中考数学专题讲解 知识点38 统计图表2019

合集下载

2019年北京市中考数学总复习课件:第15课时 统计图表

2019年北京市中考数学总复习课件:第15课时 统计图表

[答案] 50 30%
图15-5
高频考向探究
探究一 获取统计图表信息,解决问题
年份 动车组发送旅 2014 2015 2016 2017 2018 0.87 1.14 1.46 1.80 2.17
例 1[2018· 东城一模] 随着高铁的建设,春运期间动车组发
送旅客量越来越大.相关部门为了进一步了解春运期间动车 客量 a 亿人次 组发送旅客量的变化情况,针对 2014 年至 2018 年春运期间 铁路发送旅客 铁路发送旅客量情况进行了调查,具体过程如下. (1) 收集、整理数据 请将表格补充完整:
总量 b 亿人次 动车组发送
2.52 2.76 3.07 3.42 3.82
旅客量占比 34.5%41.3%47.6%52.6%
������ ������
×100%
高频考向探究
(2)描述数据 为了更直观地显示春运期间动车组发送旅客量占比的变化趋 势,需要用 (填“折线图”或“扇形图”)进行描述;
解:(1)56.8%. (2)折线图. (3)答案不唯一,预估的理由须支撑预 估的数据,参考数据 61%左右.
图 15-8
高频考向探究
3.[2015· 北京 15 题] 北京市 2009-2014 年轨道交通日均客运量统计 如图 15-9 所示.根据统计图中提供的信息,预估 2015 年北京市轨道 交通日均客运量约 万人次,你的预估理由是 .
[答案] 答案不唯一,如 990 等.预估理 由略
图 15-9
高频考向探究
2011-2016 年我国与东南亚地区和 东欧地区的贸易额统计图
A.与 2015 年相比,2016 年我国与东欧地区的贸易额有所增长 B.2011-2016 年,我国与东南亚地区的贸易额逐年增长 C.2011-2016 年,我国与东南亚地区的贸易额的平均值超过 4200 亿美元 D.2016 年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的 3 倍还多

2020年上海中考数学·一轮复习 第38讲 统计的意义与基本的统计量

2020年上海中考数学·一轮复习 第38讲 统计的意义与基本的统计量

第38讲统计的意义与基本的统计量[基础篇]一、统计的意义(1)数据整理与表示条形图有利于比较数据的差异;折线图可以直观地反映数据变化的趋势;而扇形图则凸显了由数据所体现出来的部分与整体的关系.条形图、折线图、扇形图等称为统计图表.条形图举例:某次全国人口普查中,关于我国公民受教育状况的调查结果是:每1000人中具有初中文化程度的约有340人,具有高中文化程度的约有111人,具有大学文化程度的约有36人.可以利用表格、图形来表示:文化程度每1000人中所占人数初中340高中111大学36折线图举例:某学生每天进行1500米跑运动.一个阶段内的七次测试情况是:前三次每次跑完全程各用时7分30秒,第四次用时7分钟,第五次用时6分48秒,第六次用时6分30秒,第七次用时6分18秒.可以利用表格、图形来表示:测试序号1234567时间(分)7.57.57.576.86.56.3每1000人中所占人数36340111文化程度初中高中大学时间(分)5.566.57.5781234567.56扇形图举例:据调查,某校九年级有300名学生,其中30%的学生步行上学,50%的学生乘公交车上学,15%的学生骑车上学,其余的学生用其他交通工具上学. 可以利用表格、图形来表示:上述三种表和图简称为统计图表二、统计的意义统计学是研究如何收集、处理、分析数据从而得出结论或找出规律的科学.调查时,调查对象的全体叫做总体,其中每一个调查对象叫做个体,从总体中取出的一个部分个体叫做总体的一个样本,样本中个体的数量叫做样本容量.收集的方法一般有两种,即普查和抽样调查.为了能准确地推断总体,样本的选择要具有代表性,每个个体都应有均等的机会被选中.具有代表性的样本叫做随机样本.三、基本的统计量(1)平均数与加权平均数:一般地,如果一组数据:x 1 ,x 2 ,… ,x n ,它们的平均数记作x 公式法: 121(...)n x x x x n=+++. ① 新数据法:a x x +=11',a x x +=22',…,a x x n n +=')'''(121n x x x nx +++=Λ+a 加权平均数:如果在一组数据k x x x ,,,21Λ中分别出现次数为k f f f ,,,21K ,记kf f f f m Λ++=2111,k f f f f m Λ++=2122 ,…, kk k f f f f m Λ++=21, 则1122....k k x m x m x m x =+++其中k m m m ,,,21Λ叫做权,x 叫做这k 个数的加权平均数。

2019中考数学分类汇编汇总 知识点41 统计图表(第二期) 解析版

2019中考数学分类汇编汇总  知识点41  统计图表(第二期)  解析版

填空题1.(2019湖北十堰,13,3分)我市“创建文明城市”活动正如火如荼的展开.某校为了做好“创文”活动的宣传,就本校学生对“创文”有关知识进行测试,然后随机抽取了部分学生的测试成绩进行统计分析,并将分析结果绘制成如下两幅不完整的统计图:若该校有学生2000人,请根据以上统计结果估计成绩为优秀和良好的学生共有人.【答案】1400【解析】解:∵被调查的总人数为28÷28%=100(人),∴优秀的人数为100×20%=20(人),∴估计成绩为优秀和良好的学生共有20001400(人),故答案为:1400.【知识点】用样本估计总体;扇形统计图;条形统计图2.(2019湖北孝感,14,3分)董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是.【答案】108°【解析】解:∵被调查的总人数为9÷15%=60(人),∴B类别人数为60﹣(9+21+12)=18(人),则扇形统计图B部分所对应的圆心角的度数是360°108°,故答案为:108°.【知识点】扇形统计图;条形统计图三、解答题1.(2019广东深圳,19,7分)某校为了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱乐器),现将收集到的数据绘制如下的两幅不完整的统计图.(1)这次共抽取学生进行调查,扇形统计图中的x= ;(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有名.【思路分析】(1)由条形统计图可知喜欢“古筝”的有80人,由扇形统计图可知喜欢“古筝”的占40%,80÷40%=200,即共抽取了200人;由条形统计图可知,喜欢“竹笛”有30人,x=30÷200=15%;(2)用总数减去各组人数可得喜欢“二胡”有60人,在相应的位置补全条形统计图;(3)“扬琴”占的百分比为20200=10%,360°×10%=36°;(4)用样本估计总体可得全校喜爱“二胡”的人数为3000×30%=900(人).【解题过程】(1)200,15%;(2)统计图如图所示:(3)36;(4)900.【知识点】数据统计;条形统计图和扇形统计图.2.(2019广西省贵港市,题号,分值8分)为了增强学生的安全意识,某校组织了一次全校2500名学生都参加的“安全知识”考试.阅卷后,学校团委随机抽取了100份考卷进行分析统计,发现考试成绩(x分)的最低请根据图表提供的信息,解答下列问题:a = ,b = ,n = ;(2)将频数分布直方图补充完整;(3)该校对考试成绩为91100x 剟的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为1:3:6,请你估算全校获得二等奖的学生人数.【思路分析】(1)利用⨯这组的频率即可得到结论;(2)根据(1)求出的数据补全频数分布直方图即可;(3)利用全校2500名学生数⨯考试成绩为91100x 剟考卷占抽取了的考卷数⨯获得二等奖学生人数占获奖学生数即可得到结论.【解题过程】解:(1)1000.110a =⨯=,1001018351225b =----=,250.25100n ==; 故答案为:10,25,0.25;(2)补全频数分布直方图如图所示;(3)12325009010010⨯⨯=(人), 答:全校获得二等奖的学生人数90人.【知识点】用样本估计总体;扇形统计图;频数(率)分布表;频数(率)分布直方图3. (2019广西河池,T23,F8分)某校计划开设美术、书法、体育、音乐兴趣班,为了解学生报名的意向,随根据统计图表的信息,解答下列问题:(1)直接写出本次调查的样本容量和表中a,b,c的值;(2)将折线图补充完整;(3)该校现有2000名学生,估计该校参加音乐兴趣班的学生有多少人?【思路分析】(1)本次调查的样本容量1010%100b=---=(人),3010030%a=÷=,÷=(人),10010302040c=÷=;2010020%(2)根据(1)补充折线图;(3)估计该校参加音乐兴趣班的学生200020%400⨯=(人).【解题过程】解:(1)本次调查的样本容量1010%100÷=(人),b=---=(人),10010302040a=÷=,3010030%c=÷=;2010020%(2)折线图补充如下:(3)估计该校参加音乐兴趣班的学生200020%400⨯=(人)答:估计该校参加音乐兴趣班的学生400人.【知识点】总体、个体、样本、样本容量;用样本估计总体;折线统计图;统计表;扇形统计图4.(2019贵州省毕节市,题号23,分值10分)某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了名学生,条形统计图中m=,n=;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有封;(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?【思路分析】(1)由B选项人数及其所占百分比求得总人数,再用总人数乘以对应百分比可得m、n的值;(2)先求出C选项的人数,继而可补全图形;(3)各选项次数乘以对应人数,再求和即可得;(4)利用样本估计总体思想求解可得.【解题过程】解:(1)此次调查的总人数为150÷30%=500(人),则m=500×45%=225,n=500×5%=25,故答案为:500,225,25;(2)C选项人数为500×20%=100(人),补全图形如下:(3)1×150+2×100+3×25=425,答:接受问卷调查的学生在活动中投出的信件总数至少有425封,故答案为:425;(4)由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有110000×(1﹣45%)=60500(名).【知识点】全面调查与抽样调查;用样本估计总体;扇形统计图;条形统计图.5.(2019贵州黔西南州,23,14分)某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了名学生,条形统计图中m=,n=;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有封;(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?【思路分析】(1)由B选项人数及其所占百分比求得总人数,再用总人数乘以对应百分比可得m、n的值;(2)先求出C选项的人数,继而可补全图形;(3)各选项次数乘以对应人数,再求和即可得;(4)利用样本估计总体思想求解可得.【解题过程】解:(1)此次调查的总人数为150÷30%=500(人),则m=500×45%=225,n=500×5%=25,故答案为:500,225,25;(2)C选项人数为500×20%=100(人),补全图形如下:(3)1×150+2×100+3×25=425,答:接受问卷调查的学生在活动中投出的信件总数至少有425封,故答案为:425;(4)由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有110000×(1﹣45%)=60500(名).【知识点】全面调查与抽样调查;用样本估计总体;扇形统计图;条形统计图6.(2019海南,19题,8分)为宣传6月6日世界海洋日,某校九年级举行了主题为"珍惜海洋资源,保护海洋生物多样性"的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表和统计图.请根据图表信息回答以下问题:(1)本次调查一共随机抽取了______个参赛学生的成绩;(2)表1中a=______;(3)所抽取的参赛学生的成绩的中位数落在的"组别"是______;(4)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约有______人.第19题图【思路分析】(1)用D组的频数和百分比可求得总人数;(2)总人数减去其他3组人数即为A组人数a;(3)根据中位数的定义结合表格进行判断;(4)用样本百分比估计总体.【解题过程】(1)18÷36%=50(人);(2)50-10-14-18=8;(3)总共50个成绩,中位数应是第25,26个的平均数,第25,26个数落在C组;(4)14+18500=32050(人).【知识点】统计表,扇形统计图,中位数,样本估计总体7. (2019黑龙江绥化,23题,6分)小明为了了解本校学生的假期活动方式,随机对本校的部分学生进行了调查.收集整理数据后,小明将假期活动方式分为五类:A.读书看报;B.健身活动;C做家务;D.外出游玩;E.其他方式,并绘制了不完整的统计图如下.统计后发现"做家务"的学生人数占调查总人数的20%.请根据图中的信息解答下列问题:(1)本次调查的总人数是______人;(2)补全条形统计图;(3)根据调查结果,估计本校2360名学生中"假期活动方式"是"读书看报"的有多少人?第23题图【思路分析】(1)根据"做家务"的学生人数和百分比,求得总人数;(2)总人数减去其他组的人数可得;(3)用样本百分比计算总体中"读书看报"的人数.【解题过程】(1)8÷20%=40(人);(2)50-6-12-8-4=10.如图所示:第23题答图(3)2360×640=354(人),答:根据调查结果,估计本校2360名学生中"假期活动方式"是"读书看报"的有354人.【知识点】条形统计图,总数频数百分比之间的关系,样本估计总体8.(2019湖南湘西,22,8分)“扫黑除恶”受到广大人民的关注,某中学对部分学生就“扫黑除恶”知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“很了解”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对“扫黑除恶”知识达到“很了解”和“基本了解”程度的总人数.【思路分析】(1)由很了解的有18人,占30%,可求得接受问卷调查的学生数,继而求得扇形统计图中“很了解”部分所对应扇形的圆心角;(2)由(1)可求得基本了解很少的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【解题过程】解:(1)接受问卷调查的学生共有:18÷30%=60(人);∴扇形统计图中“很了解”部分所对应扇形的圆心角为:360°×30%=108°;故答案为:60,108°;(2)60﹣3﹣9﹣18=30;补全条形统计图得:(3)根据题意得:900720(人),则估计该中学学生中对校园安全知识达到“很了解”和“基本了解”程度的总人数为72人.【知识点】用样本估计总体;扇形统计图;条形统计图9.(2019北京市,21题,5分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:/万元d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第_______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线1l的上方.请在图中用“○”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为_______万美元;(结果保留一位小数)(4)下列推断合理的是_______.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.【思路分析】(1)由条形统计图知,创新指数在70≤x<80,80≤x<90,90≤x≤100国家个数分别为12,2,2;共16个,而中国的创新指数为69.5;进而求出中国的国家创新指数的世界排名.(2)由中国的国家创新指数得分为69.5,结合中国的对应的点位于虚线1l的上方即可求得.(3)如图21-1,先画一条过69.5的水平线,该线上方的点都是国家创新指数得分比中国高的国家;然后找除中国以外的,最左边的点进而求出该国的人均国内生产总值.(4)【解题过程】(1)解:∵由条形统计图知,创新指数在70≤x<80,80≤x<90,90≤x≤100国家个数分别为12,2,2;共16个,且中国的创新指数为69.5;∴中国的国家创新指数的世界排名为17.故填17.(2)解:由中国的国家创新指数得分为69.5,结合中国的对应的点位于虚线1l的上方求得. 如下图,(3)如图21-1,易求得在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.7万美元.故填:2.7.(4)①②【知识点】频数分布直方图10. (2019北京市,23题,6分)小云想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分成4组,第i 组有i x 首,i =1,2,3,4;②对于第i 组诗词,第i 天背诵第一遍,第(1i +)天背诵第二遍,第(3i +)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;③每天最多背诵14首,最少背诵4首. 解答下列问题: (1)填入3x 补全上表;(2)若14x =,23x =,34x =,则4x 的所有可能取值为_______; (3)7天后,小云背诵的诗词最多为_______首. 【思路分析】【解题过程】(1)如下图(2)4,5,6 (3)23 【知识点】11. (2019年广西柳州市,21,8分) 据公开报道,2017年全国教育经费总投入为42557亿元,比上年增长9.43%,其中投入在各学段的经费占比(即所占比例)如图,根据图中提供的信息解答下列问题. (1)在2017年全国教育经费总投入中,义务教育段的经费总投入应该是多少亿元? (2)2016年全国教育经费总投入约为多少亿元?(精确到0.1)【思路分析】(1)根据扇形统计图中义务教育段的经费所占的百分比乘以42557亿元即可得到结论; (2)用2017年全国教育经费总投入42557亿元除以(1+9.43%)得到2016年全国教育经费总投入. 【解题过程】(1)42557×45%=19150.65亿元, 答:义务教育段的经费总投入应该是19150.65亿元; (2)42557÷(1+9.43%)≈38.9亿元, 答:2016年全国教育经费总投入约为38.8亿元.【知识点】扇形统计图;近似数和有效数字12. (2019黑龙江省龙东地区,24,7)“世界读书日”前夕,某校展开了“读书助我成长”的阅读活动.为了了解该校学生在此次活动中课外阅读书籍的数量情况,随机抽取了部分学生进行调查,将收集到的数据进行整理,绘制出两幅不完整的统计图,请根据统计图信息解决下列问题: (1)求本次调查中共抽取的学生人数; (2)补全条形统计图;(3)在扇形统计图中,阅读2本书籍的人数所在扇形的圆心角度数是________;(4)若该校有1200名学生,估计该校在这次活动中阅读书籍的数量不低于3本的学生有多少人?【思路分析】对于(1),根据条形图中第1组的人数以及扇形图中第1组所占百分比即可求得;对于(2),先根据抽取的人数和扇形图中第3组所占百分比计算出条形图中第3组的人数,再根据条形图中第1,3,4组的人数计算出第2组的人数,即可补全条形图;对于(3),根据条形图中第2组的人数和抽取的学生人数即可计算出扇形图中第2组所占百分比,再根据百分比计算扇形圆心角即可;对于(4),根据第3组和第4组人数以及抽取的人数,可得到阅读书籍的数量不低于3本的学生人数占抽取的学生人数的比例,再乘以1200即可求解. 【解题过程】解:(1)15÷30%=50,……………………………………(1分) 答:本次调查中共抽取学生50人.…………………………(1分) (2)10,20,在图中正确画出.………………………………(2分) (3)72°.………………………………………………………(1分)阅读量(本)人数(人)(4)1200×20550+=600,……………………………………(1分) 答:估计全校阅读书籍不低于3本的学生有600人.………(1分) 【知识点】条形统计图;扇形统计图;用样本估计总体13. (2019吉林省,22,7分)某地区有城市居民和农村居民共80万人,某机构准备采用抽取样本的方法调查该地区居民“获取信息的最主要途径”. (1)该机构设计了以下三种调查方案:方案一:随机抽取部分城区居民进行调查; 方案二:随机抽取部分农村居民进行调查;方案三:随机抽取部分城区居民和农村居民进行调查, 其中最具有代表性的一个方案是 ;(2)该机构采用了最具代表性的调查方案进行调查,供选择的选项有:电脑、手机、电视、广播、其他,共五个选项,每位被调查居民只选择一个选项,现根据调查结果绘制如下统计图,请根据统计图回答下列问题:①这次接受调查的居民的人数为 ; ②统计图中人数最多的选项为 ;③请你估计该地区城区居民和农村居民将“电脑和手机”作为“获取信息的最主要途径”的总人数 【思路分析】(1)具有代表性的人群要包括城区居民和农村居民; (2)①五种选项的总人数之和就是所求的总人数; ②从统计图中可以看出选择手机的人数最多;③从抽取的人数中可以算出“电脑和手机”的人数占总抽取人数的比例,从而计算出该地区的总人数. 【解题过程】(1)方案三;(2)①260+400+150+100+90=1000(人) ②手机 ③528000800001000260400=⨯+(人)答:该地区城区居民和农民居民将电脑和手机作为获取信息的最主要途径的总人数为52800人. 【知识点】条形统计图,样本估计总体14. (2019广西桂林,22,8分)某校在以“青春心向觉,建功新时代”为主题的校园文化艺术节期间,举办了A 合唱,B 群舞,C 书法,D 演讲共四个项目的比赛,要求每位学生必须参加且仅参加一项,小红随机调查了部分学生的报名情况,并绘制了下列两幅不完整的统计图,请根据统计图中信息解答下列问题: (1)本次调查的学生总人数是多少?扇形统计图中“D ”部分的圆心角度数是多少? (2)请将条形统计图补充完整;(3)若全校共有1800名学生,请估计该校报名参加书法和演讲比赛的学生共有多少人?【思路分析】(1)由A项目人数及其所占百分比可得总人数,用360︒乘以D项目人数所占比例可得;(2)由各项目人数之和等于总人数可得C的人数,从而补全条形图;(3)利用样本估计总体思想求解可得.【解题过程】解:(1)本次调查的学生总人数是12060%200÷=(人),扇形统计图中“D”部分的圆心角度数是836014.4200︒⨯=︒;(2)C项目人数为200(120528)20-++=(人),补全图形如下:(3)估计该校报名参加书法和演讲比赛的学生共有2081800252200+⨯=(人).【知识点】条形统计图;用样本估计总体;扇形统计图15.(2019湖南邵阳,22,8分)某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是;(2)请你补全条形统计图,并在图上标明具体数据;(3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.【思路分析】(1)利用摄影社团的人数除以摄影社团所占的百分比即可得到结论;(2)求出参与篮球社的人数和国学社的人数,补全条形统计图即可;(3)利用科技制作社团所占的百分比乘以360︒即可得到结论;(4)利用全校学生数乘以参加篮球社团所占的百分比即可得到结论.【解题过程】解:(1)本次抽样调查的样本容量是550 10%=,故答案为:50;(2)参与篮球社的人数5020%10=⨯=人,参与国学社的人数为5051012815----=人,补全条形统计图如图所示;(3)参与科技制作社团所在扇形的圆心角度数为12 36086.450︒⨯=︒;(4)300020%600⨯=名,答:全校有600学生报名参加篮球社团活动.【知识点】扇形统计图;条形统计图;用样本估计总体;总体、个体、样本、样本容量;全面调查与抽样调查16.(2019江苏徐州,22,7分)【思路分析】(1)先计算出样本容易,然后再求出对应的圆心角的度数;(2)利用样本容量减去已知各组的频数,得出7-8月的电费,然后补全条形统计图.【解题过程】解:(1)样本容量=240÷10%=2400,9-10月对应扇形的圆心角=28036042 2400⨯︒=°;(2)7-8月的电费=2400-300-240-350-280-330=900(元),补全的条形图如下:【知识点】统计图表。

2019-2020学年数学北师大版必修3课件:1.3 统计图表 Word版含解析

2019-2020学年数学北师大版必修3课件:1.3 统计图表 Word版含解析

的人数为40×50%+
50×80%+60×50%+50×40%=20+40+3
0+20=110;评价为一般的人数为
40×25%+60×50%+50×20%=10+30+1
0=50;评价为不满意的人数为
40×25%+50×20%+50×40%=10+10+2
0=40.故评价情况的条形统计图如图所示.
-15-
月销量的变化幅度最大,乙产品在5月份的月销量的变化幅度最大.
(2)对于甲产品,其月平均销量
x
甲=2
000+6
000+5
000+7 6
000+8
000+8
000=6
000(件),
对于乙产品,其月平均销量
x
乙=3
000+5
000+7
000+4 6
000+8
000+6
000=5
500(件).
因此,甲产品的月平均销量较大.
-6-
§3 统计图表
首页
课课前前篇篇 自自主主预预习习
课堂篇 探究学习
3.扇形统计图
(1)扇形统计图是指用圆面代表总体,圆面中的各个扇形分别代表总
体中的不同部分,扇形面积的大小反映各部分占总体的百分比的大
小的图形.
(2)扇形统计图的特点:扇形统计图可以清楚地表达各部分在总体
中所占的百分比.
(3)扇形统计图的制作步骤:
课堂篇 探究学习
探究一
探究二
探究三
探究四
思想方法 当堂检测

备考2023年中考数学一轮复习-利用统计图表分析实际问题-综合题专训及答案

备考2023年中考数学一轮复习-利用统计图表分析实际问题-综合题专训及答案

备考2023年中考数学一轮复习-利用统计图表分析实际问题-综合题专训及答案利用统计图表分析实际问题综合题专训1、(2019山西.中考真卷) (2019·山西) 中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行,太原市作为主赛区,将承担多项赛事,现正从某高校的甲、乙两班分别招募10人作为颁奖礼仪志愿者,同学们踊跃报名,甲、乙两班各报了20人,现已对他们进行了基本素质测评,满分10分.各班按测评成绩从高分到低分顺序各录用10人,对这次基本素质测评中甲、乙两班学生的成绩绘制了如图所示的统计图.请解答下列问题:(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由).(2)请你对甲、乙两班各被录用的10名志愿者的成绩作出评价(从“众数”,“中位数”,或“平均数”中的一个方面评价即可).(3)甲、乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两个场馆进行颁奖礼仪服务,四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A,B,C,D的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张,请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A”和“B”的概率.2、(2020峨眉山.中考模拟) 济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数.(3)请估计全校共征集作品的件数.(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.3、(2019吉林.中考模拟) 某校课程中心为了了解学生对开设的3D打印、木工制作、机器人和电脑编程四门课程的喜爱程度,随机调查了部分学生,每人只能选一项最喜爱的课程.图①是四门课程最喜爱人数的扇形统计图,图②是四门课程男、女生最喜爱人数的条形统计图,四门课程最喜爱人数的扇形统计图四门课程男、女生最喜爱人数的条形统计图(1)求图①中m的值,补全图②中的条形统计图,标上相应的人数;(2)若该校共有1800名学生,则该校最喜爱3D打印课程的学生约有多少人?4、(2019.中考模拟) 阅读下列材料:延庆是全市唯一一个全境域都是水源保护地的区域,森林覆盖率达到57.46%,“干净指数”连续五年全市第一,人均公共绿地面积41.88平方米,空气质量长期保持全市前列.根据区环保局的空气质量的通报,2012年空气质量为优,成为北京市最宜居的地方.由于经济发展,私家车剧增等原因,2013年空气质量下降为良,尤其是PM2.5平均浓度有所增长,2013年PM2.5平均浓度约为78微克/立方米,比2012年PM2.5平均浓度增长了12.2%.延庆区作为2019年世园会和2022年冬奥会比赛的举办地,将全面治理“煤、气、尘”,逐渐降低PM2.5浓度,力争到2020年降至46微克/立方米,实现“延庆蓝”.据悉,延庆将大力推广地源热泵、风能、太阳能等新能源和可再生能源.同时强化大货车监管,提升新能源车辆利用率.2020年新能源和可再生能源在延庆的使用比例将达到40%,煤炭能源消费总量占比3%以下,基本建成“无煤区”.经过全面治理,2014年PM2.5平均浓度约为70微克/立方米,比2013年平均浓度降低了10.26%;2015年PM2.5平均浓度比2014年平均浓度降低了10%,为全市最低;2016年PM2.5平均浓度约为56微克/立方米.根据以上材料解答下列问题:(1) 2015年PM2.5平均浓度约为微克/立方米;(2)选择统计表或统计图,将2013﹣2016年PM2.5平均浓度整理出来;(3)根据上述材料和绘制的统计表或统计图中提供的信息,预估2017年的PM2.5平均浓度约为微克/立方米;你的预估理由是.5、(2019舟山.中考真卷) (2019·舟山) 在“创全国文明城市”活动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B 两小区分别有 500 名居民参加了测试,社区从中各随机抽取50 名居民成绩进行整理得到部分信息:【信息一】A 小区 50 名居民成绩的频数直方图如下(每一组含前一个边界值,不含后一个边界值):【信息二】上图中,从左往右第四组的成绩如下【信息三】A、B 两小区各 50 名居民成绩的平均数、中位数、众数、优秀率(80 分及以上为优秀)、方差等数据如下(部分空缺):根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民成绩能超过平均数的人数.(3)请尽量从多个角度,选择合适的统计量分析 A,B 两小区参加测试的居民掌握垃圾分类知识的情况.6、(2019绍兴.中考真卷) 小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图。

2019中考数学真题分类汇编解析版41 统计图表

2019中考数学真题分类汇编解析版41  统计图表

一、选择题1. (2019四川巴中,7,4分)如图所示,是巴中某校对学生到校方式的情况统计图,若该校骑自行车到校的学生有200人,则步行到校的学生有( )A.120人B.160人C.125人D.180人第7题图【答案】B【解析】因为该校骑自行车到校的学生有200人,占比25%,所以可得全校总人数为200÷25%=800(人),步行人数占比20%,故人数为800×20%=160(人),故选B【知识点】扇形统计图,百分比二、解答题1.(2019浙江台州,21,10分)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将手机的数据制成如下统计图表.第21题图(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车"都不戴"安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车"都不戴"安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.【思路分析】(1)比较大小可得C 类最多,进而求出所占百分比;(2)根据样本百分比估计总体中"都不戴"的人数;(3)作出结论应该比较占比大小,不能单纯比较数量得到结论.【解题过程】(1)由表格数据可知,C 类偶尔戴的市民人数最多,占比为:5101000=51%. (2)177300000=531001000⨯(人),答:活动前全市骑电瓶车"都不戴"安全帽的总人数为53100人. (3)不合理.∵活动开始前后调查的总人数不同,要比较所占百分比大小才能得到正确结论.活动开展前,"都不戴"占比为177100%=17.7%1000⨯,活动开展后,"都不戴"占比为178100%=8.9%896+702+224178⨯+,∵17.7%>8.9%,所占百分比下降,"每次戴"的比例有6.8%大幅度上升到44.8%,说明活动有效果. 【知识点】统计图,统计表,百分比及应用,样本估计总体2.(2019浙江衢州,20,8分)某校为积极响应“南孔圣地,衢州有札”城市品牌建设,在每周五下午第三节课开展了丰富多彩的走班选课活动,其中综合实践类共开设了“礼行”“礼知”“礼思”“礼艺”“礼源”等五门课程,要求全校学生必须参与其中一门课程。

初中数学中考知识点考点学习课件PPT之统计知识点学习PPT

初中数学中考知识点考点学习课件PPT之统计知识点学习PPT
78.5
(2) 这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.
[答案] 不正确.理由:因为甲的成绩77分低于中位数78.5分,所以甲的成绩不可能高于一半学生的成绩.
(3) 请对该校学生“航空航天知识”的掌握情况作出合理的评价.
[答案] 测试成绩不低于80分的人数占测试人数的 ,说明该校学生对“航空航天知识”的掌握情况较好.(注:答案不唯一,合理即可)
8.[2021河南,17] 2021年4月,教育部印发《关于进一步加强中小学生睡眠管理工作的通知》,明确要求初中生每天睡眠时间应达到9小时.某初级中学为了解学生睡眠时间的情况,从本校学生中随机抽取500名进行问卷调查,并将调查结果用统计图描述如下.
(2) 综合上表中的统计量,判断工厂应选购哪一台分装机,并说明理由.
[答案] 工厂应选购乙分装机.理由:比较甲、乙两台机器的统计量可知,甲与乙的平均数相同,中位数相差不大,乙的方差较小,且不合格率更低.以上分析说明,乙机器的分装合格率更高,且稳定性更好,所以,乙机器的分装效果更好,工厂应选购乙机器.
.成绩频数分布表:
频数
7
9
12
16
6
.成绩在 这一组的是(单位:分):70 71 72 72 74 77 78 78 78 7979 79根据以上信息,回答下列问题.
(1) 在这次测试中,成绩的中位数是_____分,成绩不低于80分的人数占测试人数的百分比为______.
B
(第2题)
A.5分 B.4分 C.3分 D.
3.[2019河南,7] 某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是( )

2019年中考数学《3.1统计》总复习课件ppt

2019年中考数学《3.1统计》总复习课件ppt

第三章
考纲解读 命题解读
3.1 统

名师考点精讲 中考真题再现
安徽五年探究
-4-
2014—2016 年安徽中考命题分析 2017 年安徽中考命题预测 题 题 分 年份 考查点 型 号 值 考查内容:(1)数据的收集与整理;(2)平均数、 中位数和众数的定义;(3)利用统计图表解决实 选 际问题等. 2016 扇形统计图 择 7 4 考查题型:从安徽省近几年的中考试题可以看 题 出,有关本部分的题目每年都会考,有时是解 反映数据集中 答题,有时是选择题或填空题. 选 趋势的平均 中考趋势:预测 2017 年的中考,还会延续这种 2015 择 7 4 数、中位数和 趋势,一定会考一个有关本部分的题目,题型 题 众数 可能是选择题或填空题(这种可能性较大),也 利用统计图提 选 有可能考一个有关本部分的知识综合的或应 2014 供的信息解决 择 5 4 用的解答题. 实际问题 题
一组数据中所有小组的频数之和等于该组数据的总数目;该组数据的每个小组的频率之 和等于1.
第三章
考点扫描 备课资料
3.1 统

名师考点精讲 名师考点精讲
考点3 考点4
安徽五年探究
考点1 考点2
中考真题再现
-8-
典例2 (2016· 江苏苏州)一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数 分别为12,10,6,8,则第5组的频率是 ( ) A.0.1 B.0.2 C.0.3 D.0.4 【解析】根据第1~4组的频数,求出第5组的频数,即可确定出其频率.根据题意得40(12+10+6+8)=40-36=4,则第5组的频率为4÷40=0.1. 【答案】 A
第三章
考点扫描 备课资料

新人教版初中数学中考总复习:统计与概率--知识点整理及重点题型梳理

新人教版初中数学中考总复习:统计与概率--知识点整理及重点题型梳理

新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:统计与概率—知识讲解【考纲要求】1.能根据具体的实际问题或者提供的资料,运用统计的思想收集、整理和处理一些数据,并从中发现有价值的信息,在中考中多以图表阅读题的形式出现;2.了解总体、个体、样本、平均数、加权平均数、中位数、众数、极差、方差、频数、频率等概念,并能进行有效的解答或计算;3.能够对扇形统计图、列频数分布表、画频数分布直方图和频数折线图等几种统计图表进行具体运用,并会根据实际情况对统计图表进行取舍;4.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件;5.加强统计与概率的联系,这方面的题型以综合题为主,将逐渐成为新课标下中考的热点问题.【知识网络】「I 统计图表——।阅读图表提取信息T 集中程度I 怦均数中位教嬴【考点梳理】考点一、数据的收集及整理1 .一般步骤:调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展 开调查、记录结果、得出结论.2 .调查收集数据的方法:普查与抽样调查. 要点诠释:(1)通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.(2)一般地,当总体中个体数目较多,普查的工作量较大;受客观条件的限制,无法对所有个体进行 普查;或调查具有破坏性时,不允许普查,这时我们往往会用抽样调查来体现估计总体的思想 (3)用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样 3 .数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图. 要点诠释:这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.收集数据媒体查询抽样调查-抽样的基本要求总体个体样本T 整理数据借助统计活动研究概率从概 率角度分析善数据特征离散程度限差方差标准差实验估计概必然事不可能事游戏的 公平与模拟等效实考点二.数据的分析 1 .基本概念:总体:把所要考查的对象的全体叫做总体; 个体:把组成总体的每一个考查对象叫做个体;样本:从总体中取出的一部分个体叫做总体的一个样本; 样本容量:样本中包含的个体的个数叫做样本容量;频数:在记录实验数据时,每个对象出现的次数称为频数;频率:每个对象出现的次数与总次数的比值(或者百分比)称为频率;平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;中位数:将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组 数据的中位数;众数:在一组数据中,出现频数最多的数叫做这组数据的众数; 极差:一组数据中的最大值减去最小值所得的差称为极差;方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的 情况,这个结果通常称为方差.计算方差的公式:设一组数据是/,无是这组数据的平均数。

2019年中考数学知识点《统计图表》精选考题练习(含答案解析)

2019年中考数学知识点《统计图表》精选考题练习(含答案解析)

2019年中考数学知识点《统计图表》精选考题练习(含答案解析)一、选择题20.(2019山东省德州市,20,10)《中学生体质健康标准》规定的等级标准为:90分及以上为优秀,80~89分为良好,60~79 分为及格,59 分及以下为不及格.某校为了解七、八年级学生的体质健康情况,现从两年级中各随机抽取10 名同学进行体质健康检测,并对成绩进行分析.成绩如下:(1)根据上述数据,补充完成下列表格.整理数据:优秀分析数据:(2)该校目前七年级有200 人,八年级有300 人,试估计两个年级体质健康等级达到优秀的学生共有多少人?(3)结合上述数据信息,你认为哪个年级学生的体质健康情况更好,并说明理由.【解题过程】(1)八年级及格的人数是4,平均数=,中位数=;故答案为:4;74;78;(2)计两个年级体质健康等级达到优秀的学生共有200×人;(3)根据以上数据可得:七年级学生的体质健康情况更好.1. (2019·巴中)如图所示,是巴中某校对学生到校方式的情况统计图,若该校骑自行车到校的学生有200 人,则步行到校的学生有( )A.120 人B.160 人C.125 人D.180 人【答案】B【解析】因为该校骑自行车到校的学生有200 人,占比25%,所以可得全校总人数为200÷25%=800(人),步行人数占比20%,故人数为800×20%=160(人),故选B.5.(2019·温州)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40 人,那么选择黄鱼的有()A.20 人B.40 人C.60 人D.80 人【答案】D【解析】从统计图可知选择鲳鱼的占全体统计人数的 20%,则抽取的样本容量为40÷20%=200,则根据统计图可知选择黄鱼的有200×40%=80人.故选答案 D.4.(2019·嘉兴)2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是()A.签约金额逐年增加B.与上年相比,2019 年的签约金额的增长量最多C.签约金额的年增长速度最快的是 2016 年D.2018 年的签约金额比 2017 年降低了 22.98%【答案】C【解析】根据折线统计图观察可知,签约金额不是逐年增多,相对而言,增长量最多的是2016 年,增长速度最快的也是2016 年,2018 年比2017 年降低了%9.4,故选 C.6.(2019·威海)为配合全科大阅读活动,学校团委对全校学生阅读兴趣调查的数据进行整理.欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是()A.条形统计图B.频数直方图C.折线统计图D.扇形统计图【答案】D【解析】依据每种统计图的特点选择,欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是扇形统计图.故选 D.4.(2019·江西)根据《居民家庭亲子阅读消费调查报告)中的相关数据制成扇形统计图,由图可知,下列说法错误的是()A.扇形统计图能反映各部分在总体中所占的百分比B.每天阅读30 分钟以上的居民家庭孩子超过50%C.每天阅读1 小时以上的居民家庭孩子占20%D.每天阅读30 分钟至1 小时的居民家庭孩子对应扇形的圆心角是108°【答案】C【解析】∵每天阅读1 小时以上的居民家庭孩子占20%+10%=30%,∴C 错误.二、填空题13.(2019·泰州)根据某商场2018年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为1000万元,则该商场全年的营业额为万元.第13 题图【答案】5000【解析】二季度营业额所占百分比为1-35%-25%-20%=20%,所以该商场全年的营业额为1000÷20%=5000(万元)13.(2019·温州)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有人.【答案】90【解析】从频数直方图中读懂信息、提取信息、发现信息.知道成绩为“优良”(80分及以上)的在80~90、90~100两个小组中,其频数分别为60、30.因此,成绩为“优良”(80分及以上)的学生有90人.故填:90. 12.(2019·山西)要表示一个家庭一年用于"教育","服装","食品","其他"这四项的支出各占家庭本年总支出的百分比,从"扇形统计图","条形统计图","折线统计图"中选择一种统计图,最适合的统计图是.【答案】扇形统计图【解析】∵要表示四项支出各占家庭本年总支出的百分比,∴用扇形统计图最适合.三、解答题19.(2019年浙江省绍兴市,第19题,8分)小明、小聪参加了100m跑的5期集训,每期集训结束市进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图:根据图中信息,解答下列问题:(1)这5 期的集训共有多少天?小聪5 次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.【解题过程】21.(2019·嘉兴))在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有 500 名居民参加了测试,社区从中各随机抽取 50 名居民成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值):【信息二】上图中,从左往右第四组的成绩如下:75 75 79 79 79 79 80 8081 82 82 83 83 84 84 84【信息三】A、B两小区各 50 名居民成绩的平均数、中位数、众数、优秀率(80 分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.1 79 40% 277B75.1 77 76 45% 211 根据以上信息,回答下列问题:(1)求A小区 50 名居民成绩的中位数.(2)请估计A小区 500 名居民成绩能超过平均数的人数.(3)请尽量从多个角度,选择合适的统计量分析A,B两小区参加测试的居民掌握垃圾分类知识的情况.24【解题过程】(1)75 分.(2)×500=240 人.(3)从平均数、中位数、众数、方差等方面,选择合适的统计50量进行分析,例如:①从平均数看,两个小区居民对于垃圾分类知识掌握情况的平均水平相同;②从方差看,B 小区居民对垃圾分类知识的掌握情况比A 小区稳定;③从中位数看,B 小区至少有一半的居民成绩高于平均数. 分三个不同层次的评价:A 层次:能从1 个统计量进行分析B 层次:能从2 个统计量进行分析C 层次:能从3 个及以上统计量进行分析18. (2019 浙江省杭州市,18,8 分)(本题满分 8 分)称量五筐水果的质量,若每筐以 50 千克为基准,超过基准部分的千克数记为正数.不足基准部分的干克数记为负数.甲组为实际称量读数,乙组为记录数据.并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表12345序号数据甲组48 52 47 49 54乙组-2 2-3 -1 4(1)补充完整乙组数据的折线统计图.(第18 题)(2)①甲,乙两组数据的平均数分别为x¯甲,x¯乙,写出x¯甲与x¯乙之间的等量关系②甲,乙两组数据的方差分别为S2 ,S2 ,比较S2 与S2 的大小,并说明理由。

中考数学总复习 第四章 统计与概 第19课 统计图与统计表课件

中考数学总复习 第四章 统计与概 第19课 统计图与统计表课件

8
24≤x<32
6
32≤x<40
3
A. 0.8
B. 0
5.要反映北京某一周每天的最高气温的变化趋势,宜采用( C )
A. 条形统计图
B. 扇形统计图
C. 折线统计图
D. 频数直方图
6.在股市交易上,为了让股民清楚、直观看出某种股票的涨跌情况,使 用的统计图是__折__线____统计图.
第四章 统计与概率
第 19 课 统计图与统计表
知识梳理
知识回顾 1.数据描述方式:统计表和统计图 _统__计__表__的实质是反映某一过程中的两个变量之间的对应关系,绘制方法 和函数列表基本相同. 统计图的实质是反映某一过程中的两个变量之间的对应关系,分_条__形__ 统计图、_折__线__统计图、_扇__形__统计图,不反映给出的各对应值以外的两个变 量之间的对应情况. 条形统计图是由两条互相垂直的数轴和若干_长__方__形__组成,两条数轴分别 表示两个不同的标目,长方形的高表示其中一个标目的数据,清楚地反映数 据的数量情况.
(第 9 题图)
10.已知杭州市某天六个整点时的气温绘制成的统计图如图所示,则这 六个整点时气温的中位数是__1_5_.6__℃.
(第 10 题图)
易错警示 易错易混点:扇形统计图的含义 【例题】 根据下面的两幅统计图,下列说法正确的是( )
(例题图) A. 一中的学生喜欢运动,三中的学生喜欢学习 B. 一中喜欢足球的人数与三中喜欢数学的人数相等 C. 三中喜欢自然的学生与一中喜欢排球的人数相等 D. 以上答案都不正确
(第 3 题图) B. 24,23 D. 23,24
4.某棉纺厂为了了解一批棉花的质量,从中随机抽取了 20 根棉花纤维
进行测量,其长度 x(单位: mm)的数据分布如下表,则棉花纤维长度的数据

2019中考数学 第一部分 教材知识梳理 第八单元 第31课时 数据的收集与统计图(表)课件

2019中考数学 第一部分 教材知识梳理 第八单元 第31课时 数据的收集与统计图(表)课件

(2)当调查具有破坏性或者危害性时,如调
查一批电视机的使用寿命情况.
优质课件
考点2 统计的相关概念 1. 总体:与所研究的问题有关的全体对象. 2. 个体:组成总体的每个对象. 3. 样本:从总体中抽取的一部分个体. 4. 样本容量:样本中个体的个数.
优质课件
失分点19 量的概念
混淆总体、个体、样本、样本容
①未知组频数=样本容量-已知组频数之和;
②未知组频数=样本容量×该组所占样本的百分
比.(注:百分比一般可以从扇形图或频数分布
表中得到)
优质课件
(2)补全扇形统计图:一般就是涉及求未知组 的百分比或其所占圆心角的度数,方法如下:
①未知组百分比=1-已知组百分比之和;
未知组频数 ②未知组百分比= 100% ; 样本容量
生参加升学考试,为了了解这1.6万名考生的数学成 绩,从中抽取2000名考生的数学成绩进行统计,在这 个问题中样本是 A. 1.6万名考生 B. 2000名考生 C. 1.6万名考生的数学成绩 D. 2000名考生的数学成绩
优质课件
( D)
【思路点拨】根据统计的相关概念进行解答,注 意样本容量与样本的区别.
抽样中的总体、个体、样本是表示事物某一 特征的数据而不是事物的本身,样本容量是样本
中所含个体的数量.如考察一批炮弹的杀伤半径,
从中抽取5发进行试验,在该问题中,总体:这 批炮弹杀伤半径的全体.个体:每发炮弹的杀伤
半径.样本:①__________________ ;样本容量: 5发炮弹的杀伤半径
②____. 5
当不必要或不可能对某一总体进行全面调
查时,我们只要从总体中抽取一部分个体进行
调查,然后根据调查数据来推断总体情况的调 查方式称为抽样调查.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20.(2019山东省德州市,20,10)《中学生体质健康标准》规定的等级标准为:90分及以上为优秀,80~89分为良好,60~79分为及格,59分及以下为不及格.某校为了解七、八年级学生的体质健康情况,现从两年级中各随机抽取10名同学进行体质健康检测,并对成绩进行分析.成绩如下:七年级80748363909174618262八年级74618391608546847482(1)根据上述数据,补充完成下列表格.整理数据:七年级2350八年级141分析数据:年级平均数众数中位数七年级767477八年级74(2)该校目前七年级有200人,八年级有300人,试估计两个年级体质健康等级达到优秀的学生共有多少人?(3)结合上述数据信息,你认为哪个年级学生的体质健康情况更好,并说明理由.【解题过程】(1)八年级及格的人数是4,平均数=,中位数=;故答案为:4;74;78;(2)计两个年级体质健康等级达到优秀的学生共有200×人;(3)根据以上数据可得:七年级学生的体质健康情况更好.1. (2019·巴中)如图所示,是巴中某校对学生到校方式的情况统计图,若该校骑自行车到校的学生有200人,则步行到校的学生有( )A.120人B.160人C.125人D.180人【解析】因为该校骑自行车到校的学生有200人,占比25%,所以可得全校总人数为200÷25%=800(人),步行人数占比20%,故人数为800×20%=160(人),故选B.5.(2019·温州)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人 B.40人 C.60人 D.80人【答案】D【解析】从统计图可知选择鲳鱼的占全体统计人数的20%,则抽取的样本容量为40÷20%=200,则根据统计图可知选择黄鱼的有200×40%=80人.故选答案D.4.(2019·嘉兴)2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是()A.签约金额逐年增加B.与上年相比,2019年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98%【答案】C【解析】根据折线统计图观察可知,签约金额不是逐年增多,相对而言,增长量最多的是2016年,增长速度最快的也是2016年,2018年比2017年降低了%9.4,故选C.6.(2019·威海)为配合全科大阅读活动,学校团委对全校学生阅读兴趣调查的数据进行整理.欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是()A.条形统计图B.频数直方图C.折线统计图D.扇形统计图【答案】D【解析】依据每种统计图的特点选择,欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是扇形统计图.故选D.4.(2019·江西)根据《居民家庭亲子阅读消费调查报告)中的相关数据制成扇形统计图,由图可知,下列说法错误的是()A.扇形统计图能反映各部分在总体中所占的百分比B.每天阅读30分钟以上的居民家庭孩子超过50%C.每天阅读1小时以上的居民家庭孩子占20%D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°【答案】C【解析】∵每天阅读1小时以上的居民家庭孩子占20%+10%=30%,∴C错误.二、填空题13.(2019·泰州)根据某商场2018年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为1000万元,则该商场全年的营业额为________万元.第13题图【答案】5000【解析】二季度营业额所占百分比为1-35%-25%-20%=20%,所以该商场全年的营业额为1000÷20%=5000(万元)13.(2019·温州)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有人.【答案】90【解析】从频数直方图中读懂信息、提取信息、发现信息.知道成绩为“优良”(80分及以上)的在80~90、90~100两个小组中,其频数分别为60、30.因此,成绩为“优良”(80分及以上)的学生有90人.故填:90. 12.(2019·山西)要表示一个家庭一年用于"教育","服装","食品","其他"这四项的支出各占家庭本年总支出的百分比,从"扇形统计图","条形统计图","折线统计图"中选择一种统计图,最适合的统计图是________.【答案】扇形统计图【解析】∵要表示四项支出各占家庭本年总支出的百分比,∴用扇形统计图最适合.三、解答题19.(2019年浙江省绍兴市,第19题,8分)小明、小聪参加了100m跑的5期集训,每期集训结束市进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图:根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.【解题过程】21.(2019·嘉兴))在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值):【信息二】上图中,从左往右第四组的成绩如下:75 75 79 79 79 79 80 8081 82 82 83 83 84 84 84【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.1 79 40% 277B75.1 77 76 45% 211 根据以上信息,回答下列问题:(1)求A 小区50名居民成绩的中位数.(2)请估计A 小区500名居民成绩能超过平均数的人数.(3)请尽量从多个角度,选择合适的统计量分析A ,B 两小区参加测试的居民掌握垃圾分类知识的情况.【解题过程】(1)75分.(2)2450×500=240人.(3)从平均数、中位数、众数、方差等方面,选择合适的统计量进行分析,例如:①从平均数看,两个小区居民对于垃圾分类知识掌握情况的平均水平相同;②从方差看,B 小区居民对垃圾分类知识的掌握情况比A 小区稳定;③从中位数看,B 小区至少有一半的居民成绩高于平均数. 分三个不同层次的评价:A 层次:能从1个统计量进行分析B 层次:能从2个统计量进行分析C 层次:能从3个及以上统计量进行分析18. (2019浙江省杭州市,18,8分)(本题满分8分)称量五筐水果的质量,若每筐以50 千克为基准,超过基准部分的千克数记为正数.不足基准部分的干克数记为负数.甲组为实际称量读数,乙组为记录数据.并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表序号 数据 12345甲组 48 52 47 49 54 乙组-22-3-14(1)补充完整乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为x ̅甲,x ̅乙,写出x ̅甲与x ̅乙之间的等量关系②甲,乙两组数据的方差分别为S 甲2, S 乙2,比较S 甲2与S 乙2的大小,并说明理由。

【解题过程】(1)乙组数据的折线统计图如图所示:(第18题)(2)①=50+;②S 甲2=S 乙2.理由:∵ S 甲2=15[(48-50)2+(52-50)2+(47-50)2+(49-50)2+(54-50)2]=6.8, S 乙2=15[(-2-0)2+(2-0)2+(-3-0)2+(-1-0)2+(4-0)2]=6.8,∴ S 甲2=S 乙2.23.(2019江苏盐城卷,23,10)某公司共有400名销售人员,为了解该公司销售人员某季度商品销售情况,随机抽取部分销售人员该季度的销售数量,并把所得数据整理后绘制成如下统计图表进行分析.请根据以上信息,解决下列问题:(1)频数分布表中,= ,= ; (2)补全频数分布直方图:(3)如果该季度销量不低于80件的销售人员将被评为“优秀员工”,试估计该季度被评为“优秀员工”的人数. 【解题过程】解:(1)=3÷0.06=50(人),=1-(0.06+0.14+0.46+0.08)=0.26或=13÷50=0.26; (2)因为=50-3-7-13-4=23(人),所以可补全条形统计图如图所示:a b 组别人数510152025ABCDE 37134频数分布直方图Ob a a m(3)D 、E 两组的频率之和为:0.46+0.08=0.54,所以该季度被评为“优秀员工”的人数约有:400×54%=216(人). 23.(2019·苏州)某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”几个课外兴趣小组,耍求每人必须参加,并且只能选择其中的一个小组,为了了解学生对叫个课外兴趣小组的选择情况,学校从全体学牛中随机抽取部分学生进行问卷调查,并把调查结果制成如同所示的扇形统计 图和条形统汁图(部分信息未给出).请你根据给出的信息解答下列问题:(第23题)(1)求参加这次问卷调查的学牛人数,并补全条形统计图(画图后请标注相应的数据) (2)m = .n = ;(3)若该校共有1200名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人? 解:(1)参加这次问卷调查的学生人数为30÷20%=150(人),航模的人数为150﹣(30+54+24)=42(人),补全图形如下:第23题答图(2)m %54150=⨯100%=36%,n %24150=⨯100%=16%,即m =36、n =16,故答案为36、16; (3)估计该校选择“围棋”课外兴趣小组的学生有1200×16%=192(人).21.(2019·淮安)某企业为了解员工安全生产知识掌握情况,随机抽取了部分员工进行安全生产知识测试,测试试卷满分100分.测试成绩按A 、B 、C 、D 四个等级进行统计,并将统计结果绘制了如下两幅不完整的统计图.(说明:测试成绩取整数,A 级:90分~100分;B 级:75分-89分;C 级:60分~74分;D 级:60分以下)23频数分布直方图41373E D C B A 252015105人数组别O请解答下列问题:(1)该企业员工中参加本次安全生产知识测试共有人; (2)补全条形统计图;(3)若该企业共有员工800人,试估计该企业员工中对安全生产知识的掌握能达到A 级的人数. 【解题过程】(1)∵20÷50%=40,∴该企业员工中参加本次安全生产知识测试共有40人. (2)∵40-8-20-4=8, ∴补全条形统计图如下:(3)∵样本中A 所占的百分比为:%20%100408=⨯, ∴估计该企业员工中对安全生产知识的掌握能达到A 级的人数.为800×20%=160.18.(2019·泰州) PM2.5是指空气中直径小于或等于2.5PM 的颗粒物,它对人体健康和大气环境造成不良影响.下表是根据(全国城市空气质量报告)中的部分数据制作的统计表,根据统计表回答下列问题:(1)2018年7~12月PM2.5平均浓度的中位数为______pm/m 2;(2)"扇形统计图"和"折线统计图"中,更能直观地反映2018年7~12月PM2.5平均浓度变化过程和趋势的统计图是 ;(3)某同学观察统计表后说:"2018年7~12月与2017年同期相比,空气质量有所改善".请你用一句话说明该同学得出这个结论的理由.【解题过程】(1)(25+36)÷2=30.5;(2)折线统计图;(3)对比两年相同月份的PM2.5平均浓度,除8月份持平外,其余月份2018年都比2017年有所下降,因此2018年7~12月与2017年同期相比,空气质量有所改善. 22.(2019·益阳)某校数学活动小组对经过某路段的小型汽车每车乘坐人数(含驾驶员)进行了随机调查,根据每车乘坐人数分为5类,每车乘坐1人、2人、3人、4人、5人分别记为A 、B 、C 、D 、E ,由调查所得数据绘制了如图所示的不完整的统计图表.第22题图(1)求本次调查的小型汽车数量及m ,n 的值; (2)补全频数分布直方图;(3)若某时段通过该路段的小型汽车数量为5000辆,请你估计其中每车只乘坐1人的小型汽车数量. 【解题过程】22.解:(1)本次调查的小型汽车数量:2.032=160(辆). m=16048=0.3, n=1-(0.3+0.35+0.2+0.05)=0.1.(2)B 类小型汽车的辆数:0.35×160=56, D 类小型汽车的辆数:0.1×160=16. ∴补全频数分布直方图如下:第22题答图(3)某时段该路段每车只乘坐1人的小型汽车数量:0.3×5000=1500(辆). 21.(2019·长沙)某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查,将他们的得分按优秀、良好、合格、待合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.等级 频数 频率 优秀 21 42% 良好 m 40% 合格6n% 待合格 36%请根据以上信息,解答下列问题:(1)本次调查随机抽取了名学生;表中m =,n =; (2)补全条形统计图;(3)若全校有2000名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有多少人. 【解题过程】(1)本次调查随机抽取了21÷42%=50名学生,m=50×40%=20,n=650×100=12,故答案为:50,20,12;(2)补全条形统计图如图所示;(3)2000×21+2050=1640人,答:该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有1640人. 21.(2019·娄底) 湖南省作为全国第三批启动高考综合改革的省市之一,从2018年秋季入学的高中一年级学生开始实施高考综合改革,承载着广大考生的美好期盼,事关千家万户的切身利益,社会关注度高.为了了解我店里某小区居民对此政策的关注程度,某数学兴趣小组随机采访了该小区居民部分居民,根据采访情况 制作了如下统计呼表:表(一)(1)根据上述统计图表,可得此次采访的人数为_________,m =______,n =_________. (2)根据以上信息补全图(10)中的条形统计图.(3)请估计在该小区1500名居民中,高度关注新高考政策的约有多少人? 解:(1)1000.5200÷=,2000.480m =⨯=,202000.1n =÷=(2)2000.480⨯=(人),补全的条形图如图(10-1) 1.(3)15000.4600⨯=(人)∴在该小区1500名居民中,高度关注新高考政策的约有600人 20.(2019·衡阳)某学校为了丰富学生课余生活,开展了“第二课堂”的活动,推出了以下四种选修课程:A .绘画; B .唱歌;C .演讲;D .十字绣.学校规定:每个学生都必须报名且只能选择其中的一个课程.学校随机抽查了部分学生,对他们选择的课程情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)这次学校抽查的学生人数是; (2)将条形统计图补充完整;(3)如果该校共有1000名学生,请你估计该校报D 的学生约有多少人? 解:(1)40; (2)如图.(3)解:1000×440=100,故该校1000人中报D 约有100人. 19.(2019·武汉)为弘扬中华传统文化,某校开展“双剧进课堂”的活动,该校童威随机抽取部分学生,按四个类别:A 表示“很喜欢”,B 表示“喜欢”,C 表示“一般”,D 表示“不喜欢”,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:课程课程选择情况的扇形统计图课程选择情况的条形统计图1412108640214121086402各类学生人数条形统计图 各类学生人数扇形统计图(1) 这次共抽取_________名学生进行统计调查,扇形统计图中,D 类所对应的扇形圆心角的大小为__________ (2) 将条形统计图补充完整(3) 该校共有1500名学生,估计该校表示“喜欢”的B 类的学生大约有多少人?【解题过程】(1)抽取学生人数为12÷24%=50;D 类所对应的扇形圆心角的大小为10100%3607250⨯⨯=o o ,故答案为50,72°(2)A 类人数为50-23-12-10=5,补充条形统计图如图(3)1500×2350=690(人),∴估计该校表示“喜欢”的B 类的学生大约有690人. 1.(2019·台州)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将手机的数据制成如下统计图表.活动前骑电瓶车戴安全帽情况统计表合计1000第21题图A:每次戴 B:经常戴 C:偶尔戴 D:都不戴(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车"都不戴"安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车"都不戴"安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.解:(1)由表格数据可知,C 类偶尔戴的市民人数最多,占比为:5101000=51%. (2)177300000=531001000⨯(人),答:活动前全市骑电瓶车"都不戴"安全帽的总人数为53100人. (3)不合理.∵活动开始前后调查的总人数不同,要比较所占百分比大小才能得到正确结论.活动开展前,"都不戴"占比为177100%=17.7%1000⨯,活动开展后,"都不戴"占比为178100%=8.9%896+702+224178⨯+,∵17.7%>8.9%,所占百分比下降,"每次戴"的比例有6.8%大幅度上升到44.8%,说明活动有效果.2.(2019·衢州)某校为积极响应“南孔圣地,衢州有札”城市品牌建设,在每周五下午第三节课开展了丰富多彩的走班选课活动,其中综合实践类共开设了“礼行”“礼知”“礼思”“礼艺”“礼源”等五门课程,要求全校学生必须参与其中一门课程。

相关文档
最新文档