R语言方法总结要点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算描述性统计量:
1、summary():
例:summary(mtcars[vars])
summary()函数提供了最小值、最大值、四分位数和数值型变量的均值,以及因子向量和逻
辑型向量的频数统计。
2、apply()函数或sapply()函数
计算所选择的任意描述性统计量。mean、sd、var、min、max、median、length、range 和quantile。函数fivenum()可返回图基五数总括(Tukey’s five-number summary,即最小值、下四分位数、中位数、上四分位数和最大值)。
sapply()
例:mystats <- function(x, na.omit = FALSE) {
if (na.omit)
x <- x[!is.na(x)]
m <- mean(x)
n <- length(x)
s <- sd(x)
skew <- sum((x - m)^3/s^3)/n
kurt <- sum((x - m)^4/s^4)/n - 3
return(c(n = n, mean = m, stdev = s, skew = skew, kurtosis = kurt))
}
sapply(mtcars[vars], mystats)
3、describe():
Hmisc包:返回变量和观测的数量、缺失值和唯一值的数目、平均值、
分位数,以及五个最大的值和五个最小的值。
例:library(Hmisc)
describe(mtcars[vars])
4、stat.desc():pastecs包
若basic=TRUE(默认值),则计算其中所有值、空值、缺失值的数量,以及最小值、
最大值、值域,还有总和。
若desc=TRUE(同样也是默认值),则计算中位数、平均数、平均数的标准误、平均
数置信度为95%的置信区间、方差、标准差以及变异系数。
若norm=TRUE(不是默认的),则返回正态分布统计量,包括偏度和峰度(以及它们
的统计显著程度)和Shapiro–Wilk正态检验结果。这里使用了p值来计算平均数的置信区
间(默认置信度为0.95:
例:library(pastecs)
stat.desc(mtcars[vars])
5、describe():psych包
计算非缺失值的数量、平均数、标准差、中位数、截尾均值、绝对中位差、最小值、最大值、值域、偏度、峰度和平均值的标准误