或a b c c >,如果a >b 且c <0,那么ac <bc 或a b c c<.【2题答案】【答案】>【解析】【分析】根据不等式的基本性质进行解答即可.【详解】解:∵x <y ,∴22x y ->-,∴2323x y -->--.故答案为:>.【点睛】本题主要考查了不等式的基本性质,注意不等式两边同时乘以或除以一个负数,不等号方向发生改变.一.选择题(共10小题)的【3题答案】【答案】B【解析】【分析】根据不等式的性质可进行求解.【详解】解:由x y >可知:A 、22x y >,正确,故不符合题意;B 、22x y -<-,原不等式错误,故符合题意;C 、22x y ->-,正确,故不符合题意;D 、33x y +>+,正确,故不符合题意;故选B .【点睛】本题主要考查不等式的性质,熟练掌握不等式的性质是解题的关键.【4题答案】【答案】A【解析】【分析】根据不等式的性质即可求出答案.【详解】不等式21x -<,两边同时除以2-,可得12x >-,故选:A .【点睛】本题考查不等式的性质,解题的关键是正确理解不等式的性质,本题属于基础题型.【5题答案】【答案】D【解析】【分析】根据不等式的性质逐项分析判断即可求解.【详解】解:A. 若a b >,则22a b ->-,故该选项不正确,不符合题意;B. 若0a b >>,则22a b >,故该选项不正确,不符合题意;C. 若a b >,且0c >,则22ac bc >,故该选项不正确,不符合题意;D. 若a b c c>,则a b >,故该选项正确,符合题意;【点睛】本题考查了不等式的基本性质.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.【6题答案】【答案】A【解析】【分析】根据不等式的性质逐一判断即可:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A 、由a b <根据不等式的性质1,可得a c b c +<+,故此选项正确,符合题意;B 、由a b <根据不等式的性质1,可得a c b c -<-,不能得到a c b c ->-,故此选项错误,不符合题意;C 、根据不等式的性质,如果0c <则可得ac bc >,如果0c >,则ac bc <,故此选项错误,不符合题意;D 、当0c 时,22ac bc =,故此选项错误,不符合题意.故选:A .【点睛】本题主要考查了不等式的性质,熟知不等式的性质是解题的关键.【7题答案】【答案】D【解析】【分析】根据不等式的性质逐一判断即可解题.【详解】解:A.a b <,当0c ≠时,22ac bc <,故A 不成立;B.a b <,1313a b ->-,故B 不成立;C.a b <,22a b -<-,故C 不成立;D.33a b a b ++<,<,故D 成立;【点睛】本题考查了不等式的性质,注意不等式的两边都乘或除以一个负数,不等号的方向改变.【8题答案】【答案】B【解析】【分析】根据实数a b c ≤≤,逐项给出a b c 、、的值举例,看能否举出反例,即可得到答案.【详解】解:当12a =-,0b =,1c =时,2a c b +>,故A 选项错误;当12a =-,0b =,1c =时,2a b c +<,故C 选项错误;当2a =-,0b =,1c =时,a c b +<,故D 选项错误;故选:B .【点睛】本题考查不等式的性质,可以通过举反例来得到结论.【9题答案】【答案】C【解析】【分析】根据不等式的性质,进行计算即可解答.【详解】解:由题意得:D A >①,A C B D +>+②,B C A D +=+③,由③得:C A D B =+-④,把④代入②得:A A D B B D ++->+,22A B >,A B ∴>,0A B ∴->,由③得:A B C D -=-,0D A -> ,0C D ∴->,C D ∴>,C D A B ∴>>>,即B A D C <<<.故本题选:C .【点睛】本题考查了不等式的性质,熟练掌握不等式的性质是解题的关键.【10题答案】【答案】C【解析】【分析】设123234a b c k ---===,则21a k =+,32b k =+,34c k =-,可得6S k =+;利用a ,b ,c 为非负实数可得k 的取值范围,从而求得最大值.【详解】解:设123234a b c k ---===,则21a k =+,32b k =+,34c k =-,()()()2132346S a b c k k k k ∴=++=++++-=+.a ,b ,c 为非负实数,210320340k k k +≥⎧⎪∴+≥⎨⎪-≥⎩,解得:1324k -≤≤.∴当12k =-时,S 取最小值,当34k =时,S 取最大值.116522S ∴=-+=最小值,327644S =+=最大值.故选:C .【点睛】本题主要考查了不等式的性质,非负数的应用,设123234a b c k ---=== 是解题的关键.【11题答案】【答案】A【解析】【分析】根据0ab >,可得a 和b 同号,再根据a b c +<和0a b c ++=,即可判断a ,b ,c 的符号.【详解】解:∵0ab >,∴a 和b 同号,又∵a b c +<和0a b c ++=,∴0a <,0b <,0c >.故选:A .【点睛】本题主要考查了有理数的运算法则,解题的关键是掌握两数相乘,同号得正,异号得负;同号两数相加,取它们相同的符号;异号两数相加,取绝对值较大数的符号.【12题答案】【答案】C【解析】【详解】由已知条件,根据不等式的性质求得b≤23-<0和a≥43-;然后根据不等式的基本性质求得a b ≤2 和当a >0时,b a <0;当43-≤a <0时,b a ≥12;所以A 、当a >0时,b a <0,即b a 的最小值不是12,故本选项错误;B 、当43-≤a <0时,b a ≥12,b a 有最小值是12,无最大值;故本选项错误;C 、a b有最大值2;故本选项正确;D 、a b 无最小值;故本选项错误.故选C .考点:不等式的性质.二.填空题(共10小题)【13题答案】【答案】3a <-【解析】【分析】根据题意,在不等式x y >的两边同时乘以(3)a +后不等号改变方向,根据不等式的性质3,得出30a +<,解此不等式即可求解.【详解】解:∵x y >,且(3)(3)a x a y +<+,∴30a +<,则3a <-.故答案为:3a <-.【点睛】本题考查了不等式的性质,解题的关键是掌握不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.【答案】>【解析】【分析】根据不等式的性质可进行求解.【详解】∵a<0,∴0a ->,故答案为:>.【点睛】本题主要考查不等式的性质,熟练掌握不等式的性质是解题的关键.【15题答案】【答案】>【解析】【分析】根据不等式的性质,即可解答.【详解】解:∵a b <,∴22a b ->-,故答案为:>.【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.【16题答案】【答案】<【解析】【分析】先根据不等式的性质3得 3.5m -< 3.5n -,再根据不等式的性质1即可得到结论.【详解】解:m n >,根据不等式的性质3,得 3.5m -< 3.5n -,根据不等式的性质1,得 3.51m -+< 3.51n -+,故答案为:<.【点睛】本题考查不等式的基本性质,解题关键是熟练掌握不等式的三个基本性质,特别是性质3,不等式的两边同乘以或同除以同一个负数不等号的方向改变.【17题答案】【解析】【分析】根据不等式的性质即可求解.【详解】解:∵a b <,∴22a b->-2121a b ∴-+>-+故答案为:>【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【18题答案】【答案】a <1【解析】【分析】根据不等式的性质3,可得答案.【详解】解:由题意,得a-1<0,解得a <1,故答案为a <1.【点睛】本题考查不等式的性质,利用不等式的性质是解题关键.【19题答案】【答案】-1.5<y ≤3.5【解析】【分析】先变形为x =6-2y ,根据13x -≤<列得-1≤6-2y <3,求解即可.【详解】解:∵132x y +=,∴x =6-2y ,∵13x -≤<,∴-1≤6-2y <3,解得-1.5<y ≤3.5,故答案为:-1.5<y ≤3.5.【点睛】此题考查了解一元一次不等式组,正确理解题意将方程变形得到不等式组是解题的关键.【20题答案】【答案】①. (1)> ②. 1 ③. (2)> ④. 2【解析】【分析】根据不等式的性质,即可解答.【详解】(1)若x+2>5,则x >3,根据不等式的性质1;(2)若−34x <-1,则x >43,根据不等式的性质3;故答案为(1)>,1;(2)>,3.【点睛】本题考查了不等式的性质,解决本题的关键是熟记不等式的性质.【21题答案】【答案】①. 223a -≤≤- ②. 3【解析】【分析】①由2ab =,可得2b a =,代入31b -≤≤-,即可求解,②由0b >,2ab =,可得0a >,即0a b +>,再利用完全平方公式即可作答.【详解】∵2ab =,即2b a=,①若31b -≤≤-,即231a-≤≤-,即有a<0,解得:223a -≤≤-;②若0b >,2ab =,∴0a >,即0a b +>,∵225a b +=,∴()22225229a b a b ab +=++=+⨯=,∴3a b +=.故答案为:①223a -≤≤-;②3.【点睛】本题考查了求解不等式的解,运用完全平方公式进行计算等知识,根据已知条件确定a 的符号是解答本题的关键.【22题答案】【答案】12x ≤【解析】【分析】通过找到临界值解决问题.【详解】由题意知,令3x-1=x ,x=12,此时无输出值当x >12时,数值越来越大,会有输出值;当x <12时,数值越来越小,不可能大于10,永远不会有输出值故x≤12,故答案为x≤12.【点睛】本题考查不等式的性质,解题的关键是理解题意,学会找到临界值解决问题.三.解答题(共8小题)【23题答案】【答案】(1)2a ≥(2)30a -<<【解析】【分析】(1)用加减消元法解二元一次方程组,再由题意可得21020a a +≥⎧⎨-≥⎩,求出a 的范围即可;(2)由题意可得212a a +>-,50a <,求出a 的范围即可.【小问1详解】解:325x y a x y a -=+⎧⎨+=⎩①②,①+②得21x a =+,将21x a =+代入①得,2y a =-,x ,y 为非负数,∴21020a a +≥⎧⎨-≥⎩,解得2a ≥;【小问2详解】解:x y > ,212a a ∴+>-,3a ∴>-,20x y +< ,50a ∴<,<0a ∴,30a ∴-<<.【点睛】本题考查二元一次方程组的解,一元一次不等式组的解,熟练掌握加减消元法和代入消元法解二元一次方程组、并准确求解一元一次不等式组的解集是解题的关键.【24题答案】【答案】见解析【解析】【分析】先求出1211(1)n n n n n n ---=--,根据0n <,得出10n -<,从而得出()10n n ->,即10(1)n n ->,从而证明结论.【详解】证明:121n n n n ----2(1)(2)(1)n n n n n ---=-1(1)n n =-∵0n<,∴10n-<,∴()10 n n->,∴121n nn n-->-.【点睛】本题主要考查了分式加减运算的应用,不等式的性质,解题的关键是熟练掌握分式加减运算法则.【25题答案】【答案】(1)354x-;(2)13<x≤133;(3)a<10.【解析】【分析】(1)解关于y的方程即可;(2)利用y满足-1<y≤2得到关于x的不等式,然后解不等式即可;(3)先解方程组,由x>2y得不等式,解不等式即可.【详解】(1)y=354x-;故答案为:y=354x-;(2)根据题意得:-1<354x-≤2,解得:13<x≤133;(3)解方程组345,2, x yx y a-=⎧⎨+=⎩得:2553510axay+⎧=⎪⎪⎨-⎪=⎪⎩,,∵x>2y,∴255a+>2×3510a-,解得:a<10.【点睛】本题考查了解不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.【26题答案】【答案】(1)123x y -=;(2)1x <-;(3)53k -<≤【解析】【分析】(1)移项得出3y =1−2x ,方程两边都除以3即可;(2)根据题意得出不等式,求出不等式的解集即可;(3)解方程组求出x 、y ,得出不等式组,求出不等式组的解集即可.【详解】解:(1)2x +3y =1,3y =1−2x ,123x y -=;(2)123x y -=>1,解得:x <−1,即若实数y 满足y >1,x 的取值范围是x <−1;(3)联立2x +3y =1和2x −3y =k 得:23123x y x y k +=⎧⎨-=⎩,解方程组得:1416k x k y +⎧=⎪⎪⎨-⎪=⎪⎩,由题意得:1141163k x k y +⎧=>-⎪⎪⎨-⎪=≥-⎪⎩,解得:−5<k ≤3.【点睛】本题考查了解二元一次方程和解二元一次方程组、解一元一次不等式组等知识点,能正确解方程组或不等式组是解此题的关键.【27题答案】【答案】(1)>,> (2)a 2+2a -15>-12(3)当a ≥3时,a 2+5a -19≥a +2;当2<a <3时,a 2+5a -19<a +2【解析】【分析】(1)当a >2时,a +5>2+5=7>0;a +7>2+7=9>0;a -2>2-2>0;根据同号得正判断即可.(2)运用完全平方公式,变形后,运用(1)的性质计算即可.(3)先对代数式作差后,分差值大于等于零和小于零,讨论计算即可.【小问1详解】∵a >2,∴a +5>0;∵a >2,∴a -2>0,a +7>0,(a +7)(a -2)>0,故答案为:>,>.【小问2详解】因为2a +2a -15=2(1)a +-16,当a =1时,2a +2a -15=-12,所以当a >1时,2a +2a -15>-12.【小问3详解】先对代数式作差,(2a +5a -19)-(a +2)=2a +4a -21=2(2)a +-25,当2(2)a +-25>0时,a <-7或a >3.因此,当a ≥3时,2a +5a -19≥a +2;当2<a <3时,2a +5a -19<a +2.【点睛】本题考查了不等式的性质及其应用,熟练掌握性质,灵活运用完全平方公式作差计算是解题的关键.【28题答案】【答案】(1)<=<,, (2)无论取什么值,总有244m m ≤+;理由见解析(3)222246x x x +≤++,理由见解析(4)当2x >-时,2337x x +>--;当2x =-时,2337x x +=--;当<2x -时,2337x x +<--.【解析】【分析】(1)当3m =时,当2m =时,当3m =-时,分别代入计算,再进行比较即可;(2)根据()()224420m m m +-=-≥,即可得出答案;(3)根据 ()()()222246220x x x x ++-+=+≥ ,即可得出答案;(4)先求出()()2337510x x x +---=+,再分当2x >-时,当2x =-时,当<2x -时分别进行讨论即可.【小问1详解】当3m =时,2412413m m =+=,,则244m m <+,当2m =时,24848m m =+=,,则244m m =+,当3m =-时,2412413m m =-+=,,则244m m <+,故答案为;<=<,,;【小问2详解】∵()()224420m m m +-=-≥,∴无论取什么值,总有244m m ≤+;【小问3详解】∵()()()222224624420x x x x x x ++-+=+=+≥+∴222246x x x +≤++;【小问4详解】∵()()2337510x x x +---=+,∴当2x >-时,51002337x x x +>+>--,,当2x =-时,51002337x x x +=+=--,,当<2x -时,51002337x x x +<+<--,.【点睛】本题考查了不等式的性质、完全平方公式、非负数的性质,整式的加减,实数大小的比较等知识点,关键是根据两个式子的差比较出数的大小.【29题答案】【答案】(1)①70y -<<;②95x y -<+<(2)122a b ⎧=⎪⎨⎪=-⎩【解析】【分析】(1)①结合题干给出的思路,根据5x y -=,可得5x y =+,结合2x >-,可得7y >-,即有70y -<<;②由①得:70y -<<,同理可得25x -<<②,问题随之得解;(2)结合题干给出的思路,可得555510a b y b ++<-<-①、63333b a x b ++<<-②,即有11883513b a x y b ++<-<-,结合103526x y -<-<,可得1188101326b a b ++=-⎧⎨-=⎩,解方程即可求解.【小问1详解】①5x y -= ,5x y ∴=+,2x >- ,52y ∴+>-,7y ∴>-,0y < ,70y ∴-<<,②由①得:70y -<<,255y ∴-<+<,即25x -<<②,7205y x ∴--<+<+,x y ∴+的取值范围是95x y -<+<;【小问2详解】1x y a -=+ ,1x y a ∴=++,x b <- ,1y a b ∴++<-,1y a b ∴<---,1y a b ∴->++,2y b > ,2y b ∴-<-,12a b y b ∴++<-<-,即()21b y a b <<-++,即555510a b y b ++<-<-①,105555b y a b ∴<<---,()21b y a b <<-++ 211b a y a b ∴++<++<-,21b a x b ∴++<<-,63333b a x b ∴++<<-②,∴①+②得:11883513b a x y b ++<-<-,35x y - 的取值范围是103526x y -<-<,1188101326b a b ++=-⎧∴⎨-=⎩,解得:122a b ⎧=⎪⎨⎪=-⎩.【点睛】本题考查了一元一次不等式组的运用、一元一次不等式的解法,解题的关键是熟练掌握一元一次不等式的解法,并能进行推理论证.【30题答案】【答案】(1)5;(2)m=1,n=-3,a=-1;(3)a的取值范围为1a>.【解析】【分析】(1)将方程组中的两个方程直接相加,整体代换求值;(2)通过对比得到关于m,n,a的方程组求值;(3)利用不等式的性质得到关于a的不等式,求出a的范围.【小问1详解】解:2324x y ax y a+=-+⎧⎨+=⎩①②,①+②得:3x+3y=3a+3,∵3x+3y=18,∴3a+3=18,∴a=5.故答案为:5;【小问2详解】解:∵(m+2n)x+(2m+n)y=(-m+4n)a+3m,又因为-5x-y=16,∴2521 (4)316m nm nm n a m+=-⎧⎪+=-⎨⎪-++=⎩,∴m=1,n=-3,a=-1;【小问3详解】解:已知关于x,y的不等式组2324x y ax y a+>-+⎧⎨+<⎩①②,①×3得:3x+6y>-3a+9④,②×(-1)得:-2x-y>-4a⑤,④+⑤得:x+5y>-7a+9,∵x+5y=2,∴2>-7a+9.∴a>1.【点睛】本题考查二元一次方程组,不等式,根据题意建立适当的方程和不等式是求解本题的关键.。

等式的基本性质

等式的基本性质
(4) 怎样从等式 2πR=2πr 得到等式
R=r?
练习: 用适当的数或式子填空,使所得的结果仍是等
式,并说明根据等式的哪一条性质以及怎样变形的.
(1) 如果 2x+7=10 , 那么 2x=10-
;
(2) 如果 5x=4x+7 , 那么 5x -
=7;
(3) 如果 2a=1.5 , 那么 6a=
99
(4)怎样从等式 x y 得到等式 x = y ?
33
(5)怎样从等式 5x=4x+3 得到等式 x=3 ?
等式的基本性质
等式的性质1: 等式两边都加上(或减去)同 一个数或整式,所得的等式仍然成立。
如果 a b, 那么 a c b c
等式的性质2: 等式两边都乘(或除以)同一个 数(除数不能是0),所得的等式仍然成立。
的是( )
A. ma 1 mb 1
B.

1 2
ma


1 2
mb
C. ma 3 mb 3
D. a b
快乐练习
二、选择填空
(2)如果 ma mb,那么下列等式中不一定成立
的是( D )
A. ma 1 mb 1
B.

1 2
ma


1 2
mb
C. ma 3 mb 3
(D) 若1 x,则x 1
2.下列各式变形正确的是( A ).
( A)由3x 1 2x 1 得3x 2x 1 1 (B)由5 1 6得5 6 1 (C)由2( x 1) 2 y 1得x 1 y 1 (D)由2a 3b c 6得2a c 18b

不等式的性质(1)

不等式的性质(1)
cc
等式基本性质1:
等式的两边都加上(或减去)同一个整 式,等式仍旧成立
如果a=b,那么a±c=b±c
等式基本性质2:
等式的两边都乘以(或除以)同一个不 为0的数,等式仍旧成立 如果a=b,那么ac=bc或 a b(c≠0),
cc
不等式是否具有类似的性质呢? ➢如果 7 > 3 那么 7+5 __>__ 3+ 5 , 7 -5__>__3-5 ➢如果-1< 3, 那么-1+2_<___3+2, -1- 4__<__3 - 4
今天学的是不等式的三个基本性质 ➢不等式的基:.就是说,不等式两边都 加上 (或减去)同一个数(或式子),不等号方向不变。
➢不等式基本性质2: 如果a >b,c > 0 ,那么 ac>bc(或
a c
b c
) 就是说
不等式的两边都乘以(或除以)同一个正数,不等号
(2)正确,根据不等式基本性质1.
(3)正确,根据不等式基本性质2. . (4)正确,根据不等式基本性质1.
(5)不对,应分情况逐一讨论. 当a>0时,3a>2a.(不等式基本性质2) 当 a=0时,3a=2a. 当a<0时,3a<2a.(不等式基本性质3)
例2:设a>b,用“<”或“>”填空并 口答是根据哪一条不等式基本性质。
如果a>b, 那么a±c>b±c
不等式基本性质1:不等式的 两边都加上(或减去)同一 个整式,_不__等__号__的__方__向__不__变__。
如果_a_>_b_,那么_a±__c_>_b_±__c_.
不等式还有什么类似的性质呢?
➢如果 7 > 3 那么 7×5 _>___ 3× 5 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方程两边都加上或都减去同一个数或同一个整式,方程的解不变。

方程两边都乘或除以一个不为0的数,方程的解不变。

对顶角相等。

经过直线上或直线外一点,有且只有一条直线与已知直线垂直。

直线外一点与直线上各点连结的所有线段中,垂线最短。

经过已知直线外一点,有且只有一条直线和已知直线平行。

同位角相等,两直线平行。

内错角相等,两直线平行。

同旁内角互补,两直线平行。

两直线平行,同位角相等。

两直线平行,内错角相等。

两直线平行,同旁内角互补。

同底数幂相乘,底数不变,指数相加。

幂的乘方,底数不变,指数相乘。

积的乘方,等于各因式乘方的积。

同底数幂相乘,底数不变,指数相减。

单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它们的指数做积的一个因式。

单项式与多项式相乘,用单项式去成多项式的每一项,再把积相加。

多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

两个数的和与这两个数的差的积,等于这两个数的平方差。

三角形任意两边之和大于第三边。

三角形任意两边之差小于第三边。

三角形的一个外角等于和它不相邻的两个内角的和。

三角形的一个外角大于任何一个和它不相邻的内角。

直角三角形的两个锐角互余。

三角形的三条角平分线交于一点。

三角形的三条中线交于一点。

三角形的三条高所在的直线交于、、一点。

全等三角形的对应边相等,对应角相等。

如果两个三角形的三边对应相等,那么这两个三角形全等。

这个事实可以简写成“边边边”或“SSS”
如果两个三角形的两边和它们的夹角对应相等,那么这两个三角形全等。

这个事实可以简写成“边角边”或“SAS”。

如果两个三角形的两个角和它们的夹边对应相等,那么这两个三角形全等。

这个事实可以简写成“角边角”或“ASA”。

如果两个三角形的两个角和其中一个角的对边对应相等,那么这两个三角形全等。

这个事实可以简写成“角角边”或“AAS”。

斜边和一条直角边对应相等的两个直角三角形全等。

这个事实可以简写成“斜边、直角边”或“HL”。

kkx5173。

相关文档
最新文档