2019年云南成人高考专升本高等数学一真题及答案

合集下载

【年成人高考学校招生全国统一考试】2019年《数学》真题

【年成人高考学校招生全国统一考试】2019年《数学》真题

1- x 2 2019 年成人高考学校招生全国统一考试数学一、选择题(本大题共 17 小题,每小题 5 分,共 85 分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设全集U={1,2,3,4}集合M={3,4},则C U M =( )A.{2,3}B.{2,4}C.{1,2}D.{1,4}2. 函数 y = cos 4x 的最小正周期为()A.πB.πC.πD. 2π243. 设甲: b = 0 ;乙:函数 y = kx + b 的图像经过坐标原点,则()A.甲是乙的充分条件但不是必要条件B. 甲是乙的充要条件C. 甲是乙的必要条件但不是充分条件D. 甲既不是乙的充分条件也不是乙的必要条件4. 已知tan α= 1 .则tan(α+ π= ( )2 A.-3B. -1 34C.3D. 1 35. 函数 y = 的定义域是()A.{x x ≥ -1}B.{x x ≤ 1}C.{x -1 ≤ x ≤ 1}D.{x x ≤ -1}6.设0 < x < 1,则( )A. log 2 x > 0B. 0 < 2x < 1C. log 1 x < 02D.1 < 2x < 27. 不等式 x + 12> 1的解集为()2A. {x x > 0或x < -1}B.{x -1 < x < 0}C.{x x > -1}D. {x x < 0}8. 甲、乙、丙、丁 4 人排成一行,其中甲、乙必须排在两端,则不同)3 的排法共有( ) A.4 种B.2 种C.8 种D.24 种9.若向量a = (1,1), b = (1,一 1),则 1a - 3b = ( ) 22A.(1.2)B.(-1.2)C.(1,-2)D.(-1,-2)110. log 1+162 + (-2)0 = ( )A.2B.4C.3D.511.函数 y = x 2 - 4x - 5 的图像与x 轴交于A ,B 两点,则|AB|= A.3B.4C.6D.5 12.下列函数中,为奇函数的是( )A. y = - 2xB. y = -2x + 3C. y = x 2 - 3D. y = 3cos x13.双曲线 x 2 - y 2 =1的焦点坐标是()9 16A.(0,- 7 ),(0, 7 )B.(- 7 ,0),( 7 ,0)C.(0,-5),(0,5)D.(-5,0),(5,0)14.若直线mx + y -1 = 0 与直线4x + 2 y +1 = 0 平行,则m=( )A.-1B.0C.2D.115. 在等比数列{a n }中,若a 4a 5 = 6, 则a 2a 3a 6a 7 = ()A.12B.36C.24D.7216. 已知函数 f (x ) 的定义域为 R ,且 f (2x ) = 4x +1, 则 f (1) = ()A.9B.5C.7D.317. 甲、乙各自独立地射击一次,已知甲射中 10 环的概率为 0.9,乙射中 10 环的概率为 0.5,则甲、乙都射中 10 环的概率为 ( )A.0.2B.0.45C.0.25D.0.75。

2019年成人高考《高数一》考试真题(含解析)

2019年成人高考《高数一》考试真题(含解析)

学习攻略—收藏助考锦囊系统复习资料汇编考试复习重点推荐资料百炼成金模拟考试汇编阶段复习重点难点梳理适应性全真模拟考试卷考前高效率过关手册集高效率刷题好资料分享学霸上岸重点笔记总结注:下载前请仔细阅读资料,以实际预览内容为准助:逢考必胜高分稳过2019年成人高等学校招生全国统一考试专升本高等数学(一)第Ⅰ卷(选择题)一、选择题(1-10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.当x→O时,x+x2+x3+x4为x的()。

A.等价无穷小B.2阶无穷小C.3阶无穷小D.4阶无穷小2.limx→∞�1+2x�x=()。

A.-e2B.-eC.eD.e23.设函数y=cos2x,则y′=()。

A.2sin2xB.-2sin2xC.sin2xD.-sin2x4.设函数f(x)在[a,b]上连续,在(a.b)可导,f′(x)>0,f(a)f(b)<0,则在(a.b)内零点的个数为()。

A.3B.2C.1D.05.设2x为f(x)的一个原函数,则f(x)=()。

A.0B.2C.x2D.x2+C6.设函数f(x)=arctan x,则∫f′(x)dx=()。

A.−arctan x+CB.−11+x2+CC.arctan x+CD.11+x2+C7.设I1=∫x2dx10,I2=∫x3dx110,I3=∫x4dx10,则()。

A.I1>I2>I3B.I2>I3>I1C.I3>I2>I1D. I1>I3>I28.设函数z=x2e y,则∂z∂x�(1,0)=()。

A.0B.12第 1 页,共 6 页2/25C.1D.29.平面x +2y −3z +4=0的一个法向量为( )。

A.{1,−3,4}B.{1,2,4}C.{1,2,−3}D.{2,−3,4}10.微分方程y ′′+(y ′)3+y 4=x 的阶数为( )。

A.1 B.2C.3D.4第Ⅱ卷(非选择题)二、填空题(11-22小题,每小题4分,共40分)11.lim x→0tan 2x x = 。

2019年成人高考专升本考试高等数学(一)真题与标准答案解析

2019年成人高考专升本考试高等数学(一)真题与标准答案解析

2019年成人高考专升本考试高等数学(一)真题(总分:150.00,做题时间:150分钟)一、选择题(总题数:10,分数:40.00)1.当x→0时,x+x2+x3+x4为x的________。

(分数:4.00)A.等价无穷小√B.2阶无穷小C.3阶无穷小D.4阶无穷小解析:2.________。

(分数:4.00)A.-e2B.-eC.eD.e2√解析:3.设函数y=cos2x,则y'= ________。

(分数:4.00)A.2sin2xB.-2sin2x √C.sin2xD.-sin2x解析:y'= (cos2x)'=-sin2x·(2x)'=-2sin2x。

4.设函数f(x)在[a,b]上连续,在(a,b)可导,f(x)>0,f(a)f(b)<0, 则f(x)在(a,b)零点的个数为________。

(分数:4.00)A.3B.2C.1 √D.0解析:由零点存在定理可知,f(x)在(a,b),上必有零点.且函数是单调函数,故其在(a,b) 上只有一个零点。

5.设2x为f(x)的一个原函数,则f(x)=________。

(分数:4.00)A.0B.2 √C.x2D.x2+C解析:由题可知∫f(x)dx=2x+C,故f(x)=(∫f(x)dx)=(2x+C)'=2。

6.设函数f(x)=arctanx,则∫f'(x)dx=________。

(分数:4.00)A.-arctanx+CB.C.arctanx+C √D.解析:∫f'(x)dx= f(x)+C=arctanx+C。

7.则________。

(分数:4.00)A.l1> l2> I3√B.l2> I3> I1C.I3> I2> I1D.l1> I3> I2解析:在区间(0,1)内,有x2>x3>x4由积分的性质可知8.设函数z=x2e y,则________。

2019年成人高等考试《数学一》(专升本)真题及答案

2019年成人高等考试《数学一》(专升本)真题及答案

2019年成人高等考试《数学一》(专升本)真题及答案[单选题]1.当x→0时,x+x2+x3+x4为x的()。

A.等价无穷小(江南博哥)B.2价无穷小C.3价无穷小D.4价无穷小参考答案:A参考解析:,故x+x2+x3+x4是x 的等价无穷小。

[单选题]2.=()。

A.-e2B.-eC.eD.e2参考答案:D参考解析:。

[单选题]3.设函数y=cos2x,则y’=()。

A.y=2sin2xB.y=-2sin2xC.y=sin2xD.y=-sin2x参考答案:B参考解析:y’=(cos2x)’=-sin2x·(2x)’=-2sin2x。

[单选题]4.设函数f(x)在[a,b]上连续,在(a,b)内可导,f’(x)>0,f (a)f(b)<0则f(x)在(a,b)内零点的个数为()。

A.3B.2C.1D.0参考答案:C参考解析:由零点存在定理可知,f(x)在(a,b)上必有零点,且函数是单调函数,故其在(a,b)上只有一个零点。

[单选题]5.设2x为f(x)的一个原函数,则f(x)=()。

A.0B.2C.x2D.x2+C参考答案:B参考解析:2x为f(x)的一个原函数,对f(x)积分后为2x,则f(x)=2。

[单选题]6.设函数(x)=arctanx,则=()。

A.-arctanx+CB.C.arctanx+CD.参考答案:C参考解析:[单选题]7.设,则()。

A.I1>I2>I3B.I2>I3>I1C.I3>I2>I1D.I1>I3>I2参考答案:A参考解析:在区间(0,1)内,有x2>x3>x4,由积分的性质可知,即I1>I2>I3。

[单选题]8.设函数z=x2ey,则=()。

A.0B.1/2C.1D.2参考答案:D参考解析:,带入数值结果为2。

[单选题]9.平面x+2y-3z+4=0的一个法向量为()。

2019年成人高考专升本《高等数学(一)》考试及参考答案(共三套)

2019年成人高考专升本《高等数学(一)》考试及参考答案(共三套)

成人高等学校专升本招生全国统一考试高等数学(一)。

答案必须答在答题卡上指定的位置,答在试卷上无效.......(共三套及参考答案)第Ⅰ卷(选择题,共40分)一、选择题:1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A.0B.1C.2D.不存在2.().A.单调增加且为凹B.单调增加且为凸c.单调减少且为凹D.单调减少且为凸3.A.较高阶的无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.较低阶的无穷小量4.A.B.0C.D.15.A.3B.5C.1D.A.-sinxB.cos xC.D.A.B.x2C.2xD.28.A.B.C.D.9.设有直线当直线l1与l2平行时,λ等于().A.1B.0C.D.一110.下列命题中正确的有().A.B.C.D.第Ⅱ卷(非选择题,共110分)二、填空题:11~20小题,每小题4分,共40分.11.12.13.14.15.16.17.18.19.20.三、解答题.21~28小题,共70分.解答应写出推理、演算步骤.21.(本题满分8分)22.(本题满分8分)设y=x+arctanx,求y'.23.(本题满分8分)24.(本题满分8分)计算25.(本题满分8分)26.(本题满分10分)27.(本题满分10分)28.(本题满分10分)求由曲线y=x,y=lnx及y=0,y=1围成的平面图形的面积S及此平面图形绕y轴旋转一周所得旋转体体积.模拟试题参考答案一、选择题1.【答案】C.【解析】本题考查的知识点为左极限、右极限与极限的关系.2.【答案】B.【解析】本题考查的知识点为利用一阶导数符号判定函数的单调性和利用二阶导数符号判定曲线的凹凸性.3.【答案】C.【解析】本题考查的知识点为无穷小量阶的比较.4.【答案】D.【解析】本题考查的知识点为拉格朗日中值定理的条件与结论.可知应选D.5.【答案】A.【解析】本题考查的知识点为判定极值的必要条件.故应选A.6.【答案】C.【解析】本题考查的知识点为基本导数公式.可知应选C.7.【答案】D.【解析】本题考查的知识点为原函数的概念.可知应选D.8.【答案】D.【解析】本题考查的知识点为牛顿一莱布尼茨公式和定积分的换元法.因此选D.9.【答案】C.【解析】本题考查的知识点为直线间的关系.10.【答案】B.【解析】本题考查的知识点为级数的性质.可知应选B.通常可以将其作为判定级数发散的充分条件使用.二、填空题11.【参考答案】e.【解析】本题考查的知识点为极限的运算.12.【参考答案】1.【解析】本题考查的知识点为导数的计算.13.【参考答案】x—arctan x+C.【解析】本题考查的知识点为不定积分的运算.14.【参考答案】【解析】本题考查的知识点为定积分运算.15.【参考答案】【解析】本题考查的知识点为隐函数的微分.解法1将所给表达式两端关于x求导,可得从而解法2将所给表达式两端微分,16.【参考答案】【解析】本题考查的知识点为二阶常系数线性齐次微分方程的求解.17.【参考答案】1.【解析】本题考查的知识点为二元函数的极值.可知点(0,0)为z的极小值点,极小值为1.18.【参考答案】【解析】本题考查的知识点为二元函数的偏导数.19.【参考答案】【解析】本题考查的知识点为二重积分的计算.20.【参考答案】【解析】本题考查的知识点为幂级数的收敛半径.所给级数为缺项情形,三、解答题21.【解析】本题考查的知识点为极限运算.解法1解法2【解题指导】在极限运算中,先进行等价无穷小代换,这是首要问题.应引起注意.22.【解析】23.【解析】本题考查的知识点为定积分的换元积分法.【解题指导】比较典型的错误是利用换元计算时,一些考生忘记将积分限也随之变化. 24.【解析】本题考查的知识点为计算反常积分.【解题指导】计算反常积分应依反常积分收敛性定义,将其转化为定积分与极限两种运算.25.【解析】26.【解析】27.【解析】本题考查的知识点为二重积分运算和选择二次积分次序.【解题指导】28.【解析】所给曲线围成的图形如图8—1所示.2018年成人高等学校专升本招生全国统一考试高等数学(一)。

2019年成人高等学校招生全国统一考试高起点数学试题与答案

2019年成人高等学校招生全国统一考试高起点数学试题与答案
【应试解析】当 O<x<l 时, 1 < 2x < 2' log 2 x < 0 log l x > 0.
7.【答案】A 【考情点拨】本题考查了绝对值不等式的知识点.
{ 【应试解析】Ix +
一11l>
-1

x

一1 >
一1

x

1


一一1
21 2
22
22
(1
)
即 飞xlix> 0或x <-tLJ
- 37 -
【】
A. 9
B. 5
c. 7
0.3
17.甲、乙各自独立地射占一 次,已知甲射中10环的概率为0.9 ,乙射中10环
的概率为0.5 ,则甲、乙都射中10环的概率是为
【】
A.0.2
B. 0.45
C.0.25
0.0. 75
第II卷(非选择题,共65分〉 二、填空题(本大题共4小题,每小题4分,共 16分〉
2019年成人高等学校招生全国统一考试高起点
数学
第I卷(选择题,共85分〉 一 、选择题〈本大题共 17 小题,每小题 5 分,共 85 分.在每小题给出的四个 选项中,只有一 项是符合题目要求的〉
l.设全集U=={l, 2, 3,针,集合\1== {3, 4},则CuM ==
【】
A. {2, 3}
3
1)-一(1,
-1)=(寸,2).
222
2
10.【答案】D
【考情点拨】本题考查了指数函数与对数函数运算的知识点 .
【应试解析】log 3 1+162 +(一 2)。 = 0+4+1=5.

2019年成人高考专升本《高数》试题及答案(卷一)

2019年成人高考专升本《高数》试题及答案(卷一)

2019年成人高考专升本《高数》试题及答案(卷一)不等式和不等式组知识点1:不等式的性质1. 不等式两边同加或减一个数,不等号方向不变2. 不等式两边同乘或除一个正数,不等号方向不变3. 不等式两边同乘或除一个负数,不等号方向改变( “>”变“<”)解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面知识点2:一元一次不等式1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。

2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。

3. 如:6x+8>9x-4 ,求x? 把x 的项移到左边,把常数项移到右边,变成6x-9x>-4-8 ,合并同类项之后得-3x>-12, 两边同除-3 得x<4 (记得改变符号) 。

知识点3:一元一次不等式组4. 定义:由几个一元一次不等式所组成的不等式组,叫做一元一次不等式组5. 解法:求出每个一元一次不等式的值,最后求这几个一元一次不等式的交集(公共部分) 。

知识点4:含有绝对值的不等式1. 定义:含有绝对值符号的不等式,如:|x|a 型不等式及其解法。

2. 简单绝对值不等式的解法:|x|>a 的解集是{x|x>a 或x<-a} ,大于取两边,大于大的小于小的。

3. 复杂绝对值不等式的解法:|ax+b|>c 相当于解不等式ax+b>c 或ax+b<-c ,解法同一元一次不等式一样。

|ax+b|(注意,当a<0 的时候,不等号要改变方向) ;解析:主要搞清楚取中间还是取两边,取中间是连起来的,取两边有“或”知识点5:一元二次不等式1. 定义:含有一个未知数并且未知数的最高次数是二次的不等式,叫做一元二次不等式。

如:( 2)求出x 之后,大于取两边,大于大的小于小的; 小于取中间,即可求出答案。

专升本高等数学一2019年真题

专升本高等数学一2019年真题

高等数学一第Ⅰ卷(选择题,共40分)一、选择题(1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 当时,为的 ( )0x →234x x x x +++x A.等价无穷小 B.2阶无穷小 C.3阶无穷小D.4阶无穷小2. ( )2lim 1xx x →∞⎛⎫+= ⎪⎝⎭A. B. C. D.2e -e-e 2e 3. 设函数,则= ( )cos 2y x =y 'A. B. C. D.2sin 2x2sin 2x-sin 2xsin 2x -4. 设函数在上连续,在可导,>0,f (a ) f (b )<0,则在内()f x [,]a b (,)a b ()f x '()f x (,)a b 零点的个数为 ( )A.3B.2C.1D.05. 设为的一个原函数,则= ( )2x ()f x ()f x A.0B.2C. D.2x 2x C+6. 设函数,则 ( )()arctan f x x =()d f x x '=⎰A. B.arctan x C -+211C x -++C. D.arctan x C+211C x ++7. 设,,,则( )1210d I x x =⎰1320d I x x =⎰1430d I x x =⎰A. I 1>I 2>I 3 B. I 2>I 3>I 1C. I 3>I 2>I 1D. I 1>I 3>I 28. 设函数,则=( )2e y z x =(1,0)z x∂∂A.0B.C.1D.2129. 平面的一个法向量为 ( )2340x y z +-+=A. B. C. D.{1,3,4}-{1,2,4}{1,2,3}-{2,3,4}-10. 微分方程的阶数为 ( )34()yy y y x ''++=A.1B.2C.3D.4第Ⅱ卷(非选择题,共110分)二、填空题(11~20小题,每小题4分,共40分)11..0tan 2limx xx→=12.若函数在点处连续,则a =.0x =13. 设函数,则d y =.2e x y =14.函数的极小值点x = .3()12f x x x =-15.= .x 16..121tan d x x x -=⎰17.设函数,d z =.32z x y =+18.设函数,则=.arcsin z x y =22zx ∂∂19.幂级数的收敛半径为.1n n nx ∞=∑20.微分方程的通解y =.2y x '=三、解答题(21~28题,共70分.解答应写出推理、演算步骤)21.(本题满分8分)若,求k .0sin 2lim2x x kxx→+=22.(本题满分8分)设函数,求.sin(21)y x =-y '23.(本题满分8分)设函数,求.ln y x x =y ''24.(本题满分8分)计算.13(e ) d x x x +⎰25.(本题满分8分)设函数,求.11z x y =-22z z x y x y ∂∂+∂∂26.(本题满分10分)设D 是由曲线与x 轴、y 轴,在第一象限围成的有界区域.求:21x y =-(1)D 的面积S ;(2)D 绕x 轴旋转所得旋转体的体积V .27.(本题满分10分)求微分方程的通解.560y y y '''--=28.(本题满分10分)计算,其中D 是由曲线,,轴在第一象限围成的有界区22()d d Dx y x y +⎰⎰221x y +=y x =x 域.参考答案及解析一、选择题1.【答案】A【考情点拨】本题考查了等价无穷小的知识点.【应试指导】,故是的等价无穷2342300limlim(1)1x x x x x x x x x x→→+++=+++=234x x x x +++x 小.2.【答案】D【考情点拨】本题考查了两个重要极限的知识点.【应试指导】.22222222lim(1)lim(1)[lim(1)]e x x x x x x x x x→∞→∞→∞+=+=+=3.【答案】B【考情点拨】本题考查了复合函数的导数的知识点.【应试指导】·.(cos 2)sin 2y x x ''==-(2)2sin 2x x '=-4.【答案】C【考情点拨】本题考查了零点存在定理的知识点.【应试指导】由零点存在定理可知,在上必有零点,且函数是单调函数,故其()f x (,)a b 在上只有一个零点.(,)a b 5.【答案】B【考情点拨】本题考查了函数的原函数的知识点.【应试指导】由题可知,故.()d 2f x x x C =+⎰()(()d )(2)2f x f x x x C ''==+=⎰6.【答案】C【考情点拨】本题考查了不定积分的性质的知识点.【应试指导】.()d ()arctan f x x f x C x C '=+=+⎰7.【答案】A【考情点拨】本题考查了定积分的性质的知识点.【应试指导】在区间内,有x 2>x 3>x 4,由积分的性质可知(0,1)>>,即I 1>I 2>I 3.120d x x ⎰130d x x ⎰140d x x ⎰8.【答案】D【考情点拨】本题考查了二元函数的偏导数的知识点.【应试指导】,故2×1×1=2.2e y zx x∂=∂(1,0)z x ∂=∂9.【答案】C【考情点拨】本题考查了平面的法向量的知识点.【应试指导】平面的法向量即平面方程的系数{1,2,}.3-10.【答案】B【考情点拨】本题考查了微分方程的阶的知识点.【应试指导】微分方程中导数的最高阶数称为微分方程的阶,本题最高是2阶导数,故本题阶数为2.二、填空题11.【答案】2【考情点拨】本题考查了等价无穷小的代换定理的知识点.【应试指导】.00tan 22limlim 2x x x xxx →→==12.【答案】0【考情点拨】本题考查了函数的连续性的知识点.【应试指导】由于在处连续,故有.()f x 0x =0lim ()lim 50(0)x x f x x f a --→→====13.【答案】22e d x x【考情点拨】本题考查了复合函数的微分的知识点.【应试指导】d y = d(e 2x ) = e 2x ·(2x )′d x = 2 e 2x d x.14.【答案】2【考情点拨】本题考查了函数的极值的知识点.【应试指导】,当或时,,当x <2()3123(2)(2)f x x x x '=-=-+2x =2x =-()0f x '=时,>0;当<x <2时,<0;当x >2时,>0,因此x =2是极小值2-()f x '2-()f x '()f x '点.15.【答案】arcsin x C+【考情点拨】本题考查了不定积分的计算的知识点.【应试指导】.arcsin x x C =+16.【答案】0【考情点拨】本题考查了定积分的性质的知识点.【应试指导】被积函数x tan 2x 在对称区间上是奇函数,故.[1,1]-121tan d 0x x y -=⎰17.【答案】23d 2d x x y y+【考情点拨】本题考查了二元函数的全微分的知识点.【应试指导】,,所以.23z x x ∂=∂2z y y ∂=∂2d d d 3d 2d z z z x y x x y y x y∂∂==+=+∂∂18.【答案】0【考情点拨】本题考查了二阶偏导数的知识点.【应试指导】,.arcsin z y x ∂=∂220zx ∂=∂19.【答案】1【考情点拨】本题考查了收敛半径的知识点.【应试指导】,设,则有,故其收敛半径1nn n n nx nx ∞∞===∑∑n a n =11limlim(1)1x x n n nρ→∞→∞+==+=为.11R ρ==20.【答案】2x C+【考情点拨】本题考查了可分离变量的微分方程的通解的知识点.【应试指导】微分方程是可分离变量的微分方程,两边同时积分得2y x '=.2d 2d y x x x y xC '=⇒=+⎰⎰三、解答题21.,故.00sin 2sin limlim 2122x x x kx x k k x x →→+=+=+=12k =22.[sin(21)]y x ''=-·cos(21)x =-(21)x '- .2cos(21)x =-23.()ln (ln )y x x x x '''=+,ln 1x +故.1(ln )y x x'''==24.1133(e )d d e d xx x x x x x +=+⎰⎰⎰1131e 113x xC+=+++ .433e 4x x C =++25.,,故21z x x ∂=-∂21z y y ∂=∂··2221z z x y x y x∂∂+=-∂∂22x y +21y .110=-+=26.(1)积分区域D 可表示为:0≤y ≤1,0≤x ≤1y 2,-120(1)d S y y=-⎰3101()3y y =-.23(2)120πd V y x=⎰ 10π(1)d x x =-⎰.π2=27.特征方程,解得或,故微分方程的通解为2560r r --=11r =-26r =(C 1,C 2为任意常数).1261212e e e e r x r x x x y C C C C -=+=+28.积分区域用极坐标可表示为:0≤≤,0≤r ≤1,θπ4所以22()d d DI x y x y=+⎰⎰ ·r d rπ12400d r θ=⎰⎰ ·π4=41014r.π16=。

2019专升本高数题库(含历年真题)

2019专升本高数题库(含历年真题)

2019专升本高数题库(含历年真题)章节练习极限、连续1、【单项选择】当x一0时,与3x2+2x3等价的无穷小量是( ).正确答案:B2、【单项选择】正确答案:B3、【单项选择】正确答案:B 4、【单项选择】ABCD正确答案:B 5、【单项选择】B 1C正确答案:D6、【单项选择】当 x一0时,kx是sinx的等价无穷小量,则k等于( )正确答案:B7、【单项选择】正确答案:A8、【单项选择】正确答案:C 9、【单项选择】正确答案:B 10、【单项选择】正确答案:A 11、【单项选择】正确答案:D 12、【单项选择】正确答案:D 13、【单项选择】ABCD正确答案:B1、【案例分析】正确答案:2、【案例分析】正确答案:所给极限为重要极限公式形式.可知3、【案例分析】正确答案:4、【案例分析】正确答案:5、【案例分析】正确答案:6、【案例分析】当x一0时f(x)与sin 2x是等价无穷小量,则正确答案:由等价无穷小量的定义可知【评析】判定等价无穷小量的问题,通常利用等价无穷小量的定义与极限的运算.7、【案例分析】正确答案:8、【案例分析】正确答案:9、【案例分析】正确答案:10、【案例分析】正确答案:11、【案例分析】正确答案:a=012、【案例分析】正确答案:13、【案例分析】正确答案:一元函数微分学1、【单项选择】正确答案:B2、【单项选择】设函数f(x)=COS 2x,则f′(x)=( ).正确答案:B3、【单项选择】设正确答案:B4、【单项选择】曲线Y=x-3在点(1,1)处的切线的斜率为( )正确答案:C5、【单项选择】设y=lnx,则y″等于( )正确答案:D6、【单项选择】设Y=e-3x,则dy等于( ).正确答案:C7、【单项选择】设函数f(x)在[0,b]连续,在(a,b)可导,f′(x)>0.若f(a)·f(b)<0,则y=f(x)正确答案:B8、【单项选择】设,y=COSx,则y′等于( )(1分)正确答案:A 9、【单项选择】正确答案:A 10、【单项选择】正确答案:B11、【单项选择】正确答案:B12、【单项选择】正确答案:D13、【单项选择】设,f(x)在点x0处取得极值,则( )ABCD正确答案:A14、【单项选择】设Y=e-5x,则dy=( )正确答案:A15、【单项选择】曲线y=x3+1在点(1,2)处的切线的斜率为( )正确答案:C16、【单项选择】曲线y=x3+1在点(1,2)处的切线的斜率为( )正确答案:C17、【单项选择】设 y=2^x,则dy等于( )正确答案:D18、【单项选择】正确答案:A19、【单项选择】正确答案:D20、【单项选择】设Y=sinx+COSx,则dy等于( ).(1分)正确答案:C1、【案例分析】求函数f(x)=x3-3x+1的单调区间和极值正确答案:注意函数的定义域为2、【案例分析】正确答案:3、【案例分析】设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为S(x).(1)写出S(x)的表达式;(2)求S(x)的最大值正确答案:4、【案例分析】求函数的极大值与极小值.正确答案:5、【案例分析】设Y=y((x)满足2y+sin(x+y)=0,求y ′正确答案:将2y+sin(x+y)=0两边对x求导,得6、【案例分析】求函数的单调区间和极值正确答案:函数的定义域为函数f(x)的单调减区间为(-∞,0],函数f(x)的单调增区间为[0,+∞);f(0)=2为极小值.7、【案例分析】证明:正确答案:【评析】8、【案例分析】求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.正确答案:【评析】求函数f(x)的单调区间,应先判定函数的定义域.求出函数的驻点,即y′=0的点;求出y的不可导的点,再找出y′>0时x的取值范围,这个范围可能是一个区间,也可能为几个区间求曲线在点(1,3)处的切线方程曲线方程为,点因此所求曲线方程为或写为设Y=2ex-1则y″=e-x正确答案:11、【案例分析】正确答案:12、【案例分析】设y=2x2+ax+3在点x=1取得极小值,则a=_____正确答案:设y=fx)可导,点a0=2为fx)的极小值点,且f2)=3,则曲线y=f(x)在点(2,3)处的切线方程为______.正确答案:由于y=f(x)可导,点x0=2为f(x)的极小值点,由极值的必要条件可知f′(2)=0.曲线y=fx)在点(2,3)处的切线方程为y-3=f′(2)(x-2)=0,即y=3为所求切线方程14、【案例分析】设Y=xsinx,求Y′正确答案:15、【案例分析】设Y=y((x)满足2y+sin(x+y)=0,求y ′正确答案:将2y+sin(x+y)=0两边对x求导,得16、【案例分析】求函数的单调区间和极值正确答案:函数的定义域为函数f(x)的单调减区间为(-∞,0],函数f(x)的单调增区间为[0,+∞);f(0)=2为极小值.17、【案例分析】正确答案:一元函数微分学1、【单项选择】正确答案:B 2、【单项选择】正确答案:B设正确答案:B正确答案:C5、【单项选择】设y=lnx,则y″等于( )正确答案:D正确答案:C7、【单项选择】设函数f(x)在[0,b]连续,在(a,b)可导,f′(x)>0.若f(a)·f(b)<0,则y=f(x)正确答案:B8、【单项选择】正确答案:A 9、【单项选择】正确答案:A 10、【单项选择】正确答案:B 11、【单项选择】正确答案:B 12、【单项选择】正确答案:D13、【单项选择】ABCD正确答案:A正确答案:A 15、【单项选择】正确答案:C 16、【单项选择】正确答案:C正确答案:D18、【单项选择】求函数f(x)=x3-3x+1的单调区间和极值正确答案:注意函数的定义域为【评析】判定f(x)的极值,如果x0为f(x)的驻点或不可导的点,可以考虑利用极值的第一充分条件判定.但是当驻点处二阶导数易求时,可以考虑利用极值的第二充分条件判定.2、【案例分析】正确答案:3、【案例分析】设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为S(x).(1)写出S(x)的表达式;(2)求S(x)的最大值正确答案:4、【案例分析】求函数的极大值与极小值.正确答案:5、【案例分析】设Y=y((x)满足2y+sin(x+y)=0,求y ′正确答案:将2y+sin(x+y)=0两边对x求导,得6、【案例分析】求函数的单调区间和极值正确答案:函数的定义域为函数f(x)的单调减区间为(-∞,0],函数f(x)的单调增区间为[0,+∞);f(0)=2为极小值.7、【案例分析】证明:正确答案:【评析】8、【案例分析】求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.正确答案:9、【案例分析】求曲线在点(1,3)处的切线方程曲线方程为,点因此所求曲线方程为或写为设Y=2ex-1则y″=e-x正确答案:11、【案例分析】正确答案:12、【案例分析】设y=2x2+ax+3在点x=1取得极小值,则a=_____正确答案:13、【案例分析】设y=fx)可导,点a0=2为fx)的极小值点,且f2)=3,则曲线y=f(x)在点(2,3)处的切线方程为______.正确答案:由于y=f(x)可导,点x0=2为f(x)的极小值点,由极值的必要条件可知f′(2)=0.曲线y=fx)在点(2,3)处的切线方程为y-3=f′(2)(x-2)=0,即y=3为所求切线方程14、【案例分析】设Y=xsinx,求Y′正确答案:一元函数积分学1、【单项选择】正确答案:C 2、【单项选择】ABCD正确答案:D 3、【单项选择】正确答案:A 4、【单项选择】正确答案:B 5、【单项选择】正确答案:A 6、【单项选择】ABCD正确答案:B 7、【单项选择】正确答案:A 8、【单项选择】正确答案:B9、【单项选择】BD正确答案:D 10、【单项选择】正确答案:C 11、【单项选择】正确答案:C 12、【单项选择】正确答案:D 13、【单项选择】正确答案:C 14、【单项选择】正确答案:D 15、【单项选择】正确答案:D 16、【单项选择】正确答案:B 17、【单项选择】正确答案:A 18、【单项选择】等于( )正确答案:D 19、【单项选择】正确答案:A 1、【案例分析】正确答案:2、【案例分析】正确答案:3、【案例分析】正确答案:4、【案例分析】正确答案:5、【案例分析】正确答案:6、【案例分析】正确答案:7、【案例分析】(1)求曲线Y=ex及直线x=1,x=O,y=0所围成的平面图形(如图3—3所示)的面积A.(2)求(1)中平面图形绕x轴旋转一周所得旋转体的体积Vx(1分)正确答案:8、【案例分析】【评析】定积分的分部积分运算u,u'的选取原则,与不定积分相同.只需注意不要忘记积分限.如果被积函数中含有根式,需先换元,再利用分部积分.正确答案:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档