西邮MATLAB光的圆孔衍射实验报告
Matlab数字衍射光学实验(二).
clear;close all;lamda=0.6328;%入射光波长,单位umz=200.0e3;%传播距离,单位umh=2e3;w=2e3;%模拟光波的大小,单位umdx=10.0;dy=10.0;%抽样间隔,单位umM=h/dx;N=w/dy;%抽样点数a0=1;%初始振幅大小为 1x0=0;y0=0;%模拟光源位于坐标原点k=2*pi/lamda;%波数%---------球面波表示-------%[x,y]=meshgrid(-M/2*dx:(M-1)/2*dx,-N/2*dy:(N-1)/2*dy);%M个点,两点之间的距离为dxSphFunct=a0/z.*exp(i*k*z).*exp(i*pi/(lamda*z).*((x-x0).^2+(y-y 0).^2));%球面波I=abs(SphFunct).^2;%光强度I1=I./max(max(I));%归一化强度,二维所以求两次max()Ph=angle(SphFunct);%相位,函数angle()表示取相位figure(1);imagesc(I1);%做出球面波的强度分布图,没有强度变化,均匀光斑,这里做了彩图figure(2);P=(Ph+pi)/(2*pi);%归一化相位imshow(P);%画出球面波的相位分布图figure(3);imagesc(P);%画出球面波相位分布的彩图clear;close all;lamda=0.6328;%入射光波长umh=2e3;w=2e3;%模拟光波的大小um dx=10.0;dy=10.0;%抽样间隔umM=h/dx;N=w/dy;%抽样点数A=1;%振幅为 1k=2*pi/lamda;%波数theta=pi/6;%设定theta为30度a=pi/2-theta;%波矢与x轴夹角b=pi/2;%波矢与y轴夹角c=theta;%波矢与z轴夹角z=0;%-----------平面波----------%[x,y]=meshgrid(-M/2*dx:(M-1)/2*dx,-N/2*dy:(N-1)/2*dy);%抽样网格pingmianbo=A.*exp(i*k.*(x.*cos(a)+y.*cos(b)+z.*cos(c)));%平面波公式I=abs(pingmianbo).^2;%光强度I1=I./max(max(I));%归一化强度Ph=angle(pingmianbo);%相位figure(1);imshow(I1)%做出强度分布图,没有强度变化,均匀光斑figure(2);imagesc(I1);%画出强度分布彩图figure(3);P=(Ph+pi)/(2*pi);%归一化相位imshow(P);%画出相位分布图像figure(4);imagesc(P);%做出相位分布彩图clear;close all;lamda=0.6328;%入射光波长umz=100.0e3;%传播距离umh=2e3;w=2e3;%模拟光波的大小umdx=10.0;dy=10.0;%抽样间隔umM=h/dx;N=w/dy;%抽样点数a0=1;%设定振幅x1=-0.2e3;y1=0;%相当于将上图逆时针旋转90度后的S1,距原点0.2mmx2=0.2e3;y2=0;%相当于将上图逆时针旋转90度后的S2,距原点0.2mmk=2*pi/lamda;%波数%---------球面波---------%[x,y]=meshgrid(-M/2*dx:(M-1)/2*dx,-N/2*dy:(N-1)/2*dy);%抽样网格wave1=a0/z.*exp(i*k*z).*exp(i*pi/(lamda*z).*((x-x1).^2+(y-y1).^2));%第一束球面波wave2=a0/z.*exp(i*k*z).*exp(i*pi/(lamda*z).*((x-x2).^2+(y-y2).^2));%第二束球面波wave=wave1+wave2;%两束球面波相遇,即为两者复振幅之和I=abs(wave).^2;%光强度I1=I./max(max(I));%归一化强度Ph=angle(wave);%相位函数angle()表示取相位figure(1);imshow(I1);%画出球面波的强度分布图,没有强度变化,均匀光斑figure(2);P=(Ph+pi)/(2*pi);%归一化相位imshow(P);%画出球面波的相位分布图figure(3);imagesc(P);%画出球面波的相位分布彩图clear;close all;lamda=0.6328;%入射光波长umh=2e3;w=2e3;%模拟光波的大小umdx=10.0;dy=10.0;%抽样间隔umM=h/dx;N=w/dy;%抽样点数A=1;%设定振幅为 1k=2*pi/lamda;%波数theta1=-0.25*pi/180;%第一束平面波与z轴夹角theta2=0.25*pi/180;%第二束平面波与z轴夹角a1=pi/2-theta1;%波矢与x轴夹角b1=pi/2;%波矢与y轴夹角c1=theta1;%波矢与z轴夹角a2=pi/2-theta2;%波矢与x轴夹角b2=pi/2;%波矢与y轴夹角c2=theta2;%波矢与z轴夹角z=0e3;%----------平面波表示----------%[x,y]=meshgrid(-M/2*dx:(M-1)/2*dx,-N/2*dy:(N-1)/2*dy);%二维抽样网格wave1=A.*exp(i*k.*(x.*cos(a1)+y.*cos(b1)+z.*cos(c1)));%第一束平面波wave2=A.*exp(i*k.*(x.*cos(a2)+y.*cos(b2)+z.*cos(c2)));%第二束平面波wave=wave1+wave2;%两束光相遇I=abs(wave).^2;%光强度I1=I./max(max(I));%归一化强度Ph=angle(wave);%相位figure(1);imshow(I1);%画出强度分布图figure(2);imagesc(I1);%画出强度分布彩图figure(3);P=(Ph+pi)/(2*pi);%归一化强度imshow(P);%做出相位分布图figure(4);imagesc(P);%做出相位分布彩图。
光的圆孔衍射实验报告包含流程图
光的圆孔衍射实验报告包含流程图
报告标题:光的圆孔衍射实验报告
一、实验目的
通过实验,探究光的圆孔衍射现象,并研究影响衍射现象的因素。
二、实验器材
光源、圆孔、光屏、尺子、卡尺、光学平台等。
三、实验流程
1. 准备器材,将圆孔固定在光学平台上,并将光屏放置在离圆孔一定距离处;
2. 开始实验前,先关闭其他的灯光,确保实验室内光线较暗,开启光源,并调节光源的亮度;
3. 在圆孔照射下,观察光屏上形成的光斑,可根据距离和光斑大小计算光的波长;
4. 更换不同大小的圆孔,继续观察光屏上的光斑大小变化,探究孔径对衍射图案的影响;
5. 更换不同大小的光屏,观察光斑在不同距离处的直径变化,探究距离对衍射图案的影响。
四、实验结果及分析
1. 随着圆孔孔径的减小,衍射光斑的直径变大,并且衍射条纹逐渐变模糊,说明孔径大小对衍射现象有较大的影响;
2. 在同一距离处,光斑大小随距离的增加而变小,并且衍射的条纹变得更加清晰,证明距离的变化也对衍射现象有影响;
3. 根据光斑的大小和距离,可计算出光的波长,实验结果与理论值较为接近,证明实验的可靠性。
五、实验结论
光的圆孔衍射现象受圆孔孔径和观察距离影响,通过实验可计算出光的波长。
该实验有助于深入理解光的物理性质及其在各种实际应用中的重要作用。
六、实验思考
1. 在实验中,如何避免环境光的干扰对衍射实验结果的影响?
2. 制作圆孔时,如何保证孔径大小的精度?
3. 如何利用衍射现象进行精密测量?。
西安邮电大学光学实验matlab仿真结果分析与程序
光学实验实验报告课程名称:光学实验*名:***学院:电子工程学院系部:光电子技术系专业:电子科学与技术年级:科技1201学号:********指导教师:**2014年12 月24 日光波在介质中界面上的反射及透射特性一.实验目的:1.掌握反射系数及透射系数的概念;2.掌握反射光与透射光振幅和相位的变化规律; 3.掌握布儒斯特角和全反射临界角的概念。
二.实验原理:1 反射定律和折射定律光由一种介质入射到另一种介质时,在界面上将产生反射和折射。
现假设二介质为均匀、透明、各向同性介质,分界面为无穷大的平面,入射、反射和折射光均为平面光波,其电场表示式为)(0r k t i l l l l e E E ⋅--=ω l =i, r, t式中,脚标i 、r 、t 分别代表入射光、反射光和折射光;r 是界面上任意点的矢径,在图2-1所示的坐标情况下,有r=ix+jy图2-1 平面光波在界面上的反射和折射 图2-2 k i 、k r 、k t 三波矢关系根据电磁场的边界条件,可以得到如下关系)(0)(t i r i tr i =⋅-=⋅-==r k k r k k ωωω 这些关系表明:①入射光、反射光和折射光具有相同的频率;②入射光、反射光和折射光均在入射面内,k i 、k r 和k t 波矢关系如图2-2所示。
进一步可得tt i i r r i i sin sin sin sin θθθθk k k k == 或tt i i r r i i sin sin sin sin θθθθn n n n ==即介质界面上的反射定律和折射定律,它们给出了反射光、折射光的方向。
折射定律又称为斯涅耳(Snell)定律。
2 菲涅耳公式 s 分量和p 分量通常把垂直于入射面振动的分量称做s 分量,把平行于入射面振动的分量称做p 分量。
为讨论方便起见,规定s 分量和p 分量的正方向如图2-3所示。
图2-3 s 分量和p 分量的正方向反射系数和透射系数 假设介质中的电场矢量为)(i 0e r k t l l l E E ⋅--=ω l =i, r, t其s 分量和p 分量表示式为)(i 0e r k t lm lm l E E ⋅--=ω m =s,p则定义s 分量、p 分量的反射系数、透射系数分别为tmtm m im rmm E E t E E r 0000==菲涅耳公式假设界面上的入射光、反射光和折射光同相位,根据电磁场的边界条件及s 分量、p 分量的正方向规定,可得ts rs s E E E i =+和2tp 1rp 1ip cos cos cos θθθH H H =-利用E H εμ=,上式变为22ts 11rs is cos cos )(θθn E n E E =-再利用折射定律,消去E ts ,经整理可得)sin()sin(1212is rs θθθθ+-=E E 根据反射系数定义,得到)sin()sin(2121θθθθ+--=s r221111cos cos cos 2θθθn n n t s +=将所得到的表示式写成一个方程组,就是著名的菲涅耳公式:212122112*********tan tan tan tan cos cos cos cos )sin()sin(θθθθθθθθθθθθ+--=+-=+--==n n n n E E r is rs s 2121211221122121002sin 2sin 2sin 2sin cos cos cos cos )tan()tan(θθθθθθθθθθθθ+-=+-=+-==n n n n E E r iprp p 21121121112100221111212100cos cos cos 2)cos()sin(sin cos 2cos cos cos 2)sin(sin cos 2θθθθθθθθθθθθθθθθn n n E E t n n n E E t iptp p is ts s +=-+==+=+==这些系数首先是由菲涅耳用弹性波理论得到的,所以又叫做菲涅耳系数。
实验7 衍射的Matlab模拟
实验7衍射的Matlab模拟一、实验目的:掌握衍射的matlab模拟。
二、实验内容:1)单个圆孔夫朗和费衍射的matlab模拟2)双圆孔夫朗和费衍射的matlab模拟3)同一波长,狭缝数量分别为1、2、3、6、9、10时候的夫朗和费衍射的matlab模拟4)对4个不同波长的光照射时,狭缝数量分别为1、3时候的夫朗和费衍射的matlab 模拟5)单个圆孔菲涅尔衍射的matlab模拟6)模拟圆孔(或者单缝)衍射时,衍射屏到接收屏距离不同的时候衍射的图样1)clearclclam=632.8e-9;a=0.0005;f=1;m=300;ym=4000*lam*f;ys=linspace(-ym,ym,m);xs=ys;n=200;for i=1:mr=xs(i)^2+ys.^2;sinth=sqrt(r./(r+f^2));x=2*pi*a*sinth./lam;hh=(2*BESSELJ(1,x)).^2./x.^2;b(:,i)=(hh)'.*5000;B=b/max(b);endimage(xs,ys,b);colormap(gray(n));figure;plot(xs,B);colormap(green);-2.5-2-1.5-1-0.500.51 1.52 2.5x 10-3-2.5-2-1.5-1-0.50.511.522.5x 10-3-3-2-10123x 10-300.10.20.30.40.50.60.70.80.912)%双圆孔夫琅禾费衍射clear all close all clc %lam=632.8e-9;a=0.0005;f=1;m=300;ym=4000*lam*f;ys=linspace(-ym,ym,m);xs=ys;n=200;for i=1:m r=xs(i)^2+ys.^2;sinth=sqrt(r./(r+f^2));x=2*pi*a*sinth./lam;h=(2*BESSELJ(1,x)).^2./x.^2;d=10*a;deltaphi=2*pi*d*xs(i)/lam;hh=4*h*(cos(deltaphi/2))^2;b(:,i)=(hh)'.*5000;end image(xs,ys,b);colormap(gray(n));-2.5-2-1.5-1-0.500.51 1.52 2.5x 10-3-2.5-2-1.5-1-0.50.511.522.5x 10-33)lamda=500e-9;%波长N=[1236910];for j=1:6a=2e-4;D=5;d=5*a;ym=2*lamda*D/a;xs=ym;%屏幕上y 的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for i=1:n sinphi=ys(i)/D;alpha=pi*a*sinphi/lamda;beta=pi*d*sinphi/lamda;B(i,:)=(sin(alpha)./alpha).^2.*(sin(N(j)*beta)./sin(beta)).^2;B1=B/max(B);end NC=256;%确定灰度的等级Br=(B/max(B))*NC;figure(j);subplot(1,2,1);image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2);plot(B1,ys,'k');end-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为1-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为2-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为3-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为9狭缝数为6-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.0254)lamda=400e-9:100e-9:700e-9;%波长N=[13];a=2e-4;D=5;d=5*a;for j=1:4ym=2*lamda(j)*D/a;xs=ym;%屏幕上y 的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for k=1:2for i=1:n sinphi=ys(i)/D;alpha=pi*a*sinphi/lamda(j);beta=pi*d*sinphi/lamda(j);B(i,:)=(sin(alpha)./alpha).^2.*(sin(N(k)*beta)./sin(beta)).^2;B1=B/max(B);end NC=256;%确定灰度的等级Br=(B/max(B))*NC;figure();subplot(1,2,1);image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2);狭缝数为10plot(B1,ys,'k');end end-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02Lamda=400nm,N=1-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025Lamda=400nm,N=3Lamda=500nm,N=1-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03Lamda=500nm,N=3Lamda=600nm,N=1-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.04Lamda=600nm,N=3Lamda=700nm,N=1-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.045)clearclcN=300;r=15;a=1;b=1;I=zeros(N,N);[m,n]=meshgrid(linspace(-N/2,N/2-1,N));D=((m-a).^2+(n-b).^2).^(1/2);i=find(D<=r);I(i)=1;subplot(2,2,1);imagesc(I)colormap([000;111])axis imagetitle('衍射前的图样')L=300;M=300;[x,y]=meshgrid(linspace(-L/2,L/2,M));lamda=632.8e-6;k=2*pi/lamda;z=1000000;Lamda=700nm,N=3h=exp(j*k*z)*exp((j*k*(x.^2+y.^2))/(2*z))/(j*lamda*z); H=fftshift(fft2(h));%传递函数B=fftshift(fft2(I));%圆孔频谱G=H.*B;U=fftshift(ifft2(G));Br=(U/max(U));subplot(2,2,2);imshow(abs(U));axis image;colormap(hot)%figure,imshow(C);title('衍射后的图样');subplot(2,2,3);mesh(x,y,abs(U));subplot(2,2,4);plot(abs(Br))6)lamda=500e-9;%波长N=1;%缝数,可以随意更改变换a=2e-4;D=3:7;d=5*a;for j=1:5ym=2*lamda*D(j)/a;xs=ym;%屏幕上y的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for i=1:nsinphi=ys(i)/D(j);alpha=pi*a*sinphi/lamda;beta=pi*d*sinphi/lamda;B(i,:)=(sin(alpha)./alpha).^2.*(sin(N*beta)./sin(beta)).^2;B1=B/max(B);endNC=256;%确定灰度的等级Br=(B/max(B))*NC;figure();subplot(1,2,1)image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2)plot(B1,ys,'k');end-0.4-0.200.20.4-0.015-0.01-0.00500.0050.010.01500.51-0.015-0.01-0.0050.0050.010.015D=3m-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025D=5m D=4m-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.04D=7m D=6m。
基于MATLAB的矩孔、单缝、圆孔夫琅和费衍射概诉
课程设计任务书学生姓名:专业班级:指导教师:工作单位:信息工程学院题目: 夫琅和费矩孔、单缝、圆孔衍射图样一、设计目的了解MA TLAB软件的基本知识,基本的程序设计,软件在高等数学和工程数学中的应用,学会使用软件进行数值计算和控制工程中的应用。
二、设计内容和要求1.绘制弗朗禾费矩孔、单缝和圆孔衍射图样,可以是二维的或三维的,也可以两种都有。
改变矩孔、单缝和圆孔的参数,比较衍射条纹的变化。
2. 学习Matlab语言的概况和Matlab语言的基本知识。
3.学习Matlab语言的程序设计。
三、初始条件计算机;Matlab软件。
四、时间安排1、2015年01月19日,任务安排,课设具体实施计划与课程设计报告格式的要求说明。
2、2015年01月20日,查阅相关资料,学习Matlab语言的基本知识,学习MATLAB语言的应用环境、调试命令,绘图功能函数等。
3、2015年01月21日至2015年01月22日,Matlab课程设计制作和设计说明书撰写。
4、2015年01月23日,上交课程设计成果及报告,同时进行答辩。
指导教师签名:2015年01 月19日系主任(或负责教师)签名:2015年01 月19日目录摘要 (I)1.设计的内容及要求 (1)1.1设计的目的 (1)1.2设计任务要求 (1)2.设计原理及设计思路 (1)2.1夫琅和费干涉理论 (1)2.1.1夫琅和费圆孔衍射 (2)2.1.2夫琅和费矩孔衍射 (2)2.1.3夫琅和费单缝衍射 (2)2.2设计思路 (3)3.仿真及分析 (4)4.心得和体会 (8)参考文献 (8)摘要物理光学理论较为复杂抽象,实验现象的演示对条件要求高。
采用MATLAB7.0强大的函数作图功能对矩孔、单缝、圆孔的夫琅和费衍射进行模拟,建立直观形象并且精确完整的理论模型,并附上程序代码,将干涉理论联系起来,分析衍射和干涉的本质。
从而加深对夫琅和费原理、概念、和图像的理解。
通过使用MATLAB编写程序,不仅理解了物理思想,而且了解了运用软件解决物理问题的方法。
圆孔矩孔的菲涅尔衍射模拟(matlab实现)-工程光学
工程光学综合练习-----圆孔、矩孔的菲涅尔衍射模拟圆孔和矩孔的菲涅尔衍射模拟一、原理由惠更斯-菲涅尔原理可知接收屏上的P点的复振幅可以表示为其中为衍射屏上的复振幅分布,为倾斜因子。
根据基尔霍夫对此公式的完善,有设衍射屏上点的坐标为(x1, y1),接收屏上点的坐标为(x, y),衍射屏与接收屏间距离为z1,当满足菲涅尔近似条件时,即此时可得到菲涅尔衍射的计算公式把上式指数项中的二次项展开,并改写成傅里叶变换的形式,可以写成上式为菲涅尔衍射的傅里叶变换表达式,它表明除了积分号前面的一个与x1、y1无关的振幅和相位因子外,菲涅尔衍射的复振幅分布是孔径平面的复振幅分布和一个二次相位因子乘积的傅里叶变换。
相对于夫琅和费衍射而言,菲涅尔衍射的观察屏距衍射屏不太远。
在菲涅尔衍射中,输入变量和输出变量分别为衍射孔径平面的光场分布和观察平面的光场以及光强分布,考虑到这三个量都是二维分布,而且Matlab主要应用于矩阵数值运算,所以本程序选择用二维矩阵来存储衍射孔径平面和观察平面的场分布,并分别以矩阵的列数和行数来对应平面的直角坐标值(x, y)以及(x1, y1)。
二、圆孔菲涅尔衍射用MATLAB分别构造表示衍射屏和接收屏的二维矩阵。
注意使两矩阵阶次相同,考虑到运算量的要求,采样点数不能过多,所以每个屏的x和y方向各取200到300点进行运算。
根据式(4),选取合适的衍射屏和接收屏尺寸和相距的距离,模拟结果如下:取典型的He-Ne激光器波长λ=632.8nm,固定衍射屏和接收屏尺寸和相距的距离,分别取不同的圆孔半径,得到以下三组衍射图样,其圆孔半径分别为12mm,20mm,50mm图1(r=12mm)图2(r=20mm)图3(r=50mm) 三、矩孔的菲涅尔衍射步骤与上述相同,仅需改变与衍射屏形状对应的矩阵。
这里选择矩孔的长宽相等,分别为15mm,20mm,30mm,其衍射图样及强度分布如图4、5、6图4(a=b=15mm)图5(a=b=20mm)图 6(a=b=30mm)四、MATLAB 程序%所有长度单位为毫米lamda=632.8e-6; k=2*pi/lamda;z=1000000;%先确定衍射屏N=300; %圆屏采样点数a=15;b=15;[m,n]=meshgrid(linspace(-N/2,N/2-1,N));I=rect(m/(2*a)).*rect(n/(2*b));q=exp(j*k*(m.^2+n.^2)/2/z);subplot(2,2,1); %圆孔图像画在2行2列的第一个位置 imagesc(I) %画衍射屏的形状colormap([0 0 0; 1 1 1]) %颜色以黑白区分axis imagetitle('衍射屏形状')L=300;M=300; %取相同点数用于矩阵运算若为圆孔,方框内替换为以下程序 r=12;a=1;b=1; I=zeros(N,N); [m,n]=meshgrid(linspace(-N/2,N/2-1,N)); D=((m-a).^2+(n-b).^2).^(1/2); i=find(D<=r); I(i)=1; %孔半径范围内透射系数为1[x,y]=meshgrid(linspace(-L/2,L/2,M));h=exp(j*k*z)*exp((j*k*(x.^2+y.^2))/(2*z))/(j*lamda*z);%接收屏H =fftshift(fft2(h));B=fftshift(fft2(I)); %圆孔频谱G=H.*B; %公式中为卷积,空间域中相卷相当于频域中相乘U= fftshift(ifft2(G)); %求逆变换,得到复振幅分布矩阵Br=(U/max(U)); %归一化subplot(2,2,2);imshow(abs(U));axis image;colormap(hot)% figure,imshow(C);title('衍射后的图样');subplot(2,2,3);mesh(x,y,abs(U)); %画三维图形subplot(2,2,4);plot(abs(Br))。
matlab数字衍射光学实验讲义(二)
实验注意事项(必读)1.没有弄清楚实验内容者,禁止接触实验仪器。
2.注意激光安全。
绝对不可用眼直视激光束,或借助有聚光性的光学组件观察激光束,以免损伤眼睛。
3.注意用电安全。
He-Ne激光器电源有高压输出,严禁接触电源输出和激光头的输入端,避免触电。
4.注意保持卫生。
严禁用手或其他物品接触所有光学元件(透镜、反射镜、分光镜等)的光学表面;特别是在调整光路中,要避免手指碰到光学表面。
5.光学支架上的调整螺丝,只可微量调整。
过度的调整,不仅损坏器材,且使防震功能大减。
6.实验完成后,将实验所用仪器摆放整齐,清理一下卫生。
Matlab数字衍射光学实验二计算机仿真过程是以仿真程序的运行来实现的。
仿真程序运行时,首先要对描述系统特性的模型设置一定的参数值,并让模型中的某些变量在指定的范围内变化,通过计算可以求得这种变量在不断变化的过程中,系统运动的具体情况及结果。
仿真程序在运行过程中具有以下多种功能:1)计算机可以显示出系统运动时的整个过程和在这个过程中所产生的各种现象和状态。
具有观测方便,过程可控制等优点;2)可减少系统外界条件对实验本身的限制,方便地设置不同的系统参数,便于研究和发现系统运动的特性;3)借助计算机的高速运算能力,可以反复改变输入的实验条件、系统参数,大大提高实验效率。
因此.计算机仿真具有良好的可控制性(参数可根据需要调整)、无破坏性(不会因为设计上的不合理导致器件的损坏或事故的发生)、可复现性(排除多种随机因素的影响,如温度、湿度等)、易观察性(能够观察某些在实际实验当中无法或者难以观察的现象和难以实现的测量,捕捉稍纵即逝的物理现象,可以记录物理过程的每一个细节)和经济性(不需要贵重的仪器设备)等特点。
Matlab是MathWorks公司于1982年推出的一套高性能的数值计算和可视化软件。
它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便、界面友好的用户环境。
它还包括了ToolBox(工具箱)的各类问题的求解工具,可用来求解特定学科的问题。
圆孔衍射相对光强分布实验报告完整版
[实验数据处理与分析]
1.菲涅尔圆孔衍射实验数据与分析
表1实验中所测数据
序号
1
2
3
亮斑位置
90cm
32cm
18cm
暗斑位置
45cm25Leabharlann m16cm图1半波带法
表2亮暗斑的理论计算区间
K
5
[实验思考题]
1.在满足远场条件下,本实验中,并没有使用透镜而获得夫琅禾费衍射图样。请简述远场条件。
答:本实验中,采用激光作为光源,因激光束的发散角很小( ),单缝的宽度a也很小,所以采用激光束直接照射狭缝,可认为是平行光入射。[1]
图2远场条件图示
参考文献:
[1]刘希,任天航,白翠琴,马世红.夫琅禾费衍射光强的反常分布和Matlab模拟[J],物理实验Vol.33,No.8,2013
8.5
根据艾里斑直径计算公式: ,得到艾里斑直径的理论值:
表4艾里斑直径的理论值
f=74cm
孔径(mm)
0.5
0.3
0.15
艾里斑直径(mm)
2.28
3.8
7.6
f=92cm
孔径(mm)
0.5
0.3
0.15
艾里斑直径(mm)
2.8
4.8
9.4
表5相对误差分析
f=74cm
孔径(mm)
0.5
0.3
0.15
基础物理实验(Ⅱ)课程实验报告
实验2.9圆孔衍射相对光强分布
(2)实验步骤
1.参照图沿平台放置个光学元件,如果没有透镜,也可以不用透镜,调节共轴,获得衍射图样。注意检查扩束后是否为平行光。
圆孔衍射实验报告
圆孔衍射实验报告圆孔衍射实验报告引言衍射是光学中的重要现象,指的是当光通过一个孔或者绕过一个物体时,光波会发生偏折和干涉,产生新的波纹和光斑。
圆孔衍射实验是研究光的衍射现象的经典实验之一。
本报告旨在详细介绍圆孔衍射实验的原理、实验装置和实验结果,并对实验结果进行分析和讨论。
实验原理圆孔衍射实验基于惠更斯-菲涅耳原理,即光波在传播过程中会沿着各个方向传播,并在传播的过程中发生干涉。
当光通过一个圆孔时,光波会在孔的边缘发生衍射,形成一系列的光环,称为菲涅耳衍射环。
这些衍射环的大小和形状与孔的大小和光的波长有关。
实验装置圆孔衍射实验的装置主要包括光源、圆孔、屏幕和测量仪器。
光源可以选择白光或单色光源,如激光。
圆孔通常由金属或者玻璃制成,直径可以调节。
屏幕用于接收和观察衍射光斑。
测量仪器可以是尺子、卡尺或者显微镜,用于测量光斑的直径和位置。
实验步骤1. 将光源放置在适当的位置,并调整光源的亮度和位置,使光线垂直照射到圆孔上。
2. 调节圆孔的直径,观察和记录不同直径下的衍射光斑。
3. 将屏幕放置在合适的位置,接收和观察衍射光斑。
4. 使用测量仪器测量光斑的直径和位置,并记录数据。
实验结果通过圆孔衍射实验,我们观察到了一系列的衍射光斑。
随着圆孔直径的增大,衍射光斑的直径也增大,但是衍射环的亮度和清晰度会减弱。
当圆孔直径非常小的时候,衍射光斑会呈现出明亮而清晰的环状结构。
而当圆孔直径逐渐增大时,衍射光斑会变得模糊,环状结构逐渐消失。
讨论与分析圆孔衍射实验的结果符合光的波动性质。
当光通过一个孔时,光波会沿着各个方向传播,并在传播的过程中发生干涉。
衍射光斑的大小和形状取决于孔的大小和光的波长。
当孔的直径非常小的时候,光波会在孔的边缘发生强烈的衍射,形成明亮而清晰的衍射环。
而当孔的直径逐渐增大时,衍射光斑的清晰度和亮度会减弱,因为光波的干涉效应逐渐减弱。
圆孔衍射实验还可以用来测量光的波长。
根据衍射光斑的直径和圆孔的直径,可以利用菲涅耳衍射公式计算出光的波长。
Matlab数字衍射光学实验讲义(一)
2015 级光电工程专业综合实验-信息光学专题实验
imagesc(z) figure(2) mesh(z) %%---------------------matlab 代码-------------------------
改变参数 a,b 的取值,观察模拟结果变化。 4)第一类贝塞尔函数 besselj(v,z)
1. 实验目的:
掌握基本的 Matlab 编程语言,了解其编程特点;模拟几种常用函数,了解其编 程过程及图像显示命令函数,掌握 Matlab 画图方法;通过设计制作一系列光学 研究物体掌握其编程方法; 掌握光波的 matlab 编程原理及方法, 初步了解 Matlab
2
2015 级光电工程专业综合实验-信息光学专题实验
4
2015 级光电工程专业综合实验-信息光学专题实验
figure(4) surfl(x,y,z)%三维 %%---------------------matlab 代码-------------------------
改变变量 a,b 观察模拟图像变化。
x 2 x 3)高斯函数:一维高斯函数 Gauss exp a a
二维高斯函数: sinc
x y x y , sinc sinc ,a,b 为正数。 a b a b
2 2 x y x y x y Gauss , Gauss Gauss exp a b a b a b
二维 sinc 函数: sinc
x y x y , sinc sinc ,a,b 为正数。 a b a b
%%---------------------matlab 代码------------------------clear %清除内存 close all %关闭所有窗口 [x,y] = meshgrid(-2:.05:2, -2:.05:2); %设置二维网格 z=sinc(x).*sinc(y); %sinc 函数 figure(1) imshow(z) %二维灰度图 figure(2) imagesc(z) %二维彩色 figure(3) mesh(z)%三维
Matlab在物理学中的应用--光的衍射
光的干涉和衍射一、实验目的① 学习用用模拟实验方法探究光的干涉和衍射问题.② 进一步熟悉MA TLAB 编程.二、实验内容和要求1. 双缝干涉模拟实验杨氏双缝干涉实验是利用分波前法获得相干光束的典型例子. 如图2.24所示,单色光通过两个窄缝s 1,s 2射向屏幕,相当于位置不同的两个同频率同相位光源向屏幕照射的叠合,由于到达屏幕各点的距离(光程)不同引起相位差,叠合的结果是在有的点加强,在有的点抵消,造成干涉现象.图2.24 双缝干涉示意图 考虑两个相干光源到屏幕上任意点P 的距离差为1221r r r r r ==∆=- (2.19) 引起的相位差为2πrϕλ∆=设两束相干光在屏幕上P 点产生的幅度相同,均为A 0,则夹角为φ的两个矢量A 0的合成矢量的幅度为A =2A 0 cos(φ/2)第二章 数理探究试验 135光强B 正比于振幅的平方,故P 点光强为B =4B 0cos 2(φ/2) (2.20)运行sy211.m 程序得到干涉条纹如图2.27所示.clear all %sy211.mlam=500e-9; %输入波长a=2e-3; D=1;ym=5*lam*D/a; xs=ym; %设定光屏的范围n=101;ys=linspace(-ym,ym,n); % 把光屏的y 方向分成101点for i=1:nr1=sqrt((ys(i)-a/2).^2+D^2);r2=sqrt((ys(i)+a/2).^2+D^2);phi=2*pi*(r2-r1)/lam;B(i,:)=4*cos(phi/2).^2;endN=255; % 确定用的灰度等级为255级Br=(B/4.0)*N; %使最大光强对应于最大灰度级(白色)subplot(1,2,1)image(xs,ys,Br); %画干涉条纹colormap(gray(N));subplot(1,2,2)plot(B,ys) %画出光强变化曲线图2.25中左图是光屏上的干涉条纹,右图是光屏上沿y 轴方向光强的变化曲线. 从图中也不难看出,干涉条纹是以点o 所对应的水平线为对称,沿上下两侧交替,等距离排列,相邻亮条纹中心间距为2.5×10-4m. -0.4-0.200.20.4-1.5-1-0.500.511.5x 10图2.25 单色光的干涉条纹这与理论推导和实验结果基本一致.下面我们从理论上加以推导,由上面的式(2.19)可得22212121()()2d r r r r r r y -=+-=-1.5 -1 -0.5 0 0.5 1 1.5 -0.4 -0.2 0 0.4 0.2基于MA TLAB 的数学实验136 考虑到a ,y 很小,(r 1+r 2)=2D ,所以21D r r y a-= 这样就得到点P 处于亮条纹中心的条件为20122D y k k a λ==±±,,,, (2.21) 因此,亮条纹是等间距的,相邻条纹间距为94150010 2.510m 0.002D a λ--=⨯=⨯. 问题2.39:推导出点P 处于暗条纹中心的条件并与模拟结果相比较,看是否一致? 考虑到纯粹的单色光不易获得,通常都有一定的光谱宽度,这种光的非单色性对光的干涉会产生何种效应,下面我们用MA TLAB 计算并仿真这一问题.非单色光的波长不是常数,必须对不同波长的光分别处理再叠加起来. 我们假定光源的光谱宽度为中心波长的±10%,并且在该区域均匀分布. 近似取11根谱线,相位差的计算表达式求出的将是不同谱线的11个不同相位. 计算光强时应把这11根谱线产生的光强叠加并取平均值,即211012π4cos ()211k kk k r B B ϕλϕ=∆==∑ 将程序sy211.m 中的9,10两句换成以下4句,由此构成的程序就可仿真非单色光的干涉问题. N1=11;dL=linspace(-0.1,0.1,N1);%设光谱相对宽度±10%, lam1=lam*(1+dL');%分11根谱线,波长为一个数组 Phi1=2*pi*(r2-r1)./ lam1;%从距离差计算各波长的相位差 B(i, :)=sum(4*cos(Phi1/2).^2)/N1; %叠加各波长并影响计算光强运行修改后的程序得到的干涉条纹如图2.26所示. 可以看出,光的非单色性导致干涉现象的减弱,光谱很宽的光将不能形成干涉.第二章 数理探究试验 137-0.4-0.200.20.4-1.5-1-0.500.511.5-3-3图2.26 非单色光的干涉条纹 2. 单缝衍射的模拟实验一束单色平行光通过宽度可调的狭缝,射到其后的光屏上. 当缝宽足够小时,光屏上形成一系列亮暗相间的条纹,这是由于从同一个波前上发出的子波产生干涉的结果. 当光源到衍射屏的距离和光屏到衍射屏的距离都是无穷大时,即满足远场条件时,我们称这种衍射为夫琅禾费衍射. 所以夫琅禾费衍射中入射光和衍射光都是平行光. 为了模拟单缝衍射现象,我们把单缝看成一排等间隔光源,共NP 个光源分布在A ~B 区间内,离A 点间距为yp ,则屏幕上任一点S 处的光强为NP 个光源照射结果的合成.如图2.27所示,子波射线与入射方向的夹角ϕ称为衍射角,0=ϕ时,子波射线通过透镜后,必汇聚到O 点,这个亮条纹对应的光强称为主极大. NP 个光源在其他方向的射线到达S 点的光程差,应等于它们到达平面AC 的光程差,即sin yp ϕ∆=,其中sin ys Dϕ≈ ys 为S 点的纵坐标,则与A 点光源位相差为2π2πyP ys Dαλλ=∆=s O基于MA TLAB 的数学实验 138 -0.4-0.200.20.4-1.5-1-0.500.511.5-3-3图2.28 单缝衍射条纹图2.27 单缝衍射的模拟实验设单缝上NP 个光源的振幅都为1,在x ,y 轴上的分量各为cos sin αα,,合振幅的平方为:()()22COSa COSa ∑+∑. 又光强正比于振幅的平方,所以相对于O 点主极大光强也为22(cos )(sin )0I I αα=+∑∑程序sy212.m 模拟了单缝衍射现象,这里取波长λ=500nm ,缝宽a =1mm ,透镜焦距D =1m ,运行结果如图2.28所示.clear all %sy212.mlam=500e-9;a=1e-3;D=1;ymax=3*lam*D/a; %屏幕范围(沿y 向)Ny=51; %屏幕上的点数(沿y 向)ys=linspace(-ymax,ymax,Ny);NP=51;yP=linspace(0,a,NP); %把单缝分成NP 个光源for i=1:Ny %对屏幕上y 向各点作循环SinPhi=ys(i)/D;alpha=2*pi*yP*SinPhi/lam; SumCos=sum(cos(alpha)); SumSin=sum(sin(alpha));B(i,:)=(SumCos^2+SumSin^2)/NP^2;end N=255; % 确定用的灰度等级为255级%使最大光强对应于最大灰度级(白色)Br=B/max(B)*N; subplot(1,2,1)%画衍射条纹,用灰度级颜色图image(ymax,ys,Br); colormap(gray(N));subplot(1,2,2)%画屏幕上光强曲线 plot(B,ys,'*',B,ys);grid;分析图2.28中的衍射条纹,我们可以看出所有亮暗条纹都平行于单缝,O 点光强为最大,这都和理论推导结果相一致.问题2.40: 从理论上讲,中央亮条纹的半角宽和第一条暗条纹的衍射角都应等于λ/a ,各次极大角宽都等于中央亮条纹的半角宽,图2.28模拟的衍射条纹符合这个结论吗?3. 光栅衍射的模拟实验有大量等宽度、等间距的平行狭缝组成的光学系统称为衍射光栅. 单缝宽度a 和刻第二章 数理探究试验 139痕宽度b 之和称为光栅常数d ,d =a +b . 光栅衍射条纹是单缝衍射和缝间干涉的共同结果.设光栅有N 条狭缝,透镜焦距为D ,理论分析可以得到,光屏上P 点的夫琅禾费衍射光强I P /I 0分布为220sin sin ()()sin P I N I αβαβ= 式中sin sin sin s y a d Dππαϕβϕϕλλ==≈,, 运行程序sy213.m 得到衍射条纹如图2.29所示.clear all %sy213.mlam=632.8e-9; N=2;a=2e-4; D=5;d=5*a;ym=1.89*lam*D/a;xs=ym; %设定光屏的范围n=1001;ys=linspace(-ym,ym,n); % y 方向分成1001点for i=1:nSinphi=ys(i)/D;alpha=pi*a*Sinphi/lam;beta=pi*d*Sinphi/lam;B(i, :)=(sin(alpha)./alpha).^2.*(sin(N*beta)./sin(beta)).^2 ;B1=B/max(B); %将最大光强设为1endNC=255;Br=B/max(B)*NC;subplot(1,2,1)image(xs,ys,Br); %画衍射条纹colormap(gray(NC))subplot(1,2,2)plot(B1,ys) %画出沿y 向的相对光强变化曲线问题2.41:程序sy213.m 中d =5a ,观察图2.29衍射条纹,看有无缺级现象,为什么?改变sy213.m 中的波长、缝宽、光栅常数值,看衍射条纹有何变化?试加以解释.基于MA TLAB 的数学实验 140-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025图2.29 光栅衍射条纹第二章数理探究试验141 《车辆制冷与空调》第二次作业参考答案《车辆隔热壁》、《制冷方法与制冷剂》、《蒸汽压缩式制冷》一.简答题1.什么是隔热壁的传热系数?它的意义是什么?答:隔热壁的传热系数指车内外空气温度相差1℃时,在一小时内,通过一平方米热壁表面积所传递的热量。
西安邮电大学光学仿真报告
电子工程学院光学课程设计实验报告姓名:系部:光电子技术系专业:年级:学号:指导教师:地点:2号实验楼234时间:2015/12/21--2015/12/31光波偏振态的仿真一、实验目的通过对两相互垂直偏振态的合成1.掌握圆偏振、椭圆偏振及线偏振的概念及基本特性; 2.掌握偏振态的分析方法。
任务与要求:对两相互垂直偏振态的合成进行计算,绘出电场的轨迹。
要求计算在ϕ=0、ϕ=π/4、ϕ=π/2、ϕ=3π/4、ϕ=π、ϕ=5π/4、ϕ=3π/2、ϕ=7π/4时,在E x =E y 及E x =2E y 情况下的偏振态曲线并总结规律 二、实验原理平面光波是横电磁波,其光场矢量的振动方向与光波传播方向垂直。
一般情况下,在垂直平面光波传播方向的平面内,光场振动方向相对光传播方向是不对称的,光波性质随光场振动方向的不同而发生变化。
将这种光振动方向相对光传播方向不对称的性质,称为光波的偏振特性。
它是横波区别于纵波的最明显标志。
1) 光波的偏振态根据空间任一点光电场E 的矢量末端在不同时刻的轨迹不同,其偏振态可分为线偏振、圆偏振和椭圆偏振。
设光波沿z 方向传播,电场矢量为)cos(00ϕω+-=kz t E E为表征该光波的偏振特性,可将其表示为沿x 、y 方向振动的两个独立分量的线性组合,即y x jE iE E +=其中)cos()cos(00y y y x x x kz t E E kz t E E ϕωϕω+-=+-=将上二式中的变量t 消去,经过运算可得ϕϕ2002020sin cos 2=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛y yx xyyxxE E E E E E E E 式中,φ=φy -φx 。
这个二元二次方程在一般情况下表示的几何图形是椭圆,如图1-1所示。
图1-1 椭圆偏振诸参量在上式中,相位差φ和振幅比E y /E x 的不同,决定了椭圆形状和空间取向的不同,从而也就决定了光的不同偏振状态。
圆孔矩孔的菲涅尔衍射模拟(matlab实现)~工程光学
工程光学综合练习-----圆孔、矩孔的菲涅尔衍射模拟圆孔和矩孔的菲涅尔衍射模拟一、原理由惠更斯-菲涅尔原理可知接收屏上的P点的复振幅可以表示为其中为衍射屏上的复振幅分布, 为倾斜因子。
根据基尔霍夫对此公式的完善,有设衍射屏上点的坐标为(x1,y1),接收屏上点的坐标为(x,y),衍射屏与接收屏间距离为z1,当满足菲涅尔近似条件时,即此时可得到菲涅尔衍射的计算公式把上式指数项中的二次项展开,并改写成傅里叶变换的形式,可以写成上式为菲涅尔衍射的傅里叶变换表达式,它表明除了积分号前面的一个与x1、y1无关的振幅和相位因子外,菲涅尔衍射的复振幅分布是孔径平面的复振幅分布和一个二次相位因子乘积的傅里叶变换。
相对于夫琅和费衍射而言,菲涅尔衍射的观察屏距衍射屏不太远。
在菲涅尔衍射中,输入变量和输出变量分别为衍射孔径平面的光场分布和观察平面的光场以及光强分布,考虑到这三个量都是二维分布,而且Matlab主要应用于矩阵数值运算,所以本程序选择用二维矩阵来存储衍射孔径平面和观察平面的场分布,并分别以矩阵的列数和行数来对应平面的直角坐标值(x,y)以及(x1,y1)。
二、圆孔菲涅尔衍射用MATLAB分别构造表示衍射屏和接收屏的二维矩阵。
注意使两矩阵阶次相同,考虑到运算量的要求,采样点数不能过多,所以每个屏的x和y方向各取200到300点进行运算。
根据式(4),选取合适的衍射屏和接收屏尺寸和相距的距离,模拟结果如下:取典型的He-Ne激光器波长=632.8nm,固定衍射屏和接收屏尺寸和相距的距离,分别取不同的圆孔半径,得到以下三组衍射图样,其圆孔半径分别为12mm,20mm,50mm图1(r=12mm)图2(r=20mm)图3(r=50mm)三、矩孔的菲涅尔衍射步骤与上述相同,仅需改变与衍射屏形状对应的矩阵。
这里选择矩孔的长宽相等,分别为15mm,20mm,30mm,其衍射图样及强度分布如图4、5、6图4(a=b=15mm)图5(a=b=20mm)图6(a=b=30mm)四、MATLAB程序%所有长度单位为毫米lamda=632.8e-6;[m,n]=meshgrid(linspace(-N/2,N/2-1,N));I=rect(m/(2*a)).*rect(n/(2*b));q=exp(j*k*(m.^2+n.^2)/2/z);subplot(2,2,1);%圆孔图像画在2行2列的第一个位置imagesc(I)%画衍射屏的形状colormap([0 0 0; 1 1 1])%颜色以黑白区分axis imagetitle('衍射屏形状')L=300;M=300;%取相同点数用于矩阵运算[x,y]=meshgrid(linspace(-L/2,L/2,M));h=exp(j*k*z)*exp((j*k*(x.^2+y.^2))/(2*z))/(j*lamda*z);%接收屏H =fftshift(fft2(h));B=fftshift(fft2(I));%圆孔频谱G=H.*B; %公式中为卷积,空间域中相卷相当于频域中相乘U= fftshift(ifft2(G));%求逆变换,得到复振幅分布矩阵Br=(U/max(U));%归一化subplot(2,2,2);imshow(abs(U));axis image;colormap(hot)% figure,imshow(C);title('衍射后的图样');subplot(2,2,3);mesh(x,y,abs(U)); %画三维图形subplot(2,2,4);plot(abs(Br))。
西安邮电大学光学实验matlab仿真结果分析与程序
光学实验实验报告课程名称:光学实验姓名:伍金霄学院:电子工程学院系部:光电子技术系专业:电子科学与技术年级:科技1201学号:指导教师:刘娟2014年12 月24 日光波在介质中界面上的反射及透射特性一.实验目的:1.掌握反射系数及透射系数的概念;2.掌握反射光与透射光振幅和相位的变化规律; 3.掌握布儒斯特角和全反射临界角的概念。
二.实验原理:1 反射定律和折射定律光由一种介质入射到另一种介质时,在界面上将产生反射和折射。
现假设二介质为均匀、透明、各向同性介质,分界面为无穷大的平面,入射、反射和折射光均为平面光波,其电场表示式为)(0r k t i l l l l e E E ⋅--=ω l =i, r, t式中,脚标i 、r 、t 分别代表入射光、反射光和折射光;r 是界面上任意点的矢径,在图2-1所示的坐标情况下,有r=ix+jy图2-1 平面光波在界面上的反射和折射 图2-2 k i 、k r 、k t 三波矢关系根据电磁场的边界条件,可以得到如下关系)(0)(t i r i tr i =⋅-=⋅-==r k k r k k ωωω 这些关系表明:①入射光、反射光和折射光具有相同的频率;②入射光、反射光和折射光均在入射面内,k i 、k r 和k t 波矢关系如图2-2所示。
进一步可得tt i i r r i i sin sin sin sin θθθθk k k k == 或tt i i r r i i sin sin sin sin θθθθn n n n ==即介质界面上的反射定律和折射定律,它们给出了反射光、折射光的方向。
折射定律又称为斯涅耳(Snell)定律。
2 菲涅耳公式 s 分量和p 分量通常把垂直于入射面振动的分量称做s 分量,把平行于入射面振动的分量称做p 分量。
为讨论方便起见,规定s 分量和p 分量的正方向如图2-3所示。
图2-3 s 分量和p 分量的正方向反射系数和透射系数 假设介质中的电场矢量为)(i 0e r k t l l l E E ⋅--=ω l =i, r, t其s 分量和p 分量表示式为)(i 0e r k t lm lm l E E ⋅--=ω m =s,p则定义s 分量、p 分量的反射系数、透射系数分别为tmtm m im rmm E E t E E r 0000==菲涅耳公式假设界面上的入射光、反射光和折射光同相位,根据电磁场的边界条件及s 分量、p 分量的正方向规定,可得ts rs s E E E i =+和2tp 1rp 1ip cos cos cos θθθH H H =-利用E H εμ=,上式变为22ts 11rs is cos cos )(θθn E n E E =-再利用折射定律,消去E ts ,经整理可得)sin()sin(1212is rs θθθθ+-=E E 根据反射系数定义,得到)sin()sin(2121θθθθ+--=s r221111cos cos cos 2θθθn n n t s +=将所得到的表示式写成一个方程组,就是著名的菲涅耳公式:212122112*********tan tan tan tan cos cos cos cos )sin()sin(θθθθθθθθθθθθ+--=+-=+--==n n n n E E r is rs s 2121211221122121002sin 2sin 2sin 2sin cos cos cos cos )tan()tan(θθθθθθθθθθθθ+-=+-=+-==n n n n E E r iprp p 21121121112100221111212100cos cos cos 2)cos()sin(sin cos 2cos cos cos 2)sin(sin cos 2θθθθθθθθθθθθθθθθn n n E E t n n n E E t iptp p is ts s +=-+==+=+==这些系数首先是由菲涅耳用弹性波理论得到的,所以又叫做菲涅耳系数。
圆孔矩孔的菲涅尔衍射模拟(matlab实现)-工程光学
圆孔矩孔的菲涅尔衍射模拟(m a t l a b实现)-工程光学-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII工程光学综合练习-----圆孔、矩孔的菲涅尔衍射模拟圆孔和矩孔的菲涅尔衍射模拟一、原理由惠更斯-菲涅尔原理可知接收屏上的P点的复振幅可以表示为其中为衍射屏上的复振幅分布,为倾斜因子。
根据基尔霍夫对此公式的完善,有设衍射屏上点的坐标为(x1, y1),接收屏上点的坐标为(x, y),衍射屏与接收屏间距离为z1,当满足菲涅尔近似条件时,即此时可得到菲涅尔衍射的计算公式把上式指数项中的二次项展开,并改写成傅里叶变换的形式,可以写成上式为菲涅尔衍射的傅里叶变换表达式,它表明除了积分号前面的一个与x1、y1无关的振幅和相位因子外,菲涅尔衍射的复振幅分布是孔径平面的复振幅分布和一个二次相位因子乘积的傅里叶变换。
相对于夫琅和费衍射而言,菲涅尔衍射的观察屏距衍射屏不太远。
在菲涅尔衍射中,输入变量和输出变量分别为衍射孔径平面的光场分布和观察平面的光场以及光强分布,考虑到这三个量都是二维分布,而且Matlab主要应用于矩阵数值运算,所以本程序选择用二维矩阵来存储衍射孔径平面和观察平面的场分布,并分别以矩阵的列数和行数来对应平面的直角坐标值(x, y)以及(x1, y1)。
二、圆孔菲涅尔衍射用MATLAB分别构造表示衍射屏和接收屏的二维矩阵。
注意使两矩阵阶次相同,考虑到运算量的要求,采样点数不能过多,所以每个屏的x和y方向各取200到300点进行运算。
根据式(4),选取合适的衍射屏和接收屏尺寸和相距的距离,模拟结果如下:取典型的He-Ne激光器波长λ=,固定衍射屏和接收屏尺寸和相距的距离,分别取不同的圆孔半径,得到以下三组衍射图样,其圆孔半径分别为12mm,20mm,50mm图 1(r=12mm)图 2(r=20mm)图 3(r=50mm)三、矩孔的菲涅尔衍射步骤与上述相同,仅需改变与衍射屏形状对应的矩阵。
用MATLAB语言模拟光衍射实验
第14卷第4期大 学 物 理 实 验 V ol.14N o.42001年12月出版PHY SIC A L EXPERI ME NT OF C O LLEGE Dec.2001收稿日期:2001-07-30文章编号:1007-2934(2001)04-0047-02用MAT LAB 语言模拟光衍射实验周 忆(安徽省科学技术培训中心,合肥,230031) 梁 齐(合肥工业大学,合肥,230009)摘 要:用M AT LAB 语言模拟编写了光衍射的模拟实验程度,给出了五种元件的夫琅和费衍射图。
关键词:衍射;模拟;M AT LAB 语言中图分类号:O4-39 文献标识码:A光的衍射现象是光具有波动性的重要特征,衍射无论在理论研究还是在大学物理教学中都占有较重要的地位。
笔者利用MAT LAB 较强的绘图和图像功能,针对多种衍射元件(单缝、双缝、光栅、矩孔、圆孔)编写了光衍射的模拟实验程序。
在计算机的模拟光的衍射,条件限制较少,对于衍射的实验教学是一种较好的补充。
程序首先根据衍射强度分布的理论公式及实验参数建立衍射相对强度的数据矩阵B (x ,y )然后利用image (B )和colormap (gray )命令绘出衍射图样。
同时,也绘制了衍射光强分布的二维或三维图。
单缝夫琅和费衍射的模拟结果见图1。
衍射光强公式为I =I 0(sin u/u )2,u =(πa sin θ/λ),a 是缝宽,λ是入射光的波长,θ是衍射角。
设观察屏位于单缝后正透镜的焦平面上,f 为透镜的焦距,x 为屏上横向坐标。
θ=arctan (x/f )。
模拟分成三组:第一组,λ=600nm ,f =600mm ,(a )a =0.20mm ;(b )a =0.10mm ;(c )a =0.05mm 第二组,a =0.10mm ,f =600mm ,(d )λ=500nm ;(e )a =600nm ;(f )λ=700nm第三组,a =0.10mm ,λ=600nm ,(g )f =300mm ;(h )f =600mm ;(i )f =900mm以下内容中,取λ=600nm ,f =600mm ,衍射图样横坐标x 和纵坐标y 的范围均为[-20,20]mm 。
些多边形衍射孔matlab仿真实验报告
些多边形衍射孔matlab仿真实验报告实验报告:多边形衍射孔的MATLAB仿真一、实验目的本实验旨在通过MATLAB仿真,研究多边形衍射孔对光波的衍射现象,深入理解衍射的基本原理及其在光学系统中的应用。
二、实验原理衍射是光波遇到障碍物时,绕过障碍物的边缘继续传播的现象。
当光波通过一个具有规则形状的小孔或狭缝时,会按照一定的规律扩散,形成特有的衍射图案。
多边形衍射孔是一种特殊的衍射装置,通过多边形的每个角产生不同的衍射级次,形成复杂的衍射图案。
三、实验步骤1. 打开MATLAB软件,创建一个新的脚本文件。
2. 在脚本文件中,定义多边形的边长、角度和波长等参数。
3. 使用MATLAB中的绘图函数,绘制多边形的几何形状。
4. 根据衍射公式计算多边形每个角产生的衍射光强分布。
5. 在同一幅图上绘制出衍射图案,以便观察和比较。
6. 分析衍射图案的规律和特点,理解多边形衍射孔的工作原理。
7. 清理工作空间,保存脚本文件。
四、实验结果及分析以下是实验中得到的衍射图案示例:图1:正方形衍射孔的衍射图案(请在此处插入正方形衍射孔的衍射图案)分析:从图中可以看出,正方形衍射孔产生了4个明显的衍射级次,每个级次的强度分布呈现出对称性。
这是因为正方形有4个相等的边,每个角产生的衍射级次相同。
图2:六边形衍射孔的衍射图案(请在此处插入六边形衍射孔的衍射图案)分析:六边形衍射孔产生了6个明显的衍射级次,每个级次的强度分布也呈现出对称性。
这是因为六边形有6个相等的边,每个角产生的衍射级次相同。
与正方形相比,六边形的衍射图案更加复杂,这是因为六边形的角比正方形的角更多。
通过以上实验结果,我们可以得出以下结论:多边形衍射孔产生的衍射图案具有对称性,每个角产生的衍射级次相同。
多边形的边数越多,衍射图案越复杂。
在实际应用中,可以根据需要选择不同形状的多边形衍射孔,以获得所需的衍射效果。
圆孔衍射 实验报告
圆孔衍射实验报告圆孔衍射实验报告引言:圆孔衍射是一种经典的光学现象,它是指光通过一个圆形孔径时,会在屏幕上形成一系列明暗相间的圆环。
这一现象可以用来研究光的波动性质,以及探索光的传播规律和衍射效应。
本实验旨在通过观察和测量圆孔衍射现象,深入理解光的波动性质。
实验装置与步骤:实验所需材料包括一束激光器、一个圆孔光阑、一个屏幕和一根测量尺。
首先,将激光器放置在实验台上,使其与圆孔光阑保持一定距离。
然后,将圆孔光阑放置在激光器的光路上,并调整光阑的位置和孔径大小。
最后,将屏幕放置在光路的末端,以观察和记录圆孔衍射现象。
实验结果与分析:在实验过程中,我们观察到在屏幕上形成了一系列明暗相间的圆环。
这些圆环的亮度逐渐减弱,直到消失为止。
实验结果与理论预期一致,证明了圆孔衍射的存在。
根据圆孔衍射的理论,这些圆环的出现是由于光通过圆孔后发生了衍射现象。
当光通过圆孔时,它会弯曲并扩散到周围空间,形成一系列波前。
这些波前在屏幕上相互叠加,形成了明暗相间的圆环。
圆孔衍射的衍射角度和圆环的间距与圆孔的孔径大小有关。
当孔径较小时,衍射角度较大,圆环之间的间距也较大。
相反,当孔径较大时,衍射角度较小,圆环之间的间距也较小。
这一规律可以通过实验中的测量尺来验证。
我们使用测量尺测量了圆环之间的间距,并记录了不同孔径下的测量结果。
通过分析数据,我们发现孔径大小与圆环间距之间存在着一定的关系。
具体来说,当孔径大小增大时,圆环间距也随之增大,呈现出一种线性关系。
这一结果与理论预期相符。
结论:通过本次实验,我们深入理解了圆孔衍射现象。
我们观察到了明暗相间的圆环,并通过测量尺验证了孔径大小与圆环间距之间的关系。
这一实验为我们进一步研究光的波动性质和衍射效应提供了基础。
圆孔衍射现象不仅在光学领域有重要的应用,还在其他领域中发挥着重要作用。
例如,在天文学中,圆孔衍射可以用来研究星系的形态和结构。
在生物学中,圆孔衍射可以用来研究细胞的形态和结构。
圆孔菲涅尔衍射 matlab
题目:圆孔菲涅尔衍射及其在matlab中的应用一、圆孔菲涅尔衍射简介在物理学中,菲涅尔衍射是一种由光波经过边缘或孔隙时发生的衍射现象。
而圆孔菲涅尔衍射是指当光波穿过圆孔时发生的衍射现象。
这一现象的研究不仅有助于我们理解光的传播规律,还具有广泛的应用价值。
下面我们将就圆孔菲涅尔衍射进行更深入的探讨。
1. 圆孔菲涅尔衍射原理圆孔菲涅尔衍射的原理可以简单概括为:当平行光垂直照射到孔径远小于波长的圆孔上时,光波将会在圆孔边缘发生衍射现象。
这一现象受到衍射衍射影响,使得出射光波的强度和相位发生变化,最终形成特定的衍射图样。
2. 圆孔菲涅尔衍射特点圆孔菲涅尔衍射的特点主要包括:- 衍射角度的变化会导致衍射图样的变化,这为我们定量研究光波的传播提供了重要依据。
- 圆孔菲涅尔衍射图样中会出现一系列光强和暗条纹,这种干涉现象在实际应用中具有重要意义。
3. 圆孔菲涅尔衍射的应用圆孔菲涅尔衍射在实际生活中有着广泛的应用,比如在天文望远镜、显微镜和光学仪器中的设计与制造中都有相关技术的应用。
而在数字图像处理、光栅制造以及激光技术等领域,圆孔菲涅尔衍射同样也有重要作用。
二、Matlab中的圆孔菲涅尔衍射模拟Matlab作为一款功能强大的科学计算软件,其在光学领域的应用也是非常广泛的。
关于圆孔菲涅尔衍射的模拟,我们可以借助Matlab中的光学工具箱进行实现。
1. 光学工具箱介绍Matlab中的光学工具箱提供了丰富的光学计算函数和模型,用户可以利用这些工具进行光学系统的设计、分析和优化。
在Matlab中进行圆孔菲涅尔衍射的模拟,可以很方便地实现对光波传播规律的研究。
2. 圆孔菲涅尔衍射模拟方法在Matlab中进行圆孔菲涅尔衍射的模拟可以分为以下几个步骤:- 定义圆孔的参数,比如孔径大小和光波波长等。
- 利用光学工具箱提供的函数进行光波传播的数值模拟。
- 通过对模拟结果的分析,可以得到圆孔菲涅尔衍射图样,从而深入理解菲涅尔衍射的规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光学仿真课程设计实验报告
课程名称:光学仿真课程设计
姓名:
学院:电子工程学院
系部:光电子技术系
专业:
年级:
学号:
指导教师:***
职称:讲师
时间:2013-11-18至2013-11-29
光的圆孔衍射
一、实验目的
利用基尔霍夫衍射公式对圆孔衍射进行计算。
1.改变光源位置及观察屏位置,观察远场衍射图案及艾里斑;2.近场观察距离改变衍射图案的变化;对仿真结果进行总结分析。
二、实验原理
基尔霍夫衍射定理从微分波动方程出发,利用场理论中格林定理将空间P 点的光场与其周围任一封闭封闭曲面上的个点光场建立起了联系。
对于小孔衍射问题,有一无限大不透明平面屏,其上有一开孔∑,用点光源照明,围绕P 点作一闭合曲面,闭合曲面由三部分组成:开孔∑,不透明屏部分背照面∑1,以P 为中心、R 为半径的大球部分球面∑2。
此时P 点光场幅振幅为:
E (P )=1/4π
∬[∂E ∂n (e −ikr r )−E ∂∂n (e −ikr
r
)]dσ∑=∑1+∑2
(1)在∑上,E 和∂E
∂n 的值由入射光波决定:
E =
A l
e −ikl
∂E ∂n =cos (n,l )(ik −1l )A
l
e −ikl A 是离点光源单位距离处的振幅,cos(n,l)表示外向法线n 和从S 到∑上某点Q 的矢量l 之间夹角余弦。
(2)在不透明屏背照面∑1上,E=0,∂E
∂n =0。
(3)对于∑2面,r=R ,cos(n,R)=1,且有
∂∂n (e −ikR R )=(ik −1R )e −ikR R R≫1⇒ ik e −ikR R
所以在∑2面上的积分为
14π∬e −ikR R ∑2
(∂E ∂n −ikE)dσ= 14π∬e −ikR R Ω
(∂E ∂n
−ikE)R 2dω 式中,Ω是∑2对P 点所张立体角,dω是立体角元,在辐射场中,
lim R→∞
(
∂E
∂n
−ikE)R =0 综上所述,只需考虑对孔径面∑的积分,即
E (P )=−i λ∬E (l )e −ikr r [cos (n,r )−cos (n,l)
2
]dσ∑
此事为菲涅尔-基尔霍夫衍射公式。
E(Q)=E(l)=A
l
e−ikl
K(θ)=cos(n,r)−cos (n,l)
2
C=−
i
λ
其中P点光场是∑上无穷多次波源产生的,次波源的幅振幅与入射波在该点的幅振幅E(Q)成正比,与波长λ成反比;因子(-i)表明次波源的振动相位超前于入射波π/2,;倾斜因子K(θ)表示次波的振幅在各个方向上是不同的。
三、实验流程及程序
程序:
clear all;
lamd=500e-9;
E0=10;
k=2*pi/lamd;
a=1e-3;
z1=5;
m=100;
x=linspace(-a*5,a*5,m);
y=x;
E=zeros(m,m);
for i=1:m
for j=1:m
Y=0;
for x1=linspace(-a,a,m)
X=0;
for y1=linspace(-sqrt(a^2-x1^2),sqrt(a^2-x1^2),m)
r=sqrt(z1^2+(x(i)-x1)^2+(y(j)-y1)^2);
F=(-sqrt(-1)/lamd)*E0.*exp(sqrt(-1)*k.*r)./r.*
((1+z1./r)/2)*(2*a/m)*(2*sqrt(a^2-x1^2)/m);
X=X+F;
end
Y=Y+X;
end
E(i,j)=Y;
end
end
E=abs(E).^2;
subplot(1,3,3)
imagesc(E);
subplot(1,3,1);
mesh(x,y,E);
subplot(1,3,2);
plot(x,E);
四、实验结果及结果分析
图(4)
结果分析:
1.光的衍射的特点是什么?
答:光的衍射是指光波在传播过程中遇到障碍物时,所发生的偏离直线传播的现象。
光的衍射,也叫光的绕射,即光可绕过障碍物,床波到障碍物的几何阴影区域中,并在障碍物后的观察屏上呈现出光强的不均匀分布。
2.基尔霍夫衍射积分公式与惠更斯-菲涅尔衍射积分公式的区别?
答:基尔霍夫的研究弥补了菲涅尔理论的不足,他从微分波动方程出发,利用场论中的格林定理,给出了惠更斯-菲涅尔原理较完善的数学表达式,将空间P点的光场与其周围任一封闭曲面上各点的光场建立起了联系,得到了菲涅尔理论中没有确定的倾斜因子K(θ)的具体表达式,建立起了光的衍射理论。
这个理论将光场当作标量来处理,只考虑电场或磁场的一个横向分量的标量振幅,而假定其它有关分量也可以用同样的方法独立处理,完全忽略了电磁场矢量分量间的耦合特性,因此称为标量衍射理论。
3.如何区分直线传播、菲涅尔衍射和夫琅禾费衍射?
答:根据采用的距离近似的不同,衍射区还有另一种划分方法:衍射效应可以忽略的几何投影区,衍射效应不能忽略的菲涅尔衍射区(包括在几何投影区以后的所有区域),以及衍射图样基本形状保持不变的夫琅禾费区。
这种衍射区的划分
方法认为,夫琅禾费衍射只是菲涅尔衍射的特殊情况。
菲涅尔衍射和夫琅禾费衍射是傍轴近似下的两种衍射情况,二者的区别条件是观察屏到衍射屏的距离z1与衍射孔的线度(x1,y1)之间的相对大小。
4.何为旁轴近似?
答:在一般光学系统中,对成像起主要作用的是那些与光学系统光轴夹角极小的傍轴光线。
对于傍轴光线,开孔Σ的线度和观察屏上的考察范围都远小于开孔到观察屏的距离,因此以下两个公示成立:
1)cos(n,r)≈1,于是K(θ)≈1;
2)r≈z1
这个实验在之前我们认为是难度最大的一个,本来在学到这块地方时我们对于书本上的知识也没有搞太懂,尝试做了几次试验也没有成功,我们一起分析讨论后觉得应该先掌握好最基础,最理论的东西,于是我们看了书本,不懂的地方也向老师进行了提问,在搞懂后,只是用了几个小时就完成本次实验,这次经历再次让我明白了磨刀不误砍柴工这个道理,这次实验对于我们在以后面对问题时思考的角度,着手点都有着教育意义的,我认为这次试验教会了我们以后解决问题的一种方法,对我们的帮助很大。