质数与合数解决问题
2019五年级质数和合数解决问题
2019五年级质数合数解决问题1.赵老师在商店买了3个足球,足球的单价是整元数,可是模糊不清了,售货员阿姨说应该付134元,你认为售货员阿姨的说法对吗?为什么?2.李伯伯家有76个石榴,他每5个装一袋,能正好装完吗?每2个装一袋,能正好装完吗?为什么?3.干货店将225 kg花生分装成小袋销售,有三种包装可供选择。
4.有一些铅笔,无论是平均分给2个人、3个人,还是平均分给5个人,都剩1支。
这些铅笔至少有多少支?5.有两个质数,它们的和既是小于100的奇数、又是17的倍数。
这两个质数是多少?6.五(1)班有41个学生,现在派他们到4个敬老院进行义务劳动,每个敬老院只能派奇数个学生,能完成分配任务吗?为什么?7.一共买来37个梨,每3个装一盘。
8.新年到了,妈妈准备用微信给姐姐和弟弟共发80元的红包。
如果姐姐抢得的红包钱数为奇数,弟弟抢得的红包钱数为奇数还是偶数?如果姐姐抢得的红包钱数为偶数呢?9.王老师的QQ号码是一个六位数。
第一位数:既是偶数又是质数。
第二位数:是最小的自然数。
第三位数:是4的倍数,又是4的因数。
第四位数:既是2的倍数又是3的倍数。
第五位数:既是奇数又是合数。
第六位数:既是质数,又是奇数,并且是12的因数。
你知道王老师的QQ号码吗?10.小熊摘了75个玉米,如果每15个装一筐,能正好装完吗?还可以怎么装能正好装完呢?装几筐?11.参加校庆文艺表演的同学超过100人,而不足140人,将他们按每组12人分组多3人;按按每组8人分组也多3人。
此次参加校庆文艺表演的同学有多少人?12.五(1)班有40个同学参加广播操比赛,要使每行人数都相等,可以排几行?共有几种排法?(每行或每列不少于2人)13.有一张长24厘米、宽9厘米的长方形纸,如果要剪成苦干同样在的正方形而没有剩余,正方形的边长最大是多少厘米?14.一张长方形的纸,长7分米5厘米、宽6分米。
现在要把它裁成一块块的正方形,而且正方形的边长这整厘米数,正方形的边长最大可以是几厘米?可以裁成几个这样的正方形?15.有36个烟花,如果每次燃放奇数个,想在3次后恰好全部放完,能做到吗?为什么?16.有28瓶饮料,每3瓶包装成一盒,至少再拿来几瓶饮料才能正好包装完?17.四、五年级学生去春游啦!同学们,你们认为谁算得对呢?为什么?18.王老师买了196个日记本,要平均分给五年级三个班,至少要拿走几个日记本才能正好分完。
数的整除问题、质数、合数及分解质因数、代换法解应用题
练习:
1、已知72︱ ,求满足条件的五位数。
2、已知五位数 能被8和9整除,求x+y的值
3、若五位数 能同时被2、3、5整除,试求满足条件的所有这样的五位数。
4、将自然数1、2、3、4、5、6、7、8、9依次重复写下去组成一个1993位数,这个数能否被3整除?
5、一本陈老帐上记着:72只桶,共□67.9□元。这里□处字迹不清,请把□处数字补上,并求桶的单价。
对应练习:
1.学校买来2张办公桌和5把椅子,共用了275元,每张办公桌的价钱是椅子的3倍,每张办公桌子多少元?
2.买8千克桂圆和6千克荔枝,共要312元,已知5千克荔枝的价钱等于2千克桂圆的价钱,每千克桂圆和荔枝各要多少元?
3.2个梨的重量等于4个苹果的重量,3个苹果的重量等于1个梨加1个桃的重量,那么几个桃的重量等于3个梨加5个苹果的重量。
例4:
师徒两人共同加工零件750个,如果师傅先做6天,徒弟接着做了3天可以完成任务;如果徒弟先做5天,师傅再接着做5天也可以完成任务,徒弟每天做了多少个零件?
例5:
李师傅带领他的徒弟小林和小付共同加工零件2160个,已知李师傅1小时的工作量小林要做2个小时,而小林4小时的工作量小付要做5小时,现在李师傅做了8小时,小林做了12小时,小付做了10小时才能完成任务,求他们每小时的工作量各是多少?
10.一笔奖金分为一等奖、二等奖,三等奖,每个一等奖的奖金是二等奖的奖金的2倍,每个二等奖的奖金是三等奖奖金的2倍,如果评一、二、三等奖各有3名,则每个一等奖奖金是120元,如果评2个一等奖,3个二等奖,4个三等奖,那么一等奖的奖金是多少元?
第十四届全国“华罗庚金杯”少年数学邀请赛
小学五年级初赛试卷
6、证明:任意一个三位数连着写两次得到一个六位数,这个六位数一定能同时被7、11、13整除。
与质数、合数相关的的练习及讲解
质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。
一个数除了1和它本身,还有别的约数,这个数叫做合数。
要特别记住:1不是质数,也不是合数。
2.质因数与分解质因数如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例1 三个连续自然数的乘积是210,求这三个数。
解答:∵210=2×3×5×7∴可知这三个数是5、6和7。
例2 两个质数的和是40,求这两个质数的乘积的最大值是多少?解答:把40表示为两个质数的和,共有三种形式:40=17+23=11+29=3+37。
∵17×23=391>11×29=319>3×37=111。
∴所求的最大值是391。
答:这两个质数的最大乘积是391。
例3 自然数123456789是质数,还是合数?为什么?解答:123456789是合数。
因为它除了有约数1和它本身外,至少还有约数3,所以它是一个合数。
例4 连续九个自然数中至多有几个质数?为什么?解答:如果这连续的九个自然数在1与20之间,那么显然其中最多有4个质数(如:1~9中有4个质数2、3、5、7)。
如果这连续的九个自然中最小的不小于3,那么其中的偶数显然为合数,而其中奇数的个数最多有5个.这5个奇数中必只有一个个位数是5,因而5是这个奇数的一个因数,即这个奇数是合数.这样,至多另4个奇数都是质数。
综上所述,连续九个自然数中至多有4个质数。
例5 把5、6、7、14、15这五个数分成两组,使每组数的乘积相等。
解答:∵5=5,6=2×3,7=7,14=2×7,15=3×5,这些数中质因数2、3、5、7各有2个,所以如把14(2×7)放在第一组,那么7和6(2×3)只能放在第二组,继而15(3×5)只能放在第一组,则5必须放在第二组。
五年级数学质数与合数试题答案及解析
五年级数学质数与合数试题答案及解析1.一个正方形的边长是质数,它的面积是( )。
A.质数B.合数C.奇数D.偶数【答案】B【解析】略2.把10以内所有的质数相乘,所得的积一定是( )。
A.奇数B.偶数C.质数D.无法确定【答案】B【解析】略3.在20以内的自然数中,是奇数又是质数的数是()。
【答案】3,5,7,11,13,17,19【解析】略4.如果a是偶数,那么与它相邻的两个数是()和()这两个数是()数。
【答案】a-1、a+1、奇数【解析】略5.所有的奇数都是质数。
()【答案】×【解析】略6.一个长方形周长是16米,它的长、宽的米数是两个质数,这个长方形面积是多少平方米?【答案】15平方米【解析】因为长方形的周长是16厘米,所以长+宽=16÷2=8米,又因为长、宽均为质数,所以8=5+3,所以长应该是5米,宽是3米,再根据长方形的面积公式S=ab,即可求出面积.解:因为长方形的周长是16米,即(长+宽)×2=16,所以长+宽=16÷2=8(厘米);又因为长、宽均为质数,所以8=5+3,所以长应该是5米,宽是3米;长方形的面积是:5×3=15(平方米).答:这个长方形的面积是15平方米.点评:关键是根据题意将8进行裂项,得出符合要求的长和宽,再利用长方形的面积公式S=ab 解决问题.7.最小的质数是( ),最小的奇数是( ),( )既不是质数也不是合数。
【答案】2 1 1【解析】略8.两个质数的和一定是合数。
( )【答案】×【解析】例如2+3=5,5是质数。
9. 37是( )。
A.因数 B.质数 C.合数【答案】B【解析】略10.两个自然数相除,除数是最小的合数,商是一位数,商既是2的倍数又是3的倍数,余数比最小的质数多1。
除法算式是( )÷( )=( )……( )。
【答案】27 4 6 3【解析】最小的合数是4,所以除数是4,既是2的倍数又是3的倍数的一位数是6,所以商是6,最小的质数是2,所以余数是3,被除数=除数×商+余数,所以被除数是27。
数的运算学习使用质数和合数进行运算
数的运算学习使用质数和合数进行运算在数学中,数的运算是非常基础,也是非常重要的一部分。
通过数的运算,我们可以解决实际问题,深入理解数的性质和规律。
其中,质数和合数是数的一个重要分类,它们在数的运算中起到了关键作用。
本文将探讨数的运算中如何使用质数和合数进行计算。
一、质数的运算质数是指只能被1和自身整除的正整数。
例如,2、3、5、7、11等都是质数。
质数具有以下特性:1. 质数与自然数相乘的结果仍然是质数。
例如,质数2乘以3等于6,6是合数;质数3乘以5等于15,15也是合数。
通过数的运算,我们可以发现,质数与质数相乘的结果仍然是质数。
这种特性在数的运算中非常有用。
2. 质数与合数相乘的结果是合数。
合数是指除了1和本身还可以被其他数整除的正整数。
例如,4、6、8、9等都是合数。
当质数与合数相乘时,结果必定是合数。
这一特性在数的乘法运算中起到了重要作用。
二、合数的运算合数的运算可以包括加法、减法、乘法和除法等。
在数的运算中,我们可以通过合数的特性进行计算。
1. 合数相加、相减的结果还是合数。
例如,合数4加上合数6,结果为10,10也是合数;合数8减去合数6,结果为2,2是质数。
通过数的运算,我们可以发现,合数相加、相减的结果仍然是合数。
2. 合数与质数相乘、相除的结果是合数或质数。
当合数与质数相乘时,结果可以是合数或质数。
例如,合数4乘以质数3,结果为12,12是合数;合数8乘以质数3,结果为24,24也是合数。
当合数与质数相除时,结果可以是合数或质数。
例如,合数12除以质数3,结果为4,4是合数;合数24除以质数3,结果为8,8也是合数。
通过数的运算,我们可以发现,合数与质数相乘、相除的结果是合数或质数。
三、使用质数和合数进行数的运算在实际的数的运算中,我们可以通过使用质数和合数进行计算,从而更好地理解数的性质和规律。
例如,在判断一个数的因数时,我们可以通过找到其最大的质数因子,从而更快速地进行计算。
有关质数和合数的数学题
1、一个两位数的质数,它的个位与十位数字之和为13,这个质数是( )。
A、67
B、29
C、37
D、59
(答案)A
2、三个连续奇数的和是57,这三个数中最小的那个数是( )。
A、15
B、17
C、19
D、21
(答案)B
3、在100以内,同时含有因数3和5的最大奇数是( )。
A、75
B、45
C、65
D、95
(答案)A
4、下列各数中,同时能被2、3、5整除的最小数是( )。
A、10
B、30
C、60
D、120
(答案)B
5、已知A是大于0的最小自然数,B是质数中唯一的一个偶数,C是最小奇质数,C与D 的和等于70,那么A+BCD*(B+C)=( )。
A、30
B、210
C、330
D、660
(答案)D
6、两个质数的和是39,这两个质数的积是多少?( )
A、34
B、74
C、390
D、143
(答案)B
7、100以内最小的质数与最大的质数的和是( )。
A、98
B、99
C、2
D、101
(答案)B
8、能整除2010的最大质数是( )。
A、2
B、3
C、5
D、7
(答案)D
9、一个合数的质因数是2和3,这个合数是( )。
A、4
B、5
C、6
D、8
(答案)C
10、两个质数的积是46,求这两个质数的和是多少?( )
A、21
B、23
C、25
D、48
(答案)C。
合数与质数典型例题及答案
合数与质数答案典题探究例1.在横线内填上合适的质数.26=23+312=7+5=13+13=7+19=3+23=2×13.考点:合数与质数.专题:数的整除.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数,据此填空即可.解答:解:26=23+3 12=7+5=13+13=7+19=3+23=2×13故答案为:23,3,13,13,7,19,3,23,2,13,7,5.点评:明确质数的意义,是解答此题的关键.例2.寻找符合条件的数:小于100,并且由3个不同质数相乘得到.考点:合数与质数.专题:数的整除.分析:只要把这个小于100的数,分解质因数即可得出.解答:解:2×3×7=42点评:此题考查了一个数分解质因数的方法.例3.自然数N是一个两位数,它是一个质数,而且N的个位数字与十位数字都是质数,这样的自然数有多少个?考点:合数与质数.专题:数的整除.分析:根据个位数字与十位数字都是质数,可得这个两位质数的个位数字和十位数字只能是:2、3、5、7.解答:4解:因为N是质数,且其个位数字和十位数字都是质数,那么十位数字和个位数字只能是:2、3、5、7,所以符合题意的两位数质数有:23,37,53,73,有4个;答:这样的自然数有4个.点评:此题考查了质数的灵活应用,理解十位数字与个位数字都是质数的两位质数是由:2、3、5、7组成的是本题的关键.例4.一个式子有8个空“空格”,在这些“空格”里,填进20以内各不相同的质数,使A是整数,并且尽可能大.A=(2+3+5+11+13+17+19)÷7.考点:合数与质数;整数的除法及应用.分析:根据质数的意义可知,20以内的质数有2、3、5、7、11、13、17、19;它们的和为2+3+5+7+11+13+17+19=77,则算式中除数应用为77的约数,能被77整除的只有7和11,因此A最大为(77﹣7)÷7=10.解答:解:20以内的质数的质数的和为:2+3+5+7+11+13+17+19=77,77=7×11,所以要使A最大,则A=[2+3+5+11+13+17+19]÷7=70÷7=10,即A能取得的最大整数是10.故答案为:2,3,5,11,13,17,19,7.点评:首先根据质数的意义确定20以内的质数并求出它们的和是完成本题的关键.演练方阵A档(巩固专练)一.选择题(共10小题)1.(•龙湖区)2、3、5、7都是()A.奇数B.偶数C.质数考点:合数与质数.分析:自然数中,能被2整除的数为偶数,不能被2整除的数为奇数;自然数中,除了1和它本身外,没有别的因数的数为质数.根据以上定义对题目中的数字进行分析即能得出正确选项.解答:解:根据偶数、奇数及质数的定义可知:在2、3、5、7这四个数字中,2为偶数,3,5,7为奇数,2、3、5、7全是质数.故选:C.点评:通过本题可以看出,2既为质数,同时也是偶数.2.(•新余模拟)一个两位数,个位和十位上的数字都是合数,并且互质,这个两位数最小是()A.89B.28C.49考点:合数与质数.专题:整数的认识.分析:自然数中,除了1和它本身外,还有别的因数的数为合数.由此可知,小于10的合数有4,6,8,9.即这个两位数由有4,6,8,9中的两个合数组成.又这两个数互质,只有公因数1的两个数为互质数,而这4个数中,9与4,8互质,所以这个两位数最小是49..解答:解:根据合数的意义可知,这个两位数由有4,6,8,9中的两个合数组成,而这4个数中,9与4,8互质,所以这个两位数最小是49.故选:C.点评:首先根据合数的定义确定组成这个两位数的数的取值范围,然后根据互质数的意义确定是完成本题的关键.3.(•石阡县模拟)一个合数至少有()个因数.A.3个B.3个以上C.3个或3个以上考点:合数与质数.专题:数的整除.分析:合数是指一个大于1的自然数,除了1和它本身两个因数外,还有其它的因数,说明一个合数有3个或3个以上的因数.据此做出选择即可.解答:解:一个合数有3个或3个以上的因数.故选:C.点评:此题考查合数的意义,关键是看这个数有几个因数,有3个或3个以上的因数的数一定是合数.4.(•北海)下面()组中的两个数是合数,又是互质数.A.7和8B.10和12C.15和16考点:合数与质数.专题:数的整除.分析:合数是含有1和它本身两个因数外还含有其它因数的数,互质数是只有公因数1的两个数,据此依次分析选择.解答:解:A、7和8是互质数,但7是质数,不是合数,所以不合题意;B、10和12都是合数,但是10和12不是互质数,所以不合题意;C、15和16都是合数,15和16又是互质数,所以符合题意;故选:C.点评:本题主要考查互质数、合数的意义.5.(•汉阳区)一个数如果只有2个因数,那么这个数一定是()A.偶数B.奇数C.质数D.合数考点:合数与质数.专题:整数的认识.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数.即质数只有两个因数,即1和它本身.解答:解:根据质数的意义可知,一个数如果只有2个因数,那么这个数一定是质数.故选:C.点评:自然数中,质数只有两个因数,1只有一个因数,零有没因数,合数最少有三个因数.6.(•蕲春县模拟)是一个最简分数,a和c一定是()A.质数B.合数C.互质数D.不一定考点:合数与质数.分析:首先弄清什么样的分数是最简分数,据此解答.解答:解:分数的分子和分母只有公约数1的分数叫做最简分数,由此得一个最简分数的分子和分母一定是互质数.故选C.点评:此题主要考查最简分数的意义及互质数的概念.7.(•黄岩区)一个比l大的数除了1和它本身之外,没有其他的因数,这个数是()A.质数B.合数C.奇数D.偶数考点:合数与质数.专题:数的整除.分析:根据质数和合数的含义:除了1和它本身以外,不含其它因数的数是质数;除了1和它本身外,还含有其它因数的数是合数;据此解答即可.解答:解:由质数的含义可知:一个比l大的数除了1和它本身之外,没有其他的因数,这个数是质数;故选:A.点评:明确质数的含义,是解答此题的关键.8.(•渝北区)下面的数是质数的是()A.1B.2C.4考点:合数与质数.专题:综合判断题.分析:自然数中,除了1和它本身外没有别的因数的数为质数,除了1和它本身外还有别的因数的数为合数.据此对各选项中的数字进行分析即能得出正确选项.解答:解:A、1不是质数也不是合数;B、2是质数;C、4是合数;故选:B.点评:自然数中,质数与合数是根据因数的多少进行定义的.9.(•安岳县模拟)下列叙述正确的是()A.互质的两个数没有公因数B.两个分数大小相等,分数单位也一定相等C.小兰完成的作业量一定,她已完成的作业和未完成的作业量成反比例D.两个面积相等的三角形,不一定能拼成一个平行四边形考点:合数与质数;分数的意义、读写及分类;辨识成正比例的量与成反比例的量;三角形的特性.专题:综合判断题.分析:A,根据互质数的意义,公因数只有1的两个数叫做互质数.所以互质的两个数没有公因数.此说法错误.B,两个分数的大小相等,分数单位不一定相同,如:和相等,但是它们的分数单位不同.所以两个分数相等,分数单位也一定相同.此说法错误.C,根据反比列的意义,两种相关联的量,如果它们对应的两个数的积一定,这两种相关联的量成反比列.所以,小兰完成的作业量一定,她已完成的作业和未完成的作业量成反比例.此说法错误.D,因为只有两个完全一样的三角形,才能拼成一个平行四边形,两个三角形的面积相等,不一定完全一样,所以,两个面积相等的三角形,不一定能拼成一个平行四边形.此说法正确.解答:解:根据上面的分析知:说法正确的是:两个面积相等的三角形,不一定能拼成一个平行四边形.故选:D.点评:此题考查的目的是理解互质数的意义、分数单位的意义、反比列的意义,明确:只有两个完全一样的三角形,才能拼成一个平行四边形.10.(•华亭县模拟)正方形的边长是质数,它的周长一定是(),它的面积一定是()A.质数B.合数C.既不是质数也不是合数考点:合数与质数;正方形的周长;长方形、正方形的面积.分析:正方形的边长是质数,设这个质数是a,则它的周是4a,它的面积是a2,然后根据约数个数分析,是质数还是合数,据此解答.解答:解:正方形的边长是质数,设这个质数是a,则它的周是4a,4a含有1、2、4、a、2a、4a,含有6个约数,它的面积是a2,a2含有:1、a、a2共计3个约数,即4a和a2含有至少3个约数,所以都是合数;故选:B.点评:本题主要考查质数合数的意义,注意本题设这个质数是a,则它的周长是4a,它的面积是a2,然后根据约数个数分析.二.填空题(共10小题)11.(•台州)的分数单位是,再添上14个这样的分数单位是最小的素数.考点:合数与质数.分析:根据分数的意义和最小的素数(质数)是2来进行分析,然后填出即可.解答:解:的分数单位是.因为:+=2;所以:再添上14个这样的分数单位是最小的素数.故答案为:,14.点评:此题考查分数的认识与质数合数.12.(•浙江)在6、10、18、51这四个数中,51既是合数又是奇数.10和51互质.考点:合数与质数;奇数与偶数的初步认识.分析:合数的含义:在自然数中除了1和它本身外还有其它因数的数;奇数的含义:在自然数中不能被2整除的数叫作奇数;在自然数中,如果两个数的公因数只有1,那么这两个数称为互质数.解答:解:在6、10、18、51这四个数中,合数有:6,10,18,51;奇数有:51;互质的数是:10与51;所以在6、10、18、51这四个数中,51即是合数又是奇数,10与51互质.故答案为:51,10,51.点评:此题主要考查的是合数、奇数和互质数的知识.13.(•万州区)一个质数和比它小的每一个非零自然数都互质.正确.考点:合数与质数.分析:自然数中,除了1和它本身外,没有别的因数的数为质数;假如这个质数与比它小的某个非零自然数不互质,那么这个质数与这个非零自然数就有“除1和其本身之外的”公约数,这个结论和质数的定义相矛盾,即“一个素数肯定与比它小的任意非零自然数互质.”解答:解:根据质数的定义可知,一个质数和比它小的每一个非零自然数都互质的说法是正确的.故答案为:正确.点评:一个质数和比它大的非零自然数中只与它的倍数不互质,除了其倍数外,与其它自然数都互质.14.(•福田区模拟)如果a和b是大于0的相邻的自然数,那么a和b一定是互质数.√.(判断对错)考点:合数与质数.专题:数的整除.分析:在自然数中,只有公因数1的两个数为互质数.根据自然数的排列规律及公因数的意义可知,任何一对大于0的相邻的两个自然数只有公因数1,所以如果a和b是大于0的相邻的自然数,那么a和b一定是互质数.解答:解:根据互质数的意义可知,如果a和b是大于0的相邻的自然数,那么a和b一定是互质数是正确的.故答案为:√.点评:明确任何一对大于0的相邻的两个自然数只有公因数1是完成本题的关键.15.(•芜湖县)有公约数1的两个数叫做互质数.×.(判断对错)考点:合数与质数.专题:数的整除.分析:根据互质数的意义,公因数只有1的两个数叫做互质数.1是任何两个非0自然数的公因数.解答:解:公因数只有1的两个数叫做互质数.1是任何两个非0自然数的公因数.所以有公约数1的两个数叫做互质数.出说法错误.故答案为:×.点评:此题考查的目的是理解掌握互质数的概念及意义.16.(•中山市模拟)质数只有1个因数.错误.(判断对错)考点:合数与质数.专题:整数的认识.分析:自然数中,除了1和它本身外,没有别的因数的数为质数.由此可知,质数共有2个因数,即1和它本身.解答:解:根据质数的意义可知,质数共有2个因数,即1和它本身.故答案为:错误.点评:自然数中,只有1只有一个因数,即它本身.17.(•上海模拟)既是合数又是偶数的最小自然数是4.考点:合数与质数;奇数与偶数的初步认识.分析:根据质数与合数、奇数与偶数的意义,是2的倍数的数叫做偶数;不是2的倍数的数叫做奇数;一个自然数如果只有1和它本身两个因数,这样的数叫做质数;一个自然数如果除了1和它本身还有别的因数,这样的数叫做合数;由此解答.解答:解:根据合数、偶数的意义,既是合数又是偶数的最小自然数是4.故答案为:4.点评:解答本题主要明确自然数,合数、质数、奇数、偶数的概念.18.(•贵州模拟)相同两个素数的和等于它们的积,这个素数是2.考点:合数与质数.专题:数的整除.分析:一个自然数如果只有1和它本身两个因数,这样的数叫做质数(素数),在所有的质数中,相同两个素数的和等于它们的积,得出2+2=2×2,所以这个素数是2.解答:解:相同两个素数的和等于它们的积,这个素数是2;故答案为:2.点评:此题考查了质数的含义.19.(•通州区模拟)一个非零自然数,不是质数就是合数.×.(判断对错)考点:合数与质数.专题:综合判断题.分析:根据质数与合数的意义:一个自然数,如果只有1和它本身两个因数,这样的数叫做质数;一个自然数,如果除了1和它本身还有别的因数,这样的数叫做合数;1既不是质数也不是合数.解答:解:因为,1既不是质数也不是合数,所以,一个非零自然数,不是质数就是合数.此说法是错误的.故答案为:×.点评:解答此题的关键是理解质数、合数的意义.20.(•临川区模拟)最小的质数占最小的合数的50%.考点:合数与质数;百分数的实际应用.专题:综合填空题.分析:最小的质数是2,最小的合数是4,进而用2除以4,计算得出百分数的结果即可.解答:解:最小的质数是2,最小的合数是4,那么:2÷4=0.5=50%.故答案为:50%.点评:明确求一个数占另一个数的百分之几,用除法计算;也考查了最小的质数是2,最小的合数是4.三.解答题(共10小题)21.两个质数的积一定是奇数,如3×5=15、11×83=913×.考点:合数与质数;奇数与偶数的初步认识.专题:数的整除.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数,则最小的质数是2;能被2整数的数为偶数.由此可知,2与其它质数的积一定是偶数.解答:解:由于最小的质数是2,则2与其它质数的积一定是偶数.故答案为:×.点评:除了2之外,任意两个质数的积一定是奇数.22.判断27,28,29,30是素数,还是合数.考点:合数与质数.专题:数的整除.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数.除了1和它本身外,还有别的因数的数为合数.据此分析即可.解答:解:在27,28,29,30中,素数为29,合数为27,28,30.点评:本题考查了学生对于合数与质数意义的理解与应用.23.写出大于85而小于98的所有素数.考点:合数与质数.专题:数的整除.分析:在自然数中,除了1与它本身之外,没有别的因数的数为质数.据此意义完成即可.解答:解:大于85而小于98的所有素数为:89、97.点评:完成本题要注意将大于85而小于98中的数分解质因数,以确定它们因数的个数.24.四个质数的乘积是和的11倍,这样的数和是多少?考点:合数与质数.专题:数的整除.分析:因为四个质数的乘积是和的11倍,可知四个数里面一定有一个是11,设其余三个是abc,那么abc=a+b+c+11,因为b+c≥4,所以11<3(b+c)容易知道b+c≤bc,因此abc<a+4bc,4≤bc<a/(a﹣4)或a<4得到a=2,3,5,同理b,c,据此解答即可.解答:解:4个质数的乘积是和的11倍,可知四个数里面一定有一个是11,设其余三个是abc,那么abc=a+b+c+11,因为b+c≥4,所以11<3(b+c)容易知道b+c≤bc,因此abc<a+4bc,4≤bc<a/(a﹣4)或a<4得到a=2,3,5,同理b=2,3,5,c=2,3,5,经过验证这4个质数为2,2,5,112+2+5+11=20答:这样的数和是20.点评:解答本题的关键是:四个质数的乘积是和的11倍,可以推算出期中一个质数是11.25.有一个三位数,百位数字是最小的质数,个位数是一位数中最大的偶数,这个数最小是多少?最大是多少?(直接写数)考点:合数与质数;奇数与偶数的初步认识.专题:整数的认识;数的整除.分析:我们知道最小的质数是2,一位数中最大的偶数是8.所以这个三位数百位上是2,个位上是8,要想最小,十位为0,最大十位为9,据此解答即可.解答:解:由分析可得这个数最小是208;最大是298.答:这个数最小是208;最大是298.点评:本题是考查整数的写法、质数与合数的意义、自然数的意义.26.我校少先队员排队做操,每排人数相等且都在1人以上.想一想,总共有多少人?在正确答案的下面划线.41人43人47人49人.考点:合数与质数.专题:数的整除.分析:由“每排人数相等且都在1人以上”说明总人数能分成几个相同的数,即合数;而41、43、47都是质数,故不能分成几个相同的数,因此总人数为49.解答:解:由题意,总人数能分成几个相同的数,而41、43、47都是质数,故不能分成几个相同的数,因此总人数为49.答:五(3)班有49人.点评:此题重点考查了合数与质数的概念,并由此解决问题.27.在横线填上合适的质数.10=3+736=17+1991=13×785=17×524=11+13=17+7.考点:合数与质数.专题:数的整除.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数.据此意义将题目中的数分解成两个质数相加的形式即可.解答:解:10=3+736=17+1991=13×785=17×524=11+13=7+17故答案为:3,7;17,19;13,7;17,5;11,13,17,7.点评:如果两个质数的和是奇数,则这两个质数其中一个一定为2.28.写出60的全部因数,其中质数有2、3、5,偶数有2、4、6、10、12、20、30、60.考点:合数与质数;奇数与偶数的初步认识.专题:数的整除.分析:先根据找一个数因数的方法,找出60的所有因数,然后根据质数和合数的意义,奇数和偶数的意义进行分类.解答:解:60=1×60=2×30=3×20=4×15=5×12=6×10所以60的因数有1、2、3、4、5、6、10、12、15、20、30、60,在这些因数中,质数有2、3、5;偶数有2、4、6、10、12、20、30、60.故答案为:2、3、5,2、4、6、10、12、20、30、60.点评:熟练掌握找一个数因数的方法,以及正确的对自然数进行分类是解决本题的关键.B档(提升精练)一.选择题(共10小题)1.(•天河区)下面说法正确的是()A.两个质数的和一定是质数B.假分数的倒数都小于1C.分数的大小一定,它的分子和分母成正比例D.面积相等的两个三角形一定能拼成一个平行四边形考点:合数与质数;倒数的认识;分数的基本性质;三角形的周长和面积.专题:综合判断题.分析:根据题意,对各题进行依次分析、进而得出结论.解答:解:A、两个质数的和一定是质数,说法错误,如:3+5=8,8是合数;B、假分数的倒数都小于1,说法错误,如;C、因为:分子÷分母=分数的值(一定),它的分子和分母成正比例;D、因为:面积相等的两个三角形一定能拼成一个平行四边形,说法错误;故选:C.点评:此题涉及的知识点较多,但都比较简单,属于基础题,只要认真,容易完成,注意平时基础知识的积累.2.(•高台县)下列说法正确的是()A.1既不是质数也不是合数B.最小的合数是2C.负数比正数大考点:合数与质数;正、负数大小的比较.专题:整数的认识.分析:在自然数中,1既不是质数也不是合数;除了1和它本身外,没有别的因数的数为质数,除了1和它本身外,还有别的因数的数为合数;在数轴上,负数位于0的左边,正数位于0的右边,借助数轴比较数的大小,所有的负数都在0的左边,也就是负数都比0小,而正数都比0大,正数都比负数大.解答:解:下列说法正确的是:1既不是质数也不是合数.故选:A.点评:根据质数与合数,正数与负数的含义进行解答即可.3.(•泗县模拟)在1~25的自然数中,合数有()A.14B.15C.16考点:合数与质数.专题:压轴题.分析:根据合数的定义即可解决问题.解答:解:在1~25的自然数中合数有:4、6、8、9、10、12、14、15、16、18、20、21、22、24、25,共15个,故选:B.点评:此题考查了合数的定义.4.(•龙海市模拟)在1、2.3、2、6、﹣4、5%、23、9、51中,素数有()个.A.1个B.2个C.3个考点:合数与质数.专题:数的认识.分析:根据质数(又叫素数)的意义,一个自然数,如果只有1和它本身两个因数,这样的数叫做质数(素数).由此解答.解答:解:在1、2.3、2、6、﹣4、5%、23、9、51中,素数有:2,23.答:在这组数中素数有2和23.故选:B.点评:此题考查的目的是使学生理解质数(素数)的意义,明确质数与合数是在非0自然数范围内,根据一个非0自然数因数个数的多少分成质数、合数和1三部分.5.(•萝岗区)两个质数的积一定是()A.奇数B.偶数C.质数D.合数考点:合数与质数.专题:压轴题;数的整除.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数.最小的质数是2,除了2之外,其它质数都为奇数.根据数的奇偶性可知,2与其它质数相乘的积一定是偶数;除了2之外,其它两个质数相乘的积是奇数,即两个质数的积可能是偶数也可是质数;又在自然数中,除了1和它本身外,还有别的因数的数为合数.两质数相乘的积的因数,除了1和它本身外,还有这两个质数是它的因数,即共有4个因数.一定为合数.解答:解:根据质数的意义及数的奇偶性可知,个质数的积可能是偶数也可是质数;根据合数的意义可知,两质数相乘的积,一定为合数.故选:D.点评:完成本题要注意最小的质数是2,2同时为偶数.6.(•楚州区)所有素数的积是()A.奇数素数B.奇数合数C.偶数合数D.偶数素数考点:合数与质数.专题:数的整除.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数.则最小的质数是2,除了1和它本身外,还有别的因数的数为合数.由于素数有无数个,则所有所有素数的积的因数也有无数个,则它们的积是合数,又最小的素是2,2为偶数,根据数的奇偶性可知,所有素数的积是偶合数.解答:解:所有所有素数的积的因数也有无数个,则它们的积是合数,又最小的素是2,2为偶数,根据数的奇偶性可知,所有素数的积是偶合数.故选:C.点评:除了2之外,所有素数为奇数,则除2之外所有素数的积是奇数合数.7.(•玉溪模拟)在下面与3有关的四句话中,正确的一句话是()A.3是一个自然数,它既是质数也是奇数B.一个自然数的末位是3的倍数,这个自然数一定能被3整除C.任何一个偶数都能被2整除,但不能被3整除D.如果m是一个不为零的自然数,那么3和m一定是互质数考点:合数与质数;奇数与偶数的初步认识;找一个数的倍数的方法.专题:数的整除.分析:根据所学的有关知识,将下列四个选项逐一进行分析、判断,即可选择出正确的一项.解答:解:A、根据自然数、质数、奇数的定义可知,3是一个自然数,它既是质数也是奇数,所以此选项说法正确;B、举例说明:如26,末位数字是6,是3的倍数,但是这个自然数26不能被3整除,所以此选项说法错误;C、举例说明:24,是偶数,能被2整除,也能被3整除,所以此选项说法错误;D、互质数是指两个数的最大公因数是1,如果m=21,则3和m的最大公约数是3,所以不是互质数,此选项说法错误.故选:A.点评:此题主要考查质数、倍数、奇数、偶数、互质数的意义及应用,此类问题可以采用举反例的方法进行判断选择.8.(•天河区)两个数既是合数,又是互质数,它们的最小公倍数是90,这两个数分别是()A.9和10B.2和45C.6和15D.30和3考点:合数与质数;求几个数的最小公倍数的方法.专题:数的整除.分析:在自然数中,除了1和它本身外还有别的因数的数为合数.公因数只有1的两个数为互质数.又互质的两个数的最小公倍数一定是这两个互质数相乘的积,据此分析即可.解答:解:由于90=2×45=18×5=15×6=9×10,在这几组数中,2、5不是合数,15与6不互质,符合条件的只有10与9,故选:A.点评:明确互质的两个数的最小公倍数一定是这两个互质数相乘的积并据此分析是完成本题的关键.。
质数与合数(含答案)
第3讲质数与合数阿拉伯数字无疑是人类历史上最伟大的发明之一,其本身蕴含的规律更是数学学科中最璀璨的明珠!质数和合数的分类产生了哥德巴赫猜想等世界著名的命题,学习质数和合数,窥探数字的奥秘!对于自然数a 和b (0b ≠),若a b ÷没有余数,则a 是b 的倍数,b 是a 的约数。
特殊地,0是任意非零自然数的倍数。
质数:除了1和本身,没有其他约数的自然数叫质数。
合数:除了1和本身,还有其他约数的自然数叫合数。
特殊地,1既不是质数也不是合数。
最小的合数是4,最小的质数是2,且2是唯一的偶质数。
质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。
互质数:公约数只有1的两个自然数,叫做互质数。
分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
编写说明知识要点【例1】对7个不同质数求和,和为58,则最大的质数是多少?【分析】七个质数若全部是奇数,则和一定是奇数,而58是偶数,则七个质数中必定含有唯一的偶质数2,所以最小的质数是2,从2开始,最小的七个连续质数是2,3,5,7,11,13,17,和为58,所以题中的七个质数只能是从2开始的七个连续质数,最大为17。
【温馨提示】2是唯一的偶质数,是偶数中的“叛徒”,所以质数也经常与奇偶性相结合,主要考察“2”.【拓展】已知a、b、c、d都是质数,且130959179+=+=+=+,求a、b、c、d的值。
a b c d【分析】959179+=+=+,所以b、c、d应该都是奇数,所以a是唯一的偶质数2,依此可求得:b c dc=,53b=,41d=.a=,372【例2】从小到大写出5个质数,使后面数都比前面的数大12。
这样的数有几组?【分析】考虑到质数中除了2以外其余都是奇数,因此这5个质数中不可能有2;又质数中除了2和5,其余质数的个位数字只能是1、3、7、9。
若这5个质数中最小的数其个位数字为1,则比它大24的数个位即为5,不可能是质数;若最小的数其个位数字为3,则比它大12的数个位即为5,也不可能为质数;由此可知最小的数其个位数字也不可能是7和9,因此最小的数只能是5,这5个数依次是5,17,29,41,53。
质数和合数奥术练习题
质数和合数奥术练习题一、填空题1.在一位的自然数中 ,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____.2.最小的质数与最接近100的质数的乘积是_____.3.两个自然数的和与差的积是41 ,那么这两个自然数的积是_____.4.在下式样□中分别填入三个质数,使等式成立.□+□+□=505.三个连续自然数的积是1716,这三个自然数是_____、_____、_____.6.找出1992所有的不同质因数,它们的和是_____.7.如果自然数有四个不同的质因数,那么这样的自然数中最小的是_____.8.9216可写成两个自然数的积 ,这两个自然数的和最小可以到达_____.9.从一块正方形的木板上锯下宽为3分米的一个木条以后,剩下的面积是108平方分米.木条的面积是_____平方分米.10.今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是_____.二、解答题11.2 ,3 ,5 ,7 ,11 ,…都是质数 ,也就是说每个数只以1和它本身为约数.一个长方形的长和宽都是质数个单位,并且周长是36个单位.问这个长方形的面积至多是多少个平方单位?12.把7、14、20、21、28、30分成两组 ,每三个数相乘 ,使两组数的乘积相等.13.学生1430人参加团体操,分成人数相等的假设干队,每队人数在100至200之间,问哪几种分法?14.四只同样的瓶子内分别装有一定数量的油,每瓶和其他各瓶分别合称一次,记录千克数如下:8、9、10、11、12、13.四只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油?。
五年级数学下册《质数和合数》练习题及答案解析
五年级数学下册《质数和合数》练习题及答案解析学校:___________姓名:___________班级:________________一、判断题1.任何质数加上1都能成为合数。
( )2.把一根16cm长的铁丝围成一个长是a厘米,宽是b厘米的长方形,若a和b都是质数,则长方形的面积是215cm。
( )3.在全部自然数里,不是质数就是偶数。
( )4.所有的质数一定是奇数,所有的合数都是偶数。
( )5.最小的质数是1,最小的合数是4。
( )二、填空题6.一个两位数,个位上是最小的合数,十位上是3的倍数,这个数最大是( )。
7.6的倍数中,最小倍数是( ),100以内3的最大倍数是( );28的因数中最大的一位数是( );20以内最大的质数是( )。
8.20以内所有质数是( ),其中最大的质数比最小的质数多( )。
9.176是一个( )分数,它的分数单位是( ),它有( )个这样的分数单位,再添上( )个这样的分数单位就是最小的合数。
10.下面的游戏规则公平吗?在后面的括号里填“公平”或“不公平”。
(1)淘气和弟弟玩五子棋,他们设计了一个摸牌方案决定谁先走。
将下面4张扑克牌背面朝上,任意摸一张牌,摸到质数弟弟先走,摸到合数淘气先走。
( )(2)足球比赛中,裁判用抛硬币的方法决定谁先开球。
( )(3)同学们玩跳皮筋,常用“石头、剪刀、布”的方法来决定谁先跳。
( )(4)下象棋时,先掷骰子,朝上的数字比3大,红方先走;比3小,黑方先走。
( )11.( )既不是质数也不是合数,( )是偶数但不是合数。
三、解答题12.三个不同的质数之和是50,写出这三个质数。
13.用数字1,2,3,组成一位数、两位数和三位数,其中哪些是质数,哪些是合数?四、选择题14.两个不同质数的积—定是()。
A.合数B.质数C.奇数D.偶数15.下面()组的两个数互质.A.15和16B.14和21C.39和1316.要使3□15能被3整除,□里最小能填()。
质数和合数在数学中有什么应用?请举例说明。
质数和合数在数学中有什么应用?请举例说明。
质数和合数在数学中的应用介绍质数和合数是数学中重要的概念,它们在数论和加密等领域有着广泛的应用。
质数是指只能被1和自身整除的正整数,而合数是指除了1和自身外还能够被其他数整除的正整数。
质数在数学中的应用1. 素因数分解:质数的一个重要应用是将一个正整数分解为质数的乘积。
例如,通过将一个合数分解为其素因数,我们可以找到它的最小公倍数和最大公约数。
举例:假设我们要分解数值为60的正整数,我们可以将其分解为2、2、3、5的乘积:60 = 2 × 2 × 3 × 5。
这个过程被称为素因数分解。
2. 密码学:质数在密码学中有着重要的应用。
其中一个例子是RSA公钥加密算法,它依赖于质数分解的难题。
RSA算法中,质数的大数乘积很容易生成,但对这个乘积进行因式分解却是一个非常困难的数学问题。
这使得RSA算法在保护数据安全性和进行加密通信方面非常有效。
举例:假设我们选取两个大质数p = 17和q = 11,并计算它们的乘积n = p × q = 187。
然后我们选择一个整数e = 7作为公钥,私钥d是满足(e × d) mod (p-1)(q-1) = 1的数。
通过这种方式,我们可以使用公钥进行加密并使用私钥进行解密。
合数在数学中的应用1. 数论分析:合数在数论中扮演着重要的角色。
通过研究合数的性质和特征,我们可以洞察数论中更广泛的规律和结构。
举例:欧拉函数是一种与合数相关的函数,表示小于给定正整数n的相对质数的个数。
通过计算欧拉函数,我们可以得到合数n 的相对质数个数,从而了解合数的数论特性。
2. 整除性:合数的概念使我们能够更好地理解整数的整除性质。
合数不仅可以被1和自身整除,还可以被其他数整除,这在数论和代数中有着广泛的应用。
举例:在代数学中,我们可以通过用合数除以质数来确定多项式是否有整数解。
总结质数和合数在数学中具有重要的应用。
【七年级奥数】第21讲 质数和合数(例题练习)
第21讲质数和合数——练习题一、第21讲质数和合数(练习题部分)1.三个正整数,一个是最小的奇质数,一个是最小的奇合数,另一个既不是质数,也不是合数.求这三个数的积.2.三个数,一个是偶质数,一个是大于50的最小的质数,一个是100以内最大的质数.求这三个数的和.3.两个质数的和是49.求这两个质数的积.4.设p1与p2是两个大于2的质数.证明p1 + p2是一个合数.5.p是质数,p2+3也是质数.求证:p3+3是质数.6.若p与p+2都是质数,求p除以3所得的余数.(p>3).7.若自然数n1>n2且n12−n22−2n1−2n2=19 ,求n1与n2的值.8.有四个不同质因数的正整数,最小是多少?9.求2000的所有不同质因数的和.10.试证明:形如111111+9×10k(k是非负整数)的正整数必为合数.11.若n是正整数,n+3与n+7都是质数,求n除以6所得的余数.12.n是自然数,试证明10|n5-n.13.证明有无穷多个n,使n2+n+41( 1 )表示合数;( 2 )为43的倍数.14.试证明:自然数中有无穷多个质数.15. 9个连续的自然数,都大于80.其中最多有多少个质数?答案解析部分一、第21讲质数和合数(练习题部分)1.【答案】解:依题可得:最小的奇质数为3,最小的奇合数是9,既不是质数,也不是合数是1,∴这三个数的积是:1×3×9=27.【解析】【分析】奇质数:既是奇数又是合数的数;奇合数:不能被2整除的合数;根据定义分别写出这三个整数,计算即可.2.【答案】解:依题可得:偶质数是2,大于50的最小质数是:53,100以内最大的质数是97,∴这三个数的和为2+53+97=152.【解析】【分析】质数:因数只有1和它本身的数,根据题意写出满足的条件的三个数,计算即可.3.【答案】解:依题可得:49=2+47,∴2×47=94.∴这两个质数的积为94.【解析】【分析】根据质数定义结合已知条件可得这两个数,列式计算即可.4.【答案】证明:∵p1与p2是两个大于2的质数,∴p1、p2都是奇数,∴p1 + p2是偶数,且大于2 ,∴p1 + p2是大于2的偶数,即为合数.【解析】【分析】根据题意可知p1、p2都是奇数,由奇+奇=偶即可得证.5.【答案】证明:∵p是质数,当p>2时,∴p2+3被4整除,又∵p2+3也是质数,与已知矛盾,∴必有p=2,∴p3+3=11,是质数.【解析】【分析】由于2是最小的质数,先假设当p>2时得出p2+3被4整除,此时与已知条件矛盾,故p=2时,代入即可得证.6.【答案】解:∵p是质数,∴①p=3k时,∵p>3且是质数,∴不存在这样的p;②p=3k+1时,∴p+2=3k+1+2=3(k+1),此时与p+2为质数矛盾;③p=3k+2时,∴p+2=3k+2+2=3(k+1)+1,符合题意;∴p除以3所得的余数为2.【解析】【分析】根据题意分情况讨论:①p=3k时,②p=3k+1时,③p=3k+2时,再根据p+2为质数解答即可.7.【答案】解:∵n12−n22−2n1−2n2=19 ,∴(n1+n2)(n1-n2)-2(n1+n2)=19,即(n1+n2)(n1-n2 -2)=19,又∵19是质数,n1+n2>n1-n2,∴,解得:.【解析】【分析】先将原多项式分解因式,再由19是质数,根据质数性质列出方程,解之即可. 8.【答案】解:根据质因数的定义可得最小的四个质数分别为:2,3,5,7;依题可得:2×3×5×7=210.∴有四个不同质因数的最小正整数为210.【解析】【分析】质数:因数只有1和它本身的数,根据质数定义可得最小的四个质数,计算即可.9.【答案】解:∵2000=24×53,∴2000的所有不同质因数的和为:2+5=7.【解析】【分析】先将2000写成几个质因数积的形式,再找出不同的质因数,相加即可.10.【答案】解:111111+9×10k=3×37037+3×3×10k=3×(37037+3×10k),∴这个数除了1和它本身之外,还有因数3,∴形如111111+9×10k(k是非负整数)的正整数必为合数.【解析】【分析】先将原式分解成3×(37037+3×10k),由此可看出除了因数1和它本身之外,还有3这个因数,根据合数定义即可得证.11.【答案】解:依题可得:①n=6k时,∴n+3=6k+3=3(2k+1),与n+3为质数矛盾;②n=6k+1时,∴n+3=6k+1+3=2(3k+2),与n+3为质数矛盾;③n=6k+2时,∴n+7=6k+2+7=3(2k+3),与n+7为质数矛盾;④n=6k+3时,∴n+3=6k+3+3=6(k+1),与n+3为质数矛盾;⑤n=6k+4时,∴n+3=6k+4+3=6(k+1)+1,为质数;∴n+7=6k+4+7=6(k+2)-1,为质数;⑥n=6k+5时,∴n+7=6k+5+7=3(2k+4),与n+7为质数矛盾;∴n除以6所得的余数为4.【解析】【分析】根据题意分情况讨论:①n=6k时,②n=6k+1时,③n=6k+2时,④n=6k+3时,⑤n=6k+4时,⑥n=6k+5时,将n的值分别代入n+3或n+7,验证是否为质数,逐一分析即可.12.【答案】证明:∵n5-n=n(n4-1)=n(n+1)(n-1)(n2+1),开始讨论:要使n5-n被10整除,只要该式能够同时被2、5整除即可;∵该式中因式n(n+1)是连续的两个自然数,一定有一个是偶数,∴该式可以被2整除;下面讨论能否被5整除.不妨设:①n=5k,显然原式能被5整除;②n=5k+1时,则n-1=5k,显然原式能被5整除;③n=5k+2时,则n2+1=(5k+2)2+1=25k2+20k+5=5(5k2+4k+1),∴能被5整除,显然原式能被5整除;④n=5k+3时,则n2+1=(5k+3)2+1=25k2+30k+10=5(5k2+6k+2),∴能被5整除,显然原式能被5整除;⑤n=5k+4时,则n+1能被5整除;综上所述:无论n为何值,原式能被5整除.∴10|n5-n【解析】【分析】先将代数式分解因式,即n5-n=n(n+1)(n-1)(n2+1),原题等价于要使n5-n被10整除,只要该式能够同时被2、5整除即可;因为因式中n(n+1)是连续的两个自然数,一定有一个是偶数,从而可得该式可以被2整除;再来讨论能否被5整除,根据被5整除的余数分成5种情况:①n=5k,②n=5k+1,③n=5k+2,④n=5k+3,⑤n=5k+4,分析计算即可得证.13.【答案】证明:当n=43k+1(k≥1)时,∴n2+n+41=(43k+1)2+(43k+1)+41,=43(43k2+3k+1).∴是43的倍数.∵43k2+3k+1>1,∴这时n2+n+41是合数.【解析】【分析】令n=43k+1(k≥1),代入多项式,计算、化简得n=43(43k2+3k+1),从而可得式43的倍数,由43k2+3k+1>1,可得n是表示合数.14.【答案】证明:假设质数有有限多个,最大的一个质数是p;构造出正整数N=2×3×5×……×p+1显然N除以2、3、5、……、p都不能整除,有余数1;∴N要么是质数,要么包括一个大于p的质数,这与“最大的一个质数是p”矛盾;∴不存在最大的质数,假设不成立,∴自然数中有无穷多个质数.【解析】【分析】此题用反证法来证明,假设质数有有限多个,最大的一个质数是p;构造出正整数N=2×3×5×……×p+1,根据整除的性质分析,可知N要么是质数,要么包括一个大于p的质数,这与“最大的一个质数是p”矛盾;从而可得假设不成立,原命题成立.15.【答案】解:∵9个连续的自然数,∴末尾数字可能是0—9,①当末尾是0,2,4,6,8的数一定能被2整除;②当末尾是5的数一定能被5整除;∴只有末尾是1,3,7,9的数可能是质数;∴至少有4个偶数,5个连续的奇数,∵大于80的质数必为奇数(偶质数只有一个2),又∵每连续三个自然数中一定有一个是3的倍数,∴质数只可能在这5个连续的奇数中,∴质数个数不能超过4,即9个连续的自然数,都大于80.其中最多有4个质数.【解析】【分析】根据题意大于80的9个连续的自然数中末尾数字可能是0—9;根据被2或5整除的数的特性可知只有末尾是1,3,7,9的数可能是质数;即至少有4个偶数,5个连续的奇数,再根据情况分析即可得出答案.。
质数与合数
质数与合数质数与合数一、趣题引入甲、乙、丙三人打靶,每人打三枪,三人各自中靶的环数之积都是60,按个人中靶的总环数由高到低排,依次是甲、乙、丙。
靶子上4环的那一枪是谁打的?(环数是不超过10的自然数)二、知识点如果一个比1大的自然数只有两个约数:1和本身,那么这个自然数就叫质数。
(质数也叫素数。
)例如:43=1×43。
43只有1和43两个约数,所以43是质数。
100以内的质数极为常用,它们是:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97。
在自然数中,如果除了1和本身两个约数,还有其它的约数,这个自然数就叫做合数。
例如:6的约数有1,2,3,6,那么6是合数。
应特别注意:1既不是质数也不是合数,这样,自然数在按约数个数分类,可以分成:质数、合数和1。
偶数中只有2是质数,而且是所有质数中最小的一个。
除2以外所有的偶数都是合数,除2以外所有的质数都是奇数。
每个合数都可以写成几个质数相乘的形成,这几个质数就叫做这个合数的质因数,例如,因为70=2×5×7,所以2,5,7是70的质因数。
把一个合数用质数相乘的形式表示出来,叫做分解质因数。
例如:60=2×2×3×5=22×3×5,把60这个合数用2×2×3×5或22×3×5的形式来表示,就是把60分解质因数。
三、例题分析例1:两个质数的积是46,求这两个质数的和。
分析:两个质数的积是46,46是偶数,只能是一个奇质数与一个偶质数的积,而偶质数只有2,因此很容易得出另外的质数,从而问题得以解决。
解:因为46是偶数,因此它必是一个奇质数与一个偶质数的积,而偶质数只有2,另一个质数为46÷2=23,所以2与23的和是25。
例2:用2,3,4,5中的三个数能组成哪些三位质数?分析:首先考虑个位是几,如果个位数字是2或4,这样的三位数必能被2整除,因此这样的三位数不会是质数,如果个位数字是5,这样的三位数必能被5整除,这样的三位数也不会是质数,所以各位数字只能是3,再由剩下的三个数字组成百位、十位,得出个位数字是3的三位数为243,423,253,523,453,543,最后根据质数的判断方法,得到所求的质数。
(完整版)质数与合数有关练习题
(完整版)质数与合数有关练习题质数与合数有关练习题四、质数与合数1、填空( 1)⼀个质数有( )个因数,分别是( )和( )。
(2)⼀个合数⾄少有( )个因数。
⾃然数中最⼩的质数是 ( ),最⼩的合数是( )。
( 3)( )既不是质数⼜不是合数。
(4)20 以内的质数有( )。
(5)20 以内的合数有( )。
( 6)在⾃然数中,既是偶数⼜是质数的是( ),两个相邻的质数是( )和( )。
(7)20 以内既是奇数⼜是合数的是( )和( )。
( 8) 100 以内最⼤的质数是( )。
2、判断(1)偶数都是合数。
...................................... ( )(2)两个合数的和依然是合数。
............................ ( )(3)两个合数的积⼀定是偶数。
............................ ( )(4)合数都⽐质数⼤。
.................................... ( )(5)偶数都⽐奇数⼤。
.................................... ( )(6).................................................................................................... 所有的质数加上1后就变成了合数。
...................................................... ( )(7)两个质数的积⼀定是合数。
............................ ( )(8)两个奇数的和⼀定是合数。
............................ ( )(9)两个相邻的⾃然数⾄少有⼀个是合数。
.................. ( )3、在( )⾥填上质数。
五年级下册数学试题 -奥数第03讲:质数与合数 人教版 (含答案)
第3讲质数与合数内容概述:掌握质数与合数的概念;熟悉常用的质数,并掌握质数的判定方法;能够利用分解质因数的方法解决相关的整数问题;学会计算末尾零的个数。
典型问题:兴趣篇1.(1)如果两个质数相加等于16,这两个质数有可能等于多少?(2)如果两个质数相加等于25,这两个质数有可能等于多少?(3)如果两个质数相加等于29,这样的两个质数存在吗?【分析】(1)因为16是个偶数,偶等于偶+偶或是奇+奇,但是质数中只有2是偶数,所以只能是奇+奇,所以是3+13或是5+11(2)因为25是个奇数,奇等于偶+奇,但是质数中只有2是偶数,所以另一个是25-2=23 (3)因为29是个奇数,奇等于偶+奇,但是质数中只有2是偶数,所以另一个只能是29-2=27,但是27不是质数,所以不存在!(第1届华罗庚金杯数学邀请赛决赛二试试题)2.有个人说:“任何7个连续数中一定有质数”。
请你举一个例子,说明这句话是错的。
【分析】方法一:例100以内:90-96,100以上很多,例114-126。
方法二:又例如连续的7个整数:842、843、844、845、846、847、848分别能被2、3、4、5、6、7、8整除,也就是说它们都不是质数.评注:有些同学可能会说这是怎么找出来的,翻质数表还是……,我们注意到(n+1)!+2,(n+1)!+3,(n+1)!+4,…,(n+1)!+(n+1)这n个数分别能被2、3、4、…、(n+1)整除,它们是连续的n 个合数.其中n !表示从1一直乘到n 的积,即1×2×3×…×n .3. 请写出5个质数,使得它们正好构成一个公差为12的等差数列。
【分析】10以上质数的末位只能是1,3,7,9.,一个数的末位+2只能出现1,3,7,9,那么这个数最小不能是偶数,不能是3,所以可以试验5,5+12=17,17+12=29,29+12=41,41+12=53,即可满足要求。
五年级奥数解析5.质数和合数
小学奥数教案---质数与合数与质数有关的构造问题,通过分解质因数求解的整数问题.1、有人说:“任何7个连续整数中一定有质数.”请你举一个例子,说明这句话是错的.【分析与解】例如连续的7个整数:842、843、844、845、846、847、848分别能被2、3、4、5、6、7、8整除,电就是说它们都不是质数.评注:有些同学可能会说这是怎么找出来的,翻质数表还是……,我们注意到(n+1)!+2,(n+1)!+3,(n+1)!+4,…,(n+1)!+(n+1)这n个数分别能被2、3、4、…、(n+1)整除,它们是连续的n个合数.其中n!表示从1一直乘到n的积,即1×2×3×…×n.2、从小到大写出5个质数,使后面的数都比前面的数大12.【分析与解】我们知道12是2、3的倍数,如果开始的质数是2或3,那么后一个数或与12的和一定也是2或3的倍数,将是合数,所以从5开始尝试.即23有5、17、29、41、53是满足条件的5个质数.3.9个连续的自然数,它们都大于80,那么其中质数最多有多少个?【分析与解】大于80的自然数中只要是偶数一定不是质数,于是奇数越多越好,9个连续的自然数中最多只有5个奇数,它们的个位应该为1,3,5,7,9.但是大于80且个位为5的数一定不是质数,所以最多只有4个数.验证101,102,103,104,105,106,107,108,109这9个连续的自然数中101、103、107、109这4个数均是质数.也就是大于80的9个连续自然数,其中质数最多能有4个.4. 用1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要用到并且只能用一次,那么这9个数字最多能组成多少个质数?【分析与解】要使质数个数最多,我们尽量组成一位的质数,有2、3、5、7均为一位质数,这样还剩下1、4、6、8、9这5个不是质数的数字未用.有1、4、8、9可以组成质数41、89,而6可以与7组合成质数67.所以这9个数字最多组成了2、3、5、41、67、89这6个质数.5.3个质数的倒数之和是16611986,则这3个质数之和为多少?【分析与解】设这3个质数从小到大为a、b、c,它们的倒数分别为1a、1b、1c,计算它们的和时需通分,且通分后的分母为a×b×c,求和得到的分数为Fabc,如果这个分数能够约分,那么得到的分数的分母为a、b、c或它们之间的积.现在和为16611986,分母1986=2×3×331,所以一定是a=2,b=3,c=331,检验满足.所以这3个质数的和为2+3+331=336.6.已知一个两位数除1477,余数是49.求满足这样条件的所有两位数.【分析与解】有1477÷除数=商……49,那么1477-49:除数×商,所以,除数×商=1428=2×2×3×7×17.一般情况下有除数大于余数.即除数大于49且整除1428,有84、51、68满足.所以满足题意的两位数有51、68、84.7.有一种最简真分数,它们的分子与分母的乘积都是140.如果把所有这样的分数从小到大排列,那么第三个分数是多少?【分析与解】有140=2×2×5×7,因为这些分数的分子与分母的乘积均为140,当分母越大时,分子越小,所以对应的分数也越小.有分母从大到小依次为140、70、35、28、20、14、10、7、5、4、2、1;对应分子从小到大依次为1、2、4、5、7、10、14、20、28、35、70、140;对应分数从小到大依次为而1140、270、435、528、720、1014、1410、…其中第三个最简真分数为.8.某校师生为贫困地区捐款1995元.这个学校共有35名教师,14个教学班.各班学生人数相同且多于30人不超过45人.如果平均每人捐款的钱数是整数,那么平均每人捐款多少元?【分析与解】这个学校最少有35+14×30=455名师生,最多有35+14×45=665名师生,并且师生总人数能整除1995.1995=3×5×133,在455~665之间的约数只有5×133=665,所以师生总数为665人,则平均每人捐款1995÷665=3元.9.在做一道两位数乘以两位数的乘法题时,小马虎把一乘数中的数字5看成8,由此得乘积为1872.那么原来的乘积是多少?【分析与解】1872=2×2×2×2×3×3×13=口口×口口,其中某个口为8,一一验证只有:1872=48×39,1872=78×24满足.当为1872=48×39时,小马虎错把5看成8,也就是错把45看成48,所以正确的乘积应该是45×39=1755.当为1872=78×24时,小马虎错把5看成8,也就是错把75看成78,所以正确的乘积应该是75×24=1800.所以原来的积为1755或1800.10.已知两个数的和被5除余1,它们的积是2924,那么它们的差等于多少?【分析与解】2924=2×2×17×43=A×B,且有A+B被5除余l,则和的个位为1或6.有4×17+43=68+43=11l,也就是说68、43为满足题意的两个数.它们的差为68-43=25.11.在射箭运动中,每射一箭得到的环数或者是“0”(脱靶),或者是不超过10的自然数.甲、乙两名运动员各射了5箭,每人5箭得到的环数的积都是1764,但是甲的总环数比乙少4环.求甲、乙的总环数各是多少?【分析与解】1764=2×2×3×3×7×7,1764对应为5个小于10的自然数乘积.只能是1764=4×3×3×7×7=2×6×3×7×7=2×2×9×7×7=1×6×6×7×7=1×4×9×7×7对应的和依次为4+3+3+7+7=24,2+6+3+7+7=25,2+2+9+7+7=27,1+6+6+7+7=27,l+4+9+7+7=28.对应的和中只有24,28相差4,所以甲的5箭环数为4、3、3、7、7,乙的5箭环数为1、4、9、7、7.所以甲的总环数为24,乙的总环数为28.12.在面前有一个长方体,它的正面和上面的面积之和是209,如果它的长、宽、高都是质数,那么这个长方体的体积是多少?【分析与解】如下图,设长、宽、高依次为a、b、c,有正面和上面的和为ac+ab=209.ac+ab=a×(c+b)=209,而209=11×19.当a=11时,c+b=19,当两个质数的和为奇数,则其中必定有一个数为偶质数2,则c+b=2+17;当a=19时,c+b=11,则c+b=2+9,b为9不是质数,所以不满足题意.所以它们的乘积为11×2×17=374.13.一个长方体的长、宽、高是连续的3个自然数,它的体积是39270立方厘米,那么这个长方体的表面积是多少平方厘米?【分析与解】方法一:39270=2×3×5×7×11×17,为三个连续自然数的乘积,而34最接近39270,39270的约数中接近或等于34的有35、34、33,有34×34×34即333×34×35=39270.所以33、34、35为满足题意的长、宽、高.则长方体的表面积为:2×(长×宽+宽×高+高×长)=2×(33×34+34×35+35×33)=6934(平方厘米).方法二:39270=2×3×5×7×11×17,为三个连续自然数的乘积,考虑质因数17,如果17作为长、宽或高显然不满足.当17与2结合即34作为长方体一条边的长度时有可能成立,再考虑质因数7,与34接近的数32~36中,只有35含有7,于是7与5的乘积作为长方体的一条边的长度.而39270的质因数中只剩下了3和1l,所以这个长方体的大小为33×34×35.长方体的表面积为2×(3927033+3927034+3927035)=2×(1190+1155+1122)=2×3467=6934(平方厘米).14.一个长方体的长、宽、高都是整数厘米,它的体积是1998立方厘米,那么它的长、宽、高的和的最小可能值是多少厘米?【分析与解】我们知道任意个已确定个数的数的乘积一定时,它们相互越接近,和越小.如3个数的积为18,则三个数为2、3、3时和最小,为8.1998=2×3×3×3×37,37是质数,不能再分解,所以2×3×3×3对应的两个数应越接近越好.有2×3×3×3=6×9时,即1998=6×9×37时,这三个自然数最接近.它们的和为6+9+37=52(厘米).15.如果两数的和是64,两数的积可以整除4875,那么这两个数的差等于多少?【分析与解】4875=3×5×5×5×13,有a×b为4875的约数,且这两个数的和为64.发现39=3×13、25=5×5这两个数的和为64,所以39、25为满足题意的两个数.那么它们的差为39-25=14.评注:由上题可推知,当两个数的和一定时,这两个数越接近,积越大,所以两个和为64的数的乘积最大为32×32=1024,而积最小为1×63=63.而4875在64~1024之间的约数有65,195,325,375,975等.我们再对65,195,325,375,975等一一验证.严格的逐步计算,才不会漏掉满足题意的其他的解.而在本题中满足题意的只有39、25这组数.练习一、填空题1. 在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____.2. 最小的质数与最接近100的质数的乘积是_____.3.两个自然数的和与差的积是41,那么这两个自然数的积是_____.4. 在下式样□中分别填入三个质数,使等式成立.□+□+□=505. 三个连续自然数的积是1716,这三个自然数是_____、_____、_____.6. 找出1992所有的不同质因数,它们的和是_____.7. 如果自然数有四个不同的质因数, 那么这样的自然数中最小的是_____.8. 9216可写成两个自然数的积,这两个自然数的和最小可以达到_____.9. 从一块正方形的木板上锯下宽为3分米的一个木条以后,剩下的面积是108平方分米.木条的面积是_____平方分米.10. 今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是_____.二、解答题11.2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数.已知一个长方形的长和宽都是质数个单位,并且周长是36个单位.问这个长方形的面积至多是多少个平方单位?12.把7、14、20、21、28、30分成两组,每三个数相乘,使两组数的乘积相等.13.学生1430人参加团体操,分成人数相等的若干队,每队人数在100至200之间,问哪几种分法?14. 四只同样的瓶子内分别装有一定数量的油,每瓶和其他各瓶分别合称一次,记录千克数如下:8、9、10、11、12、13.已知四只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油?。
质数和合数的应用题
质数和合数的应用题质数和合数是数学中的重要概念,它们在各个领域都有着广泛的应用。
本文将结合实际问题,探讨质数和合数的应用,并通过具体案例加深理解。
一、质数的应用质数指大于1且除了1和自身没有其他因数的自然数。
在密码学领域中,质数应用广泛,主要是基于质因数分解的难解性。
质因数分解是指将一个合数拆分为多个质数的乘积。
例如,RSA算法中就用到了质数的特性。
RSA算法是一种常用的非对称加密算法,它基于两个大质数的乘积作为公钥,私钥由这两个质数的乘积的质因数组成。
由于质因数分解的困难性,破解RSA算法变得极为困难。
这表明质数在信息安全领域起到了重要的作用。
二、合数的应用合数是指至少有一个大于1的因数的自然数。
在实际生活中,合数也有着广泛的应用。
1. 质因数分解法质因数分解法是求解合数的质因数的常用方法。
它可以将合数表示为若干个质数的乘积。
这种分解方法在化学领域中常用于化学方程式的平衡。
例如,对于化学方程式H2 + O2 → H2O,我们可以通过质因数分解法来平衡方程式。
首先,将H2O分解为H和O的质因数,即2和1;而H2和O2分解后的质因数分别为2和2。
根据平衡定律,两边质因数的乘积应相等,因此,我们可以将H2 + O2 → H2O调整为2H2 + O2 → 2H2O,使质因数相等,方程式平衡。
2. 组合数学组合数学是数学中研究离散结构的一门学科,而其中的“组合”正是建立在合数的基础上。
在概率论和统计学中,组合数学的概念被广泛应用于解决问题。
例如,在抽样问题中,我们需要计算从n个元素中选择r个元素的组合数。
这个计算就依赖于合数的概念。
三、案例分析为了更好地理解质数和合数的应用,我们将通过一个案例进行分析。
问题:某市的一家工厂共有100名员工,其中有70%的员工参加了素质培训课程,其他员工没有参加。
而已知参加课程的员工比没有参加课程的员工多30人。
请问该市的员工总数是多少?解决方案:假设没有参加课程的员工数量为x,根据题目信息,参加课程的员工数量为70% * 100 = 70人,而且这个数量比没有参加课程的员工多30人。
小学五年级数学—质数和合数例题讲解
从三张卡片中任抽3 张,三位数有6个。
7+8+9=24
合数:789、798、879、 897、978、987。
24能被3整除,所以,7、8、9 按任意次序排起来所得的三 位数,都是合数。
3.在50以内的两位数中,与1的 差是质数,除以2的商也是质数 的共有几个?在100以内的两位 数中满足条件的数有几个?
13、85。
(1)这个数与1的差是质数。 满足条件的数:14、86。
在9的所有倍数上加上5,这 样的数除以9得到的余数是5。
最大幸运数是14。
这个数除以2的商是质数: 7、16、25、34、43。
14、23、32、41、50、59、 68、77、86、95、104。
所求的数是两位数。
条件(2)这个数除以 2所得商也是质数。
第五位数是9。
第六位同时是 2和3的倍数。
2×3=6 第六位数是6。
第七位是一位数中 最大的质数。
第七位数是7。
小明日记本的密码:5032967
13.王老师的手机号的前5位数字是10以内的奇数, 并且从小到大排列,中间几位数字是比10小的合数, 并且按从大到小排列。最后一位数字既不是质数也 不是合数,倒数第二位数字既是质数又是偶数。号 码共有11位数,王老师的手机号码是多少?
21=3×7 21是一个合数。
2是一个质数。
这两个数是2和21。
8.一个长方形的长和宽都是质数, 并且周长是36cm,这个长方形的 面积最大是多少平方厘米?
解析
长方形的周长=(长+宽)×2
长方形的面积=长×宽
一个长方形的周 长是36cm。
长+宽=18(cm)
小学奥数 质数与合数(一) 精选练习例题 含答案解析(附知识点拨及考点)
1. 掌握质数与合数的定义2. 能够用特殊的偶质数2与质数5解题3. 能够利用质数个位数的特点解题4. 质数、合数综合运用一、质数与合数 一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数。
要特别记住:0和1不是质数,也不是合数。
常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴ 值得注意的是很多题都会以质数2的特殊性为考点.⑵ 除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.二、判断一个数是否为质数的方法根据定义如果能够找到一个小于p 的质数q (均为整数),使得q 能够整除p ,那么p 就不是质数,所以我们只要拿所有小于p 的质数去除p 就可以了;但是这样的计算量很大,对于不太大的p ,我们可以先找一个大于且接近p 的平方数2K ,再列出所有不大于K 的质数,用这些质数去除p ,如没有能够除尽的那么p 就为质数.例如:149很接近1441212=⨯,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.模块一、判断质数合数 【例 1】 下面是主试委员会为第六届“华杯赛”写的一首诗:美少年华朋会友,幼长相亲同切磋;杯赛联谊欢声响,念一笑慰来者多;九天九霄志凌云,九七共庆手相握;聚起华夏中兴力,同唱移山壮丽歌.请你将诗中56个字第1行左边第一字起逐行逐字编为1—56号,再将号码中的质数由小到大找出来,例题精讲知识点拨知识框架5-3-1.质数与合数(一)将它们对应的字依次排成一行,组成一句话,请写出这句话.【考点】判断质数合数【难度】1星【题型】填空【解析】按要求编号排序,并画出质数号码:美少年华朋会友,幼长相亲同切磋;1 2 3 4 5 6 7 8 9 10 11 12 13 14杯赛联谊欢声响,念一笑慰来者多;15 16 17 18 19 20 21 22 23 24 25 26 27 28九天九霄志凌云,九七共庆手相握;29 30 31 32 33 34 35 36 37 38 39 40 41 42聚起华夏中兴力,同唱移山壮丽歌.43 44 45 46 47 48 49 50 51 52 53 54 55 56将质数对应的汉字依次写出就是:少年朋友亲切联欢;一九九七相聚中山.【答案】少年朋友亲切联欢;一九九七相聚中山【例 2】著名的哥德巴赫猜想是:“任意一个大于4的偶数都可以表示为两个质数的和”。
质数与合数重点复习与解题思路
质数与合数复习资料一,认识质数与合数质数:有且只有1和它本身两个因数。
合数:除了1和它本身,还有别的因数。
特点:⏹0和1既不是质数,也不是合数⏹2是最小的质数,也是唯一的偶数⏹4是最小的合数⏹除了2和5,其余质数的个位数都是1,3,7,9二、判断质数1、尾巴判断法,排除末尾是0,2,4,6,8,52、和判断法,排除数位上的数字和是3的倍数3、试除判断法,试除质数,被除数逐个从小到大除以质数,直到到商<除数为止。
实例:判断148,143、179,135,243是不是质数。
解题思路:1)尾巴判断法,看尾数首先排除148和135;2)和判断法,排除243;3)试除判断法,开始判断143合179可以按从小到大的顺序用2、3、5、7、11……等质数去试除。
一般情况下用20以内的2、3、5、7、11、13、17、19这8个质数去除就可以了。
143:不是质数。
判断思路:从小到大试除,1)个位是3,排除了被2、5整除的可能性;2)它各位数字的和是1+4+3=8,也不可能被3整除;3)通过口算也证明不能被7整除;4)当试除到11时,商正好是13,到此就可以断定143不是质数。
179:是质数。
步骤同143判断。
179÷2=59 (2)179÷3=66 (1)179÷5=35 (4)179÷7=25 (4)179÷11=16 (3)179÷13=13 (10)179÷17=10……9----结束当179÷17所得到的不完全商10比除数17小,就不需要继续再试除,而断定179是质数。
三、质合数与奇偶性结合考虑:2是唯一的偶质数奇+奇=偶奇+偶=奇偶+偶=偶奇数×奇数=奇数奇数×偶数=偶数偶数×偶数=偶数四、100以内的质数----要熟记,44 223 223 21 个数规律牢记2 3 5 7 ---四个11 13 17 19----四个====================之后都小于4个23 2931 3741 43 4753 5961 6771 73 7983 8997=====================100以内共25个质数100以内质数表课本练习题详解:1)7,9,8可以拼成多少个不同的质数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、复习导入,揭示课题
把下面各数分别填在合适的圈内。
39 48 51 207 420 801 8976
奇数
偶数
39 51 207 801
48 420 8976
说说你是怎 么判断的?
在整数中,是2的倍数 的数就是偶数,否则就 是奇数。
个位上是0、2、4、6、 8的数是偶数;个位上 是1、3、5、7、9的数 是奇数。
我随便找几个奇数、偶 数,加起来看一看。
你怎么想?
5+7=12
奇数:5, 7, 9, 11,…
偶数:8,12,20,24,…
5+8=13
8+12=20
7+9=16
7+8=15
12+24=36
……
……
……
奇数+奇数=偶数 奇数+偶数=奇数 偶数+偶数=偶数
二、探究新知
奇数与偶数的和是奇数还是偶数?奇数与奇 数的和是奇数还是偶数?偶数与偶数的和呢?
奇数除以2余1 偶数除以2没有余数
你怎么想?
奇数:
……
偶数:
……
奇数加偶数的和除以2还余1,所以,奇数+偶数=奇数。 奇数加奇数的和除以2没有余数,所以,奇数+奇数=偶数。 偶数加偶数的和除以2没有余数,所以,偶数+偶数=偶数。
二、探究新知
奇数与偶数的和是奇数还是偶数?奇数与奇 数的和是奇数还是偶数?偶数与偶数的和呢?
8×12=96 14×24=336 …… 偶数×偶数=偶数
30是偶数,甲队人数为奇数, 30是偶数,甲队人数是偶数,
奇数+奇数=偶数,所以, 偶数+偶数=偶数,所以,数。
三、知识运用
2. 奇数与奇数的积是奇数还是偶数?奇数与偶数的 积是奇数还是偶数?偶数与偶数的积呢?
5×7=35
7×9=63 …… 奇数×奇数=奇数
5×8=40 7×8=56 …… 奇数×偶数=偶数
二、探究新知
奇数与偶数的和是奇数还是偶数?奇数与奇 数的和是奇数还是偶数?偶数与偶数的和呢?
从题目中你知道了什么?
我把问题表示成 这样……
题目让我们对奇 数、偶数的和做 一些探索。
奇数+偶数= 奇数+奇数= 偶数+偶数=
奇数? 偶数? 奇数? 偶数?
奇数? 偶数?
二、探究新知
奇数与偶数的和是奇数还是偶数?奇数与奇 数的和是奇数还是偶数?偶数与偶数的和呢?
所以,你们的结 论是…… 奇数+奇数=__偶_数
奇数+偶数=_奇_数_
偶数+偶数=_偶_数_
二、探究新知
奇数与偶数的和是奇数还是偶数?奇数与奇 数的和是奇数还是偶数?偶数与偶数的和呢?
这个结论正确吗?
我可以再找一些 大数试一试。
534+319=853
所以,奇数+偶数=奇数
三、知识运用
1.
30个学生要分成甲、乙两队。如果甲队人数为奇数, 乙队人数为奇数还是偶数?如果甲队人数为偶数呢?