弧,弦与圆心角的关系定理

合集下载

圆心角与弦、弧之间的关系

圆心角与弦、弧之间的关系
证 弦 等 ( B= D) 可 证 弧 等 , A C , 即

辫 如图,  ̄A C I B D的顶点A为圆心,B为半径作圆, ) 2 A 交
A B D, C于 E, 延长 F,
证明
。 .
面. 而 . 都搪 七 即可.
交 o 于 G 求证 : = . 廓
连接

在 同 圆或等 圆 中 , 圆心 角 、 和 弦三者 之 问有 下列 关 系 : 弧
1 定理 . 在 同 圆或 等 圆 中 ,相 等 的 圆心 角 所对 的弧 相等 . 所
对 的弦也 相等 . 几何 表达 式
注意
下罔.
应刚定理时 , 在同圆 “
如 图 , QO 中 ,・ AO : C D0. B 面 , : D. 在 ・ . B O A : AB C — 2 推论 . 在 同圆 或 等 圆 中 , 等 的 两 条 弧 、 条 弦 、 个 圆心 相 两 两
在 同 心 圆 00 巾 . 4O = B
C OD. 但 ≠C AB≠C — D. D.
O = C D. B O
此 定理 是证 明弧等 、 等 、 角 弦等 的 另一 个基 本方 法.
3 圆心 角 的度数 等 于 圆心 角所对 弧 的度 数. .
倒 1 如图, A = C 求证 :B C 已知 D B , A =D
日= 4F-. B= 1 . .L .



D C l /2 LB 3 ∥B . = , = .
2 3 : . . : ・ . 威

1 5
浑 浑 噩 噩 的人 生 是 不 值 得 过 的人 ห้องสมุดไป่ตู้ 。— — 苏 格 拉 底

圆公共弦定理证明

圆公共弦定理证明

圆公共弦定理证明圆的十八个定理1、圆心角定理:在同圆或等圆中,相等的圆心角所对弧相等,所对的弦相等,所对的弦的弦心距相等。

推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等2、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形3、垂径定理:垂直弦的直径平分该弦,并且平分这条弦所对的两条弧。

推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧推论2:圆的两条平行弦所夹的弧相等4、切线之判定定理:经过半径的外端并且垂直于该半径的直线是圆的切线。

5、切线长定理:从圆外一点引圆的两条切线,他们的切线长相等,这一点与圆心的连线平分这两条切线的夹角。

6、公切线长定理:如果两圆有两条外公切线或两条内公切线,那么这两条外公切线长相等,两条内公切线长也相等。

如果他们相交,那么交点一定在两圆的连心线上。

7、相交弦定理:圆内两条弦相交,被交点分成的两条线段长的乘积相等。

8、切割线定理:从圆外一点向圆引一条切线和一条割线,则切线长是这点到割线与圆的两个交点的两条线段长的比例中项。

9、割线长定理:从圆外一点向圆引两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

10、切线的性质定理:圆的切线垂直于经过切点的半径推论1:经过圆心且垂直于切线的直线必经过切点推论2:经过切点且垂直于切线的直线必经过圆心11、弦切角定理:弦切角等于它所夹的弧对的圆周角推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等12、定理:相交两圆的连心线垂直平分两圆的公共弦13、定理:把圆分成n(n≥3):(1)依次连结各分点所得的多边形是这个圆的内接正n边形2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形14、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆15、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆16、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形17、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

圆弧长对应弦长计算公式

圆弧长对应弦长计算公式

圆弧长对应弦长计算公式
圆弧长和对应弦长之间的计算公式可以通过弧度来表示。

假设圆的半径为r,圆心角对应的弧长为s,弦长为l,圆心角为θ(弧度制),那么圆弧长和对应弦长的计算公式可以表示为,s = rθ 和l = 2rsin(θ/2)。

首先,圆弧长s与圆心角θ之间的关系可以用弧度制的定义来表示,即s = rθ,其中r是圆的半径,θ是圆心角的弧度数。

这个公式说明了圆弧长与圆心角的关系,可以通过圆心角的弧度数来计算圆弧长。

其次,对应弦长l与圆心角θ之间的关系可以用正弦函数来表示,即l = 2rsin(θ/2),其中r是圆的半径,θ是圆心角的弧度数。

这个公式说明了对应弦长与圆心角的关系,可以通过圆心角的弧度数来计算对应弦长。

综上所述,圆弧长和对应弦长之间的计算公式可以通过弧度制来表示,分别为s = rθ 和l = 2rsin(θ/2)。

这些公式可以帮助我们在已知圆的半径和圆心角的情况下计算圆弧长和对应弦长,或
者在已知圆弧长和对应弦长的情况下计算圆的半径和圆心角。

希望这样的回答能够满足你的需求。

弧、弦与圆心角关系定理(2)

弧、弦与圆心角关系定理(2)

创新探究
5、如图,已知AB是⊙O的直径,M,N分别是OA,OB的中
点,CM⊥AB,DN⊥AB。求证: AC=BD
6、如图,AB是⊙O的直径,C,D是圆上两点, 且AB=4,AC=CD=1,求BD的长。
创新探究
7、如图,AB是⊙O的直径,弦PQ交AB于
1 点M,且PM=OM,求证:AP= BQ 3
3、如图,等边△ABC的三个顶点A、B、C都在⊙O上,连接OA、 OB、OC,延长AO分别交弧BC于点P,交BC于点D,连接BD、CD。 (1)判断四边形BDCO的形状,并说明理由; (2)若⊙O的半径为r,求△ABC的边长。
ቤተ መጻሕፍቲ ባይዱ
复习:
1.在同圆(或等圆) 中,如果圆心角相等, 那么它所对的弧相等、所对的弦相等
以上三句话如没 2.在同圆(或等圆) 中,如果弧相等 ,那么 有在同圆或等圆 中,这个结论还 相等 相等 、所对的弦 所对的圆心角_____ __ __. 会成立吗?
3.在同圆(或等圆) 中,如果弦相等,那么 相等 所对的圆心角_____ 相等 、所对的弧_____.
OA2 AD2 OD 2 , 即R 2 3.62 ( R 2.4) 2 .
在Rt△OAD中,由勾股定理,得
解得 R≈3.9(m). 在Rt△ONH中,由勾股定理,得
OH ON 2 HN 2 , 即OH 3.9 2 1.52 3.6. DH 3.6 1.5 2.1 2. ∴此货船能顺利通过这座拱桥.
4、若一个圆的一条弦长恰好等于这个 圆的半径的长,则此弦所对的圆心角的 度数为 。 5、如图所示,AB和DE是⊙O的直径,弦 AC∥DE,若弦BE=3,则弦CE= 。
创新探究
1、如图,在⊙O中,弦AB=CD,AB的延长线与CD的延长线相交于 点P,直线OP交⊙O于点E、F。求证:∠APE=∠CPE。

九年级数学圆弧、弦、圆心角间的关系圆周角定理及其推论精选例题和练习..

九年级数学圆弧、弦、圆心角间的关系圆周角定理及其推论精选例题和练习..

圆周角定理及其推论一、知识点总结1.圆心角:顶点在圆心的角.注意:圆心角的底数等于它所对弧的度数.2.在同圆或等圆中,圆心角、弧、弦、弦心距中,只要有一组量相等,那么另外三组量也分别相等考点一:圆心角,弧,弦的位置关系二、弧、弦、圆心角、弦心距间的关系举例例1 如图,AB 为⊙O 的弦,点C 、D 为弦AB 上两点,且OC=OD ,延长OC 、OD 分别交⊙O 于点E 、F ,试证明弧AE=弧BF . 分析:“弧AE=弧BF”←“∠______=∠______” 把证弧相等转化为证________________. 证明:例2 如图,点O 是∠BPD 的平分线上的一点,以O 为圆心的圆和角的两边分别交于点A 、B 和C 、D .求证:AB=CD . 分析:把证明弦相等转化为证明_弦心距_相等.例3如图所示,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E ,连接AC 、 OC 、BC .(1)求证:∠ACO=∠BCD .(2)若EB=8cm ,CD=24cm ,求⊙O 的直径. 分析: (1)∠ACO=∠______, 而∠______=∠______. (2)在Rt ⊿______中,利用勾股定理列方程求例4 已知,如图,在⊿ABC 中,AD ,BD 分别平分∠BAC 和∠ABC ,延长AD 交⊿ABC 的外接圆于E ,连接BE .求证:BE=DE . 分析:把证BE=DE 转化为证∠____=∠____. CDBF E ONMDCB AOEAO DC DA1.如图1,在⊙O中,P是弦AB的中点,CD是过点P的直径,则下列结论中不正确的是()2.如图2,BE是半径为6的圆D的14圆周,C点是BE上的任意一点,△ABD 是等边三角形,则四边形ABCD的周长P的取值范围是()2、已知AB^、CD^是同圆的两段弧,且AB^=2CD^,则弦AB与2CD之间的关系为()A、AB=2CDB、AB<2CDC、AB>2CDD、不能确定4、下列语句中正确的是()A、相等的圆心角所对的弧相等B、平分弦的直径垂直于弦C、长度相等的两条弧是等弧D、经过圆心的每一条直线都是圆的对称轴5、在一扇形统计图中,有一扇形的圆心角为60°,则此扇形占整个圆的()6、有下列说法:①等弧的长度相等;②直径是圆中最长的弦;③相等的圆心角对的弧相等;④圆中90°角所对的弦是直径;⑤同圆中等弦所对的圆周角相等.其中正确的有()7、如图3,AB是⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出下列五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧AE是劣孤DE的2倍;⑤AE=BC.其中正确结论的序号是()图1图2图38.如图所示,⊙O半径为2,弦,A为弧BD的中点,E为弦AC的中点,且在BD上,则四边形ABCD的面积为9.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是CAD^上一点(不与C、D重合),求证:∠CPD=∠COB;(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.3.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.1.如图1,∠A 是⊙O 的圆周角,且∠A =35°,则∠OBC=_____.2.如图2,圆心角∠AOB=100°,则∠ACB= .3:如图3,AB 是⊙O 的直径,点C D E ,,都在⊙O 上,若C D E ==∠∠∠,则A B +=∠∠ º. 4:如图4,⊙O 的直径CD 过弦EF 的中点G ,40EOD ∠=,则DCF ∠= .图2 图14.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.注:有直径时,常添加辅助线,构造直径所对的圆周角,由此转化为直角三角形的问题.考点2:圆周角定理1、如图,△ABC 中,∠A=60°,BC 为定长,以BC 为直径的⊙O 分别交AB ,AC 于点D ,E .连接DE ,已知DE=EC .下列结论:①BC=2DE ;②BD+CE=2DE .其中一定正确的有( )2.一个圆形人工湖如图所示,弦AB 是湖上的一座桥,已知桥AB 长100m ,测得圆周角∠ACB=45°,则这个人工湖的直径AD 为( )3.如图AB 是⊙O 的直径, AC^所对的圆心角为60°, BE^所对的圆心角为20°,且∠AFC=∠BFD ,∠AGD=∠BGE ,则∠FDG 的度数为( )4. 如图,AB 是⊙O 的直径,C ,D 两点在⊙O 上,若∠C=40°,则∠ABD 的度数为( )1题图 2题 3题4题5:已知:如图,AD•是⊙O•的直径,∠ABC=•30•°,则∠CAD=_______.CBO A O AB C 图3 B C D E O EF C DG O 图46:已知⊙O 中,30C ∠=,2cm AB =,则⊙O 的半径为cm .7.已知:如图等边ABC △内接于⊙O ,点P 是劣弧BC ⋂上的一点(端点除外),延长BP 至D ,使BD AP =,连结CD .(1)若AP 过圆心O ,如图①,请你判断PDC △是什么三角形?并说明理由. (2)若AP 不过圆心O ,如图②,PDC △又是什么三角形?为什么?8.如图AB 是圆O 的直径,C 是圆O 上的一点,若AC=8㎝,AB=10㎝,OD ⊥BC 于点D ,求BD 的长9.如图,在⊙O 中,直径AB 与弦CD 相交于点P ,∠CAB=40°,∠APD=65°. (1)求∠B 的大小;(2)已知圆心0到BD 的距离为3,求AD 的长._D_B _A_O OAA O C PB 图① AOC PB 图②10.11.如图,AB、CD是⊙O的两条弦,它们相交于点P,连接AD、BD,已知AD=BD=4,PC=6,那么CD的长是12.如图,已知点C、D在以O为圆心,AB为直径的半圆上,且OC⊥BD 于点M,CF⊥AB于点F交BD于点E,BD=8,CM=2.(1)求⊙O的半径;(2)求证:CE=BE.13.5.圆内接多边形:一个多边形的顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆6.圆内接四边形:圆内接四边形的对角互补如图所示,A、B、C三点在圆O上,∠AOC=100°,则∠ABC等于()A. 140°B. 110°C. 120°D. 130°7.确定圆的条件:不在同一直线上的三个点确定一个圆.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图5所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块 C.第③块D.第④块8.三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.这个三角形叫做圆的内接三角形。

圆心角、弧、弦的关系-初中数学知识点

圆心角、弧、弦的关系-初中数学知识点

圆心角、弧、弦的关系
圆心角、弧、弦的关系
(1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组
量都分别相等.
说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧.
(3)正确理解和使用圆心角、弧、弦三者的关系
三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,
一项相等,其余二项皆相等.这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.
(4)在具体应用上述定理解决问题时,可根据需要,选择其有关部分.
1 / 1。

(完整版)圆心角,弧,弦,弦心距之间的关系定理知识点及练习,推荐文档

(完整版)圆心角,弧,弦,弦心距之间的关系定理知识点及练习,推荐文档

CD 的弦心距 OF=_______cm,弦 CD 的长为________cm。
7、 已知⊙O 的半径为 5cm,过⊙O 内一已知点 P 的最短的弦长为 8cm,则 OP=_______。
8‘已知 A、B、C 为⊙O 上三点,若 AB 、 BC 、 CA 度数之比为 1:2:3,则
∠AOB=_______,∠BOC=________,∠COA=________。
(I)连过弧中点的半径;(II)连等弧对的弦;(III)作等弧所对的圆心角。
例: 如图,CD为⊙O的弦, AC BD ,OA、OB交CD于F、E。
求证:OE=OF
证法一:连结 OC、OD
OC OD, C D
AC BD , COA BOD(等弧所对的圆心角相等) COF DOE OE OF
∠BOC 的度数。
3、如图 3,C 是⊙O 直径 AB 上一点,过点 C 作弦 DE,使 CD=CO,使 AD 的度数 40°,
AOB 100 , OBC 55 , OEC =
度.
2、如图 4,已知 AB 是⊙ O 的直径,C、D 是⊙ O 上的两点, D 130 ,则 BAC 的度数是
.
3、如图 5,AB 是半圆 O 的直径,E 是 BC 的中点,OE 交弦 BC 于点 D,已知 BC=8cm,DE=2cm,则
AD 的长为
A. 40 B. 50 C. 70 D. 80
8、如图 3,AB 为⊙O 的直径,C、D 是⊙O 上的两点, BAC 20 , AD CD ,则
∠DAC 的度数是( )
A. 70° D
B. 45° C
C. 35°
D. 30°
A
O
B
如图 3 二、填空题

弧、弦、圆心角的关系

弧、弦、圆心角的关系
圆心的圆与角的两边分别交于点A、B和C、D. (1)求证:AB=CD; (2)若角的顶点P在圆上或在圆内,(1)的结 论还成立吗?若不成立,请说明理由;若成立, 请加以证明.
M
N
今天作业 课本第94页 3,10
·
把圆O的半径ON绕圆心O旋转任意一个角度,
N O
把圆O的半径ON绕圆心O旋转任意一个角度,
N' N
O
把圆O的半径ON绕圆心O旋转任意一个角度,
N'
N
O
把圆O的半径ON绕圆心O旋转任意一个角度,
N'
N
O
把圆O的半径ON绕圆心O旋转任意一个角度, 由此可以看出,点N'仍落在圆上。
N' N
O
定理:把圆绕圆心旋转任意一个角度后,仍与原来的圆重合( 圆的旋转不变性) 。
A 求证:∠AOB=∠BOC=∠AOC
证明: ∵ A⌒B=A⌒C
∴ AB=AC, △ABC是等腰

三角形.
又 ∠ACB=60° ,


∴ △ABC是等边三角形,
∴ AB=BC=CA.
∴ ∠AOB=∠BOC=∠AOC.
例如图,AC与BD为⊙O的两条
互相垂直的直径
求证:A⌒B=B⌒C=C⌒D=D⌒A;
反馈练习
1、在⊙O中,AB⌒=AC⌒,∠AOB=70°,E
则∠AOC =
70°
D C
2、如图,AB是⊙O 的直径,
A
·
O
B
,∠COD=35°,
则∠AOE 的度数是 75°
3、在⊙O中,弦AB所对的劣弧
为圆的1/3,圆的半径为2㎝,那么
AB =
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、
忆一忆
圆的对称性如何?(导航17页请你思考1) (1)圆是轴对称图形,它的对称轴是过圆心的直 线。
(2)圆是中心对称图形,它的对称中心是圆心。
二、想一想
圆绕着它的圆心旋转多少度就能与原图形重合?
(3)结论:圆绕圆心旋转任意一个角度都能与原 图形重合,这是圆的旋转不变性。
想一想 P94 2
什么叫圆心角?(导航17页请你思考2)
在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦也相等.
五、议一议
定理“在同圆或等圆中,相等的圆心角 所对的弧相等,所对的弦也相等”中,可否 把条件“在同圆或等圆中”去掉?为什么?
定理“在同圆或等圆中,相等的圆心角 所对的弧相等,所对的弦也相等”中,可否 把条件“在同圆或等圆中”去掉?为什么? 不能去掉. 反例:如图,虽然∠AOB=∠A′O′B′, 但AB≠A′B′,弧AB≠弧A′B′
证明线段相等:(1)直线形的方法 (2)垂径定理 (3)圆心角、弧、弦、弦 心距之间的关系
• 圆心角 顶点在圆心的角叫圆心角。(如∠AOB). • 弦心距 过圆心作弦的垂线,圆心与垂足之间的距 离叫弦心距。(如线段OD).
D
A
●BO三、Fra bibliotek做一做
A′ B
A′
如图,将圆心角∠AOB绕圆心O旋转到∠A’OB’的位置, 你能发现哪些等量关系?为什么?(导航17页请你思考3)
B′ B′
B
O
·
A
O
·
2、如图,点O是∠EPF的平分线上的一点,以O为圆心的圆和角的两边分别交于 点 A、B和C、D。 求证:AB=CD 证明:作OM⊥AB,ON⊥CD,M,N 为垂足。 M
MPO NPO OM AB OM ON ON CD AB CD。
N
推广:若将上题中的点O看作是沿着∠EPF的平分线运动的。 在∠EPF的每边与圆O有两个交点的时候,是否都能够得到上题的结论?
AC
,∠ACB=60°,
A
证明:

AB =
AC
B
O
∴ AB=AC. 又∠ACB=60°, ∴ AB=BC=CA.
·
C
∴ ∠AOB=∠BOC=∠AOC.
巩固深化
• 在同圆或等圆中,一弦是另一弦的二 倍,那么它所对的弧是另一弦所对的 弧的二倍吗?试画图分析 • 反之呢?
六、练习
如图,AB是⊙O 的直径,BC = CD ∠COD=35°,求∠AOE 的度数. 解:
(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗? 为什么? OE﹦OF
证明:∵ OE⊥AB OF ⊥CD
A E B
∵ AB﹦CD ∵ OA﹦OC
∴ AE﹦CF ∴ RT△AOE≌RT △COF
C
O
·
F
D
∴ OE﹦OF
五、例题
例1 如图,在⊙O中, AB = 求证∠AOB=∠BOC=∠AOC
A
根据旋转的性质,将圆心角∠AOB绕圆心O旋转到∠A′OB′的位 置时, ∠AOB=∠A′OB′,OA=OB∴点 A与 A′重合,B与B′ 重合.
∴弧AB与弧A'B'重合,AB与A′B′重合.
AB A ' B '.


AB A ' B '.
四、说一说
弧、弦与圆心角的关系定理( 等对等定理 )
七、思考
(4) 如图,已知AB、CD为⊙O的两条
弦,弧AD=弧BC, 求证AB=CD
C B O D A
(5)如图,已知OA、OB是⊙O的半径, ⌒ 点C为AB的中点,M、N分别为OA、 OB的中点,求证:MC=NC
O M A C N B
(6)如图,BC为⊙O的直径,
OA是⊙O的半径,弦BE∥OA,
E D C
= DE

BC = CD
= DE
BOC=COD=DOE=35
B
A
O
·
AOE 180 3 35
75

七、思考
(2)如图,圆O的两条弦AB、CD互 相垂直且交于点P,OE垂直于AB,OF 垂直于CD,垂足分别是E、F,且弧AC= 弧BD,试探究四边形EOFP的形状, 并说明理由。
猜一猜P96 6
推论
① 在同圆或等圆中,如果①两个圆心角,②两条 弧,③两条弦(4)两条弦心距中,有一组量 相等,那么它们所对应的其余各组量都分别 相等.
D
A

B
O
┏ A′ D′ B′
③AB=A′B′ 在这里可以不说“在同圆或等圆中”吗? ④ OD=O′D′
如由条件: ②AB=A′B′
⌒ ⌒
可推出
∴∠OAB=∠OBA ② 且AM=BN ∴△AFM≌△BGN ∴AF=BG ∴OF=OG ∴DC=EF ③
F
G
圆的轴对称性(圆是轴对称图形)
垂径定理 及其推论
圆的对称性
圆的中心对称性(圆是中心对称图形)
证明圆弧相等:(1)定义 (2)垂径定理 (3)圆心角、弧、弦、 弦心距之间的关系
圆心角、弧、弦、 弦心距之间的关 系
⌒ ⌒ 求证:AC=AE
C
A
O
E
B
3、如图,A、B分别为CD和EF的中点,AB分别交CD、EF于点M、N,且AM=BN。 求证:CD=EF 证:连结OA、OB, 设分别与CD、EF交于点F、G ∵A为CD中点,B为EF中点 ∴OA⊥CD,OB⊥EF 故∠AFC=∠BGE=90°①
⌒ ⌒
又由OA=OB,
①∠AOB=∠A′O′B′
四、练习
如图,AB、CD是⊙O的两条弦. AOB COD AB = CD (1)如果AB=CD,那么___________,_________________.
AOB COD AB=CD (2)如果 AB = CD ,那么____________,_____________. AB=CD AB = CD (3)如果∠AOB=∠COD,那么_____________,_________.
相关文档
最新文档